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Body frames and frame singularities for three-atom systems
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The subject of body frames and their singularities for three-particle systems is important not only for
large-amplitude rovibrational coupling in molecular spectroscopy, but also for reactive scattering calculations.
This paper presents a geometrical analysis of the meaning of body frame conventions and their singularities in
three-particle systems. Special attention is devoted to the principal axis frame, a certain version of the Eckart
frame, and the topological inevitability of frame singularities. The emphasis is on a geometrical picture, which
is intended as a preliminary study for the more difficult case of four-particle systems, where one must work in
higher-dimensional spaces. The analysis makes extensive use of kinematic rotations.@S1050-2947~98!06811-5#

PACS number~s!: 34.50.2s, 31.15.2p, 02.40.2k
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I. INTRODUCTION

This paper is a part of a study of body frame singularit
in the quantum dynamics ofn-particle systems. As is wel
known, it is necessary to establish a convention for a b
frame before transforming the Hamiltonian for ann-particle
system to Euler angles and internal coordinates since
Euler angles are only defined relative to a body frame. A
this transformation, the wave function on the internal sp
becomes a (2J11)-component ‘‘spinor,’’ whereJ is the an-
gular momentum of the system. The process of transform
Hamiltonians in this manner is an old subject@1–3#, which
has recently been reviewed by us from a gauge-theore
standpoint@4#. A body frame can be specified in practice b
giving the positions of all the particles relative to the bo
frame as a function of the shape or internal coordinates.

Body frame singularities, the topic of this paper, occ
when the positions of the particles in the body frame
nondifferentiable functions of the shape. To be more prec
we will measure the ‘‘distance’’ between two configuratio
by the mass-weighted, kinetic-energy metric, where it is
derstood that one or the other of the two configurations
rotated to minimize this distance. This definition of distan
coincides with the measure of distance given by the me
tensor on the internal space, as explained in Ref.@4#. Then
we will say that the frame is singular when the derivatives
the particle positions in the body frame with respect to d
tance, as the shape is changed in some continuous mann
infinite. This definition has the advantage that it is indep
dent of the choice of internal coordinates.

Body frame singularities are important because the w
function on the internal space is singular at the same pla
in the internal space as the frame singularities. The singu
ity in the wave function is of the same kind as in the fram
the derivatives of the wave function with respect to~mass-
weighted! distance become infinite. Typically one finds th
the wave function oscillates infinitely rapidly~that is, over
arbitrarily small increments in shape! as some limiting mani-
fold in the internal space is approached. The locations
these singularities in the wave function depend on the c
PRA 581050-2947/98/58~5!/3705~13!/$15.00
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vention for the body frame, but they are independent of
potential. Thus the singularities in question occur in the
act solution of the Schro¨dinger equation as well as in th
exact eigenfunctions of the kinetic-energy operator~whose
angular parts are the hyperspherical harmonics@5#!.

Frame singularities are not the only kind of singulariti
one will encounter in the internal dynamics of ann-particle
system. Recently Pack@16# has given a careful analysis o
singularities in three-body scattering calculations, includ
frame singularities as well as other kinds~those of the cen-
trifugal potential and those due to a choice of coordin
system on the internal space!. The work presented in this
paper is different in spirit from Pack’s and complementary
it. For example, Pack considers the problem of basis set c
tractions and how these interact with singularities in t
Hamiltonian, while this paper deals only with the frame s
gularities themselves. On the other hand, this paper em
sizes a geometrical picture of frames that we believe is
most entirely new and is especially important f
understanding the casen>4. Another important issue dis
cussed by Pack is the inevitability of frame singularitie
regardless of the convention chosen for body frame; in
paper we provide a different perspective on this question
relating frame singularities in the three-body problem to
well known string singularities that occur in the vector p
tential for the field of a magnetic monopole.

One of the results of this paper is to show how a vers
of the Eckart frame gets rid of some of the singulariti
present in the principal axis frame and in fact produce
configuration of singularities that is minimal, in the sen
that no other frame has singularities on a smaller subse
the internal space. We would not want the reader to thi
however, that we are necessarily advocating the Eckart fra
for any particular approach to practical calculations. In p
ticular, the centrifugal potential energy, which is singular
any frame at the collinear configurations, acquires some
attractive features in the Eckart frame as compared to
principal axis frame, such as off-diagonal terms and an
cillatory dependence on the kinematic angle. These iss
have been carefully discussed by Pack@16#. On the other
3705 ©1998 The American Physical Society
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hand, it is our point of view that not enough is presen
known about the variety of possible techniques that can
applied to three- and more-body problems~direct numerical
integration, grid methods, hyperspherical harmonics, w
packets, semiclassical methods, basis set contractions, v
tional methods, time-dependent methods, etc.! to say that this
or that frame will never be important in applications. This
especially true for the casen>4, about which very little is
currently known.

For example, in spite of some considerable work on fo
body Hamiltonians@6–9#, it appears to us that it has bee
only recently that a careful and fully accurate description
been given of the ranges of internal coordinates in the in
nal space@10–13#. Most of these studies of four-body sy
tems have employed the principal axis frame, perhaps
cause this frame is naturally suggested by the singular-v
decomposition of the 333 matrix of Jacobi vectors tha
naturally occurs in such problems. However, in spite of so
work explicitly advocating the principal axis frame@14#, it
does not appear to us that anyone has studied~for n>4) how
the multiple branches of the principal axis frame are c
nected together, how a single branch may be selecte
practice, or where the branch cuts must be placed in
internal space. Nor for that matter has there been any s
~again forn>4) of how the multiple branches and bran
cuts of the principal axis frame may be eliminated by me
of a frame transformation or what minimum configuration
singularities is possible with an arbitrary frame transform
tion.

Our purpose is to provide a framework within which ge
eral questions regarding body frames and their singular
can be addressed. In the case of the four-body problem
have succeeded in answering the questions just listed, u
a geometrical analysis of curves and surfaces in config
tion space and in the internal~or shape! space. However, the
four-body problem involves spaces of relatively high dime
sionality ~for example, the internal or shape space is six
mensional!, so there is great advantage in applying our g
metrical methods first to the three-body case, in order to
ideas and form analogies that are useful in understanding
four-body case. In this way, we were led to the geometr
analysis of frames and frame singularities for the three-b
problem that is presented in this paper. The reader must
derstand that many of the features of the three-body prob
that are pointed out in this paper are intended not only
provide insight into the three-body problem itself, but al
for comparison with the four-body problem. Our work on t
four-body problem, which takes advantage of these an
gies, is presented in the preceding paper@15#.

Section II contains the principal results of this paper. W
begin by presenting a geometrical picture of configurat
space in the three-body problem and the surfaces that
generated by the action of external rotations and kinem
rotations. Next we discuss the internal or shape space, c
dinates on it, and the action of kinematic rotations. Then
discuss the principal axis frame, its multiple branches,
how these are connected together under continuous defo
tions of shape. We show that there is an intimate connec
between kinematic rotations and the principal axis frame
use this to develop the connectivity properties of the lat
Next we present a geometrical picture of the transforma
e
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to a version of the Eckart frame, which has been conside
previously by Pack@16# and ourselves@4#, and we show how
this frame eliminates some or all~depending on the numbe
of spatial dimensions! of the singularities present in the prin
cipal axis frame. Finally, we discuss parametric forms of
principal axis and Eckart frames and discuss the remain
singularities of the latter. In Sec. III we present some co
ments and conclusions, including a discussion of the rela
between frame singularities and monopole strings, wh
leads to one way of viewing the topological inevitability o
frame singularities.

