
PHYSICAL REVIEW A JULY 1997VOLUME 56, NUMBER 1
Derivation of planar three-body hyperspherical harmonics from monopole harmonics

Kevin A. Mitchell and Robert G. Littlejohn
Department of Physics, University of California, Berkeley, California 94720
~Received 16 September 1996; revised manuscript received 23 January 1997!

The hyperspherical harmonics which appear in the analysis of the planar three-body problem are explicitly
expressed in terms of the harmonics of importance in the theory of magnetic monopoles. This connection is
achieved by transforming the eigenvalue equations which define hyperspherical harmonics into the eigenvalue
equations for monopole harmonics. This transformation requires the recognition of a gauge potential which
arises in the three-body problem and which has the same form as that of a magnetic monopole. In this manner,
explicit formulas for the two standard representations of the three-body harmonics are derived. The coupling
coefficients between the two representations follow naturally from the derivation. Emphasis is placed on the
gauge theoretical aspects of the derivations and the significance of gauge transformations is discussed.
@S1050-2947~97!10006-3#

PACS number~s!: 03.65.Ca, 02.40.2k, 02.20.2a
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I. INTRODUCTION

Hyperspherical methods have long been a valuable a
lytical and computational tool for understandingn-body
quantum systems. The original work in this field dates ba
to at least the time of Fock’s treatment of the helium at
@1#. Since then, a large literature has arisen, applying num
ous hyperspherical methods~including the hyperspherica
harmonics of interest in this article! to the diverse fields of
molecular, nuclear, and atomic physics@2–8#. In molecular
physics, for example, the hyperspherical approach has pla
a central role over the last 20 years in the study of reac
scattering. The initial foundation for these studies can
traced to Kuppermann’s paper@9# outlining the application
of symmetrical hyperspherical coordinates to reactive s
tering. Since the original studies on the H21H→H1H2 re-
action, the hyperspherical approach has been successf
treating a number of reactions with increasing computatio
sophistication@10–16#. In addition, to reactive scattering
hyperspherical techniques have been applied to problem
collision induced dissociation@17# and photodissociation
@18#, as well as bound-state problems@19,20#. As an example
of the latter, Aquilantiet al. have analyzed H2

1 with the aid
of Sturmian bases@21#. This method is intimately tied to the
momentum space approach of constructing hydrogenlike
bitals through the use of hyperspherical harmonics@7,22#.
The hyperspherical approach, in particular, the use of hy
spherical harmonics, has also been extensively applie
nuclear physics, such as in the study of three nucleon
tems@5# and recently in studies of halo nuclei consisting o
core surrounded by two loosely bound neutrons@6,23#. In
atomic physics hyperspherical techniques have offered
nificant insight into the doubly excited states of helium@8#.
In addition, hyperspherical harmonics have played a cen
role in the study by Cavagnero on electron correlations
atoms@24–26#. It may also be added that the general nat
of hyperspherical techniques makes them particularly us
for investigations which seek to treat diverse phenomena
coherent fashion and in so doing unify approaches from
ferent fields.

The underlying idea behind all hyperspherical approac
561050-2947/97/56~1!/83~17!/$10.00
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is to consider then-body configuration space as a multid
mensional space with then-body collision at the origin. The
radial distance from the origin is called the hyper-radius. T
hyper-radius is a recurring quantity in hyperspherical tre
ments and is central to many applications, in part, due to
nearly separable nature~in an adiabatic sense! in many prob-
lems @27,28,8#. In addition to the hyper-radius, it is ofte
useful to introduce a set of hyperangles to form a comp
system of coordinates on configuration space.

The metric used in defining the hyper-radius is specia
chosen so that the kinetic-energy operator is proportiona
the Laplacian. The kinetic energy then splits into a term
pendent only on the hyperradius and a second term wh
contains all of the angular derivatives. It is this splittin
which makes useful the introduction of hyperspherical h
monics, defined as eigenfunctions of the angular term of
kinetic energy. These harmonics have been used as b
functions for expansions of then-body wave functions and
potential-energy surfaces.

Smith @29# was one of the first to consider hyperspheric
harmonics in the context of the quantumn-body problem.
Though Smith’s original work focused on the planar thre
body problem, the use of hyperspherical harmonics has s
been generalized and developed extensively. However, p
erties of the hyperspherical harmonics are still not co
pletely understood, and efficient mathematical methods
exploiting them in concrete problems remain elusive. F
example, there is the question of how to construct the c
pling coefficients between different bases of hyperspher
harmonics@2#. This issue is of key importance when on
wishes to transform between two different choices of co
muting observables, and such transformations have been
pecially useful in mapping potential-energy surfaces betw
different choices of hyperangles@30,31,2#. Though the prob-
lem of coupling coefficients is not the primary focus of o
paper, it is expected that our methods will, neverthele
shine light on this issue.

Our main result in this paper is an approach for genera
the planar three-body hyperspherical harmonics, wherein
express them in terms of monopole harmonics. This conn
tion between Smith’s hyperspherical harmonics and mo
83 © 1997 The American Physical Society
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84 56KEVIN A. MITCHELL AND ROBERT G. LITTLEJOHN
pole harmonics arises from the existence of a gauge po
tial, first realized by Guichardet@32#, in then-body problem.
For the three-body problem, this gauge potential was sho
by Iwai @33# to be of the same form as the gauge potentia
a magnetic monopole. The gauge potential arises when
separates rotations from internal motions, and it is associ
with a choice of body frame. The gauge potential is fou
naturally in expressions for the angular momentum and
netic energy when written in terms of shape and orienta
coordinates. As we shall show, the gauge potential a
arises in expressions for the operators which define the
perspherical harmonics. These expressions ultimately a
the eigenvalue problem of Smith’s to be turned into the
genvalue problem for magnetic monopoles, whose soluti
are the monopole harmonics. Monopole harmonics are w
studied. Basic references are Wu and Yang@34# and Bieden-
harn and Louck@35#.

The gauge theoretic methods applied here to the pla
three-body problem are part of a larger branch of resea
concerning gauge fields in then-body problem, which is re-
viewed by Littlejohn and Reinsch@36#. The gauge theory o
then-body problem is itself an example of a geometric pha
and belongs to the same class of problems as Berry’s p
and the geometric phases which arise in the Bo
Oppenheimer theory@37# and optics. Much research on ge
metric phases has been presented in the connection theo
fiber bundles, which is the proper mathematical setting
these problems. All the results presented here, however,
be derived by more conventional techniques.

In Sec. II, we present the relevant background on m
netic monopoles, which is drawn mainly from Ref.@34#. In
Sec. III, we define several coordinate systems on the th
body configuration space and introduce conventions for
body frame. In Sec. III C the gauge potential is introduc
and discussed. Section IV is the heart of the paper, in wh
we analyze the group SO~4! and a certain SU~2! subgroup
from the gauge theoretical viewpoint. In Sec. IV D, the o
erators which define the hyperspherical harmonics are
pressed in terms of the gauge potential. In Sec. V we pre
our derivation of the hyperspherical harmonics in the t
conventions first introduced by Smith. The coupling coe
cients between these two sets of harmonics~also derived by
Smith! follow readily from our approach.

II. MAGNETIC MONOPOLES

We present here a brief survey of magnetic monopo
and the associated monopole harmonics@38,34#. The mag-
netic field of a monopole of magnetic chargeg centered at
the origin is

B5g
x

uxu3
. ~2.1!

The gauge potential of this magnetic field is expressed
what we call the ‘‘north regular gauge’’ as

ANR5g
12cosu

uxusinu
f̂, ~2.2!

whereu andf are the usual spherical coordinates. We s
that ANR is in the north regular gauge because the ga
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potential possesses no singularities in the upper half-sp
(x3>0). However, the gauge potential is singular on t
negativex3 axis. These singular points constitute the mon
pole string. The string can be bent or moved about by ga
transformations, but it can never be eliminated.

Consider a particle with electric chargee in the field of a
magnetic monopole which is fixed at the origin. The Ham
tonian is

H5 1
2 up2eAu2, ~2.3!

wherep5 ẋ1eA andm5c51. We first consider the classi
cal mechanics. The usual, or kinetic, angular momentum
the charged particle is given byx3v, where

v5 ẋ5p2eA. ~2.4!

The kinetic angular momentum is not conserved, due to
angular dependence of the gauge potential in the Ha
tonian. However, by adding an additional term to the kine
angular momentum, we can construct the vector

L5x3v2q
x

uxu
, ~2.5!

where q5eg, which is conserved. This modified angula
momentum vector is the true generator of physical rotati
as can be seen from the Poisson brackets

$Li ,L j%5e i jkLk ,

$Li ,xj%5e i jkxk ,

$Li ,v j%5e i jkvk , ~2.6!

where here, as throughout this paper, repeated indices
summed over. Note thatL depends on the productq5eg but
not one or g individually.

The quantum Hamiltonian of a particle in the field of
magnetic monopole is also given by Eq.~2.3!, so long as one
interprets the equation as an operator equation w
pi52 i ]/]xi . ~We take\51.! Viewing pi as an operator,
we define the velocity operatorv i by Eq.~2.4! and the modi-
fied angular-momentum operatorLi by Eq. ~2.5!. As ex-
pectedLi commutes with the Hamiltonian and also satisfi
the commutation relations

@Li ,L j #5 i e i jkLk , ~2.7a!

@Li ,xj #5 i e i jkxk , ~2.7b!

@Li ,v j #5 i e i jkvk . ~2.7c!

