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Abstract

We develop a topological approach, called homotopic lobe dynamics, for describing
the qualitative structure of homoclinic tangles. This approach begins from an ef-
ficient and accurate description of the initial development of a tangle, up to some
finite number of iterates J , where the value of J indicates the amount of informa-
tion that one puts into the theory. Our approach can then compute the topologically
forced structure of the tangle at all iterates after J . This allows one, for example,
to predict a minimal set of homoclinic intersections. This technique places few as-
sumptions on the homoclinic tangles considered. In fact, one main advantage is its
ability to describe the wide variety of behavior seen in physically significant tangles.
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1 Introduction

Since their introduction by Poincaré over a hundred years ago, homoclinic
tangles have been recognized for their importance in the study of transport
in dynamical systems [1]. This is due to the role homoclinic tangles play in
organizing the structure of dynamical maps on a two-dimensional phase space.
Since such maps appear regularly in applications, homoclinic tangles are rele-
vant to a wide variety of research fields, including fluid dynamics, celestial me-
chanics, molecular reactions and scattering, and atomic ionization. (We have
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been motivated by applications to chaotic ionization [2,3].) For a good intro-
duction to tangles and their applications see the book by Wiggins [4]. Despite
their wide applicability, unresolved issues still surround homoclinic tangles.
There is, for example, no complete mathematical classification of tangles [5].
And though several specific families of tangles have been studied [5–14], there
are few general procedures for precisely describing the wide variety of behav-
iors that tangles exhibit in physical applications. The recent work of Collins
(see below) is a noteworthy and important exception [15].

Figure 1a shows a characteristic homoclinic tangle. (The map that generates
this tangle arises in the context of chaotic ionization [3], but its definition is not
important here.) The tangle consists of the stable and unstable manifolds of a
hyperbolic fixed point zX. These manifolds are invariant curves that proceed
from the fixed point out into the surrounding phase space. Each individual
curve does not intersect itself, but the two curves intersect each other an
infinite number of times, forming a twisted and intricate pattern – the hallmark
of a homoclinic tangle.

This paper focuses on the qualitative topological structure of homoclinic tan-
gles. This structure is characterized by the pattern of homoclinic intersections,
i.e. intersections between the stable and unstable manifolds. One way to visu-
alize this pattern is with an escape-time plot. Fig. 1b shows the escape-time
plot for the tangle in Fig. 1a. The horizontal axis parameterizes a judiciously
chosen segment of the unstable manifold. The vertical axis records the num-
ber of iterates required for each point along this segment to escape from a
judiciously chosen region of the phase plane. The exact choices that define
the plot are discussed in Sec. 2, but for now we content ourselves with a few
observations. After one iterate, a single “escape segment” (a portion of which
appears in Fig. 1b) maps out of the region of interest. This region is defined
so that each endpoint of an escape segment is a homoclinic intersection. Thus,
we find two homoclinic intersections on the first iterate. On the second iter-
ate, we find one new escape segment, to the right of the previous segment,
yielding two more homoclinic intersections. On the third iterate, we find two
new escape segments, with one in each gap left by the previous two segments.
On the fourth iterate, we find four new segments, again with one in each gap
formed by the previous segments. (The left and rightmost of these segments
are quite narrow and hard to see in Fig. 1b.)

Thus, the initial escape segments in Fig. 1b display an obvious pattern, sug-
gesting the following prediction: at each iterate of the map there is one new
escape segment lying in each gap formed by the previous segments. This pre-
diction implies that the number of segments (or, equivalently, homoclinic inter-
sections) grows exponentially like 2n. This prediction is in fact exactly correct
for the Smale horseshoe [7], which, in some sense, has the simplest of all pos-
sible tangles. However, for the tangle in Fig. 1, the pattern predicts only some
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Fig. 1. a) A homoclinic tangle. The stable manifold (thick red curve) and unstable
manifold (thin blue curve) of the fixed point zX intersect each other an infinite
number of times. The tangle is computed numerically from the map defined in
Ref. [3] (with parameters E = −0.75, B = 2.55.) b) The escape-time plot for the
tangle in (a), showing the number of iterates required to escape the complex as a
function along the interval UF

0 of the unstable manifold. The first escape segment,
to the left of the origin, has been truncated to conserve space.

of the escape segments, while missing others. Notably, at iterate six, there are
two segments in the gap labeled a5, whereas the horseshoe would only have
one. Furthermore, one finds more examples of additional escape segments by
examining the escape-time plot on finer and finer scales and at longer and
longer times. These additional segments are an essential part of the long-term
structure of the homoclinic tangle and not merely a transient phenomenon
that occurs in the initial development.

The above case study illustrates an important general principle. The initial
topological structure of a homoclinic tangle, taken up to some finite iterate,
constrains the subsequent topological development of the tangle. This con-
straint allows one to predict a minimal set of subsequent escape segments.
However it may, and in our calculations typically does, fail to predict all

subsequent segments. The segments that are not predicted reflect topological
structure in the later development of the tangle that was not forced by the
earlier development.

The objective of this paper is to develop the preceding observations into a rig-
orous and efficient machinery for describing tangles. We provide a topological
framework for characterizing the initial development of a homoclinic tangle up
to some iterate J . This initial development may be determined, for example,
by direct numerical computation of the stable and unstable manifolds. The
value of J is chosen by the researcher. It depends on how much information
one has available or wants to incorporate. Using the topological description of
the early development of the tangle, one can then determine the topologically
forced structure of the subsequent development of the tangle. This allows one
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to predict a minimal set of escape segments at iterates beyond J .

We call our method “homotopic lobe dynamics”. “Lobe dynamics” is an es-
tablished term for the tangle dynamics [4]. The term “homotopic” is added
because our machinery is based on homotopy theory in the following way. We
first judiciously punch holes in the phase plane. We then describe how the
unstable manifold qualitatively winds around these holes. Homotopy theory
provides the appropriate language for this description. It also provides a group
structure that allows us to develop a convenient algebraic formalism. In this
paper, we assume no significant background in homotopy theory. We provide
the necessary information in Sec. 3.3.

This work is the outgrowth of an earlier paper [16], in which we introduced an
initial version of homotopic lobe dynamics. That version made use of just one
piece of topological information, the “minimum delay time” D, which we define
in Sec. 5.1. This parameter is the first piece of information needed to predict
a topologically forced set of homoclinic intersections. In the present paper, we
introduce a more powerful version of homotopic lobe dynamics. This version
allows one to input additional topological information beyond the minimum
delay time, and to use this information to predict a larger and more complete
set of topologically forced homoclinic intersections. Thus, we are able to more
accurately describe the wide range of behavior seen in physically significant
tangles, including that in Fig. 1. We place few restrictions on the tangles
considered, and even these restrictions are made for ease of exposition rather
than a fundamental limitation of the theory.

Several previous authors have made important contributions to the topological
understanding of various classes of tangles. We have been particularly influ-
enced by the work of Easton [7,5], Rom-Kedar [8,9], and the group of Jung
and coworkers [10–14,17]. Our work allows one to incorporate more general
topological information than is considered in these earlier works.

Recently, Collins has developed a technique that can also incorporate such
general topological information [15]. His technique partitions phase space us-
ing “trellises”, finite-length intervals of the stable and unstable manifolds.
This partition generates a subshift that describes the forcing of early time
dynamics on later time dynamics. In this context, Collins has also consid-
ered “minimal extensions” of trellises, related to our minimal set of escape
segments. Our work is complementary to that of Collins, having similar mo-
tivation but differing substantially in approach and method. We provide a
distinct perspective on the structure of homoclinic tangles and the nature of
forcing relations. In Collins’s approach, the dynamics is described by a graph
theoretical tree, which forms a kind of “skeleton” of the tangle, and by a graph
map on this tree. The subshift dynamics is deduced from the structure of this
graph map. In our approach, we describe segments of the unstable manifold
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directly, without ever introducing a partition of phase space. We use homotopy
theory as the primary tool for describing the qualitative structure of segments
of the tangle.

Our approach is particularly well suited for describing how a general curve of
initial conditions is mapped forward under the influence of a homoclinic tangle.
(See Sec. 3.6.) Such lines of initial conditions appear naturally in chaotic scat-
tering and ionization studies (as in Refs. [18,10–13,17,2,3].) Such applications
are one of the underlying physical motivations of this work.

The article is organized as follows. Section 2 provides foundational material on
homoclinic tangles. Section 3 contains our core results: we first explain where
to punch holes in the plane (Secs. 3.1 and 3.2); we next introduce the homotopy
structure that is used to describe the topological structure of segments of
the tangle (Sec. 3.3); we then develop the relation between the homotopy
structure, the homoclinic tangle, and the dynamical map (Sec. 3.4); and finally,
we explain how the minimal set of escape segments is generated (Sec. 3.5). In
Sec. 4 we simplify our description of homotopic lobe dynamics by defining a
minimal generating set, or basis, of the homotopy group of paths in the plane.
Section 5 applies homotopic lobe dynamics to several examples, including
the tangle in Fig. 1a. Section 6 discusses the relation between homotopic
lobe dynamics and shift dynamics. In particular, we show how to compute
topological entropy. Finally, there is one appendix containing technical details
about how the holes are defined.

