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The subject of body frames and their singularities for three-particle systems is important not only for
large-amplitude rovibrational coupling in molecular spectroscopy, but also for reactive scattering calculations.
This paper presents a geometrical analysis of the meaning of body frame conventions and their singularities in
three-particle systems. Special attention is devoted to the principal axis frame, a certain version of the Eckart
frame, and the topological inevitability of frame singularities. The emphasis is on a geometrical picture, which
is intended as a preliminary study for the more difficult case of four-particle systems, where one must work in
higher-dimensional spaces. The analysis makes extensive use of kinematic roati056-294®©8)06811-3

PACS numbeis): 34.50—s, 31.15-p, 02.40—k

I. INTRODUCTION vention for the body frame, but they are independent of the
potential. Thus the singularities in question occur in the ex-
This paper is a part of a study of body frame singularitiesact solution of the Schdinger equation as well as in the
in the quantum dynamics af-particle systems. As is well exact eigenfunctions of the kinetic-energy operaiwhose
known, it is necessary to establish a convention for a bodyngular parts are the hyperspherical harmofids
frame before transforming the Hamiltonian for asparticle Frame singularities are not the only kind of singularities
system to Euler angles and internal coordinates since thene will encounter in the internal dynamics of afparticle
Euler angles are only defined relative to a body frame. Aftersystem. Recently Padkl 6] has given a careful analysis of
this transformation, the wave function on the internal spaceingularities in three-body scattering calculations, including
becomes a (2+1)-component “spinor,” wherd is the an-  frame singularities as well as other kinfthose of the cen-
gular momentum of the system. The process of transformingrifugal potential and those due to a choice of coordinate
Hamiltonians in this manner is an old subjétt-3], which  system on the internal spaceThe work presented in this
has recently been reviewed by us from a gauge-theoreticglaper is different in spirit from Pack’s and complementary to
standpoin{4]. A body frame can be specified in practice by it. For example, Pack considers the problem of basis set con-
giving the positions of all the particles relative to the bodytractions and how these interact with singularities in the
frame as a function of the shape or internal coordinates. Hamiltonian, while this paper deals only with the frame sin-
Body frame singularities, the topic of this paper, occurgularities themselves. On the other hand, this paper empha-
when the positions of the particles in the body frame aresizes a geometrical picture of frames that we believe is al-
nondifferentiable functions of the shape. To be more precisenost entirely new and is especially important for
we will measure the “distance” between two configurationsunderstanding the case=4. Another important issue dis-
by the mass-weighted, kinetic-energy metric, where it is uncussed by Pack is the inevitability of frame singularities,
derstood that one or the other of the two configurations isegardless of the convention chosen for body frame; in this
rotated to minimize this distance. This definition of distancepaper we provide a different perspective on this question, by
coincides with the measure of distance given by the metricelating frame singularities in the three-body problem to the
tensor on the internal space, as explained in REf. Then  well known string singularities that occur in the vector po-
we will say that the frame is singular when the derivatives oftential for the field of a magnetic monopole.
the particle positions in the body frame with respect to dis- One of the results of this paper is to show how a version
tance, as the shape is changed in some continuous mannerpisthe Eckart frame gets rid of some of the singularities
infinite. This definition has the advantage that it is indepenjpresent in the principal axis frame and in fact produces a
dent of the choice of internal coordinates. configuration of singularities that is minimal, in the sense
Body frame singularities are important because the wavéhat no other frame has singularities on a smaller subset of
function on the internal space is singular at the same placdbe internal space. We would not want the reader to think,
in the internal space as the frame singularities. The singulahowever, that we are necessarily advocating the Eckart frame
ity in the wave function is of the same kind as in the frame;for any particular approach to practical calculations. In par-
the derivatives of the wave function with respect(toass- ticular, the centrifugal potential energy, which is singular in
weighted distance become infinite. Typically one finds that any frame at the collinear configurations, acquires some un-
the wave function oscillates infinitely rapidfghat is, over attractive features in the Eckart frame as compared to the
arbitrarily small increments in shapas some limiting mani- principal axis frame, such as off-diagonal terms and an os-
fold in the internal space is approached. The locations o€illatory dependence on the kinematic angle. These issues
these singularities in the wave function depend on the conhave been carefully discussed by P4dk]. On the other
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hand, it is our point of view that not enough is presentlyto a version of the Eckart frame, which has been considered
known about the variety of possible techniques that can bpreviously by Pack16] and ourselvef4], and we show how
applied to three- and more-body problefairect numerical this frame eliminates some or dtlepending on the number
integration, grid methods, hyperspherical harmonics, wavef spatial dimensionsof the singularities present in the prin-
packets, semiclassical methods, basis set contractions, vari@pal axis frame. Finally, we discuss parametric forms of the
tional methods, time-dependent methods,)étcsay that this principal axis and Eckart frames and discuss the remaining

or that frame will never be important in applications. This is Singularities of the latter. In Sec. Ill we present some com-
especially true for the case=4, about which very little is ments and conclusions, including a discussion of the relation

between frame singularities and monopole strings, which

currently known. I oL T I
For example, in spite of some considerable work on fourleads to one way of viewing the topological inevitability of

body Hamiltoniang6—9], it appears to us that it has been ffame singularities.

only recently that a careful and fully accurate description has

been given of the ranges of internal c_oordinates in the inter- Il. ERAMES IN THE THREE-BODY PROBLEM

nal spacqd10—13. Most of these studies of four-body sys-

tems have employed the principal axis frame, perhaps be- In this section we develop a geometrical picture of spaces
cause this frame is naturally suggested by the singular-valuand frames in the three-body problem, paying special atten-
decomposition of the 83 matrix of Jacobi vectors that tion to the principal axis frame, its multiple branches and
naturally occurs in such problems. However, in spite of soméingularities, and its relation to kinematic rotations and to the
work explicitly advocating the principal axis frani@4], it Eckart frame and its relation to the principal axis frame. We
does not appear to us that anyone has studegch=4) how also discuss the inevitable singularities that exist in any
the multiple branches of the principal axis frame are conchoice of frame. Throughout the following discussion we
nected together, how a single branch may be selected iwill be thinking primarily of the three-body problem in
practice, or where the branch cuts must be placed in théhree-dimensional space, although many of the results will
internal space. Nor for that matter has there been any studybviously apply to the generai-body problem in three-
(again forn=4) of how the multiple branches and branch dimensional space. In places we will make this explicit. At
cuts of the principal axis frame may be eliminated by meanghe end of this section we will make some comments on the
of a frame transformation or what minimum configuration of three-body problem in a plane, which is slightly different
singularities is possible with an arbitrary frame transforma-rom the three-body problem in space.

tion.

