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Derivation of planar three-body hyperspherical harmonics from monopole harmonics
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The hyperspherical harmonics which appear in the analysis of the planar three-body problem are explicitly
expressed in terms of the harmonics of importance in the theory of magnetic monopoles. This connection is
achieved by transforming the eigenvalue equations which define hyperspherical harmonics into the eigenvalue
equations for monopole harmonics. This transformation requires the recognition of a gauge potential which
arises in the three-body problem and which has the same form as that of a magnetic monopole. In this manner,
explicit formulas for the two standard representations of the three-body harmonics are derived. The coupling
coefficients between the two representations follow naturally from the derivation. Emphasis is placed on the
gauge theoretical aspects of the derivations and the significance of gauge transformations is discussed.
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I. INTRODUCTION is to consider then-body configuration space as a multidi-
mensional space with the-body collision at the origin. The
Hyperspherical methods have long been a valuable anaadial distance from the origin is called the hyper-radius. The
lytical and computational tool for understandinmgbody  hyper-radius is a recurring quantity in hyperspherical treat-
guantum systems. The original work in this field dates backnents and is central to many applications, in part, due to its
to at least the time of Fock’s treatment of the helium atomnearly separable natufs an adiabatic sens& many prob-
[1]. Since then, a large literature has arisen, applying numetems [27,28,§. In addition to the hyper-radius, it is often
ous hyperspherical method@ncluding the hyperspherical useful to introduce a set of hyperangles to form a complete
harmonics of interest in this artigleo the diverse fields of system of coordinates on configuration space.
molecular, nuclear, and atomic physi&-8|. In molecular The metric used in defining the hyper-radius is specially
physics, for example, the hyperspherical approach has playazhosen so that the kinetic-energy operator is proportional to
a central role over the last 20 years in the study of reactivéhe Laplacian. The kinetic energy then splits into a term de-
scattering. The initial foundation for these studies can bgendent only on the hyperradius and a second term which
traced to Kuppermann’s papg®] outlining the application contains all of the angular derivatives. It is this splitting
of symmetrical hyperspherical coordinates to reactive scatwhich makes useful the introduction of hyperspherical har-
tering. Since the original studies on the+H—H+H, re-  monics, defined as eigenfunctions of the angular term of the
action, the hyperspherical approach has been successful kinetic energy. These harmonics have been used as basis
treating a number of reactions with increasing computationafunctions for expansions of the-body wave functions and
sophistication[10-16. In addition, to reactive scattering, potential-energy surfaces.
hyperspherical techniques have been applied to problems in Smith[29] was one of the first to consider hyperspherical
collision induced dissociatiof17] and photodissociation harmonics in the context of the quantumbody problem.
[18], as well as bound-state problefd®,20. As an example Though Smith’s original work focused on the planar three-
of the latter, Aquilantiet al. have analyzed 5t with the aid  body problem, the use of hyperspherical harmonics has since
of Sturmian basef21]. This method is intimately tied to the been generalized and developed extensively. However, prop-
momentum space approach of constructing hydrogenlike orerties of the hyperspherical harmonics are still not com-
bitals through the use of hyperspherical harmoriit2].  pletely understood, and efficient mathematical methods for
The hyperspherical approach, in particular, the use of hyperexploiting them in concrete problems remain elusive. For
spherical harmonics, has also been extensively applied texample, there is the question of how to construct the cou-
nuclear physics, such as in the study of three nucleon sygling coefficients between different bases of hyperspherical
tems[5] and recently in studies of halo nuclei consisting of aharmonics[2]. This issue is of key importance when one
core surrounded by two loosely bound neutr¢623]. In  wishes to transform between two different choices of com-
atomic physics hyperspherical techniques have offered sighuting observables, and such transformations have been es-
nificant insight into the doubly excited states of heliigj. pecially useful in mapping potential-energy surfaces between
In addition, hyperspherical harmonics have played a centralifferent choices of hyperangl¢80,31,4. Though the prob-
role in the study by Cavagnero on electron correlations idem of coupling coefficients is not the primary focus of our
atoms[24-24. It may also be added that the general naturepaper, it is expected that our methods will, nevertheless,
of hyperspherical techniques makes them particularly usefudhine light on this issue.
for investigations which seek to treat diverse phenomena in a Our main result in this paper is an approach for generating
coherent fashion and in so doing unify approaches from difthe planar three-body hyperspherical harmonics, wherein we
ferent fields. express them in terms of monopole harmonics. This connec-
The underlying idea behind all hyperspherical approachetion between Smith’s hyperspherical harmonics and mono-
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pole harmonics arises from the existence of a gauge potemotential possesses no singularities in the upper half-space
tial, first realized by Guichard¢82], in then-body problem. (x3=0). However, the gauge potential is singular on the
For the three-body problem, this gauge potential was shownegativex; axis. These singular points constitute the mono-
by Iwai[33] to be of the same form as the gauge potential ofpole string. The string can be bent or moved about by gauge
a magnetic monopole. The gauge potential arises when orteansformations, but it can never be eliminated.