In analogy with ordinary spherical harmonics, we defi
monopole harmonics to be simultaneous eigenfunctions
the operatorsL25LiLi and L3 . According to the standard
representation theory of SU~2!, the form of the eigenvalues
is determined solely by the commutation relations~2.7a!. We
thus have the following familiar eigenvalues which are po
sible for the monopole harmonicsYql m :

L2Yql m5~ ux3vu21q2!Yql m5l ~ l 11!Yql m , ~2.8!
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56 85DERIVATION OF PLANAR THREE-BODY . . .
L3Yql m5S x3v2q
x

uxu D
3

Yql m5mYql m , ~2.9!

wherel andm are either both integer or both half-intege
l >0, and2l <m<l . For ordinary spherical harmonics
continuity of the wave function imposes the constraint thal
be an integer. For monopole harmonics, however, contin
arguments impose the constraint thatl 1q be an integer.
Thus, monopole harmonics will have half-integer angul
momentum quantum numbers whenq is half-integer. Note
also thatq must be either an integer or a half-integer, whi
is the Dirac quantization condition@34,38#. The quantum
numbers obey one final constraint,uqu<l , which can be
derived from Eq.~2.8!. We summarize all constraints on th
quantum numbers as

2l <q,m<1l , ~2.10!

q,l ,m5 integer or q,l ,m5half-integer. ~2.11!

Because the operatorsLk depend on the choice of gaug
for A, the monopole harmonics also depend on the gau
We present the harmonics in the north regular gauge as g
by Wu and Yang@Ref. @39#, Eq. ~8!#

Yql m
NR ~u,f!5S 2l 11

4p D 1/2Dm2q
l ~2f,u,f!, ~2.12!

where theDm2q
l are the WignerD matrices.1 The phases of

theYql m
NR are chosen so that

~L11 iL 2!Yql m
NR 5@~ l 2m!~ l 1m11!#1/2Yql m11

NR , ~2.13!

and theYql m
NR are normalized to unity with respect to th

volume element sinu du df. It is not difficult to transform
the monopole harmonics into a variety of other gauges.~See
Sec. V A.! Note that in the caseq50, the monopole harmon
ics reduce to the ordinary spherical harmonics.

III. GAUGE THEORY OF THE PLANAR
THREE-BODY PROBLEM

In this section, we outline the basic principles of t
gauge theory of the planar three-body problem. Our de
opment is in the spirit of Ref.@36#, but the notation and
definitions are modified for use with the planar problem. W
begin by introducing the Jacobi vectors and proceed to
cuss shape and orientation coordinates. This discussion
tivates the final subsection in which we introduce the ga
potential and use it to express the angular momentum
kinetic energy in terms of shape and orientation coordina
We will see that the gauge potential is that of a magne
monopole withg5 1

2 @33#.

1We follow the convention of Sakurai@38# and Messiah@40#
in defining the Wigner matrices as Dmm8

l (a,b,g)
5^l muexp(2iaJz)exp(2ibJy)exp(2igJz)ul m8&, whereas Wu and
Yang @39#, Smith @29#, and Wigner @41# use the convention
D̄mm8
l (a,b,g)5^l muexp(iaJz)exp(ibJy)exp(igJz)ul m8&.
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A. Jacobi vectors

Jacobi vectors are a standard subject in the theory of
n-body problem, and are discussed, for example, by Aq
lanti and Cavalli@42# or Littlejohn and Reinsch@36#. For the
planar three-body problem, there are two Jacobi vec
which we denote by

r sa5S xsaysa
D a51,2, ~3.1!

which lie in thex-y plane and specify the positions of th
three particles relative to the center of mass. Thes subscript
indicates that these Jacobi vectors are taken with respect
space, or inertial, frame, and the Greek indexa labels the
Jacobi vectors. We take the two Jacobi vectorsr sa , a51,2
as coordinates on the configuration space of our syst
which is thereforeR4. In this paper, we ignore the center-o
mass degrees of freedom, and we never need the exp
relation between the two Jacobi vectors and the position
the three particles.

It will be convenient to have alternative notations for t
configuration-space coordinates. We will use the fo
dimensional notation~without thea subscript!,

r s5S xs1
ys1
xs2
ys2

D , ~3.2!

as well as the complex notation,

zsa5xsa1 iysa , a51,2 ~3.3!

zs5S zs1zs2D . ~3.4!

The complex notation allows us to view the configurati
space either asR4 or C2. We use the boldfaced symbo
r sa , r s , andzs for vectors~belonging, respectively, toR2,
R4, andC2!. We denote the components of the real vect
with Latin indices ~for example,r si , i51,2,3,4!, but the
components of the complex vectors are denoted with Gr
indices~for example,zsa , a51,2! because these indices a
effectively labels of Jacobi vectors.

We assume a kinetic-minus-potential LagrangianL, in
which the potential is invariant under translations and ro
tions. This means that the potentialV is a function only of
the two Jacobi vectors (r s1 ,r s2), and that it is invariant un-
der planar rotations of these vectors. As for the kinetic
ergy, we will write it in one of three forms,

T5 1
2 ṙ sa• ṙ sa5 1

2 u ṙ su25
1
2 żs

†żs , ~3.5!

where we sum on the repeated indexa and where the nota
tion żs

†żs means the usual Hermitian scalar product of tw
complex vectors. We assume the Jacobi vectors have b
defined so as to absorb the mass factors in the kinetic ene

Since the LagrangianL equalsT2V, the momenta~in
R4 notation! are given by
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86 56KEVIN A. MITCHELL AND ROBERT G. LITTLEJOHN
ps5
]L
] ṙ s

5
]T

] ṙ s
5 ṙ s , ~3.6!

and the Hamiltonian is simply

H5 1
2 upsu21V~r s!. ~3.7!

When the three-body system is rotated by an angleu, the
Jacobi vectors transform according to

r sa°R~u!r sa , a51,2

r s°S~u!r s ,

zs°eiuzs , ~3.8!

where

R~u!5S cosu 2sinu

sinu cosu D ~3.9!

and

S~u!5SR~u! 0

0 R~u!
D . ~3.10!

Here R is an element of SO~2!, and S is a 434 matrix
partitioned into four 232 blocks. These transformation rule
are a result of the fact thatr sa is a linear function of the
position vectors of the three particles and, hence, is rota
by the same rotation matrix as the position vectors.

The Jacobi vectors also transform in a simple way wh
the labels of the three bodies are permuted. It can be sh
@42# that under such a permutation, the Jacobi vectors tra
form via

r sa°Kabr sb , a51,2 ~3.11!

whereKPO(2). Thetransformation~3.11! is often called a
kinematic rotation; we will also refer to it as ademocracy
transformation, and we will refer to the groupO(2), when
used as in Eq.~3.11!, as thedemocracy group. We think of
the democracy group as a continuous group which inter
lates between the discrete permutations mentioned ab
Notice that a democracy transformation is subscripted w
Greek indices, which label the Jacobi vectors, wherea
physical rotationR as in Eq.~3.8! is subscripted with Latin
indices, which label the spatial dimensions of the Jacobi v
tors. The value ofK depends on the permutation being e
acted as well as the masses of the particles. A democ
transformation can also be written in complex form, whe
upon it becomeszsa°Kabzsb , or,

zs°Kzs . ~3.12!

B. Shape and orientation coordinates

We give here precise definitions of the concepts of sh
and orientation. We define a set of convenient coordinate
shape space, and discuss two conventions for defining
orientation angle. Again, the discussion follows the spirit
Ref. @36#, but is modified to treat the planar problem.
d
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We will say that two configurations have the sameshape
if there is a proper rotation which takes one configurat
into the other. For a specific choice of configurationr sÞ0,
we consider the set of all configurations having the sa
shape asr s . This set will be a circle in configuration spac
which one can visualize as being swept out by the action
SO~2! on r s . In mathematical terminology, this circle is th
orbit of r s under the action of SO~2!. The space of orbits, o
in other words shapes, we callshape space.

We define a useful set of shape, or internal, coordina
by

wi5zs
†t izs , i51,2,3 ~3.13!

where t15s3 , t25s1 , t35s2 , and s1 , s2 , s3 are the
usual Pauli matrices. This particular cyclic permutation
the Pauli matrices was chosen to insure that thew coordi-
nates defined here agreed with those in Refs.@33# and @36#.
Observe that thew coordinates are invariant under physic
rotations of the Jacobi vectorszs , according to Eq.~3.8!.
Thus they are indeed shape, or internal, coordinates. We
troduce the bold notationw for the three-dimensional vecto
consisting ofw1 , w2 , w3 . The domain of the allowed val
ues ofw is all of R3, which is shape space for the plan
three-body problem.

Certain subsets of shape space are of special interest.
planew350 consists of the linear configurations. The tw
body collisions form three rays emanating from the orig
and lying in the planew350. The originw50 is the triple
collision. The action of parity on a configuration is realize
on shape space by a reflection about the planew350. @Note
that two shapes of opposite parity in the planar problem
related by a proper rotation in the three-dimensional pr
lem. Thus, the number of shapes in the three-dimensio
three-body problem is cut in half, and only the upper ha
space (w3>0) of w space is needed.# The w coordinates
have been used by several authors in the past, includ
Smith @29#, Dragt @43#, Iwai @33#, and others.

We define the variablew ~without a subscript! as the ra-
dius inw space, which satisfies the following useful identit

w5~wiwi !
1/25zs

†zs5ur s1u21ur s2u2. ~3.14!

This follows from Eq.~3.13!. Thus,w is just the square of
the hyper-radius.