Our purpose is to provide a framework within which gen-
eral questions regarding body frames and their singularities
can be addressed. In the case of the four-body problem, we
have succeeded in answering the questions just listed, using We begin by establishing some notation for the three-
a geometrical analysis of curves and surfaces in configurd2ody problem. We writg, , a=1,2, or{rg,}=(rs,rs,) for
tion space and in the intern@r shapg space. However, the the two mass-weighted Jacobi vectors describing the con-
four-body problem involves spaces of relatively high dimen-figuration of the three-particle system, referred to the space
sionality (for example, the internal or shape space is six di-or inertial frame. We use amsubscript on vectors or tensors
mensional, so there is great advantage in applying our geofeferred to the space frame. We define the Jacobi vectors in
metrical methods first to the three-body case, in order to fiterms of the laboratory positions of the three particles by
ideas and form analogies that are useful in understanding threquiring thatrg, lie on the line joining particles 1 and 2 and
four-body case. In this way, we were led to the geometricathatrg, lie on the line joining the center of mass of particles
analysis of frames and frame singularities for the three-bodyt and 2 with particle 3. This is the most convenient choice
problem that is presented in this paper. The reader must urier configurations in the channel £2. The other two stan-
derstand that many of the features of the three-body problertlard choices of Jacobi coordinates are related to this one by
that are pointed out in this paper are intended not only taneans of discrete kinematic rotations in the usual way; alter-
provide insight into the three-body problem itself, but alsonatively, Radau or other choices of coordinates may be
for comparison with the four-body problem. Our work on the made, corresponding to continuous interpolations between
four-body problem, which takes advantage of these analcthe usual discrete kinematic rotations. Formulas relating in-
gies, is presented in the preceding paldé]. teratomic distances and bond angles to Jacobi or Radau vec-

Section Il contains the principal results of this paper. Wetors and further details on coordinates can be found in Ref.
begin by presenting a geometrical picture of configuratior{17]. The specific choice of Jacobi coordinates is important
space in the three-body problem and the surfaces that amhen one wishes to connect the values of these coordinates
generated by the action of external rotations and kinematiwith some physical configuration of the three particles, as
rotations. Next we discuss the internal or shape space, cooseen in the laboratory frame. Otherwise, this choice has little
dinates on it, and the action of kinematic rotations. Then weeffect on the discussion or conclusions of this paper; the
discuss the principal axis frame, its multiple branches, andnain effect is to cause a rotation about thg axis (defined
how these are connected together under continuous deformaromentarily of the physical interpretations that are attached
tions of shape. We show that there is an intimate connectioto the points of the internal space.
between kinematic rotations and the principal axis frame and The configuration space of the three-body system is the
use this to develop the connectivity properties of the latterspace upon which the Jacobi vectdtisat is, their six com-
Next we present a geometrical picture of the transformationponents are coordinates; this spaceR§. To be more pre-

A. Configuration space and the action of external and
kinematic rotations
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cise, this is the configuration space after the elimination oflimensional copies of S@). The usual Euler angles are co-
the center of mass coordinates, which will not be importanbrdinatesalong the rotation orbits and the usual internal
in the following discussion. We will writ€Q, Q’, etc., for  coordinates are parameters or coordinatethe rotation or-
points of this space, so th@ stands for some pair of vectors bits. The noncollinear orbits are also calléers the stan-
(re1,rsp)- dard terminology for them in fiber bundle theory, as ex-
A given configuration of the three-atom system may beplained in Ref.[4]; the space consisting of these fibers
subjected to a rigid rotation, specified by a proper orthogonalconfiguration space minus the collinear configurations and
matrix Re SO(3). This rotation acts on the Jacobi vectors the three-body collisionis thefiber bundle
according to Kinematic rotations play an important role in the theory

of the principal axis frame. They are defined by
re,=Rrse, a@=12, (2.1

2
which we view in the active sense, so tf@&{r,} is the rSa_le Kap(P)rsp, 2.2
old configuration andQ’={r.,} is the new one. We will
sometimes abbreviate this by writing’=RQ. The nota- Wwhere the matrixK (with componentsK,,z) belongs to
tional distinction betweeR (in italics) andR (in sans serjff  SQ(2),
is that R represents an element of &) regarded as an
abstract grougequivalently,R stands for some choice of
Euler angles while R stands for the correspondingx3
matrix. The equatiolQ’ =R Q could be interpreted in terms ] . ] ] )
of matrix multiplication (involving 6x6 matrice$, but we  The group of kinematic rotations, or ttkéematic grougor
prefer to view it in a geometrical sense, in which the p@nt  Short, is S@2) for the three-body problem. Sometimes we
is moved by a rotatiomR to a new pointQ’, whose Jacobi Will abbreviate Eq.(2.2) by writing Q"=KQ or Q'(¢)
vectors are given by Eq2.1). That is, we think ofR as an = K(¢)Q. Again, in the abbreviated notatioK, is an ele-
operator that maps configuration space into itself. ment of the abstract group $2) andK is the corresponding
Two configurations will be considered to have the samenatrix seen in Eq(2.3). If Q is a specific point of configu-
shape if and only if they are related by a proper rotation as irﬁanon space, then the set of conflguratlo.ns swept _out accord-
Eq. (2.1); configurations of the same shape differ only ining to Eq.(2.2) as ¢ ranges from 0 to 2 is the orbit ofQ
their orientation. We will sometimes refer to E@.1) as an  under the action of the kinematic group; we will call these
externalrotation, to contrast it with the kinematic rotations Kinematic orbitsand if necessary to avoid confusion we will
introduced momentarily. refer to the earlier orbits generated by Eg.1) asrotation
If we take a specific configuratio® and act on it by all  Orbits. Except wherQ is the three-body collision, the kine-
possible rotations according to ER.1), then this point Matic orbits are copies dﬁlffeomprphlc to the kinematic
sweeps out a surface in configuration space. This surface B0up S@2), that is, they are the circle3; in this case, they
the orbit of Q under the action of the rotation group, in the are also fibers or, as we will sainematic fibers _
mathematical sense of the word “orbithot to be confused One can say that the period of the kinematic fibers in
with orbits in the sense of classical mechapics configuration space is/2with respect to the anglé. That is,
This paper makes a modest use of mathematical terminofxcept wherQ is the three-body collision, the poi@’'(¢#),
ogy that may be unfamiliar to some readers. This terminoldefined by Eq.(2.2), leaves the initial poinQ as ¢ pulls
ogy is explained briefly as it is introduced. A more thoroughaway from zero and does not return again ugti 2.
explanation is provided in Appendixes A and B of Réf5]. The geometry of the rotation and kinematic group actions
There are three types of orbits, depending on the Conﬁgljs illustrated in Flg 1. Configuration space is the Euclidean
ration Q. First, if Q is a noncollinear configuration, then the SPaceR®, which is illustrated schematically by the set of
orbit of Q can be regarded as a copy of the rotation grou[j:oordinate axes. A Configuratid@, assumed to be noncol-
manifold SG3). A more proper way of saying this is to say linear, is acted upon by external rotations according to Eq.
that the orbit ofQ and S@3) are diffeomorphic this means  (2.1) and sweeps out the rotation orbit or fifeg. This is a
(roughly) that the two manifolds have the same dimension-three-dimensional surface diffeomorphic to the rotation
ality and the same topology and are related by some smootgfoup S@3), although represented in the figure by a line.
one-to-one mapping. To fully appreciate this statement, itt he configuratiorQ’ has the same shape Qs but a differ-
helps to have an image of the topology of (8 which is ~ ent orientation. Under the actiof2.2) of the kinematic
explained in Appendix B of Ref15]. Next, if Q is a collin- ~ group, the pointQ sweeps out th¢one-dimensionalkine-
ear configuration, the orbit is diffeomorphic to the ordinary matic orbit or fiberFy, which is a circle diffeomorphic to
two-spheres? because rotations about the axis of collinearitySQ(2). As ¢ pulls away from zero an@ moves down the
have no effect and only the direction of collinearity can bekinematic orbit toQ", the shape changes, in general, so that
changed. In this case the orbit is two dimensional. Finallyfor small anglesy the pointQ” lies on a different rotation
the three-body collision is the one configuration for whichfiber (Fg in the figurg thanQ.
the orbit is just a point since rotations have no effect on this The curveFy illustrated in Fig. 1 does not lie inside the
configuration. The latter two classes of orbits form a set othree-dimensional surfadeg, that is, as¢ pulls away from
measure zero in configuration space; if we exclude them, theero, the curvé-x moves in a direction that is not tangential
rest of the six-dimensional configuration space is decomto the surfacé~g. SinceFg is three dimensional, there are
posed orfoliated into a three-parameter family of three- three directions in the six-dimensional configuration space