II. FRAMES IN THE THREE-BODY PROBLEM

In this section we develop a geometrical picture of spa
and frames in the three-body problem, paying special at
tion to the principal axis frame, its multiple branches a
singularities, and its relation to kinematic rotations and to
Eckart frame and its relation to the principal axis frame. W
also discuss the inevitable singularities that exist in a
choice of frame. Throughout the following discussion w
will be thinking primarily of the three-body problem in
three-dimensional space, although many of the results
obviously apply to the generaln-body problem in three-
dimensional space. In places we will make this explicit.
the end of this section we will make some comments on
three-body problem in a plane, which is slightly differe
from the three-body problem in space.

A. Configuration space and the action of external and
kinematic rotations

We begin by establishing some notation for the thre
body problem. We writer sa , a51,2, or$r sa%5(r s1 ,r s2) for
the two mass-weighted Jacobi vectors describing the c
figuration of the three-particle system, referred to the sp
or inertial frame. We use ans subscript on vectors or tensor
referred to the space frame. We define the Jacobi vector
terms of the laboratory positions of the three particles
requiring thatr s1 lie on the line joining particles 1 and 2 an
that r s2 lie on the line joining the center of mass of particl
1 and 2 with particle 3. This is the most convenient cho
for configurations in the channel 1213. The other two stan-
dard choices of Jacobi coordinates are related to this on
means of discrete kinematic rotations in the usual way; al
natively, Radau or other choices of coordinates may
made, corresponding to continuous interpolations betw
the usual discrete kinematic rotations. Formulas relating
teratomic distances and bond angles to Jacobi or Radau
tors and further details on coordinates can be found in R
@17#. The specific choice of Jacobi coordinates is import
when one wishes to connect the values of these coordin
with some physical configuration of the three particles,
seen in the laboratory frame. Otherwise, this choice has l
effect on the discussion or conclusions of this paper;
main effect is to cause a rotation about thew3 axis ~defined
momentarily! of the physical interpretations that are attach
to the points of the internal space.

The configuration space of the three-body system is
space upon which the Jacobi vectors~that is, their six com-
ponents! are coordinates; this space isR6. To be more pre-
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cise, this is the configuration space after the elimination
the center of mass coordinates, which will not be import
in the following discussion. We will writeQ, Q8, etc., for
points of this space, so thatQ stands for some pair of vector
(r s1 ,r s2).

A given configuration of the three-atom system may
subjected to a rigid rotation, specified by a proper orthogo
matrix RPSO(3). This rotation acts on the Jacobi vecto
according to

r sa8 5Rr sa , a51,2,, ~2.1!

which we view in the active sense, so thatQ5$r sa% is the
old configuration andQ85$r sa8 % is the new one. We will
sometimes abbreviate this by writingQ85RQ. The nota-
tional distinction betweenR ~in italics! andR ~in sans serif!
is that R represents an element of SO~3!, regarded as an
abstract group~equivalently,R stands for some choice o
Euler angles!, while R stands for the corresponding 333
matrix. The equationQ85RQ could be interpreted in term
of matrix multiplication ~involving 636 matrices!, but we
prefer to view it in a geometrical sense, in which the pointQ
is moved by a rotationR to a new pointQ8, whose Jacobi
vectors are given by Eq.~2.1!. That is, we think ofR as an
operator that maps configuration space into itself.

Two configurations will be considered to have the sa
shape if and only if they are related by a proper rotation a
Eq. ~2.1!; configurations of the same shape differ only
their orientation. We will sometimes refer to Eq.~2.1! as an
externalrotation, to contrast it with the kinematic rotation
introduced momentarily.

If we take a specific configurationQ and act on it by all
possible rotations according to Eq.~2.1!, then this point
sweeps out a surface in configuration space. This surfac
the orbit of Q under the action of the rotation group, in th
mathematical sense of the word ‘‘orbit’’~not to be confused
with orbits in the sense of classical mechanics!.

This paper makes a modest use of mathematical termi
ogy that may be unfamiliar to some readers. This termin
ogy is explained briefly as it is introduced. A more thorou
explanation is provided in Appendixes A and B of Ref.@15#.

There are three types of orbits, depending on the confi
rationQ. First, if Q is a noncollinear configuration, then th
orbit of Q can be regarded as a copy of the rotation gro
manifold SO~3!. A more proper way of saying this is to sa
that the orbit ofQ and SO~3! arediffeomorphic; this means
~roughly! that the two manifolds have the same dimensio
ality and the same topology and are related by some smo
one-to-one mapping. To fully appreciate this statement
helps to have an image of the topology of SO~3!, which is
explained in Appendix B of Ref.@15#. Next, if Q is a collin-
ear configuration, the orbit is diffeomorphic to the ordina
two-sphereS2 because rotations about the axis of collinear
have no effect and only the direction of collinearity can
changed. In this case the orbit is two dimensional. Fina
the three-body collision is the one configuration for whi
the orbit is just a point since rotations have no effect on t
configuration. The latter two classes of orbits form a set
measure zero in configuration space; if we exclude them,
rest of the six-dimensional configuration space is deco
posed or foliated into a three-parameter family of three
f
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dimensional copies of SO~3!. The usual Euler angles are co
ordinatesalong the rotation orbits and the usual intern
coordinates are parameters or coordinatesof the rotation or-
bits. The noncollinear orbits are also calledfibers, the stan-
dard terminology for them in fiber bundle theory, as e
plained in Ref. @4#; the space consisting of these fibe
~configuration space minus the collinear configurations a
the three-body collision! is thefiber bundle.

Kinematic rotations play an important role in the theo
of the principal axis frame. They are defined by

r sa8 5 (
b51

2

Kab~f!r sb , ~2.2!

where the matrixK ~with componentsKab) belongs to
SO~2!,

K5S cosf 2sin f

sin f cosf D . ~2.3!

The group of kinematic rotations, or thekinematic groupfor
short, is SO~2! for the three-body problem. Sometimes w
will abbreviate Eq.~2.2! by writing Q85KQ or Q8(f)
5K(f)Q. Again, in the abbreviated notation,K is an ele-
ment of the abstract group SO~2! andK is the corresponding
matrix seen in Eq.~2.3!. If Q is a specific point of configu-
ration space, then the set of configurations swept out acc
ing to Eq. ~2.2! asf ranges from 0 to 2p is the orbit ofQ
under the action of the kinematic group; we will call the
kinematic orbitsand if necessary to avoid confusion we w
refer to the earlier orbits generated by Eq.~2.1! as rotation
orbits. Except whenQ is the three-body collision, the kine
matic orbits are copies of~diffeomorphic to! the kinematic
group SO~2!, that is, they are the circlesS1; in this case, they
are also fibers or, as we will say,kinematic fibers.

One can say that the period of the kinematic fibers
configuration space is 2p with respect to the anglef. That is,
except whenQ is the three-body collision, the pointQ8(f),
defined by Eq.~2.2!, leaves the initial pointQ as f pulls
away from zero and does not return again untilf52p.