2 Fundamentals in the study of homoclinic tangles

Here we provide background material and establish notation and conventions.
See also Refs. [7,4,5]. We consider an orientation-preserving C1 diffeomor-
phism M of the plane or some subset of the plane. We typically consider
applications in which M is area-preserving, but this is not a requirement of
our method. We assume that M has a hyperbolic fixed point zX with posi-
tive eigenvalues. Thus zX has a stable and an unstable manifold and each of
these manifolds is divided into two invariant branches that meet at zX. We
assume that one branch S of the stable manifold and one branch U of the
unstable manifold have a transverse intersection point. This single transverse
intersection, and the principle that the stable and unstable manifolds can not
self-intersect [5], implies that S and U intersect an infinite number of times
forming a complicated pattern of twisting curves called a homoclinic tangle
(Fig. 1a and Fig. 2). We assume for simplicity that the remaining branches
of the stable and unstable manifolds go to infinity without intersecting the
unstable or stable manifolds, respectively.
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Fig. 2. a) A qualitative sketch of a homoclinic tangle. zX is the hyperbolic fixed
point, and S and U are tangled branches of its stable and unstable manifolds.
P0 is a selected primary intersection point, or pip, meaning that the segments
S = S[zX,P0] and U = U [zX,P0] intersect only at their endpoints. These segments
enclose an eye-shaped region of the plane called the complex, which is shaded light
blue. Mapping P0 forward and backward produces the homoclinic orbit Pn. The
segments UF

0 = U [P−1,P0) and SF
0 = S[P0,P1) are shown thickened and are called

the fundamental U - and S-segments, respectively. The capture lobes are labeled Cn

and the escape lobes En. b) The same tangle as in part (a). However the stable
manifold has been truncated to the point P0, and an additional capture lobe C5

has been added.

Each intersection point between S and U is called a homoclinic intersection.
Mapping a homoclinic intersection backward and forward generates a homo-

clinic orbit, a sequence of intersections between S and U that converges upon
zX in both forward and backward directions.

For two points x,y ∈ S, let S[x,y] denote the closed interval of S connecting
x to y; let S(x,y), S[x,y), and S(x,y] denote the corresponding open and
half-open intervals. Similarly, for two points x,y ∈ U , let U [x,y] denote the
closed interval of U connecting x to y; open and half-open intervals are denoted
accordingly.

Each branch of the stable or unstable manifold is a directed curve with an
ordering defined by the dynamics. Specifically, for two points x,x′ ∈ S, we
write x >s x′ if x is closest to zX as measured along S, i.e. x ∈ S(x′, zX].
Similarly, for two points x,x′ ∈ U , we write x >u x′ if x is farthest from zX

as measured along U , i.e. x′ ∈ U [zX,x).

A primary intersection point, or pip, is a transverse homoclinic intersection
zpip such that S[zpip, zX) and U(zX, zpip] intersect only at zpip [4]. For a given
tangle, we choose a pip zpip = P0 and leave it fixed throughout the analysis.
(Please refer to the tangle in Fig. 2 for the present discussion.) We define the
complex Γ as the closed region of the plane bounded by the stable segment
S = S[P0, zX] and the unstable segment U = U [zX,P0]. (Easton calls Γ a
resonance zone [5].)
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Let Pn = Mn(P0), −∞ < n < ∞, be the forward and backward iter-
ates of the pip P0. We call SF

0 = S[P0,P1) the fundamental S-segment and
UF

0 = U [P−1,P0) the fundamental U-segment. By construction, every homo-
clinic orbit passes through each of these segments exactly once. We define the
transition number of a homoclinic point x as the number of iterates n such
that Mn+m(x) lies in the fundamental S-segment assuming Mm(x) lies in the
fundamental U -segment 1 . By definition, the transition number is the same
for all points in a homoclinic orbit.

We focus on intersections between the unstable manifold U and the funda-
mental S-segment SF

0 . The manifold U can be built up by starting with U

and then adding each iterate UF
n = Mn(UF

0 ) of the fundamental U -segment
for n = 1, 2, 3, .... We refer to the union of U with ∪n

i=1U
F
i as the development

of the tangle at iterate n. The first iterate UF
1 = U [P0,P1) shares its end-

points with SF
0 = S[P0,P1), and thus the pip P0 has transition number one

(as do all of its iterates.) Since M is orientation-preserving, U and S intersect
with the same sense at P0 and P1. Thus, there must be an odd number of
transverse intersections, of alternating sense, between P0 and P1, and each of
these intersections has transition number one. All examples in this paper have
a single such intersection Q1, as in Fig. 2, but this is not a requirement for our
technique. (In previous work [19,16,2,3], we labeled this point Q0 instead.)

Example: In Fig. 2, the point Q1 divides the segments SF
0 = S[P0,P1) and

UF
1 = U [P0,P1) into two pieces each. These pieces bound two “lobes” of the

tangle [4]. The lobe C1 is the region bounded by S[Q1,P1] and U [Q1,P1],
and the lobe E0 is the region bounded by S[P0,Q1] and U [P0,Q1]. These
lobes map backwards to the lobes C0 and E−1, respectively. Thus, M maps
the lobe E−1, which is inside the complex, to the lobe E0, which is outside
the complex, and all points that will escape the complex in one iterate
lie in the lobe E−1. Similarly, M maps the lobe C0, which is outside the
complex, to the lobe C1, which is inside the complex, and all points that
are captured into the complex in one iterate lie in C0. For this reason we
call the regions Cn = Mn(C0) capture lobes and En = Mn(E0) escape lobes.
The pair of lobes C0 and E−1 is often called a “turnstile” because it controls
the transport of points in and out of the complex [20].

As noted above any intersection between SF
0 and UF

1 = M(UF
0 ) has transi-

tion number one. More generally, any intersection between SF
0 and UF

n , has
transition number n.

Example: In Fig. 2a, UF
2 = U [P1,P2) is divided into the curve U [P1,Q2],

which bounds the escape lobe E1, and the curve U [Q2,P2), which bounds
the capture lobe C2. We use the notation Cn = U [Qn,Pn] for the closed

1 In general, the transition number depends on the choice of pip P0.
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Fig. 3. A qualitative sketch of the escape-time plot for the tangle in Fig. 2.

segment that bounds Cn. We typically use calligraphic notation to denote
curves.

Since C2 does not intersect SF
0 , it contains no homoclinic intersections of

transition number two. Mapping C2 forward, C3 still does not intersect SF
0 ,

and hence contains no intersections of transition number three. However, C4

does intersect SF
0 , creating two homoclinic intersections α4 and β4 at transi-

tion number four. Furthermore, Fig. 2b shows four homoclinic intersections
at transition number five.

In the preceding example, none of the boundaries U [Pn,Qn+1] of the escape
lobes En, n ≥ 1, intersects SF

0 . The only way for such an intersection to occur
would be for U [Pn,Qn+1] to have previously intersected S(Q0,P0). That is, a
piece of the escape lobe would have to be recaptured into the complex through
the turnstile. We assume that this does not happen, i.e. En ∩ C0 = ∅, n ≥ 0.
More generally:

“No recapture” assumption: For all tangles in this paper, we assume that
no trajectory is recaptured into the complex after it has escaped.

We often record the structure of homoclinic intersections through the escape-
time plot, defined as follows. We regard the fundamental U -segment UF

0 as a
“curve of initial conditions”. Iterating each point on this curve forward, we ask
at what iterate n does a point finally land outside the complex. Thus, for each
point x ∈ UF

0 , we plot the number of iterates n required to escape the complex,
i.e. n = mini>0 M i(x) /∈ Γ. Fig. 1b shows the escape-time plot computed for
the tangle in Fig. 1a, and Fig. 3 shows a qualitative sketch of the escape-time
plot for the tangle in Fig. 2. The open intervals over which the escape time
is constant are called escape segments. Each endpoint of an escape segment
at iterate n is a homoclinic intersection with transition number n. Thus, the
escape-time plot is a convenient way to represent homoclinic intersections
graphically, including their transition numbers and relative ordering along U .
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Example: For the escape-time plot in Fig. 3, the segment that escapes on the
first iterate corresponds to U(P0,Q1) in Fig. 2a. The segment that escapes
on the fourth iterate corresponds to the segment Za = U(β4, α4). The two
segments on the fifth iterate correspond to Zb and Zc in Fig. 2b.

Let us examine the topology of the curve C5 in Fig. 2b. Since C4 intersects
S(P0,Q1) at the points α4 and β4, the tip Za = U(β4, α4) of C4 lies in E0,
forming the segment that escapes on the fourth iterate in Fig. 3. Mapping
forward one iterate, the tip of C5 must lie in E1. Furthermore, its base points
Q5 and P5 have moved closer to zX along S. To connect the base points
of C5 to its tip, the curve C5 is forced to wind around the preceding lobes
in order to avoid self-intersections in U . Beginning in the vicinity of zX, it
is topologically forced to enter E0, to pass below C1, to enter E1, and then
to pass back below C1, to reenter E0, and to return to the vicinity of zX.
Thus, the presence of the escape segment on the fourth iterate forces two
escape segments on the fifth iterate. Of course, C5 could have additional twists
and kinks which could produce additional escape segments, but the preceding
topological picture guarantees that there are at least two segments that escape
on the fifth iterate.

In light of this discussion, we state the objective of this paper as follows. Sup-
pose that we map the fundamental segment UF

0 forward J times so that we
know all homoclinic intersections up to transition number J . Then we ask:
what is the minimal set of homoclinic intersections that is topologically forced
to exist at all subsequent iterates? To address this question we develop a
topological description of the homoclinic tangle that condenses the essential
information about all intersections up to iterate J , and then, using this infor-
mation, predicts the resulting set of topologically forced intersections beyond
J . If the value of J is increased by adding more information about the tangle,
the topological description of the tangle predicts more of the escape segments.