separates rotations from internal motions, and it is associated Consider a particle with electric chargen the field of a
with a choice of body frame. The gauge potential is foundmagnetic monopole which is fixed at the origin. The Hamil-
naturally in expressions for the angular momentum and kitonian is

netic energy when written in terms of shape and orientation

coordinates. As we shall show, the gauge potential also H=3|p—eA|? 2.3
arises in expressions for the operators which define the hy-

perspherical harmonics. These expressions ultimately allowherep=x+eA andm=c=1. We first consider the classi-
the eigenvalue problem of Smith’s to be turned into the ei-cal mechanics. The usual, or kinetic, angular momentum of
genvalue problem for magnetic monopoles, whose solutionthe charged particle is given byx< v, where

are the monopole harmonics. Monopole harmonics are well _

studied. Basic references are Wu and Y§&B4j and Bieden- v=Xx=p—eA. 2.4

harn and LoucK35]. o )

The gauge theoretic methods applied here to the pIanéFhe kinetic angular momentum is not cons_ervgd, due to the
three-body problem are part of a larger branch of researcAngular dependence of the gauge potential in the Hamil-
concerning gauge fields in thebody problem, which is re- tonian. However, by adding an additional term to the kinetic
viewed by Littlejohn and Reinscl86]. The gauge theory of angular momentum, we can construct the vector
then-body problem is itself an example of a geometric phase «
and belongs to the_ same class of _problems as Berry’'s phase L=XxXV—( —, (2.5
and the geometric phases which arise in the Born- ||
Oppenheimer theory37] and optics. Much research on geo- o ) »
metric phases has been presented in the connection theory'$here d=eg, which is conserved. This modified angular-
fiber bundles, which is the proper mathematical setting fof?omentum vector is the true generator of physical rotations
these problems. All the results presented here, however, wiftS can be seen from the Poisson brackets
be derived by more conventional techniques. _

In Sec. I, we present the relevant background on mag- {LisLi}= el
netic monopoles, which is drawn mainly from RE34]. In
Sec. Ill, we define several coordinate systems on the three- L1 X} = €ijiXics
body configuration space and introduce conventions for the
body frame. In Sec. Il C the gauge potential is introduced {Livit= vk, (2.6
and discussed. Section IV is the heart of the paper, in whic

we analyze the group S@ and a certain S(2) subgroup
from the gauge theoretical viewpoint. In Sec. IV D, the op_?]L(;f[ng:lzdoorvgeri.nlalic\)/tigljgﬁ;depends on the produgt=eg but

erators which define the hyperspherical harmonics are ex- The quantum Hamiltonian of a particle in the field of a

pressed in terms of the gauge potential. In Sec. V we present ; . .
o . U magnetic monopole is also given by Ef.3), so long as one

our derivation of the hyperspherical harmonics in the twointer rets the equation as an operator eguation with

conventions first introduced by Smith. The coupling coeffi- P q b q

) . . i=—1idldx;. (We taker=1.) Viewing p; as an operator,
cients between these two sets of harmoradso derived by ~ Pi 101 9%, . ' .
Smith) follow readily from our approach.m Y We define the velocity operator by Eq.(2.4) and the modi-

fied angular-momentum operatt; by Eq. (2.5. As ex-
pectedL; commutes with the Hamiltonian and also satisfies
the commutation relations

We present here a brief survey of magnetic monopoles

U\/here here, as throughout this paper, repeated indices are

IIl. MAGNETIC MONOPOLES

and the associated monopole harmonig8,34. The mag- [LisLjl=i€ipL, (2.79
netic field of a monopole of magnetic chargecentered at )
the origin is [Li Xj]=1 €, (2.70
X Li,v.]=ie€j; . 2.7
B=g W 2.1) [Li UJ] €ijkUk (2.79