The geometry of the rotation and kinematic group actio
is illustrated in Fig. 1. Configuration space is the Euclide
spaceR6, which is illustrated schematically by the set
coordinate axes. A configurationQ, assumed to be noncol
linear, is acted upon by external rotations according to
~2.1! and sweeps out the rotation orbit or fiberFR . This is a
three-dimensional surface diffeomorphic to the rotati
group SO~3!, although represented in the figure by a lin
The configurationQ8 has the same shape asQ, but a differ-
ent orientation. Under the action~2.2! of the kinematic
group, the pointQ sweeps out the~one-dimensional! kine-
matic orbit or fiberFK , which is a circle diffeomorphic to
SO~2!. As f pulls away from zero andQ moves down the
kinematic orbit toQ9, the shape changes, in general, so t
for small anglesf the pointQ9 lies on a different rotation
fiber (FR9 in the figure! thanQ.

The curveFK illustrated in Fig. 1 does not lie inside th
three-dimensional surfaceFR , that is, asf pulls away from
zero, the curveFK moves in a direction that is not tangenti
to the surfaceFR . SinceFR is three dimensional, there ar
three directions in the six-dimensional configuration spa
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that are tangential toFR and therefore three other direction
that are independent of these. In fact, one can show tha
long as the configurationQ is not an oblate symmetric to
~on thew3 axis in the internal space, as explained below!, the
directions generated by small external rotations and sm
kinematic rotations are linearly independent. We are alre
assuming thatQ is noncollinear; therefore, to make Fig.
accurate, we must assume thatQ is also not a symmetric top
Since in the three-body problem all collinear configuratio
are prolate symmetric tops and conversely, we can sum
rize these conditions by saying thatQ in Fig. 1 is an asym-
metric top. The case in whichQ is an oblate symmetric top
will be dealt with later.

B. Shape space and kinematic orbits
in the three-body problem

We turn now to the internal space orshape spacefor the
three-body problem. Topologically speaking, this space
one-half ofR3. This fact is most easily seen in the coord
nates (w1 ,w2 ,w3), defined by

w15ur s1u22ur s2u25r2cos 2Q cos 2F,

w252r s1•r s25r2cos 2Q sin 2F,

w352ur s13r s2u5r2sin 2Q. ~2.4!

Herer is the hyperradius and~Q,F! are Smith’s hyperspheri
cal angles@18#. The coordinates (w1 ,w2 ,w3) are closely re-
lated to the coordinates~j,h,z! defined in Ref.@17#. To Eq.
~2.4! we add the definition

w5~w1
21w2

21w3
2!1/25ur s1u21ur s2u25r2. ~2.5!

The ranges of the coordinates are2`,w1 , w2,1` and
0<w3,1`, so the physically meaningful region isw3
>0. Thew1-w2 plane contains the collinear configuration
the w3 axis contains the symmetric oblate tops, and the
gin of the w coordinates is the three-body collision. Th
coordinatew3 is proportional to the unsigned area spann
by the two Jacobi vectors. The three-body shape space
the coordinates on it are illustrated in Fig. 2. The reg

FIG. 1. A noncollinear configurationQ is acted upon by exter
nal rotation, and sweeps out the three-dimensional rotation fi
FR . Q8 is another configuration of the same shape asQ. Q is also
acted upon by kinematic rotations and sweeps out the o
dimensional kinematic fiberFK . Kinematic rotations change th
shape, in general, soQ9 lies on a different rotation fiberFR9 .
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w3.0, (w1
21w2

2)1/2.0, that is, the region avoiding thew1

2w2 plane and thew3 axis, is the region containing th
asymmetric tops, where the moment of inertia tensor is n
degenerate; it is the region where the principal axis fram
defined and unique apart from a choice in the signs~the
senses! of the principal axes. We will call this theasymmet-
ric top region.

We will use the symbolq to stand for a point of shape
space, which corresponds to some set of coordina
(w1 ,w2 ,w3). It will often be understood that a pointq of
shape space stands for the shape contained in a pointQ of
configuration space, that is, thatq is a label of the rotation
fiber upon whichQ lies.

In addition to its action~2.2! on configuration space, th
kinematic group has an action on shape space, which foll
simply by combining Eqs.~2.2! and ~2.4!. The shape coor-
dinate w3 is invariant under kinematic rotations,w385w3 ,
while w1 andw2 transform according to

S w18

w28
D 5S cos2f 2sin 2f

sin 2f cos 2f D S w1

w2
D , ~2.6!

which is a rotation by 2f about thew3 axis. We will abbre-
viate this action by writingq85Kq or q8(f)5K(f)q. The
angle 2f in Eq. ~2.6! is the increment in the hyperspheric
angle 2F or can be identified with it if the initial pointq lies
in the planew250 with w1.0. The curve traced out byq8
asK ranges over the kinematic group is the orbit ofq under
the kinematic action~2.6!; this curve is just a circle centere
on the w3 axis, as illustrated in Fig. 3. This circle has
period ofp in the anglef becausef is doubled in Eq.~2.6!.

There are really two kinematic actions, one on configu
tion space@Eq. ~2.2!# and one on shape space@Eq. ~2.6!#. We
regard the anglef initially as a coordinate on the kinemati
group manifold SO~2!, ranging from 0 to 2p to cover all
group elements; however, according to the two actions~2.2!
and~2.6!, f can be transferred and regarded as a coordin
on the kinetic orbits in either configuration space or sha
space. The external rotation group SO~3! only has one inter-
esting action, that on configuration space@Eq. ~2.1!#, because
points of shape space are invariant under external rotatio

er

e- FIG. 2. Shape space in the three-body problem is the reg
w3>0 in the (w1 ,w2 ,w3) coordinates. Smith’s hyperspherica
anglesQ andF are illustrated.
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C. Principal axis frame

We now consider the principal axis body frame for t
three-body problem, which as mentioned above is defi
and unique~modulo the senses of the axes! over the asym-
metric top region. We will consider only principal ax
frames in which the three bodies lie in thex2y plane. Then
there are eight distinct principal axis frames, that is, ei
different ways of aligning a right-handed frame on the pr
cipal axes, as illustrated in Fig. 4. These frames are relate
one another by a certain eight-element group of rotatio
constructed from products and powers of the rotatio
Rz(p/2) and Rx(p); the notation indicates rotations abo
the z andx axes, respectively, by the angles given.

There is no compelling physics to dictate that any one
these frames is privileged; any one is as good as ano

FIG. 3. The action of the kinematic group on a pointq of the
three-body shape space is to move this point in a circle about thw3

axis with periodf5p. The pointq8 is a typical point on this circle,
the kinematic orbit of the initial pointq.

FIG. 4. The moment of inertia tensor for an asymmetric t
determines three mutually orthogonal, unoriented axes~unlabeled in
the figure!. Assuming that thez axis is orthogonal to the plan
containing the three bodies, there are two choices for the orienta
of the z axis and for each of these, four choices for the orientat
of the x and y axes. Altogether, there are eight choices of bo
frame, of which one is illustrated.
d

t
-
to
s,
s

f
er.

These frames can be regarded as eight branches of a m
valued function, defined over the asymmetric top region
shape space; as the shape changes, that is, as a pointq moves
around in the asymmetric top region, these eight branc
continuously change, thereby sweeping out eight surface
‘‘frame space.’’ It turns out that these eight surfaces are c
nected together in pairs, that is, they form four connec
pieces that are disconnected from one another. Thus
moving around in shape space, continuously track
branches of the principal axis frame, we can continuou
move from one branch to a second and back again, but n
any of the other branches.