2.3

cos¢ —sin ¢)

sing cos¢
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FIG. 1. A noncollinear configuratio® is acted upon by exter-
nal rotation, and sweeps out the three-dimensional rotation fiber
Fr. Q' is another configuration of the same shap&ag) is also
acted upon by kinematic rotations and sweeps out the one- F|G. 2. Shape space in the three-body problem is the region

dimensional kinematic fibeFy . Kinematic rotations change the \y.>0 in the @w,,w,,ws) coordinates. Smith's hyperspherical
shape, in general, Q" lies on a different rotation fibefFr, . angles® and® are illustrated.

w1

that are tangential t& and therefore three other directions ;- o, (W2+w2)Y2>0, that is, the region avoiding the,
that are independent of these. In fact, one can show that as\y, plane and thew; axis, is the region containing the

long as the configuratio is not an oblate symmetric ©0p 4qymmetric tops, where the moment of inertia tensor is non-
(on thews axis in the internal space, as explained beldive  gegenerate; it is the region where the principal axis frame is
directions generated by small external rotations and smal{afined and unique apart from a choice in the sigie

kinematic rotations are linearly independent. We are alread¥ense)sof the principal axes. We will call this thesymmet-
assuming thaQ is noncollinear; therefore, to make Fig. 1 (. top region

accurate, we must assume tiats also not a symmetric top. e will use the symbob to stand for a point of shape
Since in the three-body problem all collinear configurationsspace’ which corresponds to some set of coordinates
are prolate symmetric tops and conversely, we can SUMMAy,. w,,w3). It will often be understood that a poirt of
rize these conditions by saying th@tin Fig. 1 is an asym-  ghape space stands for the shape contained in a Qobft
metric top. The case in whicQ is an oblate symmetric t0p  configuration space, that is, thatis a label of the rotation
will be dealt with later. fiber upon whichQ lies.
In addition to its action2.2) on configuration space, the
B. Shape space and kinematic orbits kinematic group has an action on shape space, which follows
in the three-body problem simply by combining Egs(2.2) and (2.4). The shape coor-
We turn now to the internal space shape spacéor the ~ dinatews is invariant under kinematic rotationsy;=ws,
three-body problem. Topologically speaking, this space igvhile w; andw, transform according to
one-half of R®. This fact is most easily seen in the coordi- _
nates (v;,w,,ws), defined by (Wi) _(C052¢ —Sin 24\ (w,

l

W5 sin2p  cos 2p 2.

Wy =|rg|?—|rs|?=p3cos P cos 2b,

which is a rotation by & about thew; axis. We will abbre-

viate this action by writingy’ =Kq or q'(¢) =K(¢)qg. The
2.4 angle 2 in Eq. (2.6) is the increment in the hyperspherical

angle 2b or can be identified with it if the initial poing lies
Herep is the hyperradius an@®,®) are Smith’s hyperspheri- in the planew,=0 with w;>0. The curve traced out by’
cal angled18]. The coordinatesv(; ,w,,ws) are closely re- aSK ranges over the kinematic group is the orbigoéinder
lated to the coordinatel 7,¢) defined in Ref[17]. To Eq.  the kinematic actiori2.6); this curve is just a circle centered

Wy=2rg-T;=p?cos B sin 2D,

W3=2|r ¢ XTe|=p?sin 20.

(2.4) we add the definition on thews axis, as illustrated in Fig. 3. This circle has a
period of 7 in the angleg becausep is doubled in Eq(2.6).
w=(W2+Wi+wd) 2= |ry|?+|re?=p% (2.5 There are really two kinematic actions, one on configura-

tion spacdEq. (2.2)] and one on shape spddeg. (2.6)]. We
The ranges of the coordinates aree<w;, w,<+% and regard the angle initially as a coordinate on the kinematic
Os=w3<+x, so the physically meaningful region i&;  group manifold S@), ranging from 0 to 2z to cover all
=0. Thew;-w, plane contains the collinear configurations, group elements; however, according to the two acti@®
the wy axis contains the symmetric oblate tops, and the oriand(2.6), ¢ can be transferred and regarded as a coordinate
gin of the w coordinates is the three-body collision. The on the kinetic orbits in either configuration space or shape
coordinatews is proportional to the unsigned area spannedspace. The external rotation group 8Donly has one inter-
by the two Jacobi vectors. The three-body shape space amsting action, that on configuration sp4és. (2.1)], because
the coordinates on it are illustrated in Fig. 2. The regionpoints of shape space are invariant under external rotations.
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w3 These frames can be regarded as eight branches of a multi-
valued function, defined over the asymmetric top region of
shape space; as the shape changes, that is, as ajpooves
around in the asymmetric top region, these eight branches

‘w q continuously change, thereby sweeping out eight surfaces in
“frame space.” It turns out that these eight surfaces are con-
q nected together in pairs, that is, they form four connected

pieces that are disconnected from one another. Thus, by
moving around in shape space, continuously tracking
branches of the principal axis frame, we can continuously
move from one branch to a second and back again, but not to
any of the other branches.

To visualize this process, we must first realize that frame
space is nothing but configuration space, upon which

wy (rs1.rsp) are coordinates. A choice of body frame for a par-
ticular shape is a convention for an origin in the correspond-

FIG. 3. The action of the kinematic group on a painbf the  ng rotation fiber, that is, the origin is an orientation for the
three-body shape space is to move this point in a circle abowtdhe given shape that is considered to be a reference. Once the
axis with period¢ = r. The pointq” is a typical point on this circle, yeference is chosen for a given shape, Euler angles for all
the kinematic orbit of the initial poing. other orientations of the same shape are determined by the
rotation that maps the reference into some actual orientation.
We simply declare that in the reference orientation, the body

We now consider the principal axis body frame for theframe is the same as the space frame and that as the body is
three-body problem, which as mentioned above is definetotated away from the reference into some other orientation,
and unique(modulo the senses of the axamser the asym- the body frame is rotated along with it. For example, in Fig.
metric top region. We will consider only principal axis 1, if we consideiQ to be a reference orientation for its shape,
frames in which the three bodies lie in tke-y plane. Then then the Euler angles of configurati@)' are those of the
there are eight distinct principal axis frames, that is, eightotation that maf onto Q' according to Eq(2.1).
different ways of aligning a right-handed frame on the prin- Geometrically speaking, this means that a choice of a
cipal axes, as illustrated in Fig. 4. These frames are related toody frame for a particular shape is equivalent to the choice
one another by a certain eight-element group of rotationspf a point on the fiber for that shape. By extension, a choice
constructed from products and powers of the rotation®f a(single-valuedlbody frame over a region of shape space
R,(7/2) andR,(m); the notation indicates rotations about is equivalent to a choice of a surface in configuration space
thez andx axes, respectively, by the angles given. that intersects each rotation fiber in that region in one point.