In analogy with ordinary spherical harmonics, we define
The gauge potential of this magnetic field is expressed ifmonopole harmonics to be simultaneous eigenfunctions of

what we call the “north regular gauge” as the operatord.>=L;L; and L. According to the standard
representation theory of $p), the form of the eigenvalues
ANR_ 1-co9Y -~ 2.2 is determined solely by the commutation relatiéds’a. We
9 |x|sing ¢, ' thus have the following familiar eigenvalues which are pos-

sible for the monopole harmonids,,, :
where 6 and ¢ are the usual spherical coordinates. We say

that ANR is in the north regular gauge because the gauge L2Y 4 n=(IXXVI2+0?) Yo, =/ (/+1)Y g/, (2.9
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A. Jacobi vectors

LaYoru= Jacobi vectors are a standard subject in the theory of the

n-body problem, and are discussed, for example, by Aqui-
where/ and . are either both integer or both half-integer, lanti and Cavall{42] or Littlejohn and Reinsch36]. For the
/=0, and —/<pu</. For ordinary spherical harmonics, pIa_nar three-body problem, there are two Jacobi vectors
continuity of the wave function imposes the constraint that Which we denote by
be an integer. For monopole harmonics, however, continuity
arguments impose the constraint that-q be an integer.
Thus, monopole harmonics will have half-integer angular-
momentum quantum numbers whgnis half-integer. Note S ) »
also thatq must be either an integer or a half-integer, whichWhich lie in thex-y plane and specify the positions of the
is the Dirac quantization conditiof34,38. The quantum three particles relative to the center of mass. $fseibscript
numbers obey one final constraifg|</, which can be indicates that these Jacobi vectors are takgn with respect to a
derived from Eq(2.8). We summarize all constraints on the SPace, or inertial, frame, and the Greek indexabels the
quantum numbers as Jacobi vectors. We take the two Jacobi veciqrs a=1,2
as coordinates on the configuration space of our system,
—/<qu<+/, (2.10  Whichis therefore’®. In this paper, we ignore the center-of-
mass degrees of freedom, and we never need the explicit
q,/,w=integer orq,/,u=half-integer. (2.1  relation between the two Jacobi vectors and the positions of
the three particles.

Because the operatots( depend on the choice of gauge |tW|” be convenient to have alternative. notations for the
for A, the monopole harmonics also depend on the gaugéonfiguration-space coordinates. We will use the four-
We present the harmonics in the north regular gauge as givedimensional notatioriwithout the « subscrip},
by Wu and YandRef. [39], Eq. (8)]

X
XXV—( M) Yoru=mYq/ u: (2.9
3

XSa
Ysa

a=1,2, 3.1

rSOz

Xs1
/+1 1/2 , Va1
NR _ / _
v . . Ys2
where theD),_, are the WignemD matricest The phases of
the Yy5, are chosen so that as well as the complex notation,
(LitiL) YRR =[( =) (7 +p+ DIYYEE, 1, (213 Zoa=Xsa+1Ysa, a=1.2 33
and theYy), are normalized to unity with respect to the 2
volume element siidd de. It is not difficult to transform ZS:(ZSZ>' (3.4
S.

the monopole harmonics into a variety of other gauggee
Sec. V A) Note that in the casq=0, the monopole harmon-

ics reduce to the ordinary spherical harmonics. The complex notation allows us to view the configuration

space either a®* or (2. We use the boldfaced symbols
rsa» s, andz for vectors(belonging, respectively, t&2,
Ill. GAUGE THEORY OF THE PLANAR R*, and(?). We denote the components of the real vectors
THREE-BODY PROBLEM with Latin indices (for example,r;, i=1,2,3,4, but the
In this section, we outline the basic principles of the_components of the complex vectors are denoted with Greek