To visualize this process, we must first realize that fra
space is nothing but configuration space, upon wh
(r s1 ,r s2) are coordinates. A choice of body frame for a pa
ticular shape is a convention for an origin in the correspo
ing rotation fiber, that is, the origin is an orientation for th
given shape that is considered to be a reference. Once
reference is chosen for a given shape, Euler angles fo
other orientations of the same shape are determined by
rotation that maps the reference into some actual orientat
We simply declare that in the reference orientation, the bo
frame is the same as the space frame and that as the bo
rotated away from the reference into some other orientat
the body frame is rotated along with it. For example, in F
1, if we considerQ to be a reference orientation for its shap
then the Euler angles of configurationQ8 are those of the
rotation that mapQ onto Q8 according to Eq.~2.1!.

Geometrically speaking, this means that a choice o
body frame for a particular shape is equivalent to the cho
of a point on the fiber for that shape. By extension, a cho
of a ~single-valued! body frame over a region of shape spa
is equivalent to a choice of a surface in configuration sp
that intersects each rotation fiber in that region in one po
This surface should be smooth, but otherwise can be q
arbitrary. This is the reason for the large number of choi
of body frame. In fiber bundle terminology, explained in Re
@4#, this surface is called asection. The section is a three
dimensional surface in configuration space~for the n-body
problem its dimensionality is 3n26, the same as shap
space!.

The principal axis frame is multivalued and therefore c
responds to eight different sections~or surfaces! in configu-
ration space, defined over the asymmetric top region
shape space. These surfaces intersect each rotation fib
eight points. The eight points or reference orientations o
given rotation fiber are related to one another by the eig
element group of frame rotations introduced above. Two
these surfaces are illustrated in Fig. 5. The pointsQ andQ8
in the figure, on the same rotation fiberFR , are two principal
axis reference orientations for a given shape;Q andQ8 are
related by one of the eight discrete frame rotations, accord
to Eq. ~2.1!.

Next we consider what happens when we continuou
track one of the branches of the principal axis frame a
point of shape space follows a closed circuit, returning to
original shape, assuming the circuit is confined to the asy
metric top region. After such a circuit, does the principal a
frame return to the original branch or does it return on a
other branch? A simple topological argument shows that
final branch must be the same as the initial branch on

on
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closed circuit in the asymmetric top region that can be c
tinuously contracted to a point, since the answer~which
branch we return on! must be a continuous function of th
loop and a continuous function that can take on only disc
values must be constant. More generally, continuity imp
that any two circuits that can be continuously deformed i
one another will return on the same final branch. The o
way the final branch can change as the loop is deformed
the loop crosses a singularity, which here means thew3 axis.
For example, as illustrated in Fig. 6, the circuitsA and B
cannot be deformed continuously into one another with
crossing thew3 axis and need not return on the same bran
of the principal axis frame.

Since loops that do not circle thew3 axis do not change
branches on return, let us consider a loop that does circle
w3 axis, say, once in the positive direction. Since all su
loops return on the same branch, we might as well choo
nice one, such as the kinematic orbit illustrated in Fig. 3. W

FIG. 5. The principal axis frame in the three-body problem h
eight branches, of which two are illustrated in the figure. If we lea
on one branch atQ, following a circuit in shape space and contin
ously tracking the principal axis frame, we may return atQ8 on
another branch, depending on the circuit in shape space.

FIG. 6. Circuits in shape space that can be continuously
formed into one another~which belong to the same homotopy clas!
give rise to the same final branch when the principal axis fram
continuously tracked around them. CircuitA, which is contractible,
returns on the original branch, whereas circuitB, which loops the
w3 axis, returns on a different branch.
-

te
s
o
y
if

t
h

he
h

a
e

wish to track the principal axis frame continuously, starti
from some configurationQ in the rotation fiber overq, asf
goes from 0 top. A certain general property connecting th
principal axis frame and kinematic rotations allows us
determine easily the branch we return on.

D. Principal axis frame and kinematic rotations

The property in question is valid for any number of pa
ticles ~not only three!, so let us speak temporarily of a
n-particle system. First we introduce the 33(n21) matrix
Fs with componentsFsia , defined by

Fsia5r sa i , ~2.7!

wherei 51,2,3 stands forx,y,z, wherea51,...,n21 labels
the Jacobi vectors, and again thes subscript means the spac
frame. Next we define the 333 matrix Ts with components
Tsi j ,

Ts5FsFs
t , Tsi j5(

a
r sa i r sa j , ~2.8!

where thet superscript is the matrix transpose. We callTs
themoment tensor; it is related to the usual moment of ine
tia tensorMs by

Ms5~ trTs!I2Ts , ~2.9!

where tr is the trace. Because of Eq.~2.9!, the eigenvalues of
Ms ~the principal moments of inertia, call themm1 ,m2 ,m3)
are related to the eigenvalues ofTs ~call theml1 ,l2 ,l3) by

m15l21l3 , m25l11l3 , m35l11l2 . ~2.10!

Finally, we define the (n21)3(n21) matrix J, which we
call theJacobi dot product tensor, by

J5Fs
t Fs , Jab5r sa•r sb . ~2.11!

There is nos subscript onJ because it is independent o
frame. It is proved in Ref.@10# that the non-negative definit
matricesTs and J have the same positive eigenvalues~the
positive l’s!. In that reference it is also proved that if tw
configurationsQ andQ8 have the sameJ tensor, then either
Q andQ8 have the same shape or their shapes are relate
a spatial inversion. Thus the Jacobi dot product tensor id
tifies the shape of a configuration modulo chirality~uniquely,
for planar shapes, such as occur in the three-body proble!.

It follows immediately from the definitions and Eqs.~2.1!
and ~2.2! that the matrixJ ~that is, all of its components! is
invariant under external rotations and thatTs andMs ~all of
their components! are invariant under kinematic rotation
Thus, in Fig. 1, configurationsQ and Q8 have the sameJ
matrices andQ andQ9 have the sameTs andMs matrices.
The eigenvalues of these matrices~the l’s or the m’s! are
invariant under both external and kinematic rotations.

This has an important geometrical interpretation. We
turn to the three-body problemn53 for purposes of illustra-
tion. Consider a configurationQ lying on one branch of the
principal axis frame, such as illustrated in Fig. 5, and co
sider the kinematic orbit ofQ generated according to Eq
~2.2!. The section~the surface representing the principal ax

s
e

e-

is



e-
xi
nt
if
l

c
th

by

lls

he
ot
e-
to
e

ve
n

ff
s

e

u-

o

e
se
p

-

e
er
e
e

he
th
.

at
th
us
is
pa

is
is
e

the
in

sible
nd

a

on-
its

me
us
xis
ci-

c

s

ace

rt
of

the

ta-
a

the

PRA 58 3711BODY FRAMES AND FRAME SINGULARITIES FOR . . .
frame! is three dimensional, but the orbit is a on
dimensional curve. Does this curve lie in the principal a
section? Indeed it does, for as we have seen, the mome
inertia tensorMs is invariant under the kinematic action, so
it is a diagonal matrix atQ, it will be the same diagona
matrix at all configurations reachable fromQ by kinematic
rotations. This means that if we wish to continuously tra
the principal axis frame as a point of shape space follows
kinematic action~2.6!, illustrated in Fig. 3, then we simply
follow the kinematic orbit in configuration space specified
Eq. ~2.2!.