There is no compelling physics to dictate that any one ofThis surface should be smooth, but otherwise can be quite
these frames is privileged; any one is as good as anothearbitrary. This is the reason for the large number of choices
of body frame. In fiber bundle terminology, explained in Ref.
[4], this surface is called aection The section is a three-
dimensional surface in configuration spader the n-body
problem its dimensionality is 13—6, the same as shape
space.

The principal axis frame is multivalued and therefore cor-
responds to eight different sectiof@m surfacelin configu-
ration space, defined over the asymmetric top region of
shape space. These surfaces intersect each rotation fiber in
eight points. The eight points or reference orientations on a
given rotation fiber are related to one another by the eight-
element group of frame rotations introduced above. Two of
these surfaces are illustrated in Fig. 5. The po@tandQ’
in the figure, on the same rotation fikeg, are two principal
axis reference orientations for a given shaQeandQ’ are
related by one of the eight discrete frame rotations, according
to Eq.(2.1).

Next we consider what happens when we continuously

FIG. 4. The moment of inertia tensor for an asymmetric top{rack one of the branches of the principal axis frame as a
determines three mutually orthogonal, unoriented #ualabeled in ~ POINt of shape space follows a closed circuit, returning to the
the figure. Assuming that thez axis is orthogonal to the plane Original shape, assuming the circuit is confined to the asym-
containing the three bodies, there are two choices for the orientatioMetric top region. After such a circuit, does the principal axis
of the z axis and for each of these, four choices for the orientationframe return to the original branch or does it return on an-
of the x andy axes. Altogether, there are eight choices of bodyother branch? A simple topological argument shows that the
frame, of which one is illustrated. final branch must be the same as the initial branch on any

C. Principal axis frame
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wish to track the principal axis frame continuously, starting
from some configuratio® in the rotation fiber oveq, as¢
goes from O torm. A certain general property connecting the
principal axis frame and kinematic rotations allows us to
determine easily the branch we return on.

D. Principal axis frame and kinematic rotations

The property in question is valid for any number of par-
ticles (not only threg, so let us speak temporarily of an
n-particle system. First we introduce the<gn—1) matrix
F¢ with components-;,, defined by

Fsia:rsai ’ (27)

FIG. 5. The principal axis frame in the three-body problem haswherei =1,2,3 stands fox,y,z, wherea=1,...n—1 labels
eight branches, of which two are illustrated in the figure. If we leavethe Jacobi vectors, and again theubscript means the space
on one branch &, following a circuit in shape space and continu- frame. Next we define the>83 matrix T with components
ously tracking the principal axis frame, we may returnCdt on Tsij,
another branch, depending on the circuit in shape space.

Lo . . Ts= FSFtsv Tsijzz I'sail saj s 2.9
closed circuit in the asymmetric top region that can be con- a

tinuously contracted to a point, since the answwhich o ]

branch we return gnmust be a continuous function of the Where thet superscript is the matrix transpose. We ¢l
loop and a continuous function that can take on only discreté® moment tensoiit is related to the usual moment of iner-
values must be constant. More generally, continuity impliedia tensorMs by
that any two circuits that can be continuously deformed into M= (trTo)I—T 2.9
one another will return on the same final branch. The only s s ! '

way the final branch can change as the loop is deformed is {fhere tr is the trace. Because of EB.9), the eigenvalues of
the loop crosses a singularity, which here meansithaxis. M, (the principal moments of inertia, call themy , o, ws)

For example, as iIIustrate_d in Fig._6, the circuAsandB_ are related to the eigenvaluesTf (call them,A»,\3) by
cannot be deformed continuously into one another without

crossing thav; axis and need not return on the same branch w1=No+tN3, mr=N;+tA3, m3=A;+A,. (2.10
of the principal axis frame.

Since loops that do not circle the; axis do not change Finally, we define thef{—1)X(n—1) matrix J, which we
branches on return, let us consider a loop that does circle theall the Jacobi dot product tenspby
ws axis, say, once in the positive direction. Since all such
loops return on the same branch, we might as well choose a J=FFs, Jop=TsyTep. (211

nice one, such as the kinematic orbit illustrated in Fig. 3. We ] ] o
There is nos subscript onJ because it is independent of

frame. It is proved in Ref.10] that the non-negative definite
matricesTs and J have the same positive eigenvalugise

A positive \'s). In that reference it is also proved that if two
configurationsQ andQ’ have the sama@ tensor, then either
Q andQ’ have the same shape or their shapes are related by

q a spatial inversion. Thus the Jacobi dot product tensor iden-
tifies the shape of a configuration modulo chiraliyiquely,
for planar shapes, such as occur in the three-body prgblem

It follows immediately from the definitions and Eq&.1)

Wy and (2.2) that the matrixJ (that is, all of its componentss
invariant under external rotations and tAgtand M, (all of
their componentsare invariant under kinematic rotations.
Thus, in Fig. 1, configuration® and Q' have the samd
matrices andQ andQ” have the sam@& and Mg matrices.
The eigenvalues of these matricghe \'s or the u's) are
invariant under both external and kinematic rotations.

FIG. 6. Circuits in shape space that can be continuously de- 1NiS has an important geometrical interpretation. We re-
formed into one anothdwhich belong to the same homotopy class tUrn to the three-body problem=3 for purposes of illustra-
give rise to the same final branch when the principal axis frame i$ion. Consider a configuratio lying on one branch of the
continuously tracked around them. CircAif which is contractible, ~ principal axis frame, such as illustrated in Fig. 5, and con-
returns on the original branch, whereas cirdijtwhich loops the  sider the kinematic orbit ofQ generated according to Eq.
wj, axis, returns on a different branch. (2.2). The sectior(the surface representing the principal axis

w3

w1
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frame is three dimensional, but the orbit is a one-

dimensional curve. Does this curve lie in the principal axis

section? Indeed it does, for as we have seen, the moment of

inertia tensoiM is invariant under the kinematic action, so if

it is a diagonal matrix afQ, it will be the same diagonal Q'

matrix at all configurations reachable frogh by kinematic

rotations. This means that if we wish to continuously track Q,

the principal axis frame as a point of shape space follows the R,()

kinematic action(2.6), illustrated in Fig. 3, then we simply

follow the kinematic orbit in configuration space specified by

Eqg. (2.2. Q
It was mentioned above that the kinematic orbit pulls

away from the rotation fiberHg, in Fig. 5 as ¢ pulls away Or

from zero, that is, the kinematic orbit is not tangent to the

rotation fiber atQ, and that the kinematic orbit does not

return toQ until ¢=27. These facts do not, however, pre-

clude the possibility that the kinematic orbit might return to Fr Fin
the original rotation fibel-z at some other point than the
initial point, say,Q’, before¢p=2. If it does, thenQ and FIG. 7. A kinematic orbit in configuration space leaves a rota-