3 Homotopic lobe dynamics

3.1 Neighbors and pseudoneighbors

Following Ref. [6], we define two homoclinic points x and x′ to be neighbors if
both of the open segments U(x,x′) and S(x,x′) connecting x to x′ contain no
homoclinic points. This is a powerful concept because it implies that the stable
and unstable manifolds never enter the domain bounded by the segments
U [x,x′] and S[x,x′]. The structure of the stable and unstable manifolds can
thus be characterized by how they wind around these excluded domains.
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Unfortunately, in practice we often cannot determine whether two points are
truly neighbors. For most physical systems we must determine the structure
of the tangle by numerically propagating UF

0 forward a finite number of times
J and noting where it intersects SF

0 at each iterate. In this circumstance, we
may find two intersections x and x′ that appear to be neighbors based on a
finite development of U , only to find at some later iterate that they are not
true neighbors. That is, if S(x,x′) does not intersect UF

j for j ≤ J , we may
still find that they do intersect for some j > J .

This practical consideration motivates the following weaker definition, which
relies on only a finite number of iterates of UF

0 . Two homoclinic points x and
x′ are pseudoneighbors of index j if (i) x and x′ have transition number less
than or equal to j and (ii) both of the open segments U(x,x′) and S(x,x′)
connecting x to x′ contain no homoclinic points with transition number less
than or equal to j. A pseudoneighbor of index j will also be called a j-neighbor.
Intuitively, two points are j-neighbors if they appear to be neighbors based on
the development of the unstable manifold up to transition number j. If two
points are j-neighbors for arbitrarily large j, then they are true neighbors as
originally defined above. (Note that j does not refer to the transition number
of the pseudoneighbor, but rather to the level of information used.)

Example: In Fig. 2a, the development of the unstable manifold is shown up
to j = 4. Since UF

1 , UF
2 , and UF

3 do not intersect S(P0,Q1), the points P0

and Q1 are pseudoneighbors of index 1, 2, and 3, i.e. they are 1-neighbors,
2-neighbors, and 3-neighbors. However, they are not 4-neighbors since C4

intersects S(P0,Q1) at the points α4 and β4. On the other hand, α4 and
β4 are themselves 4-neighbors, and furthermore, Fig. 2b shows that α4 and
β4 are still pseudoneighbors at index 5. If at some j > 5, UF

j were to
intersect S(α4, β4), then at that j and all higher indices, α4 and β4 would
not be pseudoneighbors. If no such j exists, then α4 and β4 would be true
neighbors. (For this example, the “no recapture” assumption from Sec. 2
implies that no such j exists and hence α4 and β4 are in fact true neighbors.)

3.2 Holes

As mentioned above, two neighbors x and x′ determine a domain, bounded
by U [x,x′] and S[x,x′], from which the stable and unstable manifolds are
excluded. These excluded domains could be viewed as “holes” and the stable
and unstable manifolds could be characterized by how they wind around these
holes. This approach was taken in Ref. [16]. However, to fully characterize the
finite development of a general tangle, it is more convenient and fruitful to
work with pseudoneighbors. The main technical difficulty with this approach
is defining the equivalent of an excluded domain, or “hole”, for a pair of
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pseudoneighbors.

For a given tangle, suppose that we have determined all UF
k up to some fixed

index J and that we have determined all pairs of J-neighbors on the fun-
damental segment SF

0 . Then for each such pair (x,x′), we punch a hole in
the plane that is: (i) within the domain bounded by U [x,x′] and S[x,x′] and
(ii) that is “infinitesimally close” to either x or x′; it doesn’t matter which.
Then for each hole punched next to a point x on the fundamental segment
SF

0 , we punch a similar hole next to Mn(x) for all −∞ < n < ∞. (The
construction of the holes is made precise in Appendix A.) Thus, there is a
sequence of holes Hn = Mn(H0) associated with the homoclinic trajectory
Mn(x). This sequence of holes approaches zX in the forward direction, along
(and infinitesimally close to) the curve S, and in the backward direction, along
U. In between, there are only a finite number of holes located a finite distance
away from both S and U. To sum up: (i) a hole is associated with each pair
of J-neighbors; (ii) the map M , originally defined on the plane, can be inter-
preted as a continuous map on the punctured plane; and (iii) the stable and
unstable manifolds never enter the holes. These facts allow us to describe the
topological structure of the tangle using homotopy theory, as discussed in the
following sections.

For tangential intersections, the construction of a hole would need to be gen-
eralized. So for simplicity we assume:

Transverse intersection assumption: For all tangles in this paper, we
assume that all homoclinic intersections up to and including transition number
J are transverse.

The holes, as defined above, depend on the value of J , i.e. on the level of
information that one chooses to include about the initial development of the
tangle. If one adds more information about the tangle, for example adding one
more iterate, going from J to J + 1, one may find a new pair of pseudoneigh-
bors at index J + 1, meaning that there would be a new sequence of holes
punctured in the plane. Alternatively, pseudoneighbors at index J may not
be pseudoneighbors at J + 1 and a sequence of holes would be removed. By
thus adding and/or removing holes when going from lower to higher J , the
homotopic description of the tangle, as discussed below, is refined, and the
predicted minimal set of escape segments is improved, i.e. more of the map’s
escape segments are predicted.

Example: Setting J = 4 in Fig. 2, α4 and β4 are pseudoneighbors. Thus, we
punch a hole H4 in the shaded region bounded by S[α4, β4] and U [α4, β4].
This hole maps forward to the hole H5, which lies in the shaded region
shown in Fig. 2b, and continues to H6, H7, ..., tending toward zX. Similarly,
H4 maps backward to the holes H3, H2, H1, and H0, as shown in Fig. 2a.
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Continuing to map backwards, this sequence of holes again tends toward
zX.

3.3 Homotopy

Consider paths (or equivalently, directed curves) in the punctured plane that
begin and end on the stable boundary S of the complex. We shall say that
two such paths are homotopic if one can be continuously distorted into the
other within the punctured plane (i.e. without passing through a hole) and
such that the endpoints remain on S. This defines an equivalence relation
(homotopic equivalence) and associated equivalence classes, or path-classes.
A path-class contains all paths homotopic to one another. For a path A, we
denote its path-class by [A]. The set of all path-classes forms a group, called
the fundamental group. The group product [C] = [A][B] of two path-classes
[A] and [B] is defined by a path C. This path is constructed by first traversing
A, then traversing the segment of S that connects the final point of A to the
initial point of B, and finally traversing B. The group inverse [A]−1 of a class
[A] is defined by reversing the direction of all paths A′ ∈ [A]. Finally, the
identity path-class 1 contains all paths contractible to a point.

Now, since the unstable manifold U does not intersect any of the holes, any
segment of U that begins and ends on S has a well defined homotopy class. In
particular, UF

n has a well defined class, denoted [UF
n ], as does U.

Since the map M continuously maps the punctured plane into itself, M in-
duces a map on the fundamental group, defined by M([C]) = [M(C)]. (Note
that we use the same symbol M for the map on the punctured plane as for
the map on the fundamental group.) It is easy to see that this map is a
group automorphism (i.e. it invertibly maps the group into itself, preserving
the group product.) This automorphism encodes the homotopy structure of
the stable and unstable manifolds. We will show how this homotopy structure
can be used to determine the location of homoclinic intersections. To do this,
we need an efficient representation for the automorphism of the fundamen-
tal group – a representation that has a clear connection to the structure of
homoclinic intersections.

3.4 Bridges

To describe the homoclinic tangle, we need to describe how the unstable man-
ifold cuts across the stable manifold. We define a bridge as a closed segment of
U that begins and ends on S, but otherwise does not intersect S. Each bridge
inherits the direction of U . Since each bridge is a segment of U and U cannot
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intersect itself, two bridges can only intersect at their endpoints. A bridge is
said to be internal if it lies inside the complex and external otherwise.

Example: In Fig. 2a, the curves C1, C2, and C3 are internal bridges and
U [P0,Q1] is an external bridge. The curve C4, which bounds the capture lobe
C4, is not a bridge, because it intersects S. It is broken into three bridges
Fa (internal), Za (external), and F (internal). In Fig. 2b, we have labeled
seven more bridges, which are pieces of C5: Fb (internal), Zb (external), Gb

(internal), Z ′

a (external), Ga (internal), Zc (external), and Fc (internal).

Since each bridge is a directed curve that lies in the punctured plane and
that begins and ends on S, each bridge has a well defined path-class called its
bridge-class.

Example: We define the bridge-classes of the directed curves C1, C2, C3, and
F in Fig. 2a to be c1 = [C1], c2 = [C2], c3 = [C3], and f = [F ]. If we reverse
the orientation of the curve Fa, it can be distorted into F without passing
through a hole or having its endpoints leave S. Thus, [Fa]

−1 = f . Similarly,
defining un = [U [Pn,Qn+1]], we have [Za]

−1 = u0. Furthermore, Fig. 2b
shows [Ga]

−1 = [Gb] = c1, [Fb]
−1 = [Fc] = f , and [Zb] = [Zc]

−1 = u0. The
set of all internal bridge-classes consists of c1, c2, c3, and f , plus inverses;
the set of all external bridge-classes consists of un, n ≥ 0, plus inverses.

In the above example, the external bridge-classes form an infinite sequence
u0, u1, u2, ... . This is a general consequence of the assumption that there is
no recapture into the complex. Under this assumption, any external bridge-
class falls within some sequence z0, z1, z2, ... , beginning with a class z0 that
contains bridges that have just escaped the complex. For a given tangle there
may be more than one such sequence. (See Sec. 5.3.)

We now mention a notational convention. Whenever we use a lower case italic
symbol, such as f , to denote a bridge-class, the direction of the class points
from earlier points on S to later points on S, as defined by the order <s on S.
For example, f = [F ] = [Fa]

−1 = [Fc] = [Fb]
−1 contains curves pointing from

left to right in Fig. 2.