gauge theory of the planar three-body problem. Our develindices(for examplez,,, «=1,2) because these indices are
opment is in the spirit of Ref[36], but the notation and €ffectively labels of Jacobi vectors. o
definitions are modified for use with the planar problem. we We assume a kinetic-minus-potential Lagrangiénin
begin by introducing the Jacobi vectors and proceed to dis\z_vhlch th(_a potential is invariant unde_r translat_lons and rota-
cuss shape and orientation coordinates. This discussion mions. This means that the potentilis a function only of
tivates the final subsection in which we introduce the gaugéh® two Jacobi vectors§y r;), and that it is invariant un-
potential and use it to express the angular momentum anger planar rotations _of these vectors. As for the kinetic en-
kinetic energy in terms of shape and orientation coordinate<€rgy, we will write it in one of three forms,
We will see that the gauge potential is that of a magnetic
monopole withg=13 [33]. T=3ea Tsa=3 1 ?= 321, (3.9
where we sum on the repeated indexand where the nota-
We follow the convention of Sakurdidg] and Messiah[40]  tion 'zl'zs means the usual Hermitian scalar product of two
in  defining the Wigner matrices as D/ (a,8,y)  complex vectors. We assume the Jacobi vectors have been
=(/mlexp(-iad)exp(-iBl)exp(-iyd)l/m’), whereas Wu and defined so as to absorb the mass factors in the kinetic energy.
Yang [39], Smith [29], and Wigner[41] use the convention Since the Lagrangia equalsT—V, the moment&ain
D) (@, B,7) = (/m|exp{ad)exp(B,)exp(yd)l/m'). R* notation are given by
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_&E_r?T_. 3.6
ps_ﬁs_&_ﬁs_rs, ( )

and the Hamiltonian is simply

H= 3 |pd?+V(ry). 3.7

When the three-body system is rotated by an amglthe
Jacobi vectors transform according to

rso—~>R(Ors,, a=1.2
rs—>S(0)rs,
z4—>€e''z, (3.9
where
R(a):(cc')sﬁ —sine) 3.9
sing  cosd
and
S(o):<R(00) R(Oe))' (3.10

Here R is an element of S@), and S is a 4X4 matrix

partitioned into four 2 2 blocks. These transformation rules

are a result of the fact that, is a linear function of the

We will say that two configurations have the sastape
if there is a proper rotation which takes one configuration
into the other. For a specific choice of configuratias- 0,
we consider the set of all configurations having the same
shape as;. This set will be a circle in configuration space,
which one can visualize as being swept out by the action of
SQO2) onr,. In mathematical terminology, this circle is the
orbit of rg under the action of S@). The space of orbits, or
in other words shapes, we calhape space

We define a useful set of shape, or internal, coordinates

by

i=1,2,3 3.13
where ry=03, T,=04, T3=05, and o4, o,, o3 are the
usual Pauli matrices. This particular cyclic permutation of
the Pauli matrices was chosen to insure thatwheoordi-
nates defined here agreed with those in RF8] and[36].
Observe that thev coordinates are invariant under physical
rotations of the Jacobi vectos, according to Eq(3.8).
Thus they are indeed shape, or internal, coordinates. We in-
troduce the bold notatiow for the three-dimensional vector
consisting ofw;, w,, w;. The domain of the allowed val-
ues ofw is all of R3, which is shape space for the planar
three-body problem.

Certain subsets of shape space are of special interest. The
planew;=0 consists of the linear configurations. The two-
body collisions form three rays emanating from the origin
and lying in the planav;=0. The originw=0 is the triple

Wi:ZlTiZs-

position vectors of the three particles and, hence, is rotategollision. The action of parity on a configuration is realized

by the same rotation matrix as the position vectors.

on shape space by a reflection about the plage 0. [Note

The Jacobi vectors also transform in a simple way wherthat two shapes of opposite parity in the planar problem are
the labels of the three bodies are permuted. It can be showiglated by a proper rotation in the three-dimensional prob-
[42] that under such a permutation, the Jacobi vectors trandem. Thus, the number of shapes in the three-dimensional

form via

a=1,2 (3.11)

whereK € O(2). Thetransformation3.1J) is often called a
kinematic rotation; we will also refer to it as @emocracy
transformation and we will refer to the grou®(2), when
used as in Eq(3.11), as thedemocracy groupWe think of

Isa—>Koglsg,

three-body problem is cut in half, and only the upper half-
space (;=0) of w space is neededThe w coordinates
have been used by several authors in the past, including
Smith[29], Dragt[43], Iwai [33], and others.