Q’ will be related by some spatial rotation and we will havetion fiber Fg at pointQ (¢=0), returns to the same fiber at a
found some kinematic rotation that has the same effecpon rotated pointQ” (¢= ), and then returns to the initial poi@

as some(externa) spatial rotation, sayKQ=RQ. In fact, (¢=2m). The sequence of rotation fibers passed through is the
such a kinematic rotation exists, for if we substitgfe=7 ~ S3M€ from$=0 to m as from¢ = to 2. For .exampIteiand
into Eq. (2.2, we find K(m){re,}={—rs.}, that is, K () Qq lieon ihe same rotation fibéf,g . Conflguratlo_nQ andQ’ (or
causes a spatial inversion. However, this has the same effe@e 2ndQ1) are connected by the external rotatigp().

as the external rotatiolR,(7), since the inversion takes

place in thex—y plane. In other words, we have tial rotation corresponding to this circuit in shape space is
R,(7), which connects two branches of the principal axis
K(m)Q=R,(m)Q (2.12 frame. If we go around the/; axis twice in shape space, the
rotation generated in configuration spac®i§m)?=1, so we
in the three-body problem. are back on the original branch again. This proves that the

After ¢=1r, the kinematic orbit pulls away from the eight branches of the principal axis frame are connected in
original rotation fiberF again and does not return ungi  Pairs, in fact, pairs related to one anotherRy ). The four
= 2. Thus we can visualize the kinematic orbit in configu- pairs of branches are disconnected because it is not possible
ration space ag varies from O to 2 and its relation to a {0 get from one pair to another by kinematic rotations and
typical rotation fiber, as illustrated in Fig. 7. The sequence oPecause all other closed circuits on shape sgiatich do
rotation fibers we pass through whergoes fromsrto 2ris ~ Not cross thavs axis) can be continuously deformed into a
the same as from 0 te, which explains the double angles2 closed circuit along a kinematic orbit, circling the; axis
in the kinematic action on shape spd&e). (2.6)] and ther some number of times. In other words, the issue of the con-
periodicity (instead of 2r) of the kinematic orbits in Shape nectivity of the branches is determined by kinematic orbits
space. Actually, Fig. 7 is slightly misleading in one sense@alone.
for it seems to suggest that the kinematic fiber climbs a “spi- Thus there are two branches of the principal axis frame
ral staircase” asp goes from O tor and then climbs down that can be reached from some initial frame by continuous
again asp goes froms to 277; in a sense what one is climb- deformation. We can create a single-valued principal axis
ing is the angie of rotation about tlzeaxis, which increases frame if we introduce a branch cut, across which the prinCi'
from 0 to 7 on the first half and continues to increase fram Pal axis frame jumps discontinuously By,(w). For ex-
to 277 on the second half. It would be better to think of the ample, let us take the regiom, ,w3>0 of thew;-ws plane,
spiral staircase as continuing to climb but returning to wherdhat is, the surfacé =0, as an initial surface for kinematic
it started because rotations inside the rotation fiber are fibers, so that the kinematic angtg along the kinematic
themselves periodic, constituting a circle. Alternatively, wefibers and the Smith hyperspherical coordindteare the
might say that the kinetic orbit continually goes down thesame and let us place the branch cut at aggter/2, that is,
spiral staircase; it appears impossible to say which at thiglong the negativev, axis, so that the frame is continuous
point, becauseR,(7) and R,(— ) are the same rotation. everywhere except apb=km+ w/2, wherek is an integer.
(Later we will see that there is a differenge. The branch cut is a two-dimensional surface in shape space

Now we can see why there is a change in the branch othat emanates from the; axis.
the principal axis frame when we go once aroundvwlieaxis
in shape space in the positive sense, following a kinematic
orbit. When the kinematic orbit in shape space returns to the
initial shape, the kinematic orbit in configuration space must We will now change from the principal axis to the Eckart
necessarily have returned to the same shape too, but this fimme, which will give us a single-valued frame over all of
only defined modulo some external rotation. In fact, the spashape space, eliminate the branch cuts, and eliminate the

E. Transforming to the Eckart frame
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singularities on thew; axis. In practice there are two w3
complementary methods of specifying a body frame or,
equivalently, of specifying a section of the rotation fiber
bundle in configuration space. These are the parametric and
constraint methods, the same methods used to specify any
surface in any spad@f any dimensionality We will speak

for the moment in terms of the generatbody problem.
Then the rotation section is a surface of dimensionality 3
—6 in the (3h—3)-dimensional configuration space; its
codimension is 3.

In the parametric method, we express the surface in terms
of 3n—6 parametergy*, w=1,...,.5—6, which identify
points on the surface. Since a single-valued section will in-
tersect each rotation fiber at one point, the parameaiérs
identify which fiber we are on, which is the same as the S
shapeq. Thus, the parameterg* can also be considered to
be shape coordinates. In the parametric method, we express ¥
the configuration coordinateghe space Jacobi vectoras w1
functions of the parameterg*,

q(¢)

W2

FIG. 8. The regiors of the w; —w; plane wherew; ,w3>0 is

Fea=T ("), (2.13 convenient as .a s_ection of the kinetig fiber pundle._ An initial point

go On the section is acted upon by kinematic rotations and sweeps

wherer , (without thes subscrip} are the functions in ques- ©ut a kinematic orbit upon whict(¢) is a typical point. The point
tion. Equation(2.13 is not true everywhere in configuration Je: an oblate symmetric top, is an “equilibrium” shape for the
space, only on point®={r,} that lie on the section. Since Eckart frame.
the space frame and body frame coincide at such points, the
space components of the Jacobi vectors are equal to the botfyg both shape and orientatijorwe put this word in quotes,
components on the section; this explains the notation, ifpecause the usual purpose of the Eckart frame is to give a
which r,, (without thes subscript are the body components convenient description of small vibrations, so tHate,}

of the Jacobi vectors. would be a genuine equilibrium configuration, a minimum of
In the constraint method, the section is specified by threghe potential energy. In the present discussion, however, we
functions of the form will choose{r,} according to other criteria, based on the
moment of inertia tensor. In any case, the quantitigs,} in
Ci(rsg,- - fsn-1)=0 (2.14  Eq. (2.16 are constants, so that equation is a linear con-

straint among the space components of the Jacobi vectors

for i=1,2,3, which constrain the space components of they 1 Thys the Eckart section is a hyperplane, that is, a
Jacobi vectorgthree functions because the section has codiyector subspace of configuration space of dimensionality

mension 3. For example, the principal axis frame is speci- 3n g (three dimensional, in the three-body problem
fied by the constraints The equilibrium configuration we will use is a symmetric,
oblate top with hyperradiup.# 0, so the shape lies on the
Tsij= 2 Fsail saj=0 for i#j, (2.15  wj; axis at coordinatev3=p§. The precise value g, is not
@ important. At such configurationsy; =w,=0, so according

to Eq. (2.4), the two Jacobi vectors are equal in magnitude

which says that the off-diagonal elgments qf the space comy,g orthogonal. We orient this configuration so that the two
ponents of the moment tensor vanish, that is, that this tens acobi vectors are aligned on theandy axes

is diagonal. A diagonal moment tensor implies a diagonal
moment of inertia tensor, so at points of configuration space . .
satisfying Eq.(2.19, the space frame is identical to one of rsea =KX, rseo=Ky, (2.17
the principal axis frames. Notice that E@.15 specifies a
set of three quadratic relations among the space component . . . . .