In order to uniquely specify a configuration, we must d
fine an orientation, or external, coordinate in addition to
threew coordinates defined above. The orientation angleu
of a configurationr s is defined to be the angle of rotatio
betweenr s and some reference configuration~of the same
shape! which we denote byr ~without ans subscript!. The
reference configurationr depends on the shapew, and we
will often write r ~w! to emphasize this. Thus, the relatio
between the reference configurationr ~w! and some actua
configurationr s is

r s5S~u!r ~w!,

zs5eiuz~w!, ~3.15!

where we have introducedz~w! as the complex vector cor
responding tor ~w!. Choosing a reference orientationr ~w! is
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56 87DERIVATION OF PLANAR THREE-BODY . . .
equivalent to defining a body frame. That is, the compone
of the vectorr ~w! are the components of the Jacobi vecto
with respect to a body frame. When a vector can be refe
either to the space frame or the body frame, we will follo
the convention of omitting thes subscript in the latter case

Thus, there are several ideas tied up in the notationr ~w!:
First, the functionsr ~w! specify a definition of a body frame
as a function of shape; second, the absence of thes subscript
~in contrast tor s! indicates the body components of the J
cobi vectors; and third, the relations~3.15! are equivalent to
a coordinate transformation on configuration spa
r s°(u,w) taking us from the Cartesian laboratory coord
nates of the Jacobi vectors to shape and orientation coo
nates. All of this is explained in greater detail in Ref.@36#.

We note that since the definitions~3.13! of wi and~3.14!
of w are invariant under rotations, we have

wi5z†t iz, w5z†z5uz1u21uz2u2 ~3.16!

~without thes subscript on thez!. Herez5z(w).
We present two examples of body frame for later use

the first, which we call the bisector frame, the bisector of
two body-referred Jacobi vectorsr1 andr2 is positioned at an
angle of2p/4 with respect to the bodyx axis, as illustrated
in Fig. 1. We placer1 in the lower half-plane (y<0), so that
the angleb8/2, illustrated in the figure, ranges between 0 a
p. We will, henceforth, place a B superscript on the vecto
ra and related quantities to indicate that they are taken w
respect to the bisector frame. Next, interpreting thex-y plane
as the complex plane and shifting to complex notation,
have

z1
B5uz1

Bue2 ib8/2, z2
B5uz2

Bueib8/22 ip/2. ~3.17!

Also, in view of Eq.~3.16!, we can write

uz1
Bu5Aw cos

a8

2
, uz2

Bu5Aw sin
a8

2
, ~3.18!

where 0<a8/2<p/2. Altogether, we can write

FIG. 1. Illustration of body frame in the bisector frame.
ts
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z1
B5Awe2 ib8/2cos

a8

2
,

z2
B52 iAweib8/2sin

a8

2
. ~3.19!

The anglesa8,b8 bear a certain relation to thewi coor-
dinates, which is obtained by computing thewi according to
Eq. ~3.16!. This gives

w15w cosa8,

w25w sina8 sinb8,

2w35w sina8 cosb8, ~3.20!

which reveals thata8 andb8 are spherical coordinates inw
space taken with respect to thew1 axis, as illustrated in Fig.
2. Notice that on thew1 axis,b8 is completely undetermined
and, hence,zB is ill defined. Furthermore, if one follows a
path around thew1 axis allowingb8 to range from 0 to 2p,
zB acquires a phase shift of21. ThuszB is discontinuous by
a minus sign atb850.

The second example of body frame is the principal a
frame. In this frame, the body axes are taken to be the p
cipal axes of the configuration. For a given shape, there
four different frames which satisfy this requirement. We fo
low Whitten and Smith@Ref. @44#, Eq. ~1!# for the choice of
one of these four; the specification can be written in terms
two anglesa andb, with 0<a/2<p/2 and 0<b<p

z1
PA5

1

&
AwS e2 ib/2 cos

a

2
1eib/2 sin

a

2 D ,
z2
PA5

i

&
AwS e2 ib/2 cos

a

2
2eib/2 sin

a

2 D , ~3.21!

where the PA superscript indicates the principal-axis fram
This is in our notation; the connection with the notation

FIG. 2. Illustration of shape coordinatesa8 andb8 in w space.
~Note the nonstandard ordering of axes.!
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88 56KEVIN A. MITCHELL AND ROBERT G. LITTLEJOHN
Whitten and Smith is given below in Eq.~5.10!. To verify
that Eq.~3.21! actually does represent a principal-axis fram
we can compute the off-diagonal component of the mom
of inertia tensor. This is proportional to Im(zaza

†), which is
easily shown to vanish. The anglesa andb have a geometri-
cal meaning in thex-y plane which is more difficult to visu-
alize than that ofa8 andb8, and therefore we do not suppl
a figure analogous to Fig. 1. On the other hand,a andb do
have a simple meaning inw space, as follows by computin
wi according to Eq.~3.16!. This gives

w15w sina cosb,

w25w sina sinb,

w35w cosa, ~3.22!

which reveals thata andb are the usual spherical coord
nates inw space taken with respect to thew3 axis, as shown
in Fig. 3. We see thatb is undetermined on thew3 axis, so
the principal-axis body frame is undefined there. This is s
ply due to the degeneracy of the moment of inertia tens
The principal-axis body frame specified by Eq.~3.21!, re-
garded as a function ofb, is discontinuous atb52p be-
cause of the half-angles.

As explained in Ref.@36#, equations such as~3.19! and
~3.21! can be viewed as specifying both a system of coo
nates on shape space, as well as a fixing of a body frame
each shape. The shape coordinates defined by Eqs.~3.19!
and~3.21! are (w,a8,b8) and (w,a,b), respectively, which
are explicitly related to the coordinates (w1 , w2 , w3) by
Eqs. ~3.20! and ~3.22!, respectively. However, Eqs.~3.19!
and~3.21! also specify two different choices of body fram
as we have discussed~the bisector and principal-axi
frames!.

The most striking feature of the two systems of sha
coordinates (w,a8,b8) and (w,a,b) is that they are related
by a rigid rotation inw space, i.e., by an element of SO~3!.
The rotation in question is by an angle of2p/2 about the
w2 axis. The group theoretical significance of this fact w

FIG. 3. Illustration of shape coordinatesa andb in w space.
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be explained below; for now we simply note that the SU~2!
rotation corresponding to this element of SO~3! also has a
significance in our formalism, as it relates the two differe
definitions ofzPC2. To show this relation explicitly, we le
a0 andb0 be two fixed angles, and we consider two shap
one of which has coordinates~w,a85a0 , b85b0! in the
coordinate system~3.20!, and the other of which has coord
nates~w,a5a0 , b5b0! in the coordinate system~3.22!.
Corresponding to these two shapes are two body frames
two sets of body Jacobi vectors, as specified by Eqs.~3.19!
and~3.21!. Then it turns out that the two sets of Jacobi ve
tors are related by

zPA5exp~ ipt2/4!zB5
1

&
S 1 i

i 1D S Awe2 ib0/2 cosa0/2

2 iAweib0/2 sina0/2
D .

~3.23!

This relation is somewhat tricky to use, because it must
remembered thatzPA and zB refer to different shapes. It is
however, very useful in relating the bisector frame to t
principal-axis frame. For example, we will show below th
Eq. ~3.23! assists greatly in computing the coupling coef
cients between Smith’s symmetric and uncoupled repres
tations of the hyperspherical harmonics@29#. The fact that
the bisector and principal-axis frames are related by
SU~2! rotation is a special property of these frames; not
choices of body frames are so related.

C. The gauge potential

When using shape and orientation coordinates, a quan
which we call the gauge potential naturally arises. The ga
potential is a vector field on shape space and has prope
analogous to the gauge potential of magnetic theory. In
section, we give explicit formulas, involving the gauge p
tential, for the angular momentum and kinetic energy
terms of shape and orientation coordinates. We explain h
the gauge potential transforms under a change of refere
orientation, and we present the gauge potential explicitly
the bisector and principal-axis frames. Although we will u
timately be interested in the quantum wave functions,
essential elements of the gauge theory are contained in
classical mechanics. Thus, our development is mostly cla
cal, and we will comment briefly on the quantum treatme
at the end.

One can ‘‘discover’’ the gauge potential by expressing
angular momentum in terms of shape and orientation co
dinates. To this end, we note that the angular momentum
the three-body system~z component only, since the motio
is planar! can be written in the form

L5xsaẏsa2ysaẋsa5Im~zs
†żs!. ~3.24!

Upon differentiating Eq.~3.15!, we find

żs5eiuS izu̇1
]z

]wj
ẇj D , ~3.25!

wherez5z(w). Substituting this into Eq.~3.24!, we arrive at

L5wu̇1ImS z† ]z

]wj
D ẇj . ~3.26!
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Notice thatL is not dependent solely uponu̇ as would be the
case for a rigid body. Instead, there is an additional te
representing the contribution to the angular momentum fr
the changing shape of the three-body system. We define
gauge potential by

Aj~w!5
1

w
ImS z† ]z

]wj
D52

1

w
ImS ]z†

]wj
zD , ~3.27!

and use a boldA for the three-dimensional vecto
(A1 ,A2 ,A3). In terms of the gauge potential, the final for
of the angular momentum is

L5w~ u̇1A•ẇ!. ~3.28!

The value ofAj depends on the particular choice of re
erence orientation, which is specified by the functionsz~w!.
A different choice of reference orientation, say,z8(w), is
related to the original choice by a physical rotation whi
can depend on shape. Calling the angle connecting the
choicesh(w), we have

z8~w!5e2 ih~w!z~w!. ~3.29!