It was mentioned above that the kinematic orbit pu
away from the rotation fiber (FR , in Fig. 5! asf pulls away
from zero, that is, the kinematic orbit is not tangent to t
rotation fiber atQ, and that the kinematic orbit does n
return toQ until f52p. These facts do not, however, pr
clude the possibility that the kinematic orbit might return
the original rotation fiberFR at some other point than th
initial point, say,Q8, beforef52p. If it does, thenQ and
Q8 will be related by some spatial rotation and we will ha
found some kinematic rotation that has the same effect oQ
as some~external! spatial rotation, say,KQ5RQ. In fact,
such a kinematic rotation exists, for if we substitutef5p
into Eq. ~2.2!, we find K(p)$r sa%5$2r sa%, that is, K(p)
causes a spatial inversion. However, this has the same e
as the external rotationRz(p), since the inversion take
place in thex2y plane. In other words, we have

K~p!Q5Rz~p!Q ~2.12!

in the three-body problem.
After f5p, the kinematic orbit pulls away from th

original rotation fiberFR again and does not return untilf
52p. Thus we can visualize the kinematic orbit in config
ration space asf varies from 0 to 2p and its relation to a
typical rotation fiber, as illustrated in Fig. 7. The sequence
rotation fibers we pass through whenf goes fromp to 2p is
the same as from 0 top, which explains the double angle 2f
in the kinematic action on shape space@Eq. ~2.6!# and thep
periodicity ~instead of 2p! of the kinematic orbits in shap
space. Actually, Fig. 7 is slightly misleading in one sen
for it seems to suggest that the kinematic fiber climbs a ‘‘s
ral staircase’’ asf goes from 0 top and then climbs down
again asf goes fromp to 2p ; in a sense what one is climb
ing is the angle of rotation about thez axis, which increases
from 0 top on the first half and continues to increase fromp
to 2p on the second half. It would be better to think of th
spiral staircase as continuing to climb but returning to wh
it started becausez rotations inside the rotation fiber ar
themselves periodic, constituting a circle. Alternatively, w
might say that the kinetic orbit continually goes down t
spiral staircase; it appears impossible to say which at
point, becauseRz(p) and Rz(2p) are the same rotation
~Later we will see that there is a difference.!

Now we can see why there is a change in the branch
the principal axis frame when we go once around thew3 axis
in shape space in the positive sense, following a kinem
orbit. When the kinematic orbit in shape space returns to
initial shape, the kinematic orbit in configuration space m
necessarily have returned to the same shape too, but th
only defined modulo some external rotation. In fact, the s
s
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tial rotation corresponding to this circuit in shape space
Rz(p), which connects two branches of the principal ax
frame. If we go around thew3 axis twice in shape space, th
rotation generated in configuration space isRz(p)25I, so we
are back on the original branch again. This proves that
eight branches of the principal axis frame are connected
pairs, in fact, pairs related to one another byRz(p). The four
pairs of branches are disconnected because it is not pos
to get from one pair to another by kinematic rotations a
because all other closed circuits on shape space~which do
not cross thew3 axis! can be continuously deformed into
closed circuit along a kinematic orbit, circling thew3 axis
some number of times. In other words, the issue of the c
nectivity of the branches is determined by kinematic orb
alone.

Thus there are two branches of the principal axis fra
that can be reached from some initial frame by continuo
deformation. We can create a single-valued principal a
frame if we introduce a branch cut, across which the prin
pal axis frame jumps discontinuously byRz(p). For ex-
ample, let us take the regionw1 ,w3.0 of thew1-w3 plane,
that is, the surfaceF50, as an initial surface for kinemati
fibers, so that the kinematic anglef along the kinematic
fibers and the Smith hyperspherical coordinateF are the
same and let us place the branch cut at anglef5p/2, that is,
along the negativew1 axis, so that the frame is continuou
everywhere except atf5kp1p/2, wherek is an integer.
The branch cut is a two-dimensional surface in shape sp
that emanates from thew3 axis.

E. Transforming to the Eckart frame

We will now change from the principal axis to the Ecka
frame, which will give us a single-valued frame over all
shape space, eliminate the branch cuts, and eliminate

FIG. 7. A kinematic orbit in configuration space leaves a ro
tion fiber FR at point Q (f50), returns to the same fiber at
rotated pointQ8 (f5p), and then returns to the initial pointQ
(f52p). The sequence of rotation fibers passed through is
same fromf50 to p as fromf5p to 2p. For example,Q1 and
Q18 lie on the same rotation fiberF1R . ConfigurationsQ andQ8 ~or
Q1 andQ18) are connected by the external rotationRz(p).
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singularities on thew3 axis. In practice there are tw
complementary methods of specifying a body frame
equivalently, of specifying a section of the rotation fib
bundle in configuration space. These are the parametric
constraint methods, the same methods used to specify
surface in any space~of any dimensionality!. We will speak
for the moment in terms of the generaln-body problem.
Then the rotation section is a surface of dimensionalityn
26 in the (3n23)-dimensional configuration space; i
codimension is 3.

In the parametric method, we express the surface in te
of 3n26 parametersqm, m51,...,3n26, which identify
points on the surface. Since a single-valued section will
tersect each rotation fiber at one point, the parametersqm

identify which fiber we are on, which is the same as t
shapeq. Thus, the parametersqm can also be considered t
be shape coordinates. In the parametric method, we exp
the configuration coordinates~the space Jacobi vectors! as
functions of the parametersqm,

r sa5ra~qm!, ~2.13!

wherera ~without thes subscript! are the functions in ques
tion. Equation~2.13! is not true everywhere in configuratio
space, only on pointsQ5$r sa% that lie on the section. Sinc
the space frame and body frame coincide at such points
space components of the Jacobi vectors are equal to the
components on the section; this explains the notation
which ra ~without thes subscript! are the body component
of the Jacobi vectors.

In the constraint method, the section is specified by th
functions of the form

Ci~r s1 ,...,r s,n21!50 ~2.14!

for i 51,2,3, which constrain the space components of
Jacobi vectors~three functions because the section has co
mension 3!. For example, the principal axis frame is spe
fied by the constraints

Tsi j5(
a

r sa i r sa j50 for iÞ j , ~2.15!

which says that the off-diagonal elements of the space c
ponents of the moment tensor vanish, that is, that this te
is diagonal. A diagonal moment tensor implies a diago
moment of inertia tensor, so at points of configuration sp
satisfying Eq.~2.15!, the space frame is identical to one
the principal axis frames. Notice that Eq.~2.15! specifies a
set of three quadratic relations among the space compon
of the Jacobi vectors, so the principal axis section in confi
ration space can be thought of as a higher-dimensional
log of the usual ellipsoids or hyperboloids in thre
dimensional space.

Another example of the constraint form of the section
given by the usual condition@3,19# for the Eckart frame,

(
a

r sa3r sea50, ~2.16!

where r sea ~with the e subscript! are the space-compone
Jacobi vectors for an ‘‘equilibrium’’ configuration~specify-
r,
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ing both shape and orientation!. We put this word in quotes,
because the usual purpose of the Eckart frame is to give
convenient description of small vibrations, so that$r sea%
would be a genuine equilibrium configuration, a minimum o
the potential energy. In the present discussion, however,
will choose$r sea% according to other criteria, based on the
moment of inertia tensor. In any case, the quantities$r sea% in
Eq. ~2.16! are constants, so that equation is a linear co
straint among the space components of the Jacobi vect
$r sa%. Thus the Eckart section is a hyperplane, that is,
vector subspace of configuration space of dimensional
3n26 ~three dimensional, in the three-body problem!.