of the Jacobi vectors, so the principal axis section in com‘iguy\’%erek IS theAmagnAltude of _e|ther Jacobi vec fact, k
ration space can be thought of as a higher-dimensional ana Pe/v2) andx andy are unit vectors along thespacg x

log of the usual ellipsoids or hyperboloids in three-andy axes. We will also writeQe={rse,} for this equilib-

dimensional space. rium configuration andj, for the corresponding shagsee
Another example of the constraint form of the section isFig- 8). ) _ ) _ _
given by the usual conditiof8,19] for the Eckart frame, Next we consider kinematic rotations acting Qa, ac-
cording to Eq.(2.2). We find
> FeaXTse=0, (2.16 X X
@ rly) (COs¢ —sin ¢> ( kf() COS X —Sin ¢y
whererg, (with the e subscript are the space-component rie/ \sing cose¢ k)A/ B sin ¢x+ cos ¢y ’

Jacobi vectors for an “equilibrium” configuratiofspecify- (2.18
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where the notation treats vectors as elements of a matrix jushroughg intersects the section. Of course; is a kinematic
as we would treat scalars. We abbreviate this equation byvariant by any interpretation.

writing Q,=K(¢)Q,. Obviously, the configuratioQ, is

TheJ tensor is diagonal on the kinematic section since the

not invariant under kinematic rotations. On the other handpff-diagonal elementg, - r5, vanishes whemw,=0. Thus, on

the kinematic action in shape space does nothing.tbe-

the kinematic section] can be expressed in terms of its

causeg, lies on thew; axis. Since the shape does not eigenvalues

change, this means that the kinematic acti@ri8 on the

corresponding configuratio, must be equivalent to a spa-
tial rotation, not only for the anglée= 7 as we had earlier

for general configuration® [see Eq.(2.12], but for any

_()\1 O)
3=y N (2.22

angle ¢. This is a special property of the oblate symmetricwhere\,;=|ry|?> and\,=|rg,|?. Furthermore, sincer,,ws
top configurations and it means that the kinematic orbit ac=>0 on the section, Eq2.4) implies \;>\,>0. TheJ ten-
tually does lie inside the three-dimensional rotation fiber, insor is not constantnor does it remain diagonahs we move

contradiction with the implication of Fig. twhich only ap-

plied to asymmetric tops Therefore, we must have
K(¢)Q.=RQ; for someR. What rotation is it? The answer

is R,(— ¢), as we show directly by applying EQ.1). For
example, for thex=1 Jacobi vector we have

cos¢ sing 0\ /g
rg=R(—d)r¢a=| —Sing cos¢ 0|0
0 o 1/\0
CcoS ¢
=k| —sin ¢ | =k(cos ¢X—sin ¢y), (2.19
0

which agrees with the first row of Eq2.18. Similarly, for
the =2 Jacobi vector we find

rio=R,(— ®)rso=k(sin px+cosgy). (2.20
We can summarize these by writing
K(¢)Qe=Ry(—¢)Qe. (2.2

around the kinematic orbits, but it becomes diagonal again

when ¢=x/2, on thew;<0 side of thew;—wj; plane,

where the ordering of the diagonal elements is reversed.
Let us define a body frame over the kinematic section. We

pick a shapeg, on the kinematic section, as illustrated in

Fig. 8. The 0 subscript indicates that this point is an initial

point of a kinematic orbit; we will also writ€,={rg,} for

a corresponding point in configuration space. By E3j4)

the two Jacobi vectors are orthogonal at shggeso we can

orient the configuration to place the longer Jacobi vecigr

on the space axis and the shorter ongg, on the space

axis. That is, we choose the reference orienta@grso that

(2.23

wherea;=\\;>0,i=1,2, and whera,>a,. This frame is
obviously a principal axis frame since the moment tensor is
diagonal, but it is also an Eckart frame relative to the equi-
librium Q. defined by Eq(2.17). This follows immediately
from the definition of the Eckart frame, E(R.16).

Next we extend the definition of this body frame to cover
all asymmetric tops by moving down kinematic orbits in
shape space. Let us writf ¢)=K(#)qo, so thatq(¢) is
the ¢-dependent point of shape space on the kinematic orbit

lsp1=aiX, [Fgo2=a%Y,

~ Next we consider points of shape space that lie on th@assing througl, on the section, as illustrated in Fig. 8. We
initial value surface for the variabley, as defined above. wish to define a poin@ of configuration space correspond-

This is the quadrant of the; —w; plane wherew; ,w;>0

ing to shapeg, which will sweep out the external rotation

and it has the property that it intersects each kinematic fibegection. We could do this by demanding tigafollow kine-
at precisely one point. Thus this surface is similar in functionmatic orbits in Conﬁguration space, that is, by Writi@
to the section of the rotation fiber bundle in configuration=K(4)Q,, but, as we have seen, this will just give the
space and can be regarded as a section of the kinematic fibgfincipal axis frame. The principal axis frame would produce

bundle. We will call it thekinematic sectionThis section is

a net rotation ofR,(7r) along the initial rotation fiber after

illustrated in Fig. 8. We restrict the section to the region =7, as we have seen, and would not be single valued.

w,>0 because if we included/; <0, the section would in-

tersect each kinematic fiber at two points.

The kinematic section allows us to parametrize a pqint
of shape space by its kinematic angle defined relative to

Let us therefore compensate for this spatial rotation by
setting

Q(#)=R(#)K()Qo, (2.24

the section, plus two more quantities that are kinematic in-

variants and label the kinematic fiber upon whighlies.

which causes us to rotate down rotation fibers by an angle

There are many obvious choices for kinematic invariantsthat is equal to the kinematic angle as we move from one
Oneis (\1,\,), the eigenvalues of th&tensor, and another rotation fiber to anothelf.This equation does not imply the
is (wy,Ws3), the coordinates in the kinematic section wheremultiplication of the matricefR, and K, which would not

the kinematic orbit passing throughintersects the section. make sense anyway since one iX3 and the other is

We must be careful in interpreting, as a kinematic invari-

2X 2, but rather the successive application of the rotation and

ant; according to Eq(2.6) this quantity is not a kinematic kinematic actions t®, according to Eqs2.1) and(2.2).] At
invariant, but in that equationy, is the coordinate of the the value¢=, where there is a discontinuity or change in
point q itself, whereas in the present discussion it is thebranch of the principal axis frame, EQ.24 gives KQy
coordinate of the point where the kinematic fiber passing=R,(7)Qq or Q=Q, sinceR,(m)2=1. In other words, the
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section and corresponding frame specified by @4 are ws
single valued. Equatiof2.24) is strange in appearance be-

cause it sets a kinematic angle equal to an external rotation
angle and in general these two angles have very different
physical interpretations. However, it is precisely this shifting

from kinematic to external rotations that eliminates many of
the singularities in the principal axis frame.