Substituting this into Eq.~3.27!, we find

Aj85Aj2
]h

]wj
, ~3.30!

or A85A2“h, where“5]/]w. Notice the similarity with
the gauge transformations of magnetic theory. Changing
body frame is equivalent to changing the gauge, and fix
the body frame is equivalent to fixing the gauge. We w
thus often refer to a choice of body frame as a choice
gauge.

It is straightforward to calculate the gauge potential in
bisector gauge. Using the definition of the gauge poten
~3.27! with the expressions~3.19! for the reference orienta
tion, we find

AB52
1

2

cosa8

w sina8
b̂8. ~3.31!

Computing the curl of this inw space, we find

“3AB5
1

2

w

w3 , ~3.32!

which is the field of a monopole with magnetic charge1
2, in

analogy with Eq.~2.1!. This fact was first discovered by Iwa
@33#.

Having already calculatedAB, the gauge potentialAPA in
the principal-axis gauge is easy to determine. By using
~3.23! in the definition~3.27!, one sees thatAPA has the same
functional form asAB, so long asa8 and b8 in AB are
replaced bya andb. Hence,

APA52
1

2

cosa

w sina
b̂. ~3.33!

Notice thatAPA is given by rotatingAB, as a vector field
over shape space, by an angle2p/2 about thew2 axis.
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Unlike the gauge potentialANR ~2.2!, the singularities of
both AB andAPA extend to infinity in two directions. The
singularities ofAB lie on the entirew1 axis, and the singu-
larities ofAPA lie on the entirew3 axis. Notice that in both
cases, the points where the gauge potential is singular ar
points where the reference orientation is ill defined.

As with the angular momentum, the kinetic energyT also
contains the gauge potential when expressed in terms
shape and orientation coordinates. Using Eq.~3.25!, we find

T5
1

2
żs
†żs5

1

2
wu̇21wu̇A•ẇ1

1

2
ReS ]z†

]zj

]z

]zk
D ẇj ẇk .

~3.34!

Completing the square in the above expression, we obta

T5
1

2
w~ u̇1A•ẇ!21

1

2 FReS ]z†

]zj

]z

]zk
D2wAjAkGẇj ẇk .

~3.35!

The kinetic energy can be greatly simplified by the followin
identity:

ReS ]z†

]zj

]z

]zk
D2wAjAk5

1

4w
d jk . ~3.36!

The above identity can be proved by first noting that t
left-hand side is invariant under the gauge transformat
~3.29!. We can then calculate the left-hand side in any gau
we wish to verify the equality. The bisector gauge is partic
larly simple, and a straightforward calculation gives the
dicated result.

With the identity~3.36! we have

T5
1

2
w~ u̇1A•ẇ!21

1

8w
uẇu2, ~3.37!

from which we calculate the momentum conjugate towk

pk5
]T

]ẇk
5

ẇk

4w
1LAk . ~3.38!

We could also easily calculate the momentumL5]T/]u̇
conjugate tou which would yield Eq.~3.28!. The space on
which (w,p) are coordinates is the reduced phase space.
do not includeL in the reduced phase space since it is co
served.~We note that the three-dimensional problem is mo
complicated, since the reduced phase space must contai
body-angular-momentum sphere.! The kinetic energy can be
expressed in terms of the reduced-phase-space quantitie

T5
L2

2w
12wup2LAu2. ~3.39!

If we make the following substitutions in the Hamiltonia
~2.3!:

g→ 1
2 , e→L, q→

L

2
, x→w, p→p, ~3.40!

we see thatup2LAu2/2 is just the Hamiltonian of a particle
in the field of a magnetic monopole with magnetic charge1

2 .
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90 56KEVIN A. MITCHELL AND ROBERT G. LITTLEJOHN
~Note that the angular momentumL of the three-body system
is not to be confused with the angular momentumL of a
charged particle in the field of a monopole.! The kinetic en-
ergyT, thus, only differs from the Hamiltonian~2.3! by the
multiplicative factor 4w and the additive termL2/2w.

We now consider the quantum problem. The kinetic e
ergy ~3.5! can be quantized by replacing the classical m
mentapsi by the quantum operators2 i ]/]r si . In analogy
with the classical problem, we wish to express the kine
energy in terms of the shape and orientation operatorsL and
pk ,

L52 i
]

]u
,

pk52 i
]

]wk
. ~3.41!

The desired transformation can be effected in many ways
greater or lesser sophistication. The result depends
whether we simultaneously transform the wave function, t
is, whether or not we absorb some Jacobian factor into
new wave function. If we transform the wave function as
scalar~without absorbing Jacobian factors!, then the kinetic-
energy operator as a function ofL andp is given exactly by
the classical expression~3.39!, with the ordering of operators
indicated.

IV. SYMMETRIES OF THE KINETIC ENERGY
AND THE REDUCED SYMMETRY GROUP

The hyperspherical harmonics are eigenfunctions o
complete set of commuting observables which can be c
structed from the operators which generate the group SO~4!.
We present below an investigation of the properties of SO~4!
and its action on configuration space, with an emphasis
the geometrical relationship between configuration space
shape space. We find that there is a certain subgrou
SO~4!, which we call the reduced symmetry group, for whi
the action on configuration space is equivalent to an ac
on shape space. This group is isomorphic to SU~2!.

A. Classical action of SO„4… and the reduced symmetry group

Proper linear transformations of the momenta which p
serve the form of the kinetic energy~3.5! belong to the group
SO~4!. Such transformations have an action on the class
phase-space coordinates given by

r s°Qr s , ps°Qps , ~4.1!

whereQPSO~4!.
In our subsequent definition of the harmonics, we sh

choose one of the operators in our complete set to be
angular momentumL, which is the generator of physica
rotations in SO~2! according to Eq.~3.8!. In order to com-
plete our set of observables, we must then consider the
erators which commute withL. An obvious strategy for find-
ing such operators is to first consider the subgroup of SO~4!
which commutes with all physical rotations in SO~2!. We
denote this subgroup byḠ. The generators ofḠ then com-
mute withL.
-
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We can also give a characterization ofḠ using shape-
space concepts. Namely,Ḡ is the largest subgroup of SO~4!
which has a natural action on shape space. ConsideQ
PSO(4) acting on a configurationr s , mapping it to another
configuration rs5Qr s . Consider a new configuration
r s85S(u)r s , having the same shape asr s . Denote the result
of Q acting onr s8 by rs85Qr s8 . If Q is to have a well-defined
action on a shape, the two configurationsr s and r s8 , which
have the same shape, must be mapped byQ to two configu-
rations which also have the same shape. That isrs and rs8
must be related by a rotation, say, by angleu8. Explicitly, we
have

QS~u!r s5rs85S~u8!rs5S~u8!Qr s . ~4.2!

It can be shown that if the above equation holds for allr s ,
then u85u. Thus, ifQ is to have a well-defined action o
shape space, it must commute with all physical rotatio
S(u). This is exactly the defining condition ofḠ.

We now show thatḠ>U(2) and thatḠ acts on the Jacob
vectorszs by unitary matrices inU(2). LetQPSO~4! be a
matrix which commutes with all rotations, i.e.,

@Q,S~u!#50 ~4.3!

for all u. It is convenient to expressQ as

Q5SQ11 Q12

Q21 Q22
D , ~4.4!

where theQi j are 232 real matrices. Condition~4.3! is
equivalent to@Qi j ,R(u)#50, for all i , j51,2 and allu. The
requirement thatQi j commute with all rotations in SO~2! is
equivalent to the requirement thatQi j commute with the an-
tisymmetric 232 matrix generator of SO~2!, which is

J5S 0 21

1 0 D . ~4.5!

This requirement, in turn, is equivalent to the constraint t
Qi j have the form

Qi j5S a 2b

b a D . ~4.6!

This form ofQi j allows us to associateQi j with a complex
numberqi j5a1 ib, which has the property that if we le
Qi j act on a two-dimensional real vector, such asr sa , the
action is equivalent to multiplication byqi j on the corre-
sponding complex numberzsa . By extension, the action of a
434 real matrixQ @which commutes with allS(u)# on a
real four-vector, such asr s is equivalent to the action of the
complex 232 matrix,

U5S q11 q12

q21 q22
D ~4.7!

acting on the corresponding complex two-vectorzs . Further-
more, the constraintQTQ5I is equivalent toU†U5I , so
U is a unitary matrix. Hence,Ḡ>U(2). @We do not need to
impose the constraint detQ511 because this is already im
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56 91DERIVATION OF PLANAR THREE-BODY . . .
plied by Eq.~4.3!. This fact can also be seen on topologic
grounds, sinceḠ is connected.# This completes the proof.

Note that ifQ5S(u) for someu, then the action ofQ
leaves the shape of a configuration invariant. Thus, with
spect to the action on shape space, we might as well res
our attention to the groupG defined as the subgroup ofḠ
whose elements, taken in the complex 232 representation
have unit determinant. We callG>SU(2) thereduced sym-
metry group.

Next we explicitly determine the action ofG on thew
coordinates. We first note the identity

U†t iU5R~U ! i j t j , ~4.8!

whereUPSU(2) and whereR(U) i j5Tr(t iUt jU
†)/2. The

functionR(U) defined by these formulas is a representat
of SU(2) by means of matrices in SO(3), but it is not the
conventional one in the theory of rotations because of
reordering of the Pauli matrices. In our scheme, it ist i , not
s i , which generates rotations about thei th axis. Explicitly,
we have

R„exp~2 iun̂•t/2!…5exp~un̂3 ! ~4.9!

whereu is the angle of rotation,n̂ is the axis of rotation, and
t is the vector (t1 ,t2 ,t3).