Shifting our attention from bridges to bridge-classes simplifies the problem of
describing the tangle by focusing on the qualitative structure of entire groups
of bridges, rather than the details of each individual bridge.

Each bridge maps forward under M to a curve with endpoints on S. This curve
can in turn be decomposed into a series of bridges. In the context of homotopy
theory, this means that the forward iterate of any bridge-class equals a product
of bridge-classes, yielding a dynamical equation for each bridge-class.
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Example: In Fig. 2a, M(C1) = C2, and hence

M(c1) = c2. (1)

Similarly,
M(c2) = c3. (2)

Now, C3 maps forward to C4, which is composed of three bridges, Fa followed
by Za followed by F . Hence,

M(c3) = f−1u−1
0 f. (3)

Furthermore, from Fig. 2b, we see that F maps forward to a curve composed
of Ga followed by Zc followed by Fc, yielding

M(f) = c−1
1 u−1

0 f. (4)

Finally, since U [Pn,Qn+1] maps to U [Pn+1,Qn+2], we have

M(un) = un+1. (5)

Notice that algebraic relations may (and typically do) exist among some of the
bridge-classes. For example, in Fig. 2a the bridge-class f , which encloses the
three holes H1, H2, and H3, is equal to the product c1c2c3, where each factor
encloses one of the three holes. It is therefore equally valid to express Eq. (3)
as M(c3) = c−1

3 c−1
2 c−1

1 u−1
0 c1c2c3. Typically, however, we prefer equations like

Eq. (3), in which each bridge is represented by a single factor, rather than a
product of factors. We call this the concise form of the dynamical equation.
In concise form, a dynamical equation produces an alternating sequence of
internal and external bridge-classes. Unless otherwise stated, all expressions
are assumed to be in concise form.

3.5 The topology of UF
n and the minimal set of escape segments

For a given tangle, assume that we have computed (or have otherwise deter-
mined) the iterates UF

n of the fundamental U -segment up to iterate J . Assume
that we have also determined the pseudoneighbors of index J , and that we
have punctured the necessary holes in the plane. Here, we explain how to
compute the homotopy type of UF

n for all n > 0. From this homotopy type, we
determine a minimal set of escape segments and their associated homoclininc
intersections. This minimal set includes all intersections of transition number
n ≤ J . For n > J , the minimal set may or may not include all homoclinic
intersections.

The first step is to determine all bridge-classes. For a simple enough tangle,
this is easy to do by looking at a picture. The next step is to determine the
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dynamical equation for each bridge-class, expressed in concise form. Again,
for simple enough tangles, this information can be extracted from a picture.

Once we have identified the bridge-classes and have obtained the dynamical
equation for each one, it is straightforward to determine the path-class [UF

n ],
for all n > 0, as a concise product of bridge-classes. Start with the concise
product for [UF

1 ]. Again, this is often easy to obtain from a figure. Alterna-
tively, it can be obtained from the dynamical equation for the bridge-class [U],
using the identity M([U]) = [U][UF

1 ]. Either way, once [UF
1 ] is known, use the

dynamical equations to map each bridge-class in [UF
1 ] forward to obtain the

concise expression for [UF
2 ]. Iterate as many times as needed to obtain [UF

n ].

Example: Analyzing the tangle in Fig. 2a for transition number J = 4, we
recall that there are four internal bridge-classes c1, c2, c3, and f , and an
infinite sequence of external bridge-classes u0, u1, u2, ... . The dynamical
equations for the bridge-classes are Eqs. (1) – (5). From Fig. 2, we see that
[UF

1 ] = u0c1, which can also be computed from the fact that f−1 = [U] maps
to f−1u0c1 = [U][UF

1 ]. Iterating [UF
1 ] forward five times, we find

[UF
1 ] = u0c1, (6a)

[UF
2 ] = u1c2, (6b)

[UF
3 ] = u2c3, (6c)

[UF
4 ] = u3f

−1u−1
0 f, (6d)

[UF
5 ] = u4f

−1u0c1u
−1
1 c−1

1 u−1
0 f, (6e)

[UF
6 ] = u5f

−1u0c1u1c2u
−1
2 c−1

2 u−1
1 c−1

1 u−1
0 f. (6f)

The reader is invited to geometrically verify the expression for [UF
5 ] by

scrutinizing the curve C5, which surrounds the capture lobe C5 in Fig. 2b.
The reader may also wish to sketch UF

6 to verify Eq. (6f).

The expression for [UF
n ] can be used to determine a minimal set of homoclinic

intersections. For any two adjacent factors in the concise product, one of them
is internal and the other external. As UF

n passes from inside to outside (or
outside to inside) it must cross S. Thus, each external factor yields a segment
that is outside the complex with a homoclinic intersection at each endpoint.
The transition number of these intersections depends on when the segment
escaped. Recall that each external class lies within a sequence generically
denoted z0, z1, z2, ... . Each factor z0 in the concise representation of [UF

n ]
yields a segment of UF

0 that escapes on iterate n and whose endpoints have
transition number n. More generally:

Each factor z±1
i in [UF

n ] yields a segment that escapes on iterate n − i and

whose endpoints have transition number n − i. The ordering of z±1
i factors in

[UF
n ] is the same as the ordering of their corresponding escape segments along
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x
S(a)

x

x
′ x

′′
S(b)

Fig. 4. a) The thin blue curve intersects S at the point x. The shaded circles represent
holes. b) A continuous distortion of the thin blue curve in (a) now intersects S at
x, x

′, and x
′′.

UF
0 .

Example: For the tangle in Fig. 2, there is a single sequence of external
bridges, denoted u0, u1, ... . In Eq. (6a), there is one u0 factor, which yields
the segment that escapes at iterate one in Fig. 3. This segment corresponds
to U(P0,Q1) in Fig. 2. Considering Eq. (6b), the u0 factor in [UF

1 ] maps to
the u1 factor in [UF

2 ], but there are no new u0 factors. This is true of [UF
3 ] as

well. However, [UF
4 ] has a new u0 factor to the right of the u3 factor, yielding

the segment that escapes at iterate four in Fig. 3 and which is located to the
right of the earlier escape segment. Similarly, there are two new u0 factors
in both Eq. (6e) and Eq. (6f), yielding the two escape segments at iterate
five and the two escape segments at iterate six. The reader is invited to
iterate Eq. (6f) twice more to obtain lines seven and eight in Fig. 3.

Homotopic lobe dynamics recovers all homoclinic intersections with transition
number n ≤ J . Equivalently, UF

n does not intersect S more than the minimum
number of times predicted by its homotopy type [UF

n ], for n ≤ J . This is not
true for a general curve of homotopy type [UF

n ], which might have more than
the minimum number of intersections. For example, take a curve that initially
has the minimum number of intersections, as in Fig. 4a, and continuously
distort it into a segment that crosses S three times, as in Fig. 4b. Though
this distortion leaves the homotopy type unchanged, it creates two new inter-
sections with S. The behavior illustrated in Fig. 4b cannot occur for UF

n at
n ≤ J . More precisely, it can be shown that any bridge whose endpoints have
transition number J or less must have nontrivial homotopy, and thus each
such bridge corresponds to its own factor in the concise expression for [UF

n ].

3.6 General curves of initial conditions

In many applications one needs to iterate forward some curve of initial points
other than UF

0 . For example, in scattering problems, one often considers tra-
jectories parameterized by an impact parameter. In ionization problems, one
may consider trajectories parameterized by their initial outgoing angle from
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B

S

H
′

H
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A B

S

Fig. 5. a) An illustration of the orderings A C B, A C H, and B C H ′. b) An
illustration of the ordering A ≺ B.

the atomic nucleus. It is therefore of interest to iterate a general curve of ini-
tial conditions L0. Homotopic lobe dynamics, developed here to iterate UF

0 , is
naturally suited to iterate more general curves. For simplicity, suppose that L0

begins and ends on S and that it does not pass through a J-neighbor. Then L0

has a well defined path-class [L0], and this path-class can be mapped forward
using the present techniques. (In general the bridge-classes do not span the
entire fundamental group. Thus for a path-class [L0] that does not equal the
product of bridge-classes, one needs to work a little harder to determine its
iterate under the dynamics.) Segments of L0 that exit the complex after n
iterates can then be identified by z0 factors (i.e. external bridge-classes) in the
expression for [Ln]. This generates a minimal set of escape segments appearing
in the escape time plot, defined now as a function along L0. Such segments
have important physical implications. (See for example Refs. [2,3].)

4 The bridge basis

We select a subset of bridge-classes that generate all bridge-classes under mul-
tiplication and inversion. This subset is minimal in the sense that there are
no algebraic relations among its members, and we therefore call it the bridge

basis. Before defining the basis, we introduce two partial orderings on both
the bridges and the bridge-classes.

4.1 Partial orderings of bridges

For two bridges A and B that are both internal (or both external), we say that
A surrounds B if B lies within the region bounded by A and by S, specifically
by the interval of S connecting A’s endpoints. (See Fig. 5a.) Equivalently, A
surrounds B if B’s endpoints lie between A’s endpoints on S. The relation
“A surrounds B” is a partial order on the set of bridges, which we denote by
A C B.

We extend the partial order C to include holes as well, writing A C H if hole
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H lies within the region bounded by A and S. The reverse ordering H C A is
not defined. (Fig. 5a.)

The second partial ordering on bridges derives from the order <s on S. For
two bridges A and B that are both internal (or both external), we say that A
precedes B if both endpoints of bridge A precede both endpoints of bridge B,
with respect to the <s order. (See Fig. 5b.) The relation “A precedes B” is
also a partial order, which we denote A ≺ B.