We define the variablev (without a subscriptas the ra-
dius inw space, which satisfies the following useful identity:

(3.19

W= (WiWi)1/2: ZZZS= | rsl|2+ | r52|2-

the democracy group as a continuous group which interpo-

lates between the discrete permutations mentioned abové&his follows from Eq.(3.13. Thus,w is just the square of
Notice that a democracy transformation is subscripted wittihe hyper-radius.

Greek indices, which label the Jacobi vectors, whereas a In order to uniquely specify a configuration, we must de-

physical rotatiorR as in Eq.(3.8) is subscripted with Latin

fine an orientation, or external, coordinate in addition to the

indices, which label the spatial dimensions of the Jacobi vecthreew coordinates defined above. The orientation argyle
tors. The value oK depends on the permutation being en-of a configurationr is defined to be the angle of rotation
acted as well as the masses of the particles. A democradietweenrs and some reference configurati¢of the same
transformation can also be written in complex form, where-shapé¢ which we denote by (without ans subscript. The

upon it becomeg,,—~>K,zZs5, OF,

z;—~Kzs.

(3.12

B. Shape and orientation coordinates

reference configuration depends on the shape, and we
will often write r(w) to emphasize this. Thus, the relation
between the reference configuratioftw) and some actual
configurationr is

rs=S(0)r(w),

We give here precise definitions of the concepts of shape

and orientation. We define a set of convenient coordinates on

(3.1

z=e'%z(w),

shape space, and discuss two conventions for defining the
orientation angle. Again, the discussion follows the spirit ofwhere we have introduceziw) as the complex vector cor-

Ref. [36], but is modified to treat the planar problem.

responding ta (w). Choosing a reference orientatiofw) is
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w1

w2

!
FIG. 1. lllustration of body frame in the bisector frame. ﬂ
_w3

equivalent to defining a body frame. That is, the components
of the vectorr(w) are the components of the Jacobi vectors
with respect to a body frame. When a vector can be referred FIG. 2. Illustration of shape coordinates and 8’ in w space.
either to the space frame or the body frame, we will follow (Note the nonstandard ordering of ajes.
the convention of omitting the subscript in the latter case.

Thus, there are several ideas tied up in the notat{ar):
First, the functions (w) specify a definition of a body frame
as a function of shape; second, the absence of théscript
(in contrast torg) indicates the body components of the Ja- B . 612 a’
cobi vectors; and third, the relatio3.15 are equivalent to 23=—iJwe'#"sin > (3.19
a coordinate transformation on configuration space
r¢—(0,w) taking us from the Cartesian laboratory coordi- The anglesa’,8’ bear a certain relation to ths; coor-
nates of the Jacobi vectors to shape and orientation coorddlinates, which is obtained by computing theaccording to
nates. All of this is explained in greater detail in RES6]. Eq. (3.16. This gives

We note that since the definitioni8.13 of w; and(3.14)

!

. o
5= \/We"ﬁ"zcosi,

of w are invariant under rotations, we have Wi=w cosx’,
W,=W sina’ sing’,
wi=2z'rz, w=7z'z=|z,|?+|2,|? (3.16
—W3=W Sina’ cos8’, (3.20
(without thes subscript on the). Herez=2z(w). which reveals thate’ and B’ are spherical coordinates w

We present two examples of body frame for later use. Inspace taken with respect to the axis, as illustrated in Fig.
the first, which we call the bisector frame, the bisector of the2. Notice that on thev, axis, 8’ is completely undetermined
two body-referred Jacobi vectargandr, is positioned atan  and, hencez® is ill defined. Furthermore, if one follows a
angle of— w/4 with respect to the body axis, as illustrated path around thev, axis allowing8’ to range from 0 to 2,
in Fig. 1. We place, in the lower half-planey=<0), so that  z® acquires a phase shift of 1. Thusz® is discontinuous by
the anglgB’ /2, illustrated in the figure, ranges between 0 anda minus sign a’ =0.