The equilibrium configuration we will use is a symmetric
oblate top with hyperradiusreÞ0, so the shape lies on the
w3 axis at coordinatew35re

2 . The precise value ofre is not
important. At such configurations,w15w250, so according
to Eq. ~2.4!, the two Jacobi vectors are equal in magnitud
and orthogonal. We orient this configuration so that the tw
Jacobi vectors are aligned on thex andy axes,

r se15kx̂, r se25kŷ, ~2.17!

wherek is the magnitude of either Jacobi vector~in fact, k

5re /&) and x̂ and ŷ are unit vectors along the~space! x
and y axes. We will also writeQe5$r sea% for this equilib-
rium configuration andqe for the corresponding shape~see
Fig. 8!.

Next we consider kinematic rotations acting onQe , ac-
cording to Eq.~2.2!. We find

S r se18

r se28 D 5S cosf 2sin f

sin f cosf D S kx̂

kŷ
D 5kS cosf x̂2sin f ŷ

sin f x̂1cosf ŷ
D ,

~2.18!

FIG. 8. The regionS of the w12w3 plane wherew1 ,w3.0 is
convenient as a section of the kinetic fiber bundle. An initial poin
q0 on the section is acted upon by kinematic rotations and swee
out a kinematic orbit upon whichq(f) is a typical point. The point
qe , an oblate symmetric top, is an ‘‘equilibrium’’ shape for the
Eckart frame.
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where the notation treats vectors as elements of a matrix
as we would treat scalars. We abbreviate this equation
writing Qe85K(f)Qe . Obviously, the configurationQe is
not invariant under kinematic rotations. On the other ha
the kinematic action in shape space does nothing toqe be-
causeqe lies on the w3 axis. Since the shape does n
change, this means that the kinematic action~2.18! on the
corresponding configurationQe must be equivalent to a spa
tial rotation, not only for the anglef5p as we had earlier
for general configurationsQ @see Eq.~2.12!#, but for any
anglef. This is a special property of the oblate symmet
top configurations and it means that the kinematic orbit
tually does lie inside the three-dimensional rotation fiber,
contradiction with the implication of Fig. 1~which only ap-
plied to asymmetric tops!. Therefore, we must hav
K(f)Qe5RQe for someR. What rotation is it? The answe
is Rz(2f), as we show directly by applying Eq.~2.1!. For
example, for thea51 Jacobi vector we have

r se18 5Rz~2f!r se15S cosf sin f 0

2sin f cosf 0

0 0 1
D S k

0
0
D

5kS cosf
2sin f

0
D 5k~cosf x̂2sin f ŷ!, ~2.19!

which agrees with the first row of Eq.~2.18!. Similarly, for
the a52 Jacobi vector we find

r se28 5Rz~2f!r se25k~sin f x̂1cosf ŷ!. ~2.20!

We can summarize these by writing

K~f!Qe5Rz~2f!Qe . ~2.21!

Next we consider points of shape space that lie on
initial value surface for the variablef, as defined above
This is the quadrant of thew12w3 plane wherew1 ,w3.0
and it has the property that it intersects each kinematic fi
at precisely one point. Thus this surface is similar in funct
to the section of the rotation fiber bundle in configurati
space and can be regarded as a section of the kinematic
bundle. We will call it thekinematic section. This section is
illustrated in Fig. 8. We restrict the section to the regi
w1.0 because if we includedw1,0, the section would in-
tersect each kinematic fiber at two points.

The kinematic section allows us to parametrize a poinq
of shape space by its kinematic anglef, defined relative to
the section, plus two more quantities that are kinematic
variants and label the kinematic fiber upon whichq lies.
There are many obvious choices for kinematic invarian
One is (l1 ,l2), the eigenvalues of theJ tensor, and anothe
is (w1 ,w3), the coordinates in the kinematic section whe
the kinematic orbit passing throughq intersects the section
We must be careful in interpretingw1 as a kinematic invari-
ant; according to Eq.~2.6! this quantity is not a kinematic
invariant, but in that equation,w1 is the coordinate of the
point q itself, whereas in the present discussion it is t
coordinate of the point where the kinematic fiber pass
st
y
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throughq intersects the section. Of course,w3 is a kinematic
invariant by any interpretation.

TheJ tensor is diagonal on the kinematic section since
off-diagonal elementr s1•r s2 vanishes whenw250. Thus, on
the kinematic section,J can be expressed in terms of i
eigenvalues

J5S l1 0

0 l2
D , ~2.22!

wherel15ur s1u2 andl25ur s2u2. Furthermore, sincew1 ,w3
.0 on the section, Eq.~2.4! implies l1.l2.0. TheJ ten-
sor is not constant~nor does it remain diagonal! as we move
around the kinematic orbits, but it becomes diagonal ag
when f5p/2, on the w1,0 side of thew12w3 plane,
where the ordering of the diagonal elements is reversed.

Let us define a body frame over the kinematic section.
pick a shapeq0 on the kinematic section, as illustrated
Fig. 8. The 0 subscript indicates that this point is an init
point of a kinematic orbit; we will also writeQ05$r s0a% for
a corresponding point in configuration space. By Eq.~2.4!
the two Jacobi vectors are orthogonal at shapeq0 , so we can
orient the configuration to place the longer Jacobi vectorr s01
on the spacex axis and the shorter oner s02 on the spacey
axis. That is, we choose the reference orientationQ0 so that

r s015a1x̂, r s025a2ŷ, ~2.23!

whereai5Al i.0, i 51,2, and wherea1.a2 . This frame is
obviously a principal axis frame since the moment tenso
diagonal, but it is also an Eckart frame relative to the eq
librium Qe defined by Eq.~2.17!. This follows immediately
from the definition of the Eckart frame, Eq.~2.16!.

Next we extend the definition of this body frame to cov
all asymmetric tops by moving down kinematic orbits
shape space. Let us writeq(f)5K(f)q0 , so thatq(f) is
the f-dependent point of shape space on the kinematic o
passing throughq0 on the section, as illustrated in Fig. 8. W
wish to define a pointQ of configuration space correspond
ing to shapeq, which will sweep out the external rotatio
section. We could do this by demanding thatQ follow kine-
matic orbits in configuration space, that is, by writingQ
5K(f)Q0 , but, as we have seen, this will just give th
principal axis frame. The principal axis frame would produ
a net rotation ofRz(p) along the initial rotation fiber after
f5p, as we have seen, and would not be single valued

Let us therefore compensate for this spatial rotation
setting

Q~f!5Rz~f!K~f!Q0 , ~2.24!

which causes us to rotate down rotation fibers by an an
that is equal to the kinematic anglef, as we move from one
rotation fiber to another.@This equation does not imply th
multiplication of the matricesRz and K, which would not
make sense anyway since one is 333 and the other is
232, but rather the successive application of the rotation
kinematic actions toQ0 according to Eqs.~2.1! and~2.2!.# At
the valuef5p, where there is a discontinuity or change
branch of the principal axis frame, Eq.~2.24! gives KQ0
5Rz(p)Q0 or Q5Q0 sinceRz(p)25I. In other words, the



e-
ti
re
ng
o

e
v-
th
or

-

.

e

ow

give
ons

rm,
tes

es
are

ap-

e-
the

3714 PRA 58LITTLEJOHN, MITCHELL, AQUILANTI, AND CAVALLI
section and corresponding frame specified by Eq.~2.24! are
single valued. Equation~2.24! is strange in appearance b
cause it sets a kinematic angle equal to an external rota
angle and in general these two angles have very diffe
physical interpretations. However, it is precisely this shifti
from kinematic to external rotations that eliminates many
the singularities in the principal axis frame.