Note that neither of the two partial orders depends on the orientations of the
bridges. Furthermore, any two distinct internal bridges (or external bridges)
A and B are ordered by exactly one of the partial orders C or ≺. This follows
from the definitions and the fact that no such bridges intersect.

The two partial orders on bridges are inherited by the bridge-classes. More
precisely, if A C B, for two bridges A and B, such that [A] 6= [B]±1 and
[B] 6= 1, then A′

C B′ for all bridges A′ ∈ [A]±1 and B′ ∈ [B]±1. [Here, we
have used the fact that no two bridges can intersect, except at endpoints.] In
this case we write [A] C [B]. Alternatively, if A ≺ B, for two bridges A and
B, such that [A] 6= 1 and [B] 6= 1, then A′ ≺ B′ for all bridges A′ ∈ [A]±1 and
B′ ∈ [B]±1. In this case we write [A] ≺ [B].

Example: Considering again the tangle in Fig. 2a, it is helpful to construct
a qualitative picture of the bridge classes, which is done in row I, column 1
of Fig. 6. Here S is the straight horizontal line, the internal bridge-classes
are the arcs below the line, and the bridge-class u0 is the arc above the line.
The holes are the numbered circles. This figure illustrates both the C and
≺ orders, from which we see:

f C c1, c2, c3, (7)

ci C Hi i = 1, 2, 3, (8)

c1 ≺ c2 ≺ c3. (9)

This figure can be further abstracted into the bridge tree shown in row I,
column 2 of Fig. 6. A filled vertex of the tree represents a bridge-class, and
an open vertex represents a hole. The edges of the tree connect vertices
related by the C-order, and the left-right placement of vertices records the
≺-order. Only the internal bridge-classes are shown in the tree.

The bridge tree is a useful tool for summarizing the orderings among any set
of bridge-classes.
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Fig. 6. The relationships among bridge-classes is shown for four different tangles.
Row I applies to the tangle in Fig. 2, row II to the tangle in Sect. 5.1 with arbi-
trary D, row III to the tangle with overshoot (Fig. 7), and row IV to the tangle
that develops a finger (Fig. 9). The first column qualitatively depicts all internal
bridge-classes, as well as external classes inside E0; the second column contains the
internal bridge tree; and the third column contains the internal basis tree.

4.2 Bridge basis

We define a bridge-class a to be in the bridge basis if it directly surrounds a
hole, that is, if there exists a hole H such that a C H and such that there
does not exist a bridge-class b such that a C b C H. In terms of the bridge
tree, a basis vertex is one that is directly connected to a hole vertex.

Example: In Fig. 6, row I, column 2, the bridge-class ci directly precedes
hole Hi, for i = 1, 2, 3. These classes are therefore in the basis. However,
class f directly precedes c1, c2, and c3, and is thus not in the basis. Thus,
the internal bridge basis contains c1, c2, and c3 only. The basis tree, showing
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only the basis and hole vertices, is shown in Fig. 6, row I, column 3.

The bridge basis is complete in that it generates all bridge-classes under mul-
tiplication and inversion. Equivalently, the basis generates the subgroup of
the fundamental group that is generated by all bridge-classes. (In general, the
bridge basis does not generate the entire fundamental group.)

To prove completeness of the bridge basis, we must show that any nonbasis
bridge a removed from the tree is equal to a product of basis elements. To this
end, consider all basis elements bi, i = 1, ..., k, directly surrounded by a, i.e.
a C bi with no basis element c such that a C c C bi. All such elements bi are
ordered by ≺, and so we choose the indices of bi so that b1 ≺ b2 ≺ ... ≺ bk.
Clearly, a = b1b2...bk (assuming our convention that each of these classes points
from “left to right”.)

Example: In Fig. 6, row I, column 2, f directly precedes the basis elements
c1, c2, and c3. Thus,

f = c1c2c3, (10)

as noted earlier.

We leave it as an exercise for the reader to verify that the elements in the
bridge basis are also independent.

Since M is an automorphism of the fundamental group, the action of M on
an arbitrary bridge-class is determined by its action on the basis elements.
Specifically, if a equals the product bb′ of basis elements b and b′, then M(a) =
M(bb′) = M(b)M(b′).

Example: The basis elements c1, c2, c3 map forward according to Eqs. (1) –
(3). Since f = c1c2c3 is not in the bridge basis, Eq. (4) follows from Eqs. (1)
– (3)

M(f) = M(c1)M(c2)M(c3)

= c2c3f
−1u−1

0 f = c−1
1 u−1

0 f. (11)

5 Examples

We apply homotopic lobe dynamics to several examples.
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5.1 Intersections forced by the minimum delay time D

The first iterate at which UF
n , n > 1, produces useful information is the first

iterate at which it intersects SF
0 . This iterate is denoted n = D + 1, where

D is called the minimum delay time because it equals the fewest iterates that
any scattering trajectory can spend inside the complex. Ref. [16] uses D to
predict a topologically forced set of escape segments. This section shows that
the present methods yield comparable results.

5.1.1 Bridge-classes and their dynamical equations

We consider tangles that have a turnstile with a single capture lobe C0 and a
single escape lobe E−1 as discussed in Sect. 2. The lobe C0 maps to C1, which
is the first capture lobe inside the complex, and then to C2, C3, C4, and so
forth. At some iterate n = D + 1, for D ≥ 1, Cn first intersects the escape
lobe E0. We assume that the curves CD+1 and S[P0,Q1] intersect at exactly
two homoclinic points, which have transition number D + 1. Figures 1 and
2 show tangles where D = 1 and D = 3, respectively. Tangles of this type
have been considered previously by Easton [7], Rom-Kedar [8,9], Jung and
coworkers [10,13], and by us [16].

Setting J = D + 1, the two intersections between CD+1 and S[P0,Q1] are
pseudoneighbors. These points and their iterates are the only pseudoneighbors
at J = D +1, as illustrated by Fig. 2. Thus, we construct a single sequence of
holes Hn, of which H1 ... HD are internal to the complex. Each internal hole
is surrounded by the bridge Cn, n = 1, ..., D, whose bridge-class we denote
cn. The final internal bridge-class is denoted f , and it surrounds all of the
internal holes. A qualitative depiction of the bridge-class structure is shown
on the second row of Fig. 6, along with the bridge tree and the basis tree. The
basis tree contains only those bridges from the bridge tree that are directly
below (i.e. adjacent to) a hole, which leaves only the internal basis elements
c1, ..., cD. The bridge-class f can be constructed by multiplying from left to
right all basis elements immediately above it in the bridge tree, i.e.

f = c1...cD, (12)

which is the generalization of Eq. (10). The external holes HD+1, HD+2, ... are
surrounded by the bridge-classes un = [U [Pn,Qn+1]], n ≥ 0, which form the
external basis.

The bridge dynamics is determined by the forward iterate of each basis ele-
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ment,

M(cn) = cn+1, n < D, (13)

M(cD) = f−1u−1
0 f, (14)

M(un) = un+1. (15)

These equations are the natural generalization of Eqs. (1) – (3) and (5). The
equation for f follows from Eqs. (12) – (14),

M(f) = M(c1...cD) = c2...cDf−1u−1
0 f = c−1

1 u−1
0 f, (16)

which is identical to Eq. (4). Eqs. (13) – (16) agree with our previous analysis:
Eqs. (1b), (1c), (7), and (9) in Ref. [16].

5.1.2 Implications for the escape-time plot

Having already considered the case D = 3, we now consider D = 1, with
J = 2. This applies to the tangle in Fig. 1a, whose escape-time plot is in
Fig. 1b. In this case, there is a single internal bridge-class c1 (which equals f),
and the dynamical equations (13) – (16) reduce to

M(c1) = c−1
1 u−1

0 c1, (17)

M(un) = un+1. (18)

The class [UF
1 ] thus propagates forward according to

[UF
1 ] = u0c1, (19a)

[UF
2 ] = u1c

−1
1 u−1

0 c1, (19b)

[UF
3 ] = u2c

−1
1 u0c1u

−1
1 c−1

1 u−1
0 c1, (19c)

[UF
4 ] = u3c

−1
1 u0c1u1c

−1
1 u−1

0 c1u
−1
2 c−1

1 u0c1u
−1
1 c−1

1 u−1
0 c1. (19d)

The single u0 factor in Eq. (19a) represents the leftmost segment at iterate
one in Fig. 1b. This factor maps to u1 in Eq. (19b), and the new u0 factor
to the right of u1 represents the escape segment at iterate two in Fig. 1b.
Furthermore, the two u0 factors in Eq. (19c) represent the two escape segments
at iterate three, and the four u0 factors in Eq. (19d) represent the four escape
segments at iterate four. It is not hard to show that at each iterate a new
escape segment appears inside the gap formed by the preceding segments. This
confirms our assertion in the introduction about the pattern in Fig. 1b, and it
is consistent with standard results for the Smale horseshoe. For the horseshoe,
the segments predicted here are the only segments that occur, whereas in
Fig. 1a there are additional segments after J = 2. (See Sec. 5.3.)
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Fig. 7. a) A homoclinic tangle with D = 1, but where the lobe C1 overshoots the lobe
E−1. The tangle is computed from the map in Ref. [3] (with parameters E = −0.87,
B = 4.5.) b) A qualitative sketch of the tangle in part (a), showing the structure
more clearly.