We can now compute the action of an element of SU~2!
on shape space. Letw be the shape of a pointzs in configu-
ration space andw8 be the shape ofUzs whereUPSU(2).
Then

wi85~Uzs!
†t i~Uzs!5Ri jzs

†t jzs5Ri jwj , ~4.10!

whereR5R(U). ThusG acts on thew coordinates by ele-
ments of SO(3), andt i generates rotations about thewi axis.

In this article, we have already introduced several ope
tors which belong to the reduced symmetry group. For
ample, a democracy transformationK ~3.12! commutes with
all rotations~3.8!, and so has an action on shape space.
two cases detK511 and detK521 are best handled sepa
rately. If detK511, thenK is itself an element of the re
duced symmetry group SU(2), andsince it is also a~real!
matrix in SO(2), it can beexpressed asK5exp(2igt3/2) for
some angleg ~sincet35s2 is the only Pauli matrix which is
purely imaginary!. Thus the action ofK on shape space i
given by a rotation about thew3 axis by angleg. If instead
detK521, thenK is not an element of SU~2!, but it does
belong toU(2). Therefore, we can writeK52 iK 8, where
K8 does belong to SU(2), andwhere the phase factor2 i
represents a physical rotation by angle2p/2 @see Eq.~3.8!#.
The matricesK8 andK differ by a physical rotation and hav
the same action insofar as shape space is concerned.
K8 is a purely imaginary matrix in SU(2), so it can be ex-
pressed asK85exp@2ip(n1t11n2t2)/2# with n1

21n2
251.

Thus, the action of eitherK or K8 on shape space is given b
a rotation ofp about an axis perpendicular to thew3 axis.

The matrixU5exp(ipt2/4) in Eq. ~3.23!, where it con-
nects two configurationszB andzPA, is also an element of the
reduced symmetry group. If we let the shape coordinate
these two configurations bewB andwPA, respectively, then
by Eq. ~4.10! we have
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wPA5R~e2 ,2p/2!wB, ~4.11!

whereR(e2 ,2p/2) is a rotation by angle2p/2 about the
w2 axis. Therefore, ifwPA has spherical angles (a5a0 ,
b5b0) with respect to the three axis, thenw

B has spherical
angles~a85a0 , b85b0! with respect to the one axis, in th
sense illustrated in Fig. 2. This explains the similarity b
tween Eqs.~3.20! and ~3.22!.

There is another class of reduced symmetry transfor
tions of interest which we have not yet encountered. C
sider the matrixU(u)PSU(2) given by

U~u!5S e2 iu/2 0

0 eiu/2D 5e2 iut1/2, ~4.12!

which counter-rotates the two Jacobi vectorszs1 and zs2 ,
causing the angle between them to open byu. The action of
U(u) on shape space is given by a rotation by angleu about
thew1 axis. Thus opening the angle between the Jacobi v
tors amounts to a rotation in shape space about thew1 axis.

B. Reduced-phase-space expressions for the generators ofG

This subsection is devoted to classical mechanics.
calculations we present here are not strictly necessary for
logical flow of the paper, but are presented for completen
and as preparation for the quantum calculations, which w
appear in Sec. IV C.

SinceG is a symmetry of the kinetic energy, its generato
are conserved in the caseV50. We note that the word ‘‘gen-
erator’’ can be used in several different senses: it can refe
the matrix generators of a group; to the classical express
~functions of theq’s andp’s! which generate the canonica
transformations representing the group action; to the infi
tesimal generators~that is, the vector fields on the classic
phase space! which generate the group action; or to the qua
tum operators which generate the group action on wave fu
tions. We begin with the 434 real matrix generators, which
we denote byGk , k51,2,3, which are defined by associatin
the 232 matrix U5exp(2iutk/2)PSU(2) with the 434
matrix Q5exp(uGk) as explained in Sec. IV A. Explicitly,
theGk are

G15
1

2 S 0
21
0
0

1
0
0
0

0
0
0
1

0
0

21
0
D ,

G25
1

2 S 0
0
0

21

0
0
1
0

0
21
0
0

1
0
0
0
D ,

G35
1

2 S 0
0
1
0

0
0
0
1

21
0
0
0

0
21
0
0
D . ~4.13!

We denote the classical quantities corresponding to
matricesGk by Ḡk , which are given by
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Ḡk5ps•Gkr s5
1
2 Im~ żs

†tkzs!, ~4.14!

where in the last equality we have used the corresponde
between the real and complex representations of the gen
tors of G. It is easy to show that the quantitiesḠk have
vanishing Poisson brackets with the kinetic ener
T5ps•ps/2; the expressions~4.14! can be derived in a more
systematic manner from Noether’s theorem, which giv
them as the scalar product of the momenta with the infi
tesimal generators of the classical group action.

Since the groupG, by construction, has an action on sha
space, it turns out to be possible to express the genera
Ḡk as functions of the reduced-phase-space quant
(w,p,L). To this end, we insert Eqs.~3.15! and ~3.25! into
Eq. ~4.14! to obtain

Ḡk52
1

2
u̇wk1

1

2
ẇj ImS ]z†

]wj
tkzD . ~4.15!

We next note the identity

ImS ]z†

]wj
tkzD5

1

2
e jkl

wl
w

2Ajwk . ~4.16!

We temporarily defer the proof of this identity, and for no
substitute Eq.~4.16! into Eq. ~4.15! to arrive at the final
result,

Ḡk5e jkl wl
ẇj

4w
2
wk

2
~ u̇1Ajẇj !

5Fw3~p2LA!2
L

2

w

wG
k

, ~4.17!

where Eqs.~3.38! and ~3.28! have been used in the fina
equality. TheḠk are identical to the conserved quantiti
~2.5! of a charged particle in the field of a magnetic mon
pole, so long as we observe the correspondences in
~3.40!.

One can also check that theḠk commute with the kinetic
energy by working directly with the shape-space variab
(w,p,L). The easy way to do this is to invoke what is a
ready known about the motion of a charged particle in
field of a monopole. To this end, we letH̃ be the Hamil-
tonian~2.3!, with the replacements given in Eq.~3.40!. Then
by Eq. ~3.39!, we haveT5L2/2w14wH̃, so that

$Ḡk ,T%54w$Ḡk ,H̃%50. ~4.18!

The first equality is due to the invariance ofw under rota-
tions in w space, and the second equality follows for t
same reason that the angular momentum of Eq.~2.5! is con-
served in the magnetic monopole problem of Sec. II. W
note, however, that our goal in this section was not merel
show that the operators expressed in Eq.~4.17! are con-
served, but, more importantly, to show that they are the
sult of the SU~2! symmetry generated by theGk .

We return to the proof of Eq.~4.16!. We begin with
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wF ImS ]z†

]wj
tkzD1wkAj G

5ImF ~z†z!S ]z†

]wj
tkzD2~z†tkz!S ]z†

]wj
zD G

5
1

2i
z†F]~zz†!

]wj
,tkGz, ~4.19!

where we have used Eqs.~3.16! and~3.27! in the first equal-
ity and where in the second equality we have introduced
dyad or tensor productzz† ~like uz&^zu in Dirac notation!. The
square brackets in the final expression are the matrix c
mutator. Next, we express the definition~3.16! of wk as

wk5Tr~zz†tk!, ~4.20!

which we differentiate with respect towj to get

dk j5TrF]~zz†!

]wj
tkG . ~4.21!

The matrix](zz†)/]wj can be written as a linear combina
tion of the identity and thet j , whose coefficients can b
determined by the property Tr(tkt l )52dkl . This gives

]~zz†!

]wj
5
1

2
t j1cI, ~4.22!

wherec is a number which does not concern us. Substitut
this into Eq.~4.19!, we find

wF ImS ]z†

]wj
tkzD1wkAj G

5
1

4i
z†@t j ,tk#z5

1

2
e jkl z

†t l z5
1

2
e jkl wl , ~4.23!

from which identity~4.16! follows immediately.

C. Quantum-mechanical action of SO„4… and Casimirs

We now shift our focus from the classical action of SO~4!
on phase space to the quantum action of SO~4! on wave
functions. The action ofQPSO~4! on a wave function
c(r s) is given by

~Q̂c!~r s!5c~Q21r s!, ~4.24!

where the caret overQ indicates that it is acting on a wav
function as opposed to a configuration~Q̂ is an operator,
while Q is a matrix!. Let M be an antisymmetric matrix in
the Lie algebra so~4!, let Q(l)5elM, and letQ̂(l) corre-
spond toQ(l) according to Eq.~4.24!. Also, defineM̂ by

Q̂(l)5e2 ilM̂. Then

~M̂c!~r s!5 i
d

dl U
l50

„Q̂~l!c…~r s!5 i
d

dl U
l50

c~e2lMr s!

5 ir siM i j S ]

]r s j
c D ~r s!. ~4.25!
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Thus we have

M̂52r siM i j ps j . ~4.26!

The operatorsM̂ are, up to normalization, the generalize
angular-momentum operators introduced by Smith@45#. It
will be from these operators that we later construct the co
plete set of commuting observables used in defining the
perspherical harmonics.

We now consider wave functions which are eigenfun
tions ofL with eigenvaluem. We denote such functions wit
anm subscript, for example,cm . Using expression~3.41!,
we factor such a function according to

cm~u,w!5
1

A2p
eimufm~w!, ~4.27!

wherefm is a scalar-valued function defined on shape spa
We note thatfm is gauge dependent, unlessm50. Never-
theless, we shall viewfm as the ‘‘wave function over shap
space.’’