Equation ~2.24! defines an Eckart frame relative to th
equilibrium Qe , not just over the kinematic section but e
erywhere in shape space, as we will now show. We do
by expressing certain relations in terms of Jacobi vect
writing Qe5$r sea%, Q05$r s0a%, and Q5$r sa%. We begin
with Eq. ~2.21!, which we write in the form

Rz~f!K~f!Qe5Qe , ~2.25!

which follows sinceRz(2f)5Rz(f)21. The rotation and
kinematic actions commute~since they act on different indi
ces! and can be taken in either order. Converting Eq.~2.25!
to Jacobi vectors, we find

r sea5(
b

Kab~f!Rz~f!r seb . ~2.26!

Similarly, converting Eq.~2.24! to Jacobi vectors, we have

r sa~f!5(
b

Kab~f!Rz~f!r s0b . ~2.27!

Now, to show that the section swept out byQ(f) is an
Eckart section with equilibriumQe , we must show that Eq
~2.16! is satisfied withr sa identified withr sa(f). By substi-
tuting Eqs.~2.27! and ~2.26!, we have

(
a

r sa3r sea5 (
a,b,g

KabKag~Rr s0b!3~Rr seg!

5(
a

~Rr s0a!3~Rr sea!, ~2.28!

whereR stands forRz(f) andK for K(f) and we have used
the orthogonality of theK matrices in the last step. Next w
use the identity (Ra)3(Rb)5R(a3b), valid for any proper
rotationR and any pair of vectorsa,b to write

(
a

r sa3r sea5RS (
a

r s0a3r seaD 50, ~2.29!

where the last step follows because we have already sh
that the point Q05$r s0a% is an Eckart frame. ThusQ
5$r sa% does lie on the Eckart section.

F. Parametric forms and remaining singularities

It is interesting to write out Eq.~2.24! explicitly in terms
of Jacobi vectors. Since we have now determined thatQ lies
on the Eckart section, let us change notation and writeQE

for it. Likewise, the intermediate point in Eq.~2.24! ~after
the action ofK but before the action ofR) lies on the prin-
cipal axis section; therefore, let us write

QPA5K~f!Q0 , QE5Rz~f!QPA. ~2.30!
on
nt

f

is
s,

n

Furthermore, let us writeQPA5$r sa
PA% andQE5$r sa

E %. Con-
figuration Q0 is given in Jacobi vector form by Eq.~2.23!;
when we applyK(f) to this, following Eq.~2.18!, we find

r s1
PA5a1cosf x̂2a2sin f ŷ,

r s2
PA5a1sin f x̂1a2cosf ŷ. ~2.31!

Then, when we applyRz(f) to this, following Eq.~2.19!, we
find

r s1
E 5~a1cos2f1a2sin2f!x̂1~a12a2!sin f cosf ŷ,

r s2
E 5~a12a2!sin f cosf x̂1~a1sin2f1a2cos2f!ŷ.

~2.32!

An interesting aspect about these two results is that they
us the equations of the principal axis and Eckart secti
explicitly in the parametric form~2.13!, in which (a1 ,a2 ,f)
can be regarded as the shape coordinatesqm; previously we
had expressions for these sections only in constraint fo
Eqs.~2.15! and~2.16!, respectively. These shape coordina
are neatly divided into the kinematic invariants (a1 ,a2), plus
the kinematic anglef.

The singularity of the principal axis frame on thew3 axis
~the oblate symmetric tops! is easily seen from Eq.~2.31!.
Suppose we approach the positivew3 axis along a plane of
constantf, as illustrated in Fig. 9. Then the two eigenvalu
l1 ,l2 approach a common positive value, as do their squ
rootsa1 ,a2 . Let a1 ,a2→a.0. Then the limit of the princi-
pal axis frame is

FIG. 9. The principal axis frame has singularities as we
proach thew3 axis along a plane of constantf, either forw3.0 or
for w3,0, where the latter is meaningful only for the planar thre
body problem. The Eckart frame, however, is singular only on
negativew3 axis.
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r s1
PA5a~cosf x̂2sin f ŷ!,

~2.33!
r s2

PA5a~sin f x̂1cosf ŷ!,

which clearly depends onf. Thus the limit of the principal
axis frame at the symmetric oblate shapes depends on
direction of approach and the frame is not continuous th
To put this another way, if we go around thew3 axis in a
very small circle~a kinematic orbit!, then the principal axis
frame changes by an amount that is order unity under a s
change of shape. Thus the derivatives of the principal a
frame become infinite as we approach thew3 axis.

On the other hand, the Eckart frame approaches a
defined value on thew3 axis, namely,

r s1
E 5ax̂, r s2

E 5aŷ. ~2.34!

Thus the Eckart frame eliminates not only the multip
branches and branch cuts of the principal axis frame, but
the singularities at the oblate symmetric top configuration

At this point it is of interest to consider the three-bo
problem in a plane, which in some ways bears a stron
analogy to the four-body problem in space than does
three-body problem in space. For the planar three-body p
lem, the configuration space isR4 and the generic rotation
orbits are one-dimensional circles diffeomorphic to SO~2!
instead of SO~3!. Coordinates (w1 ,w2 ,w3) are still useful
coordinates on shape space, but the definition ofw3 in Eq.
~2.4! is replaced by

w35 ẑ•~r s13r s2!, ~2.35!

corresponding to the fact that negativew3 values are now
meaningful (w3 is now the signed area of the triangle form
by the Jacobi vectors!. Thus shape space is now all ofR3.
The collinear configurations on thew1-w2 plane are not sin-
gular in any important sense for the planar three-body pr
lem because the dimensionality of the rotation orbits d
not change there~unlike the three-body problem in space!. It
thus makes sense to extend the kinematic section throug
w1 axis, to include the quadrantw1.0, w3,0 in thew1-w3
plane, so that now the kinematic section is the entire reg
w1.0. Kinematic invariants can still be taken to be (w1 ,w3)
on the kinematic section, the eigenvalues (l1 ,l2), or, what
is more useful, their square roots (a1 ,a2). However, the ei-
genvaluel2 and hencea2 approach zero as we approach t
w1 axis from above, so there is the question of the sign ofa2
as we pass into the regionw3,0. In fact, an analytic con-
tinuation indicates thata2 should be interpreted as the neg
tive square root ofl2 in the regionw3,0. Thus (a1 ,a2) can
be taken as coordinates on the kinematic section, satisf
the condition

a1.ua2u>0, ~2.36!

with negative values ofa2 indicating shapes of negative are
For the planar three-body problem, it makes sense to

amine the behavior of the principal axis and Eckart frames
we approach the negativew3 axis, containing symmetric ob
late tops of negative area. Again we havel1 and l2 ap-
proaching a common value as we approach thew3 axis, but
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as for their square roots, it isa1 and 2a2 that approach a
common positive value, saya. As for the principal axis
frame, it has singularities on the negativew3 axis much like
those on the positivew3 axis. The Eckart frame, on the othe
hand, which is nonsingular on the positivew3 axis, turns out
to have singularities on the negativew3 axis. The asymmetry
between positive and negativew3 arises because the quanti
a2 is negative whenw3,0; thus as we approach the neg
tive w3 axis along a plane of constantf, as illustrated in Fig.
9, we havea1 ,2a2→a.0. Thus Eq.~2.32! becomes,

r s1
E 5a~cos 2f x̂1sin 2f ŷ!,

~2.37!
r s2

E 5a~sin 2f x̂2cos 2f ŷ!,

which clearly depends upon the direction of approach. T
the Eckart frame for the planar three-body problem has fe
singularities than the principal axis frame, but singularit
have not been eliminated entirely.