5.2 An example with overshoot

5.2.1 Bridge-classes and their dynamical equations

We consider the tangle in Fig. 7. Fig. 7a shows a numerical computation, using
the map defined in Ref. [3] (with parameters E = −0.87 and B = 4.5.) Fig. 7b
is a qualitative depiction of the data in Fig. 7a. Here, the lobe C2 intersects
E0, meaning that D = 1 as defined in Sect. 5.1. However, C2 passes through
or “overshoots” E0, meaning that C2 intersects SF

0 at four points. The bridge
U [R2,S2] connecting two of these points surrounds the tip of C2. Since this
tip intersects E−1, U [R2,S2] maps to a curve U [R3,S3] that intersects E0 as
shown in Fig. 7b. This curve is not a bridge, since it intersects SF

0 at α3 and
β3.

If one were to ignore the overshoot in this tangle, one could use the D = 1
analysis from the previous section. This analysis would yield a minimal set of
escape segments for the plot in Fig. 8. As expected, this minimal set would
include no information about the overshoot; for example, it would contain only
one of the two escape segments on the second iterate, and it would contain
no information about the gap between these two segments. This was the level
of description possible with our earlier work [16]. The present paper, however,
allows one to include information about the overshoot and its subsequence
evolution, which we now describe.

Setting J = 3, the only pseudoneighbors on SF
0 are (α3, β3). Their iterates

(αn, βn) define a sequence of holes Hn. Of these, only H1 and H2 are inside
the complex. The hole H1 lies at the tip of C1, surrounded by the bridge C1;
H1 maps to H2, which is surrounded by U [R2,S2]; H2 in turn maps to H3,
which is outside the complex.

23



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

7

Position along UF0

It
er

a
te

s
to

es
ca

p
e

c1

c1

c1

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
2

3

4

5

6

7

8

9

Position along UF0

It
er

a
te

s
to

es
ca

p
e

c1

c1

(a) (b)

Fig. 8. a) The escape-time plot computed for the tangle in Fig. 7. b) An expansion
of the interval in part (a) bounded by the dotted lines.

Fig. 7b shows that there are three internal bridge-classes: c1 = [C1], a =
[U [R2,S2]], and f = [F ]. We again denote the sequence of external bridge-
classes by un = [U [Pn,Qn+1]], n ≥ 0. The bridge structure is summarized by
the third row of Fig. 6. The internal basis consists of only c1 and a, with the
remaining internal bridge-class f equal to ac1.

According to Fig. 7b, the iterates of the basis elements are

M(c1) = f−1u0au−1
0 f, (20)

M(a) = f−1u−1
0 f, (21)

M(un) = un+1, (22)

which implies that the iterate of f = ac1 is

M(f) = c−1
1 u−1

0 f, (23)

the same as Eq. (16).

5.2.2 Implications for the escape-time plot

Using Eqs. (20) – (23), we map [UF
1 ] forward.

[UF
1 ] =u0c1, (24a)

[UF
2 ] =u1f

−1u0au−1
0 f, (24b)

[UF
3 ] =u2f

−1u0c1u1f
−1u−1

0 fu−1
1 c−1

1 u−1
0 f, (24c)

[UF
4 ] =u3f

−1u0c1u1f
−1u0au−1

0 fu2f
−1u0c1u

−1
1

c−1
1 u−1

0 fu−1
2 f−1u0a

−1u−1
0 fu−1

1 c−1
1 u−1

0 f. (24d)

Figure 8 shows the numerically computed escape-time plot for the tangle in
Fig. 7. The single u0 factor in Eq. (24a) represents the segment that escapes on
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the first iterate, shown at the far left of Fig. 8a. Similarly, the two u0 factors
in Eq. (24b) represent the two segments that escape on the second iterate.
Within each of the three gaps at the second iterate, there is a segment at
the third iterate. These three segments correspond to the three u0 factors in
Eq. (24c). Thus, we see that Eqs. (24a) – (24c) produce all escape segments
up to J = 3.

Continuing further, four of the six gaps at iterate three each contain one seg-
ment at iterate four. The remaining two gaps each contain a pair of segments,
yielding eight segments total on the fourth iterate. These eight segments are
exactly predicted by the eight u0 factors in Eq. (24d), with the sequences
u0au−1

0 and u0a
−1u−1

0 representing the two pairs of segments. Thus our alge-
braic method correctly predicts all numerically computed escape segments up
to iterate four, using information up to J = 3 only.

Fig. 8b shows an expansion of the interval indicated by the dotted lines in
Fig. 8a. This interval extends from the leftmost segment at iterate three to the
leftmost segment at iterate two. The gap between these segments is indicated
by the double arrow at iterate three in Figs. 8a and 8b. This gap corresponds to
the leftmost c1 factor in Eq. (24c). Similarly, the gap indicated by the double
arrow at iterate one in Fig. 8a corresponds to the c1 factor in Eq. (24a).
Thus the minimal set of escape segments predicted for both of these gaps is
identical, except that those in Fig. 8b occur two iterates later than those in
Fig. 8a. Comparing these two figures, the segments at iterates three through
six in Fig. 8b have corresponding segments at iterates one through four in
Fig. 8a. However, on the next iterate, we notice a discrepancy. In Fig. 8a,
a double arrow at iterate four marks a gap that corresponds to a c1 factor.
In Fig. 8b, the corresponding gap at iterate six is also marked. Within both
gaps, Eq. (20) predicts at least two segments at the next iterate. Fig. 8a shows
exactly these two segments at iterate five. Fig. 8b, however, shows four iterates
inside the gap at iterate seven. This indicates that there is yet more additional
topological structure in the tangle, which appears at iterate seven.

5.3 An example with the formation of a finger

5.3.1 Bridge-classes and their dynamical equations

Our final example is more complicated. It illustrates the power of the methods
developed here to reduce the dynamics of a “horrible-looking” tangle to a
tractable symbolic representation. We return to the system in Fig. 1, but
follow it for more iterates.

For the first five iterates, the escape time plot exactly follows the D = 1 ex-
ample in Sect. 5.1. However, on the sixth iterate, there is an additional escape
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Fig. 9. The structure of the tangle in Fig. 1a is shown qualitatively up to transition
number nine. Part (a) shows select segments of the unstable manifold up to J = 9,
including the boundaries of C1 and C2, and select portions of the boundaries of
C6, ..., C9. The shading denotes the interiors of capture lobes. Part (b) illustrates
the positions of the holes H1, H2, and H ′

1, ...H
′
9. Parts (c) – (f) illustrate the forward

iterates of bridge-classes a3, ..., a8. See also row IV of Fig. 6, which summarizes the
bridge structure.

segment. By analyzing the tangle (up to J = 9), we will incorporate addi-
tional topological structure into the homotopic lobe dynamics. This will allow
us to describe all segments up to J = 9 and to predict the appearance of ad-
ditional segments at iterates beyond J = 9. This analysis will be significantly
more complicated than the preceding examples, but the final result will still
be a manageable set of dynamical equations [Eqs. (25) – (27)] describing the
development of the tangle.

The initial development of the tangle is the same as the D = 1 example. The
curve C1 maps to C2 which intersects SF

0 at the two homoclinic points α2 and
β2 (Fig. 9a). For the next three iterates, Cn continues to intersect SF

0 exactly
as predicted by the minimal set of the D = 1 example. At iterate six, however,
C6 develops a kink that produces three intersections, R6, S6, and T6, where
only one was predicted by the simple D = 1 topological analysis. Fig. 9a
shows the portion of C6 that contains the kink. This kink is an example of the
phenomenon in Fig. 4b, and it is responsible for the extra escape segment at
iterate six in Fig. 1b.

The kink in C6 forms a “finger” bounded by the bridge U [S6,T6] and pointing
inside the complex. As this finger maps forward, it is stretched and distorted.
Our objective now is to follow this behavior. On the first iterate, U [S6,T6]
maps to the bridge U [S7,T7], which lies between C1 and C2 (Fig. 9a). On the
next iterate, U [S7,T7] maps to the curve U [S8,T8], which is not a bridge. The
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domain bounded by this curve stretches from below C2, passes through E0,
and then juts down into the complex. The curve U [S8,T8] thus intersects SF

0

at four points with transition number eight. The tip sticking into the complex
is bounded by the bridge U [X8,Y8]. This bridge, in turn, maps to U [X9,Y9],
which intersects SF

0 at γ9 and δ9, which have transition number nine.

At J = 9, there are two pairs of pseudoneighbors on SF
0 : (α2, β2) and (γ9, δ9).

Though other pairs in Fig. 9a may resemble 9-neighbors at first, closer inspec-
tion reveals that they are not. For example, S6 and T6 are not 9-neighbors
because the curve U(S6,T6) contains the 9-neighbors γ6 = M−3(γ9) and
δ6 = M−3(δ9). (These pseudoneighbors are not marked in Fig. 9a, but they
correspond to the hole H ′

6 in Fig. 9b.)

In addition to the finger whose evolution is described above, another finger
could possibly occur somewhere else along UF

n , for some n ≤ 9. This finger
would introduce additional 9-neighbors into the formalism. We have seen no
indication of such additional 9-neighbors, and so we assume that they do not
exist for this map. To properly verify this assumption would require studying
the escape-time plot in Fig. 1b at sufficiently high resolution.

Associated with each pair of 9-neighbors is a hole, and these holes form two
sequences. One sequence Hn is associated with the pairs (αn, βn) and is the
same sequence as in the D = 1 example. The second sequence H ′

n is associated
with the pairs (γn, δn), where the eight holes H ′

1, ..., H
′

8 lie within the complex,
and the hole H ′

9 lies in E0. See Fig. 9b for a depiction of the holes. The hole
H ′

9 maps backward to H ′

8, H ′

7, and H ′

6, which can be located by backtracking
the evolution of the finger. To locate holes H ′

5, H ′

4, and H ′

3 in Fig. 9b, we have
included the strips of C5, C4, and C3 that contain them. Finally, the hole H ′

2

lies within C2 and H ′

1 lies within C1.