Consider now the operatorsĜk given by Eq.~4.26! with
M5Gk . From Eq.~4.26!, we see that theĜk are linear com-
binations of the operatorsps j with coefficients that are func
tions of r si . The operatorspsi are themselves linear comb
nations of the operatorsp i and L, according to the chain
rule. Therefore,Ĝk is a linear combination of the operato
p i andL of the form

Ĝk5 f ~u,w!L1hi~u,w!p i . ~4.28!

Since L commutes with Ĝk , we find @L, f (u,w)#
5@L,hi(u,w)#50. Thus f and hi have no dependence o
u.

Now considerĜk acting on a wave functioncm of the
form ~4.27!,

~Ĝkcm!~u,w!5
1

A2p
eimu@~ fm1hip i !fm#~w!. ~4.29!

From this equation, we see that we can define an actio
Ĝk on wave functions over shape space by

~Ĝkfm!~w!5@~ fm1hip i !fm#~w!, ~4.30!

so that Eq.~4.29! reduces to

~Ĝkcm!~u,w!5
1

A2p
eimu~Ĝkfm!~w!. ~4.31!

~We use the same notation forĜk whether it operates on
wave functions over configuration space or wave functio
over shape space.! In analogy with the classical conserve
quantities Ḡk discussed above, the operatorsĜk will be
shown to equal the quantum operators~2.5! of a particle in
the field of a magnetic monopole.

We now consider the Casimir operatorL2 of so~4! given
by

L252B̂kB̂k , ~4.32!
-
y-

-

e.

of

s

whereBk , k51,...,6, is an orthonormal basis of so~4! in the
sense that Tr(Bi

TBj )5d i j . The operatorL2 is of interest to
us because it is the appropriate generalization of the s~3!
Casimir L2. Since we have shown that the operatorsĜk ,
which generateG, have well-defined actions on wave fun
tions over shape space, it may at first appear thatL2, be-
cause it is constructed from operators which do not gene
G, does not have a well-defined action on wave functio
over shape space. However, as we now explain,L2 can ac-
tually be expressed as a function of theĜk alone.

It is well known that so~4!>su(2)%su(2). Infact, we can
choose one of the su(2) Lie subalgebras to be the Lie alg
of G. The operatorL is then in the other su~2! subalgebra.
We pick an orthonormal basisBk of so~4! to take advantage
of this decomposition. In particular, letBi5Gi , and
Bi135Fi , i51,...,3, whereFi , i51,...,3 is anorthonormal
basis of the su(2) Lie algebra orthogonal to the Lie alge
of G. We now define the following operators, which are o
viously Casimir’s of each subalgebra individually:

G25ĜkĜk , F25F̂kF̂k . ~4.33!

Since the generatorsGi andFi satisfy @Gi ,F j #50, we see
that G2 and F2 are Casimir operators of the entire so~4!
algebra. In fact, it turns out thatG25F2, which is proven in
the Appendix. This implies

L252~G21F2!54G2, ~4.34!

which verifies our claim thatL2 can be expressed solely i
terms of theĜk and, hence, has an action on wave functio
over shape space.

D. Reduced symmetry generators
on shape-space wave functions

In Sec. IV B we expressed the classical generatorsḠk of
the reduced symmetry group in terms of shape-space q
tities. Our principal result was given in Eq.~4.17!. In this
subsection, we will perform the analogous calculation for
quantum-mechanical generatorsĜk , regarded as operator
acting on wave functions on shape space. In effect, we
determine the explicit form of the coefficientsf andhi in Eq.
~4.30!. As it turns out, the result is identical in form to th
classical result~4.17!, with the ordering indicated.

Let Qk(l)5exp(lGk)PSO(4), andconsider its~inverse!
action on a configurationr s . We will write

r̃ s~l!5Qk
21~l!r s , ~4.35!

where here and below we use a tilde to indicate
l-dependent quantities which result from this action. T
absence of the tilde will indicate initial values~at l50!.
From the definition~4.24! of the quantum action of SO~4!,
we have

„Q̂k~l!c…~u,w!5c~ũ,w̃!, ~4.36!

where ũ5 ũ(l), w̃5w̃(l). We differentiate this and use
Q̂k(l)5exp(2ilĜk) to find the following expression for
Ĝk :
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~Ĝkc!~u,w!5 i
d

dlU
l50

„Q̂k~l!c…~u,w!5 i
d

dlU
l50

c~ũ,w̃!.

~4.37!

By assuming thatc5cm is an eigenfunction ofL with ei-
genvaluem, as in Eq.~4.27!, the above equation yields

~Ĝkcm!~u,w!

5
i

A2p

d

dl U
l50

„eim ũfm~w̃!…

5
eimu

A2p
S 2mũ8~0!fm~w!1 i

]fm~w!

]wi
w̃i8~0! D ,

~4.38!

where the prime indicates differentiation with respect tol.
From Eqs.~4.10! and ~4.9! we see that

w̃~l!5R„exp~ iltk/2!…w5exp~2lêk3 !w, ~4.39!

whereêk is the unit vector along thewk axis, and the signs in
the exponents correspond to the inverse matrix in Eq.~4.35!.
Differentiating this byl and settingl50, we obtain

w̃i8~0!5eki jwj . ~4.40!

We seek a similar expression forũ8(0), and tothis end we
note that

eiltk/2zs5ei ũz~w̃!. ~4.41!

Upon differentiating this byl and settingl50, we find

i tk
2

z5 i ũ8~0!z1
]z~w!

]wj
w̃j8~0!, ~4.42!

wherez5z(w) and we have canceledeiu. We multiply each
side of this byz†, and after taking the imaginary part an
rearranging terms, we find the following expression
ũ8(0):

ũ8~0!5F12 w

w
1w3A~w!G

k

, ~4.43!

where we have used Eqs.~3.16!, ~3.27!, and ~4.40!. We in-
sert Eqs.~4.40! and ~4.43! into Eq. ~4.38! to arrive at the
main result of this section

Ĝk5Fw3~p2mA!2
m

2

w

wG
k

. ~4.44!

We see that the operatorsĜk are of the same form as th
operators~2.5!, taking into account the substitutions~3.40!.
From Eq.~4.44!, we find thatL2 has the form

L254ĜkĜk54F uw3~p2mA!u21Sm2 D 2G , ~4.45!

where the cross terms vanish as in the classical calculat
r

n.

V. HYPERSPHERICAL HARMONICS IN THE PLANAR
THREE-BODY PROBLEM

In this section we derive formulas for Smith’s hype
spherical harmonics by expressing them in terms of mo
pole harmonics. We note that the hyperspherical harmo
are a complete set of wave functions defined on the u
sphere in configuration spaceR4. The explicit form of these
harmonics depends on three things: the complete set of c
muting observables of which the harmonics are eigenfu
tions, the coordinate system on shape space in which
harmonics are expressed~more specifically, the angular co
ordinate system on the sphere inw space!, and the choice of
gauge. The complete set of commuting observables is ta
to be (L2,L,N), where the operatorN is left unspecified for
now except to note that it is chosen from the operators wh
generate the reduced symmetry groupG; this ensures tha
N commutes withL. The choice ofN as well as the speci
fication of coordinates and gauge are presented below, w
we discuss Smith’s two conventions for hyperspherical h
monics~the symmetric and uncoupled representations!.

A. The symmetric representation

In the symmetric representation, we choose the oper
N to beN352Ĝ3 . We specify the gauge to be the principa
axis gauge~3.21! and the shape-space angles to bea andb
as given in Fig. 3. We give a brief account of why the
choices constitute the symmetric representation. In S
IV A, we saw that proper democracy transformations have
action on shape space given by rotations about thew3 axis.
~In that subsection, democracy transformations were p
sented as mappings of configuration space or shape s
onto itself, but they are easily transcribed into operat
which act on wave functions on configuration space or sh
space.! The operatorĜ35N3/2 generates rotations about th
w3 axis and, hence, commutes with the proper democr
transformations. As for the improper democracy transform
tions, we showed that they have an action on shape sp
which is equivalent to a rotation byp about an axis lying in
the w1w2 plane. When these are transcribed into operat
acting on wave functions on shape space, they do not c
mute withN3 , but rather take it into2N3 under conjugation.
These facts explain why Smith called this representat
‘‘symmetric.’’ We note that improper democracy transfo
mations are equivalent to particle interchange~in the case of
identical particles!.

Let cm be a hyperspherical harmonic with angular m
mentumm. Note thatcm factors as shown in Eq.~4.27!,
except thatfm does not depend on the hyper-radius~or
equivalentlyw!. The angleu and the functionfm depend on
the choice of gauge, which we have already specified as
principal-axis gauge. Next, since the operatorsL2 andN3

can be constructed from theĜk , they only affect thefm
factor of cm , as illustrated in Eq.~4.31!. The forms of the
operatorsN352Ĝ3 andL254Ĝ2, when acting onfm , are
given by Eqs.~4.44! and ~4.45!, respectively. With the sub
stitutions~3.40!, these operators are the same as the angu
momentum operatorsL2 andL3 for the magnetic monopole
which are shown in Eqs.~2.8! and~2.9!. Therefore, with the
further substitutions,l →l/2 andm→n/2, the eigenvalues
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of L254Ĝ2 andN352Ĝ3 becomel(l12) andn, respec-
tively. We henceforth writeflmn instead offm for the
eigenfunctions. Thus we have

L2flmn54F uw3~p2mA!u21Sm2 D 2Gflmn

5l~l12!flmn , ~5.1!