Equation (2.24) defines an Eckart frame relative to the
equilibrium Q., not just over the kinematic section but ev-
erywhere in shape space, as we will now show. We do this [t ___________| L
by expressing certain relations in terms of Jacobi vectors,
Writing Qe={rse.}, Qo=1{rso}, and Q={ry}. We begin
with Eq. (2.21), which we write in the form

R(#)K($)Qe=Qe, (2.29

which follows sinceR,(— ¢)=R,(¢) 1. The rotation and W

<\. q
kinematic actions commutgsince they act on different indi-
ce9 and can be taken in either order. Converting E325 \

to Jacobi vectors, we find

rsea:E KaB(¢)RZ(¢)rseﬂ- (2.2 FIG. 9. The principal axis frame has singularities as we ap-
B proach thew; axis along a plane of constadt either forw;>0 or
o . . for w3<0, where the latter is meaningful only for the planar three-
Similarly, converting Eq(2.24) to Jacobi vectors, we have  pogy problem. The Eckart frame, however, is singular only on the
negativew; axis.
Foa(#) =2 Kag($)RA ) sop.- (227
A Furthermore, let us writ®@"A={rc" andQ¥={rt }. Con-
figuration Qg is given in Jacobi vector form by Eq2.23);

Now, to show that the section swept out @ ¢) is an when we applyK () to this, following Eq.(2.18), we find

Eckart section with equilibriun®., we must show that Eq.
(2.16 is satisfied withrg, identified withr,(¢). By substi-

tuting Egs.(2.27 and(2.26), we have ri'=a,cos pX—a,sin ¢y,
> TsaXTsen= 23: KapKay(Rrsog) X (Rrge,) rPf=a;sin ¢x+a,cos ¢y. (2.30)
@ a,p,y
Then, when we appl to this, following Eq.(2.19, we
= (Rrg00) X (Rrsa), (229 [ PPIR:(¢) 9Fa(z19

whereR stands folR,(¢) andK for K(¢) and we have used
the orthogonality of th& matrices in the last step. Next we
use the identity Ra) X (Rb)=R(ax b), valid for any proper

rotationR and any pair of vectora,b to write fsEz=(a1—az)Sin ¢ cos ¢>A<+(alsin2¢+ azco§¢)§/.

(2.32

rE =(a,cof¢+a,sirtg)x+ (a,—ay)sin ¢ cos ¢y,

-0, (2.29

E rSaerea:R<E I'50aXI'sea . . . .
a a An interesting aspect about these two results is that they give

us the equations of the principal axis and Eckart sections
where the Ia_st step follows_ because we have already Sho"‘@kplicitly in the parametric forn(2.13), in which (a;,a,, ¢)
that the pointQo={rso.} is an Eckart frame. Thu®Q) .o pe regarded as the shape coordinatespreviously we
={rs.} does lie on the Eckart section. had expressions for these sections only in constraint form,
Egs.(2.195 and(2.16), respectively. These shape coordinates

F. Parametric forms and remaining singularities are neatly divided into the kinematic invariants (a,), plus
It is interesting to write out Eq(2.24) explicitly in terms ~ the kinematic angles. o _ '
of Jacobi vectors. Since we have now determined @hiies The singularity of the principal axis frame on thg axis

on the Eckart section, let us change notation and wpte ~ (the oblate symmetric topss easily seen from Eq2.31).
for it. Likewise, the intermediate point in E42.24) (after ~ SUPPOse we approach the positiwvg axis along a plane of

the action ofK but before the action dR) lies on the prin-  constantp, as illustrated in Fig. 9. Then the two eigenvalues
cipal axis section; therefore, let us write N1,\, approach a common positive value, as do their square

rootsa;,a,. Leta;,a,—a>0. Then the limit of the princi-
QPA=K(¢)Qy, QFE=R,(¢)Q"A (2.30  pal axis frame is
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rsplA: a(cos qﬁ)?—sin ¢§,)' as for their square roots, it s, and —a, that .ap.proach.a
common positive value, sag. As for the principal axis
(2.33 . : " . . .
frame, it has singularities on the negativg axis much like
those on the positiver; axis. The Eckart frame, on the other

which clearly depends or. Thus the limit of the principal hand, which is nonsingular on the positig axis, turns out

axis frame at the symmetric oblate shapes depends on ttjg have singularities on the negatwg axis. The asymmetry

direction of approach and the frame is not continuous therd?€tWeen positive and negative arises because the quantity
To put this another way, if we go around the axis in a a, is negative whemw;<0; thus as we approach the nega-

very small circle(a kinematic orbit, then the principal axis UVe W3 axis along a plane of constag as illustrated in Fig.
frame changes by an amount that is order unity under a sma We havea,, —a,—a>0. Thus Eq/(2.32 becomes,
change of shape. Thus the derivatives of the principal axis

rPA=a(sin ¢px+cos ¢y),

E_ -~ R
frame become infinite as we approach thg axis. rs1=a(cos 2px+sin 2¢y),

On the other hand, the Eckart frame approaches a well £ ) . R (2.37
defined value on thev; axis, namely, rs,=a(sin 2¢px—cos 2py),

(2.34 which clearly depends upon the direction of approach. Thus
' the Eckart frame for the planar three-body problem has fewer
singularities than the principal axis frame, but singularities
flave not been eliminated entirely.
In the planar three-body problem, both frames examined

rE=ax, r5=ay.

Thus the Eckart frame eliminates not only the multiple
branches and branch cuts of the principal axis frame, but als

the singularities at the oblate symmetric top configurations. . " ! . . i
9 Y P g so far have singularities. Is it possible to find a frame that is

At this point it is of interest to consider the three—bodyf f sinqulariti here? Th . for th
problem in a plane, which in some ways bears a stronge|ree of singularities everywhere The answer Is yes for the
ree-body problem in space; the Eckart frame does this.

analogy to the four-body problem in space than does thﬁ X
three-body problem in space. For the planar three-body pro Jowever, for th_e three-body prob!em ina plane, the answer
lem, the configuration space I&* and the generic rotation IS no. It IS possible to move thg singularities from the nega-
orbits are one-dimensional circles diffeomorphic to (30 tive w; axis to some qther location, but they can_not be elimi-
instead of S@). Coordinates W, ,w,,w3) are still useful nated. For example, if instead of E@.24 we write
coord_mates on shape space, but the definitiomfin Eq. Q'E(¢)=R,(— $)K()Qo, (2.39
(2.4) is replaced by
R that is, if we compensate for the rotation along the rotation
W3=2Z-(rgXrg), (2.35  fibers in the opposite direction from that in E&.24), then
. . we obtain a frame that is well behaved on the negatide
corresponding to the fact that negatiwg values are noW axjs, but singular on the positiwes axis. This is like rotating
meaningful (v is now the signed area of the triangle formed down the “spiral staircase,” as suggested by the fact that
by the Jacobi vectojsThus shape space is now all Bf. R (7)=R,(— ). The result is another version of the Eckart
The collinear configurations on tive,;-w, plane are not sin-  frame, as indicated by the notatid@’E. If we write Eq.