. We will, henceforth, plag a B superscript on the vectors ~ The second example of body frame is the principal axis
r, and related quantities to indicate that they are taken witlirame. In this frame, the body axes are taken to be the prin-
respect to the bisector frame. Next, interpretingithg plane  cipal axes of the configuration. For a given shape, there are
as the complex plane and shifting to complex notation, wefour different frames which satisfy this requirement. We fol-
have low Whitten and SmitjRef. [44], Eq. (1)] for the choice of
one of these four; the specification can be written in terms of
two anglesa and B, with 0<a/2<#/2 and O<B<w

Z?:|Z?|e—iﬁ’/2’ Z?:|Z§|eiﬁ’/2—iw/2. (3.17)
1 . a , a
PA_ —ipl2 &g s
o . zh=— Jw| e cos—~ +e'#? sin—~|,
Also, in view of Eq.(3.16), we can write Y ( 2 2)
B =/ l Bl= /W si o' pa_ | Jw| e 1412 COS—— eiF2 gin— (3.21)
|Zl|: WCOS?, |22|: Wsm7, (318) Zy —‘/2 w > 5 .

where the PA superscript indicates the principal-axis frame.
where O<a'/2< 7/2. Altogether, we can write This is in our notation; the connection with the notation of
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w3 be explained below; for now we simply note that the(3U
rotation corresponding to this element of @Dalso has a
significance in our formalism, as it relates the two different
definitions ofze C2. To show this relation explicitly, we let
aq and By be two fixed angles, and we consider two shapes,
one of which has coordinatgsv,a’ = ag, B'=fp) in the
coordinate syster(B.20, and the other of which has coordi-
nates(w,a=aqy, 8=y in the coordinate syster3.22.
Corresponding to these two shapes are two body frames and
two sets of body Jacobi vectors, as specified by E84.9
and(3.21). Then it turns out that the two sets of Jacobi vec-
tors are related by

w2
1 (1 i\[ Jwe A2 cosny/2
PA_ vy B_ . 0
6 7 =expimT,l4)z 5 (i 1)(—i\/We'B0/2 sinag/2)”
3.23

w
! This relation is somewhat tricky to use, because it must be
remembered that™* and z® refer to different shapes. It is,
FIG. 3. lllustration of shape coordinatesand 8 in w space. however, very useful in relating the bisector frame to the
principal-axis frame. For example, we will show below that
Whitten and Smith is given below in E¢5.10. To verify  Eq. (3.23 assists greatly in computing the coupling coeffi-
that Eq.(3.21) actually does represent a principal-axis frame,cients between Smith’s symmetric and uncoupled represen-
we can compute the off-diagonal component of the momentations of the hyperspherical harmonig]. The fact that
of inertia tensor. This is proportional to Iz;(zz), which is  the bisector and principal-axis frames are related by an
easily shown to vanish. The anglesand8 have a geometri- SU(2) rotation is a special property of these frames; not all
cal meaning in the-y plane which is more difficult to visu- choices of body frames are so related.
alize than that ok’ andB’, and therefore we do not supply
a figure analogous to Fig. 1. On the other hamdind 8 do C. The gauge potential
have a simple meaning i space, as follows by computing

w; according to Eq(3.16. This gives When using shape and orientation coordinates, a quantity

which we call the gauge potential naturally arises. The gauge
potential is a vector field on shape space and has properties
analogous to the gauge potential of magnetic theory. In this
section, we give explicit formulas, involving the gauge po-
tential, for the angular momentum and kinetic energy in
terms of shape and orientation coordinates. We explain how
the gauge potential transforms under a change of reference
orientation, and we present the gauge potential explicitly for
the bisector and principal-axis frames. Although we will ul-
timately be interested in the quantum wave functions, the
essential elements of the gauge theory are contained in the
‘classical mechanics. Thus, our development is mostly classi-
'cal, and we will comment briefly on the quantum treatment
at the end.

One can “discover” the gauge potential by expressing the
cause of the half-angles. _ angular momentum in terms of shape and orientation coor-

As explained in Ref[36], equations such a8.19 and  inates. To this end, we note that the angular momentum of

(3.21) can be viewed as specifying both a system of coordiyhe three-hody systerfz component only, since the motion
nates on shape space, as well as a fixing of a body frame fog planay can be written in the form

each shape. The shape coordinates defined by Bdk9
and(3.21) are w,a’,B’) and Ww,«a,B), respectively, which L=XeyYsa— YsaXsa= |m(les)- (3.29
are explicitly related to the coordinatesv{(, w,, ws) by

Egs. (3.20 and (3.22), respectively. However, Eq$3.19 Upon differentiating Eq(3.15), we find

and(3.21) also specify two different choices of body frame,
as we have discusse@the bisector and principal-axis
frames.