N3flmn52Fw3~p2mA!2
m

2

w

wG
3

flmn5nflmn .

~5.2!

According to Eqs.~2.10! and ~2.11!, the quantum number
m, l, andn have the constraints,

2l<m,n<l, ~5.3!

m,l,n5even or m,l,n5odd. ~5.4!

An easy way to obtain the eigenfunctionsflmn in Eqs.
~5.1! and ~5.2! is to use the monopole harmonics in E
~2.12! ~with the necessary changes of notation!, except that
the latter are in the north regular gauge and we require
principal-axis gauge for the former. Therefore, we now ma
a digression into the subject of gauge transformations
wave functions on shape space.

We consider for a moment the general case of an arbit
gauge potentialA and a transformed gauge potentialA8,
which are related by Eq.~3.30!. Let Ĝk be given by Eq.
~4.44! with gauge potentialA and letĜk8 also be given by Eq.
~4.44! but with gauge potentialA8. It is straightforward to
verify that if Y is a wave function on shape space with a
gular momentumm, then

Ĝk8e
2 imhY5e2 imhĜkY. ~5.5!

Thus, if Y satisfies the eigenvalue equations~5.1! and ~5.2!
with gauge potentialA, then the wave function

Y85e2 imhY ~5.6!

satisfies the same eigenvalue equations with gauge pote
A8. Therefore, Eq.~5.6! is the gauge transformation formu
for monopole harmonics.

We now apply this formula to the gauge potentialsAPA of
Eq. ~3.33! and ANR of Eq. ~2.2!, making the notationa
changesg→1/2, x→w, and (u,f)→(a,b) in the latter. We
find

APA2ANR5
21

2w sina
b̂52

1

2
“b52“h, ~5.7!

where we follow Eq.~3.30! ~identifying A8 with APA andA
with ANR!. Thush5b/2, and hence,
e
e
n

ry

-

tial

Ym/2,l/2,n/2
PA ~a,b!5e2 imb/2Ym/2,l/2,n/2

NR ~a,b!

5S l11

4p D 1/2Dn/22m/2
l/2 ~2b,a,0!, ~5.8!

where we have used Eq.~2.12! for Ym/2,l/2,n/2
NR ~with

q→m/2, l →l/2, andm→n/2!. Note that Eq.~5.5! implies
that theYm/2,l/2,n/2

PA satisfy the same phase relations~2.13! as
theYm/2,l/2,n/2

NR . Note also that theYm/2,l/2,n/2
NR are normalized

to unity with respect to the volume element sinadadb.
In fixing the final form of the hyperspherical harmonic

we require that they be normalized to unity. We wri
drs1drs2drs3drs45r 3drdV for the volume element, where
r5ur su is the hyperradius. Equations~3.15! and~3.23! can be
used to translate the volume elementdrs1drs2drs3drs4 from
the Jacobi coordinates into the coordinates (a,b,u,r ), which
results in dV5 1

4sinadudadb. This equality can also be
found in Smith @Ref. @29#, Eq. ~38!#, using the relations
~5.10! below to translate Smith’s result into our notatio
~Smith’s coordinateF ranges between 0 and 2p, thus cover-
ing shape space twice. Our coordinates cover shape s
only once, and, therefore, we must include an additional f
tor of 2 when translating the volume element into our co
dinates.! The hyperspherical harmonics must be normaliz
with respect todV. Since the monopole harmonics given
Eq. ~5.8! are already normalized to unity with respect to t
volume element sinadadb, by taking
flmn(a,b)52Ym/2,l/2,n/2

PA (a,b), the hyperspherical harmon
ics will be normalized to unity with respect todV. There-
fore, the final form of the hyperspherical harmonics in t
symmetric representation is

clmn
S ~u,a,b!5

2

A2p
eimuYm/2,l/2,n/2

PA ~a,b!

5
~l11!1/2

&p
Dn/22m/2

l/2 ~2b,a,2u!. ~5.9!

This expression agrees, up to an overall sign, with Smit
expression@Ref. @29#, Eq. ~115!#. To verify this fact, one
must be careful with the conventions for theD matrices~see
footnote 1!, and note that Smith uses a different set of co
dinates (f,F,Q8), related to ours by

f5u, Q85Q1
p

4
5

p

2
2

a

2
, F5

b

2
. ~5.10!

Note that the phase relations~2.13! of the monopole harmon
ics imply the following phase relation for theclmn

S :

~Ĝ11 iĜ2!clmn
S 5F S l

2
2
n

2D S l

2
1
n

2
11D G1/2clmn12

S .

~5.11!

Smith’s phase convention includes a minus sign multiply
the left-hand side of this equation.
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B. The uncoupled representation

For the uncoupled representation, we choose the ope
N to beN152Ĝ1 , we choose the gauge to be the bisec
gauge defined in Eq.~3.19!, and we use shape coordinat
(w,a8,b8) defined in Eq.~3.20!. As noted in Sec. IV A,
G1 generates reduced symmetry operations which coun
rotate the two Jacobi vectors. Thus, if the potential energ
independent of the angle between the Jacobi vectors,N1 will
be a symmetry of the Hamiltonian.

Although the complete set of commuting observables,
gauge, and the coordinate system are all different in the s
metric and uncoupled representations, one can obtain
harmonics in one representation rather easily from the
monics in the other. This is because the observablesN3 and
N1 , the principal axis and bisector gauges, and
(w,a,b) and (w,a8,b8) coordinate systems are all relate
by the same reduced symmetry operation, which is a rota
by angle2p/2 about thew2 axis in shape space.

To see how this works, letr s and r s8 be two configura-
tions, denoted in complex form byzs andzs8 , which corre-
spond to shapesw andw8, respectively, according to Eq
~3.13!. Furthermore, we will suppose that these two config
rations are related by a certain reduced symmetry opera
Speaking first of 434 real matrices in SO(4), wewill de-
note a reduced symmetry operation byQ(n,g)
5exp(gn•G), whereG5(G1 ,G2 ,G3) andn is a unit vec-
tor. The 434 real matrixQ(n,g) corresponds to the 232
complex matrix U(n,g)5exp(2ign•t/2)PSU(2), the
333 real matrixR(n,g)5exp(gn3)PSO(3), and the op-
erator Q̂(n,g)5exp(2ign•Ĝ), which acts on wave func
tions as in Eq.~4.24!. Here Ĝ5(Ĝ1 ,Ĝ2 ,Ĝ3). We will be
particularly interested in a rotation by2p/2 about the two
axis; in the following we will write simply
Q5Q(e2 ,2p/2), U5U(e2 ,2p/2), R5R(e2 ,2p/2), and
Q̂5Q̂(e2 ,2p/2) for this case. To return to the two configu
rationsr s andr s8 , we will assume that they are related by th
rotation, so that

r s5Qr s8 , zs5Uzs8 . ~5.12!

Then it follows from Eqs.~4.9! and ~4.10! that w5Rw8,
which is essentially the same as Eq.~4.11!. Also recall from
the discussion following Eq.~4.11! that ifw8 has coordinates
(w,a0 ,b0) in the (w,a8,b8) coordinate system, thenw has
the same coordinates (w,a0 ,b0) in the (w,a,b) coordinate
system.

Now, suppose the configurationzs has orientation angleu
in the principal-axis gauge, and configurationzs8 has orienta-
tion angleu8 in the bisector gauge, so that

zs5eiuzPA~w!, zs85eiu8zB~w8!, ~5.13!

wherezPA andzB are defined by Eqs.~3.21! and ~3.19!. But
Eq. ~3.23! is equivalent tozPA(w)5UzB(w8), which when
combined with Eqs.~5.12! and ~5.13! gives simplyu5u8.
We will call this common angleu0 . Thus, if we think of
tor
r

r-
is

e
-

he
r-

e

n

-
n.

(w,u,a,b) and (w,u8,a8,b8) as two coordinate systems o
configuration space, then pointsr s and r s8 have the same
coordinate values, as measured in the two systems.

Now consider the hyperspherical harmoni
clmn
S (u,a,b) in the symmetric representation, defined

Eq. ~5.9!, which are simultaneous eigenfunctions
(L2,L,N3). These are functions on configuration space, a
can be expressed in a variety of coordinates such
clmn
S (r s), clmn

S (zs), or clmn
S (w,u,a,b). Of course, these

functions are actually independent ofw.
To obtain eigenfunctions ofN1 from those ofN3 , we note

that sinceĜ is a tensor operator, it satisfies the ident
Q̂(n,g)ĜQ̂(n,g)†5R(n,g)21Ĝ. This implies that

Q̂Ĝ1Q̂
†5Ĝ3 , ~5.14!

where we continue the notationQ̂5Q̂(e2 ,2p/2), etc. From
this it follows that if we write

clmn
UC ~r s!5~Q̂†clmn

S !~r s!, ~5.15!

thenclmn
UC is an eigenfunction of (L2,L,N1) with quantum

numbers (l,m,n).
We will take Eq. ~5.15! as the definition of the hyper

spherical harmonics in the uncoupled representation. To
press these harmonics in the coordinates (u8,a8,b8), we
first note that

~Q̂†clmn
S !~r s!5clmn

S ~Qr s!, ~5.16!

and then we replacer s in this equation byr s8 and use Eqs.
~5.12! and ~5.15! to find

clmn
UC ~r s8!5clmn

S ~r s!. ~5.17!

By expressingr s and r s8 in the two coordinate systems, w
have

clmn
UC ~u85u0 ,a85a0 ,b85b0!