Having located the holes, the next challenge is to determine the bridge-classes
and their relations to one another, i.e. the structure of the bridge tree. First,
we identify the basis elements by finding the bridge that directly surrounds
each hole, i.e. the bridge in Fig. 9 that is the closest bridge underneath each
hole. For example, C1 directly surrounds the holes H1 and H ′

1, U [S6,T6] di-
rectly surrounds H ′

6, U [S7,T7] directly surrounds H ′

7, and U [X8,Y8] directly
surrounds H ′

8. Similarly, the lower boundary (unlabeled) of the strip that
contains H ′

4 is the bridge that directly surrounds H ′

4. The bridges directly
surrounding H ′

5, H ′

3, and H ′

2 are identified in a similar manner. For each of
these bridges, we denote the bridge-class by an, i.e. an immediately surrounds
H ′

n, for n = 1, ..., 8. For consistency with earlier notation, we set c1 = a1 and
f = a2. The class d = [U [γ9,Y9]] is the only internal class in Fig. 9 that is not
in the basis. The relationship among these classes is summarized in row IV of
Fig. 6. In particular, we see that d = a6a8a5a7.
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Fig. 9 shows that there are three sequences of external bridge-classes. The
class v0 = [U [α2, β2]], which surrounds H2, generates the sequence vn, n ≥ 0,
and the class w0 = [U [γ9, δ9]], which surrounds H ′

9, generates wn, n ≥ 0. The
class u0 = [U [P0,Q1]], which surrounds both H2 and H ′

9, equals v0w0, and
generates the sequence un, n ≥ 0. Obviously, members of this sequence are
not in the basis.

We next determine the dynamical equation for each basis element. First, c1 =
[C1] maps forward to c2 = [C2], which is the product of three bridge-classes as
seen in Fig. 9. The middle bridge is external and surrounds H2 only, yielding
the bridge-class v−1

0 . The first and last bridges are internal and lie directly
above and below H ′

2. From row IV of Fig. 6, we see that the class f lies
directly below H ′

2 and a4 lies directly above H ′

2, i.e. a4 is the lowest bridge on
the tree that does not surround H ′

2. Taking into account the directions of the
bridges, we find M(c1) = a−1

4 v−1
0 f .

As in Eqs. (16) and (23), f maps forward to M(f) = c−1
1 u−1

0 f .

Next, consider Fig. 9c. The bridge-class a3, which surrounds H1, H ′

1, and
H ′

3, maps forward to the path-class M(a3), which encircles H2, H ′

2, and H ′

4.
This path-class equals the product of three bridge-classes. The middle class
is external and surrounds H2 only, yielding v−1

0 . The first and last classes are
internal, with the first lying above H ′

2 and H ′

4 and the last lying below H ′

2.
From Fig. 6, these correspond to d and f , respectively. Taking account of
directions, we find M(a3) = d−1v−1

0 f . Similar analyses of Figs. 9d, 9e, and 9f
yield the remaining equations for the internal basis. In short,

M(c1) = a−1
4 v−1

0 f, (25a)

M(f) = c−1
1 u−1

0 f, (25b)

M(a3) = d−1v−1
0 f, (25c)

M(a4) = a−1
3 u−1

0 f, (25d)

M(a5) = d−1w0a6u
−1
0 f, (25e)

M(a6) = a7, (25f)

M(a7) = f−1u0a8u
−1
0 f, (25g)

M(a8) = d−1w−1
0 d. (25h)

Consequently, the bridge d = a6a8a5a7 maps forward to

M(d) = a−1
5 u−1

0 f. (26)

As usual, the external bridges map forward by simply incrementing their in-

28



0.1 0.15 0.2 0.25 0.3
4

5

6

7

8

9

10

11

12

13

14

Position along UF0

It
er

a
te

s
to

es
ca

p
e

a5

a6

1.446 1.448 1.45 1.452 1.454 1.456 1.458
6

7

8

9

10

11

12

13

14

15

16

Position along UF0

It
er

a
te

s
to

es
ca

p
e

a−1
5

a−1
6

︸ ︷︷ ︸

(a) (b)

Fig. 10. Two expansions of the escape-time plot in Fig. 1b. Part (a) shows the
interval between the left pair of dotted lines, and part (b) shows the interval between
the right pair.

dices,

M(vn) = vn+1, (27a)

M(wn) = wn+1, (27b)

M(un) = un+1. (27c)

5.3.2 Implications for the escape-time plot

Using Eqs. (25) – (27), we map [UF
1 ] forward

[UF
1 ] =u0c1, (28a)

[UF
2 ] =u1a

−1
4 v−1

0 f, (28b)

[UF
3 ] =u2f

−1u0a3v
−1
1 c−1

1 u−1
0 f, (28c)

[UF
4 ] =u3f

−1u0c1u1d
−1v−1

0 fv−1
2 f−1v0a4u

−1
1 c−1

1 u−1
0 f. (28d)

The reader can verify that these equations produce the same pattern of escape
segments as Eqs. (19) and as illustrated by iterates one through four in Fig. 1b.
The larger number of distinct symbols in Eqs. (28) is an indication of the
greater complexity that arises at future iterates. In particular, the doublet at
iterate six arises from the d−1 factor in Eq. (28d). Concentrating just on this
factor, we find

[UF
4 ] = ...d−1..., (29a)

[UF
5 ] = ...f−1u0a5... . (29b)

As expected, we find one new escape segment. We now concentrate on just
the a5 factor in Eq. (29b), which represents the gap indicated by the double
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arrow in Fig. 1b.

[UF
5 ] = ...a5..., (30a)

[UF
6 ] = ...d−1w0a6u

−1
0 f... . (30b)

Thus, we have recovered the doublet at iterate six, represented by the factors
w0 and u−1

0 .

Figure 10a shows an expansion of the interval between the left pair of dotted
lines in Fig. 1b. To obtain the segments seen inside the gap of the doublet in
Fig. 10a, we map the a6 factor forward.

[UF
6 ] = ...w0a6u

−1
0 ..., (31a)

[UF
7 ] = ...w1a7u

−1
1 ..., (31b)

[UF
8 ] = ...w2f

−1u0a8u
−1
0 fu−1

2 ..., (31c)

[UF
9 ] = ...w3f

−1u0c1u1d
−1w−1

0 du−1
1 c−1

1 u−1
0 fu−1

3 ... . (31d)

Fig. 11 depicts the escape segments obtained by these equations, plus those
predicted for the next two iterates. Though many of the predicted segments
are too small to see in Fig. 10a, many prominent segments can be identified.
For example, the two segments at iterate eight are clearly visible as is the large
middle segment at iterate nine. At iterate 11, Fig. 11 predicts a doublet on ei-
ther side of the middle segment – these segments are clearly visible in Fig. 10a.
By looking at finer resolution, we have confirmed that all segments predicted
by the minimal set in Fig. 11 appear in the numerical data in Fig. 10a.

At all subsequent n, each a5 factor of [UF
n ] produces a doublet whose gap

corresponds to an a6 factor. This a6 factor then generates a minimal set having
the structure shown in Fig. 11, but with an overall shift in iterate number. For
example, the d−1 factor in Eq. (30b) produces an a5 factor at iterate seven,
which produces the doublet at iterate eight seen at the far left of Fig. 10a.
Inside the gap of this doublet, one can match the segment at iterate 11 to the
large central segment at iterate nine in Fig. 11.

As another example, the a4 factor in Eq. (28d) maps forward three times to
produce an a−1

5 factor within [UF
7 ]. The gap corresponding to this factor lies

within the interval shown in Fig. 1b by the right pair of dotted lines. Fig. 10b
shows an expansion of this interval, where the a−1

5 gap is indicated by the
double arrow. The minimal set predicted for Fig. 10b is a mirror image of that
predicted for Fig. 10a, but shifted higher two iterates. Thus, the doublet on
the far left of Fig. 10a at iterate eight matches the doublet on the far right of
Fig. 10b at iterate ten. Similarly, the minimal set inside the a−1

6 gap at iterate
eight in Fig. 10b equals that in Fig. 11, but shifted higher two iterates. The
reader is invited to match the segments in Fig. 11 to those in Fig. 10b. Again,
some of these are too small to easily see.
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Fig. 11. The predicted structure of the escape-time plot for the intervals a±1
6 in

Figs. 10a and 10b. (To connect with Fig. 10b, the left axis should be incremented by
two.) This prediction is a consequence of Eqs. (25) – (27) and constitutes a minimal
set of escape segments. That is, each segment in Fig. 11 represents a segment in
both Fig. 10a and Fig. 10b. However, Fig. 10 contains segments that are not present
in Fig. 11. For example, the brace in Fig. 10b underscores three segments where
only two are predicted in Fig. 11.

More new unpredicted structure arises at iterate 13 in Fig. 10b. There are
three segments, indicated by the underbrace, where only two are predicted by
Fig. 11. This extra segment is an indicator of additional topological structure
that is not forced by the structure up to J = 9.

Summarizing this section, we have demonstrated how homotopic lobe dynam-
ics is used first to include topological information up to any selected iterate J
and then to obtain a minimal set of escape segments at all higher iterates. In
the last example, we computed where doublets are forced to occur and we ob-
tained a detailed prediction for the structure within their gaps. As expected,
there are yet more twists in the manifolds at higher iterates, yielding addi-
tional segments that are not predicted by the analysis at J = 9. By increasing
the value of J , we could characterize these additional segments, though for
any finite value of J , we expect that there are yet more unpredicted segments
at higher iterate.