The most striking feature of the two systems of shape o o _
coordinates ,a’,3') and W,a,B) is that they are related wherez=z(w). Substituting this into Eq.3.24), we arrive at
by a rigid rotation inw space, i.e., by an element of &D
The rotation in question is by an angle efr/2 about the L=wé+Im
w, axis. The group theoretical significance of this fact will

W;=W Sina 0SB,
W,=W Sina sing,
W3=W COs, (3.22

which reveals thatr and 8 are the usual spherical coordi-
nates inw space taken with respect to theg axis, as shown
in Fig. 3. We see thaB is undetermined on the/; axis, so
the principal-axis body frame is undefined there. This is sim
ply due to the degeneracy of the moment of inertia tenso
The principal-axis body frame specified by E§.21), re-
garded as a function g8, is discontinuous aB=2m be-

iz9+ 22 3.2
120+ 5 Wi (3.29

z=¢'?

r 25 3.2
Z&ijj. (3.26
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Notice thatL is not dependent solely upghas would be the Unlike the gauge potentigN® (2.2), the singularities of
case for a rigid body. Instead, there is an additional termboth AB and APA extend to infinity in two directions. The
representing the contribution to the angular momentum fronsingularities ofA® lie on the entirew; axis, and the singu-
the changing shape of the three-body system. We define tHarities of AP* lie on the entirew, axis. Notice that in both

gauge potential by cases, the points where the gauge potential is singular are the
points where the reference orientation is ill defined.
1 s 0z} 1 9z' As with the angular momentum, the kinetic enefigglso
Aj(w) =3 Im| z ow;lw Im aw; ) (327 contains the gauge potential when expressed in terms of

shape and orientation coordinates. Using B85, we find
and use a boldA for the three-dimensional vector

- . +
(A1,A,,A3). In terms of the gauge potential, the final form T P e A A T
of the angular momentum is T=35722=5 wo"twoA-w+ 5 R oz, az) "1™
. . (3.39
L=w(0+A-w). (3.28

Completing the square in the above expression, we obtain
The value ofA; depends on the particular choice of ref-

erence orientation, which is specified by the functiats). 1 . . 1 az" 9z D
A different choice of reference orientation, saj(w), is T= 2 W(O+AW)?+ 2 R g_zj(y_zk> ~ WA A W Wy
related to the original choice by a physical rotation which 3.3
can depend on shape. Calling the angle connecting the two S _
choiceszn(w), we have The kinetic energy can be greatly simplified by the following
identity:
Z'(w)=e"""Wz(w). (3.29
9z" 9z 1

Substituting this into Eq(3.27), we find R a—zlﬁ—zk) ~WAA= - k- (336

A=A ¢9_77 (3.30 The above identity can be proved by first noting that the

] boow;” ' left-hand side is invariant under the gauge transformation

(3.29. We can then calculate the left-hand side in any gauge
or A’=A—V 5, whereV =4g/dw. Notice the similarity with  we wish to verify the equality. The bisector gauge is particu-
the gauge transformations of magnetic theory. Changing thkarly simple, and a straightforward calculation gives the in-
body frame is equivalent to changing the gauge, and fixinglicated result.
the body frame is equivalent to fixing the gauge. We will  With the identity(3.36) we have
thus often refer to a choice of body frame as a choice of
gauge.

It is straightforward to calculate the gauge potential in the
bisector gauge. Using the definition of the gauge potential
(3.27) with the expression£3.19 for the reference orienta- from which we calculate the momentum conjugatemp
tion, we find

T= L w(or At — |2 3.3
=5 W(O+A-W)*+ o W%, (3.37

aT Wy

. 1 cosa’ . WK—TWK—M-FLAK. (3.39

A= S wsina' P (3.39 .

We could also easily calculate the momentilurs dT/96

Computing the curl of this inv space, we find conjugate tod which would yield Eq.(3.28. The space on
which (w, ) are coordinates is the reduced phase space. We

VXAB:E w (3.32 do not includeL in the reduced phase space since it is con-
2 w3’ ' served.(We note that the three-dimensional problem is more

complicated, since the reduced phase space must contain the
which is the field of a monopole with magnetic charggen body-angular-momentum spher&he kinetic energy can be
analogy with Eq(2.1). This fact was first discovered by Iwai expressed in terms of the reduced-phase-space quantities as
[33].