5clmn
S ~u5u0 ,a5a0 ,b5b0!. ~5.18!

In other words, the hyperspherical harmonics in the u
coupled representation have the same functional form w
respect to the coordinates (u8,a8,b8) as those in the sym
metric representation have with respect to the coordina
(u,a,b). Therefore, by Eq.~5.9!, we have

clmn
UC ~u8,a8,b8!5

~l11!1/2

&p
Dn/22m/2

l/2 ~2b8,a8,2u8!.

~5.19!

This can be reconciled with Smith’s result„Ref. @29#, Eq.
~74!… by noting that Smith uses coordinatesf1 , f2 , andx
given by

f15u2
p

4
, x5

a8

2
, f252

b8

2
1

p

4
. ~5.20!
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Finally, it is easy to obtain the coupling coefficients, i.
the unitary transformation connecting the harmonics in
two representations. We simply note that because we
using the phase conventions~5.11!, the functionsclmn

S ~for
fixed l andm, variablen! form a standard set of basis fun
tions in an irreducible representation of SU(2). Therefore,

~Q̂†clmn
S !~r s!5(

n8
clmn8
S

~r s!@Dl/2~0,2p/2,0!#n8/2,n/2
21 ,

~5.21!

where (0,2p/2,0) are the Euler angles ofQ̂. Thus from Eq.
~5.15! we have

clmn
UC 5(

n8
dn8/2, n/2

l/2
~p/2!clmn8

S , ~5.22!

clmn
S 5(

n8
dn/2, n8/2

l/2
~p/2!clmn8

UC , ~5.23!

wheredn8/2,n/2
l/2 is the reduced Wigner matrix. The above c

be reconciled with Smith’s coefficientsal(m2 ,s) @Ref. @29#,
Eq. ~83!# if one takes into account the differences in over
phase between our harmonics and Smith’s.2

VI. CONCLUSIONS

By connecting the hyperspherical harmonics with t
monopole harmonics, one can exploit the properties
monopole harmonics to understand the properties of hy
spherical harmonics. This is especially true with respec
changes in body frame conventions; we can transform
harmonics from one body frame convention to another
means of gauge transformations on the monopole harmo
Wu and Yang have provided a clear geometric construc
of the phase acquired by the monopole harmonics under
a gauge transformation@34#. Up to proportionality, this
phase is just the solid angle subtended between the new
the old monopole strings. This construction, therefore, gi
a convenient geometric description of the phase acquired
the hyperspherical harmonics under changes of body fra

Our formalism also easily handles Eckart frames. If t
equilibrium shape of a molecule is denoted byw, it can be
shown that the gauge potential in the Eckart frame is gi
by a rotation applied toANR so as to place the monopo
string through2w. One would then construct the hype
spherical harmonics from the monopole harmonicsYqlm

NR in-
stead of theYqlm

PA . The coupling coefficients between diffe
ent Eckart conventions could be found much as we found
coupling coefficients between the symmetric and uncoup
representations, except that one would have to deal with

2We believe there is an error in Smith’s expression for the c
pling coefficientsal(m2 ,s). If we denote the coefficients com
puted by Smith asāl(m2 ,s), then we believe the actual couplin
coefficients ~with Smith’s phase conventions! to be
al(m2 ,s)5āl(m2 ,2s).
,
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element of SU(2) which rotates one equilibrium point in
another.

It is natural to ask whether the gauge theoretical treatm
of the hyperspherical harmonics can be generalized to co
the three-dimensional problem or to include more than th
particles. In principal, there is no reason to believe tha
cannot since the gauge theory itself can be applied to
two- and three-dimensionaln-body problems for arbitrary
n. The development in this paper would require significa
modification to handle the three-dimensional three-body h
monics. This is largely due to the fact that in the thre
dimensional problem, the reduced symmetry group m
commute with all rotations in SO(3) instead of just SO~2!.
The reduced symmetry group is therefore a proper subgr
of SU~2!, which consists, in fact, of just the democracy tran
formations. Thus the operators used to define the hyp
spherical harmonics do not act on shape-space wave f
tions, and the problem of finding hyperspherical harmon
does not obviously reduce to a problem of finding harmon
on shape space. The planarn-body problem does not hav
these difficulties. In this case, the reduced symmetry grou
SU(n21), the generators of which, together withL, provide
enough operators to construct a complete set of commu
observables. Thus the problem of finding hyperspherical h
monics on configuration space can be reduced to finding
monics on shape space. This approach is, however, not w
out complications, as the space of shapes with unit hyp
radius is no longer a simple sphere for the planarn-body
problem (n.3) but is instead the complex projective spa
CPn22 @46#. Thus the harmonic analysis of the complex pr
jective spaces may be of interest for future work on the p
narn-body problem.
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APPENDIX: EQUALITY OF THE CASIMIRS G2 AND F 2

In this appendix we prove the equality of the Casim
operatorsG2 and F2, defined in Eq.~4.33!. That equation
refers to operators; we begin our discussion here with
434, antisymmetric real matrices which constituteso(4).

The matricesGk , k51,2,3, which are generators of a
su(2) subalgebra of so(4), aredefined by Eqs.~4.13!. As
explained in Sec. IV C, there is another su(2) subalgebra
so(4),orthogonal to the first, and we letFk , k51,2,3, be the
generators of this orthogonal subalgebra. Explicit forms
theFk are given below. From these two sets of generators
construct two Casimirs,GkGk5G2 andFkFk5F2. We wish
to show that these Casimirs are equal,G25F2.

The matricesGk and Fk taken together form a basis i
so(4). Another convenient basis is the set of matric
(A12,A13,A14,A23,A24,A34), where thekl component of
the matrixAi j is given by

-



e
o ow

e

98 56KEVIN A. MITCHELL AND ROBERT G. LITTLEJOHN
~Ai j !kl 5
1

&
~d ikd j l 2d i l d jk!. ~A1!

Note that thei - j index onA labels the matrix, and not th
components. The matrixAi j is antisymmetric and nonzer
only in the slotsi j and j i , and satisfiesAi j52Aji . The
transformation connecting the two bases is

G15
1

&
~A122A34!,

G25
1

&
~A142A23!,

G35
1

&
~2A132A24!,

F15
1

&
~A121A34!,

F25
1

&
~2A142A23!,

F35
1

&
~2A131A24!, ~A2!

where theG equations are equivalent to Eqs.~4.13! and the
F equations serve to define theFk explicitly.

Two Casimirs can be constructed from theAi j and ex-
pressed in terms of theGk andFk . These are
o

.

er

.

C15
1
2 Ai jAi j5G21F2,

C25
1
4 e i jk l Ai jAkl 52G21F2, ~A3!

where the indices are summed from 1 to 4. We wish to sh
that C250, which impliesG25F2. This is easily done by
substituting Eq.~A1! into the second of Eqs.~A3!, which
gives

~C2!mn5
1
4 e i jk l ~Ai j !mr~Akl !rn

5 1
8 e i jk l ~d imd j r2d ird jm!~dkrd l n2dknd l r !

5 1
2 e i jk l d imd j rdkrd l n50. ~A4!

Similarly, the CasimirC2 vanishes if the matricesGk ,
Fk , andAi j are replaced by the operatorsĜk , F̂k , and Âi j
which correspond to them according to Eq.~4.26!. In this
case we have

C25
1
4 e i jk l Âi j Âkl

5 1
4 e i jk l ~Ai j !mnr npm~Akl !qtr tpq5

1
2 e i jk l r j pi r l pk

5 1
2 e i jk l ~r j r l pipk2 ir j pkd i l !50, ~A5!

where we omit thes subscripts used in the main body of th
paper. This proves thatF2 andG2, defined in Eq.~4.33!, are
equal. We note that for other representations of so(4), be-
sides the two treated in this appendix, the two CasimirsG2

andF2 are not necessarily equal.
s

.

.

@1# V. A. Fock, Izv. Akad. Nauk SSSR Ser. Fiz.18, 161 ~1954!
~Technical Translation TT-503, National Research Council
Canada!.

@2# V. Aquilanti, S. Cavalli, and G. Grossi, J. Chem. Phys.85,
1362 ~1986!.

@3# V. Aquilanti, S. Cavalli, and G. Grossi, inAdvances in Mo-
lecular Vibrations and Collision Dynamics, edited by Joel M.
Bowman~JAI Press, Greenwich, CT, 1993!, Vol. 2A, p. 147.

@4# Yu. F. Smirnov and K. V. Shitikova, Yad. Fiz.8, 847 ~1977!
@Sov. J. Nucl. Phys.8, 344 ~1977!#.

@5# J. L. Ballot and M. Fabre de la Ripelle, Ann. Phys.~N.Y.! 127,
62 ~1980!.

@6# M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang, I. J
Thompson, and J. S. Vaagen, Phys. Rep.231, 151 ~1993!.

@7# J. Avery, Hyperspherical Harmonics~Kluwer, Dordrecht,
1989!.

@8# C. D. Lin, Phys. Rep.257, 1 ~1995!.
@9# A. Kuppermann, Chem. Phys. Lett.32, 374 ~1975!.

@10# A. Kuppermann, J. Chem. Phys.84, 5962~1986!.
@11# R. T. Pack and G. A. Parker, J. Chem. Phys.87, 3888~1987!.
@12# G. A. Parker, R. T. Pack, B. J. Archer, and R. B. Walk

Chem. Phys. Lett.137, 564 ~1987!.
@13# J. Linderberg, S. B. Padkj,r, Y. Öhrn, and B. Vessal, J. Chem
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