In the planar three-body problem, both frames examin
so far have singularities. Is it possible to find a frame tha
free of singularities everywhere? The answer is yes for
three-body problem in space; the Eckart frame does t
However, for the three-body problem in a plane, the ans
is no. It is possible to move the singularities from the neg
tive w3 axis to some other location, but they cannot be elim
nated. For example, if instead of Eq.~2.24! we write

Q8E~f!5Rz~2f!K~f!Q0 , ~2.38!

that is, if we compensate for the rotation along the rotat
fibers in the opposite direction from that in Eq.~2.24!, then
we obtain a frame that is well behaved on the negativew3
axis, but singular on the positivew3 axis. This is like rotating
down the ‘‘spiral staircase,’’ as suggested by the fact t
Rz(p)5Rz(2p). The result is another version of the Ecka
frame, as indicated by the notationQ8E. If we write Eq.
~2.38! in terms of Jacobi coordinates, we find

r s18
E5~a1cos2f2a2sin2f!x̂2~a11a2!sin f cosf ŷ,

r s28
E5~a11a2!sin f cosf x̂1~2a1sin2f1a2cos2 f!ŷ.

~2.39!

On the positivew3 axis, wherea1 ,a2→a.0, this frame be-
comes

r s18
E5a~cos 2f x̂2sin 2f ŷ!,

~2.40!
r s28

E5a~sin 2f x̂1cos 2f ŷ!,

which is f dependent and therefore singular. However,
the negativew3 axis, wherea1 ,2a2→a.0, the frame be-
comes

r s18
E5ax̂, r s28

E52aŷ. ~2.41!

The frame~2.39! is an Eckart frame, but with an equilibrium
shape located on the negativew3 axis, call itqe8 . The corre-
sponding orientation is

r se18 5kx̂, r se28 52kŷ. ~2.42!
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This concludes our discussion of the principal axis and E
art frames.

III. COMMENTS AND CONCLUSIONS

Finally, we will make some comments about monopo
string singularities and frame singularities in the three-bo
problem, which provide a rather different perspective on
whole question of frame singularities. We present this s
ject only in outline form since most of it has already be
discussed elsewhere@4#. The relation between frame singu
larities and monopole singularities is important becaus
shows that all choices of body frame in the three-body pr
lem lead to singularities somewhere and it shows that
singularities of the Eckart frame are of a minimal kind.
standard introduction to the theory of monopoles is given
Sakurai@21#.

A magnetic monopole is a hypothetical particle with
magnetic fieldB(r )5gr /r 3, whereg is the magnetic charge
and r is the position vector in ordinary space. Since“•B
54pgd(r ), there should exist a vector potentialA such that
B5“3A in regions that do not include the originr50. Of
course, we expectA to become singular asr→0, where the
singularity ofB lies. Also, we know that the vector potenti
is not unique; once one vector potentialA has been found
we can generate another by the ruleA85A1“ f , wheref is
an arbitrary scalar function.

In fact, it is not hard to find a vector potential by uncu
ing B in spherical coordinates~the result is presented b
Sakurai@21#!. However, one will find that this vector poten
tial has singularities not only atr50 as expected, but also o
a line emanating fromr50. This line is thestring of the
monopole. One will find that by doing gauge transform
tions, the string can be moved around, for example, to p
in this or that direction, but that it apparently cannot
eliminated. The question then arises, Does there exi
gauge transformation that will eliminate the string singul
ity, that is, can one find a vector potentialA that is nonsin-
gular everywhere outside ofr50? The answer is no, as ca
be proved by Stokes’ theorem. We simply integrateB over a
sphere centered on the origin, with a small hole cut out o
In the limit that the size of the hole goes to zero, the integ
approaches 4pg. However, by Stokes’s theorem, the integr
must also be equal to the line integral ofA around the small
hole, which must approach zero ifA is continuous. There-
fore, A cannot be continuous everywhere on the sphere
must have at least one point where it is discontinuous. Th
the string.

There is also a ‘‘Coriolis’’ vector potential in the Hami
tonian for the three-body problem@4#, which physically de-
scribes Coriolis forces, and it turns out that changes of b
frame affect this potential in exactly the same way
changes of gauge affect a magnetic vector potential. It a
turns out that the curl of this Coriolis vector potential is
monopole field in shape space, as discovered by Iwai@23#.
Therefore, frame singularities in the three-body problem
isomorphic to monopole string singularities. In particul
they can be moved around by frame transformations,
they can never be completely eliminated. These frame sin
larities occur at the same places in shape space as the s
larities of the Coriolis coupling terms in the Hamiltonian.
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For example, the principal axis frame puts the string s
gularity on the entirew3 axis. Since this includes both pos
tive and negative sides, one might say that there are
strings; this is not the minimal configuration. However,
transforming to an Eckart frame, we can remove the str
singularity from either the positive or negativew3 axis,
thereby leaving only one string. This is the minimal config
ration. By further changes of frame, the string can be mo
to other locations. For example, a common choice of bo
frame in practice, useful for describing the asymptotic st
of AB1C systems in an entrance or exit channel, is one
which the longer Jacobi vector is placed on the bodyz axis
and the shorter one in thex2y plane. Then it turns out tha
this frame causes the string singularity to lie on the nega
w1 axis. If the roles of the longer and shorter Jacobi vect
are reversed, then the string lies on the positivew1 axis.
These two frames and the singularities they cause in the
ternal Hamiltonian have been given a clear description
Pack @16#. Other choices are possible~the string can be
moved to point in an arbitrary direction; it can even
curved!.

The monopole analogy leads to useful insights in
three-body problem; for example, we have shown elsewh
@20# that Smith’s hyperspherical harmonics for the plan
three-body problem are identical to spherical harmonics
the motion of a charged particle in a monopole field. W
believe that these monopole analogies will lead to furt
insights into the problems of basis set contraction in
three-body problem. We will report on these ideas elsewh

In conclusion, we have presented a geometrical anal
of frame singularities in the three-body problem. This has
to insight into the problem of locating, moving, or removin
frame singularities in the three-body problem. It also h
provided the necessary background for understanding
problem of frame singularities in the four-body problem. F
nally, we have commented on the relationship between fra
singularities in the three-body problem and the string sin
larities of magnetic monopoles, which is useful for constru
ing a proof of the impossibility of eliminating all frame sin
gularities, as well as for providing insights int
hyperspherical harmonics and other matters. In particular,
believe that hyperspherical harmonics@22#, or better their
generalizations as solutions of the kinetic-energy operato
the manifolds explored here and with the various choices
coordinates and frames discussed here, will serve as
behaved basis sets for problems involving reactivity a
large-amplitude vibrations. Use of their discrete analogs w
admit localized representations and will accelerate conv
gence by eliminating dynamically unimportant regions
phase space. We plan to report on these applications in
future.
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