6 Relation to shift dynamics and the computation of topological

entropy

We describe how our formalism relates to more traditional shift dynamics.
For a map M , one often defines a partition of phase space into some num-
ber k of subsets Ui, i = 1, ..., k. For a given point x, the itinerary of x is
the string of integers s0s1s2..., where sn satisfies Mn(x) ∈ Usn

. (We consider
infinite rather than bi-infinite sequences.) From this definition, we see that
the itinerary of M(x) is simply the shift s1s2s3... of the itinerary of x, where
s0 has been omitted. Thus, the map M on phase space is represented by the

31



shift map on the space of itineraries. Typically, not all symbol sequences are
valid itineraries, and it may be quite difficult to determine which itineraries
are allowed. However, for Markov shifts, the set of all allowable itineraries is
determined by constraints on adjacent symbols only, which are described by
a transition matrix T:

Tsisj
=































1
if symbol si may follow symbol sj,
i.e. M(Usj

) ∩ Usi
6= ∅,

0
if symbol si may not follow symbol sj,
i.e. M(Usj

) ∩ Usi
= ∅.

(32)

A sequence s0s1s2... is allowable if and only if Tsn+1sn
= 1 for all n ≥ 0.

In this paper, we have not introduced a partition of phase space. Neverthe-
less, we can still use the Markov formalism to describe the dynamics. Each
symbol in the concise expression for [UF

n ] is a bridge-class. Any such class
sn results from mapping forward a factor sn−1 of [UF

n−1]. This factor in turn
results from mapping forward some factor sn−2 of [UF

n−2] and so forth. Thus,
each class in the expression for [UF

n ] can be labeled by a finite string of “ances-
tors” s1...sn−1sn, which we call the ancestry string. (We do not record the ±1
exponent in the ancestry string.) Each segment in the minimal set of escape
segments, or each gap between such segments, is labeled by an ancestry string.

The ancestry string is clearly analogous to the (finite) itinerary of a point as
defined above. The critical difference is that we have defined no partition of
phase space. The symbols in the ancestry string refer to bridge-classes rather
than subsets of phase space.

From the dynamical equations for bridge-classes, we find that the allowed
ancestry strings are specified by a Markov transition matrix. Specifically, there
exists an ancestry sequence in which a bridge-class s follows a bridge-class s′

if and only if s±1 appears as a factor of M(s′). We define the transition matrix
as

Tss′ = j, where s±1 appears j times as a factor of M(s′). (33)

We have allowed entries in the transition matrix to be greater than one to
account for situations such as Eq. (3) where the symbol c3 produces two copies
of the symbol f . Note that this implies that some ancestry strings can label
more than one segment.

Let v
n be the column vector that records the number of times each symbol

appears as a factor in [UF
n ]. That is

vn
s = j, where s±1 appears j times as a factor of [UF

n ]. (34)

From the definition of T, v
n = T

n−1
v
1. So, if we know how many times each
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symbol appears in [UF
1 ], we can use T to compute how many times each symbol

appears at all higher iterates.

Example: For the homotopic lobe dynamics given by Eqs. (1)–(5), we have

T =































c1 c2 c3 f u0 . . .

c1 0 0 0 1 0 . . .

c2 1 0 0 0 0 . . .

c3 0 1 0 0 0 . . .

f 0 0 2 1 0 . . .

u0 0 0 1 1 0 . . .

u1 0 0 0 0 1
...

...
...

...
...

. . .































, (35)

(v1)T =
(

c1 c2 c3 f u0 u1 . . .

1 0 0 0 1 0 . . .
)

. (36)

The total number of factors in [UF
n ] equals Nn =

∑

all s vn
s . Of these, the num-

ber of external factors is
∑

s external v
n
s , and the number of internal factors is

∑

s internal v
n
s . But since internal and external bridge-classes alternate as factors

of [UF
n ], we find

∑

s external v
n
s =

∑

s internal v
n
s , and so Nn = 2

∑

s internal v
n
s . Since

we need only monitor the number of internal bridge-classes, we define the in-
ternal transition matrix Tin as the block of T corresponding to the internal
symbols. For each of the examples discussed in this paper, there are a finite
number of internal bridge-classes and thus Tin is a finite dimensional matrix.

The largest eigenvalue of Tin (or T) determines the asymptotic growth rate of
the number of factors in [UF

n ]. The natural log of this eigenvalue is the topolog-
ical entropy of the symbolic dynamics. Since the factors predict a minimal set
of escape segments (or equivalently, a minimal set of homoclinic intersections),
the asymptotic growth rate of the number of factors is a lower bound on the
asymptotic growth rate of the number of escape segments (or, equivalently,
the number of homoclinic intersections) in the tangle.

Example: The internal transition matrix for Eq. (35) is the 4 × 4 block

Tin =











c1 c2 c3 f

c1 0 0 0 1
c2 1 0 0 0
c3 0 1 0 0
f 0 0 2 1











. (37)

Its topological entropy is about ln 1.544.
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6.1 Example with D = 1

For the tangle in Sect. 5.1 with D = 1, Eq. (17) yields the simple transition
matrix

Tin =
(

c1

c1 2
)

, (38)

which has topological entropy ln 2, in agreement with the well known horseshoe
result.

6.2 Example with overshoot

For the tangle in Sect. 5.2, Eqs. (20) – (23) yield

Tin =







c1 a f

c1 0 0 1
a 1 0 0
f 2 2 1





, (39)

which has a topological entropy of about ln 2.270. This topological entropy
is greater than that of the horseshoe in the preceding example, reflecting the
fact that the overshoot increases the number of homoclinic intersections.

6.3 Example with the formation of a finger

For the tangle in Sect. 5.3, Eqs. (25) and (26) yield

Tin =



































c1 f a3 a4 a5 a6 a7 a8 d

c1 0 1 0 0 0 0 0 0 0
f 1 1 1 1 1 0 2 0 1
a3 0 0 0 1 0 0 0 0 0
a4 1 0 0 0 0 0 0 0 0
a5 0 0 0 0 0 0 0 0 1
a6 0 0 0 0 1 0 0 0 0
a7 0 0 0 0 0 1 0 0 0
a8 0 0 0 0 0 0 1 0 0
d 0 0 1 0 1 0 0 2 0



































, (40)

which has a topological entropy of about ln 2.016. As expected, the forma-
tion of a finger raises the topological entropy with respect to the standard
horseshoe.
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Fig. 12. a) A rectification of the stable and unstable manifolds in the vicinity of a
homoclinic intersection x. b) An expansion of x into a circle of points. c) The portion
of the circle denoted by the dashed line in part (b) is collapsed, i.e. identified, into
a single point. This point is again denoted x. The remaining quarter circle forms
the tear-drop curve in the lower right quadrant.

7 Conclusions

We have developed a new technique for determining how the early time struc-
ture of a homoclinic tangle forces later time structure. The input of the tech-
nique is the structure of the homoclinic intersections up to some transition
number J , and the output is a minimal set of homoclinic intersections forced
by these initial intersections. This minimal set contains all intersections up to
iterate J , but may fail to contain all intersections beyond J .

The power of homotopic lobe dynamics is illustrated by the highly nontrivial
example in Sec. 5.3. At low iterates, the topological structure of this tangle
is identical to the Smale horseshoe. However, at higher iterates, additional
topological structure appears. We have successfully described this additional
structure up to J = 9 and then used homotopic lobe dynamics to determine
the minimal set of homoclinic intersections forced at higher iterates. These
additional intersections exhibit new structures and patterns (see Figs. 10 and
11) that are not present in the simple horseshoe.

All the numerically generated maps in this paper derive from the chaotic ion-
ization of a hydrogen atom in parallel electric and magnetic fields. We empha-
size that (i) all phenomena described here occur in at least one real physical
system; (ii) there is nothing particularly special about chaotic ionization –
similar behavior is seen for other systems with homoclinic tangles.
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A The hole construction

We explain here more precisely how to construct a hole “infinitesimally close”
to a pseudoneighbor x, as discussed in Sec. 3.2. We first introduce coordi-
nates (q, p) in the neighborhood of x such that x is at the origin and S and
U (locally) lie along the q- and p-axes (Fig. 12a). We introduce analogous
coordinates (q′, p′) in the neighborhood of M(x), defined so that M is the
identity map when expressed in the local coordinates (q, p) and (q ′, p′), i.e.
M(q, p) = (q′, p′) = (q, p).

For specificity, assume that the region to the lower right of x lies in the domain
bounded by U [x,x′] and S[x,x′], where x′ is the pseudoneighbor of x. Then
a hole should be placed to the lower right of x, and a hole to the lower
right of M(x) as well. To do this, we first stretch the point x into a circle
(Fig. 12b). This procedure can be explained using polar coordinates (r, θ) in
the neighborhood of x. At r = 0, the polar angle θ is degenerate, since the
origin has an arbitrary angle. We topologically extend the domain of M by
replacing x at r = 0 by a circle of points, with one point for each θ from 0 to
2π. We construct the analogous extension about M(x) using polar coordinates
(r′, θ′). The map M extends trivially to a continuous map on the larger space.

Next we must reconnect each half of U and S to make continuous curves.
Placing the hole in the lower right quadrant implies that U must pass left of
the hole and S must pass above. We thus reconnect U and S by identifying
into a single point all those points θ of the circle satisfying 0 ≤ θ ≤ 3π/2. This
single point is identified with the original homoclinic point x.

The result of this construction is a hole with a teardrop-shaped boundary that
lies to the lower right of the homoclinic point, with the homoclinic point itself
at the tail of the drop (Fig. 12c). Note that we have removed no points from
the plane, but only added points on the boundary of the hole, adjusting the
topology accordingly. Applying this construction for each pair of pseudoneigh-
bors results in a map M that is continuous on the punctured plane.
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