gular in any important sense for the planar three-body prob¢2 3g) in terms of Jacobi coordinates, we find
lem because the dimensionality of the rotation orbits does

not change theréunlike the three-body problem in spack rif=(a;cod¢—aysirte)x—(a;+ay)sin ¢ cos ¢y,
thus makes sense to extend the kinematic section through the

w; axis, to include the quadramt; >0, w3<0 in thew;-ws rif=(a;+ay)sin ¢ cos px+(—a;Sirf¢+a,cos ¢)y.
plane, so that now the kinematic section is the entire region * (2.39

w;>0. Kinematic invariants can still be taken to be;(ws)

on the kinematic section, the eigenvaluas (\,), or, what  On the positivew; axis, wherea,,a,—a>0, this frame be-
is more useful, their square roota;(,a,). However, the ei- comes

genvalue\ , and hence, approach zero as we approach the

w; axis from above, so there is the question of the siga,of r§f= a(cos 2px—sin 2(25)7),
as we pass into the regiomz<<0. In fact, an analytic con- A R (2.40
tinuation indicates thad, should be interpreted as the nega- r;2E=a(sin 2px+ cos 2py),

tive square root ok , in the regiorw3<<0. Thus @,,a,) can o )
be taken as coordinates on the kinematic section, satisfyin\%h'Ch is ¢ dependent and therefore singular. However, on
the condition the negativew; axis, wherea;,—a,—a>0, the frame be-
comes
a,>(a,|=0, (2.36 s
ra=ax, ri=-—ay. (2.41
with negative values dd, indicating shapes of negative area. . ) o
For the p|anar three_body prob|em, it makes sense to exThe frame(239) is an Eckart frame, but with an equlllbrlum

amine the behavior of the principal axis and Eckart frames aghape located on the negatiwg axis, call itd, . The corre-
we approach the negatiwe; axis, containing symmetric ob- sponding orientation is
late tops of negative area. Again we have and \, ap- - -
proaching a common value as we approachwheaxis, but e =KX, Tgo=—Ky. (242
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This concludes our discussion of the principal axis and Eck- For example, the principal axis frame puts the string sin-
art frames. gularity on the entirav; axis. Since this includes both posi-
tive and negative sides, one might say that there are two
strings; this is not the minimal configuration. However, by
transforming to an Eckart frame, we can remove the string

Finally, we will make some comments about monopoleSingularity from either the positive or negatiwe; axis,
string singularities and frame singularities in the three-bodyhereby leaving only one string. This is the minimal configu-
problem, which provide a rather different perspective on thdation. By further changes of frame, the string can be moved
whole question of frame singularities. We present this subt0 other locations. For example, a common choice of body
ject only in outline form since most of it has already beenframe in practice, useful for describing the asymptotic state
discussed elsewhefd]. The relation between frame singu- of AB+C systems in an entrance or exit channel, is one in
larities and monopole singularities is important because i¥vhich the longer Jacobi vector is placed on the badyxis
shows that all choices of body frame in the three-body proband the shorter one in the-y plane. Then it turns out that
lem lead to singularities somewhere and it shows that théhis frame causes the string singularity to lie on the negative
singularities of the Eckart frame are of a minimal kind. A W1 axis. If the roles of the longer and shorter Jacobi vectors
standard introduction to the theory of monopoles is given byare reversed, then the string lies on the positive axis.
Sakurai[21]. These two frames and the singularities they cause in the in-

A magnetic monopole is a hypothetical particle with aternal Hamiltonian have been given a clear description by
magnetic fieldB(r)=gr/r3, whereg is the magnetic charge Pack [16]. Other choices are possiblghe string can be
andr is the position vector in ordinary space. SingéeB ~ moved to point in an arbitrary direction; it can even be
=47gd(r), there should exist a vector potentialsuch that curved.

B=V XA in regions that do not include the origir=0. Of The monopole analogy leads to useful insights in the
course, we exped to become singular as—0, where the three-body problem; for example, we have shown elsewhere
singularity ofB lies. Also, we know that the vector potential [20] that Smith’s hyperspherical harmonics for the planar
is not unique; once one vector potentfalhas been found, three-body problem are identical to spherical harmonics for
we can generate another by the rAle=A+ Vf, wheref is the motion of a charged particle in a monopole field. We
an arbitrary scalar function. believe that these monopole analogies will lead to further

In fact, it is not hard to find a vector potential by uncurl- insights into the problems of basis set contraction in the
ing B in spherical coordinategthe result is presented by three-body pr.oblem.We will report on these |dea§ elsewhere.
Sakurai[21]). However, one will find that this vector poten- ~_ In conclusion, we have presented a geometrical analysis
tial has singularities not only at=0 as expected, but also on Of frame singularities in the three-body problem. This has led
a line emanating from=0. This line is thestring of the {0 insight into the problem of locating, moving, or removing
monopole. One will find that by doing gauge transforma-fram_e singularities in the three-body problem. It als_o has
tions, the string can be moved around, for example, to poinProvided the necessary background for understanding the
in this or that direction, but that it apparently cannot peProblem of frame singularities in the fqur-bo_dy problem. Fi-
eliminated. The question then arises, Does there exist Bally, we have commented on the relationship between frame
gauge transformation that will eliminate the string singular-Singularities in the three-body problem and the string singu-
ity, that is, can one find a vector potentélthat is nonsin-  larities of magnetic monopoles, which is useful for construct-
gular everywhere outside of=0? The answer is no, as can N9 a proof of the impossibility of eI|m_|n.at|ng .all_frame sin-
be proved by Stokes’ theorem. We simply integiatever a ~ gularities, as well as for providing insights into
sphere centered on the origin, with a small hole cut out of itnyPerspherical harmonics and other matters. In particular, we
In the limit that the size of the hole goes to zero, the integraPelieve that hyperspherical harmonig22], or better their

approaches #g. However, by Stokes’s theorem, the integral generalizations as solutions of the kinetic-energy operator on
must also be equal to the line integralAfaround the small the manifolds explored here and with the various choices for

hole, which must approach zero & is continuous. There- coordinates and frames discussed here, will serve as well

fore, A cannot be continuous everywhere on the sphere; jpehaved basis sets for problems involving reactivity and

must have at least one point where it is discontinuous. This i&rge-amplitude vibrations. Use of their discrete analogs will
the string. admit localized representations and will accelerate conver-

There is also a “Coriolis” vector potential in the Hamil- 9€nce by eliminating dynamically unimportant regions of
tonian for the three-body problefd], which physically de- phase space. We plan to report on these applications in the
scribes Coriolis forces, and it turns out that changes of bod§uture:
frame affect this potential in exactly the same way as

IIl. COMMENTS AND CONCLUSIONS

changes of gauge affect a magnetic vector potential. It also ACKNOWLEDGMENTS
turns out that the curl of this Coriolis vector potential is a
monopole field in shape space, as discovered by [®3]. We would like to thank Russell Pack for many stimulat-

Therefore, frame singularities in the three-body problem aréng discussions on frame singularities and Michaelllistu
isomorphic to monopole string singularities. In particular,for a careful reading of the manuscript and many valuable
they can be moved around by frame transformations, busuggestions. This work was supported by the U.S. Depart-
they can never be completely eliminated. These frame singunent of Energy under Contract No. DE-AC03-76SF00098,
larities occur at the same places in shape space as the sinday the Italian CNR and MURST, and by EU under TMR
larities of the Coriolis coupling terms in the Hamiltonian.  Contract No. ERB-FMRX-CT96-0088.
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