Having already calculated®, the gauge potentig™ in L?

the principal-axis gauge is easy to determine. By using Eq. T= ﬂJFZWlW_ LA2 (3.39
(3.23 in the definition(3.27), one sees tha " has the same
functional form asAB, so long asa’ and B’ in AB are If we make the following substitutions in the Hamiltonian

replaced bye and 8. Hence, (2.3
APA_ . E CoOy - 33 A . E (3 4@
= Zwsina P (3.33 9—2, &-L, Q—=35, X=W, poa (o

Notice thatAPA is given by rotatingAB, as a vector field we see thatw— LA|?/2 is just the Hamiltonian of a particle
over shape space, by an angler/2 about thew, axis. in the field of a magnetic monopole with magnetic chgrge
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(Note that the angular momentumof the three-body system We can also give a characterization @fusing shape-
is not to be confused with the angular momentunof a  gpace concepts. Namelg,is the largest subgroup of $@
charged particle in Fhe field of a monop()lé'he kinetic en-  \which has a natural action on shape space. Consler
ergy T, thus, only differs from the Hamiltonia(?.3) by the < 5O(4) acting on a configuratiary, mapping it to another
multiplicative fac;or 4v and the additive ternh?/2w. o configuration p;=Qrs. Consider a new configuration
We now consider the quantum problem. The kinetic en-, !=5(6)r,, having the same shape ms Denote the result
ergy (3.5 can be quantized by replacing the classical mMo-g¢ Q acting onr. by p.=Qr.. If Q is to have a well-defined

m_entapsi by the quantum operatorsid/ors;. In analogy . action on a shape, the two configurationsandr, which
“have the same shape, must be mappe®Hhg two configu-

S
energy in terms of the shape and orientation operadtaad rations which also have the same shape. Thaiiand p!

T must be related by a rotation, say, by ang@le Explicitly, we
have
L= —i %'
QS(9)rs=ps=S(6")ps=S(8")Qrs. 4.2
9 . .
M= —i —— (3.41) It can be shown that if the above equation holds forr gl

then #’'=60. Thus, ifQ is to have a well-defined action on
shape space, it must commute with all physical rotations
The desired transformation can be effected in many ways, of( 9). This is exactly the defining condition o

greater or lesser sophistication. The result depends on We now show thag=U(2) and thag acts on the Jacobi

whether we simultaneously transform the wave function, tha{/eCtorSZ by unitary matrices irJ(2). LetQ e SO4) be a
is, whether or not we absorb some Jacobian factor into th?natrix wshich commutes with all rotafions e

new wave function. If we transform the wave function as a

scalar(without absorbing Jacobian factprghen the kinetic- [Q,S(6)]=0 4.3
energy operator as a function bfand #r is given exactly by

the classical expressidB.39, with the ordering of operators for all 6. It is convenient to expresQ as

indicated.

Qll Q12
Q= : (4.9
IV. SYMMETRIES OF THE KINETIC ENERGY Q21 Q2
AND THE REDUCED SYMMETRY GROUP . " .
where theQ;; are 2x<2 real matrices. Conditiori4.3) is
The hyperspherical harmonics are eigenfunctions of @quivalent td Q;; ,R(#)]=0, for alli,j=1,2 and allf. The

complete set of commuting ob.servables which can be conequirement thaQ;; commute with all rotations in SQ) is
structed from the operators which generate the grout50 equivalent to the requirement th@;; commute with the an-

We present below an investigation of the properties of430 tisymmetric 2< 2 matrix generator of S@), which is
and its action on configuration space, with an emphasis on

the geometrical relationship between configuration space and 0 -1
shape space. We find that there is a certain subgroup of J= 1 0
SQO(4), which we call the reduced symmetry group, for which

the action on configuration space is equivalent to an actiofThis requirement, in turn, is equivalent to the constraint that

(4.5

on shape space. This group is isomorphic tq3U Q;; have the form
A. Classical action of SG4) and the reduced symmetry group Q= ( a —b (4.6)
ij— .
Proper linear transformations of the momenta which pre- b a

serve the form of the kinetic energ$.5 belong to the group
SQ(4). Such transformations have an action on the classic
phase-space coordinates given by

a'|'his form of Q;; allows us to associat®;; with a complex
numberq;;=a+ib, which has the property that if we let
Qj; act on a two-dimensional real vector, suchrgs, the
re—>Qrs, ps—Qps, (4.1 action is equivalent to multiplication by;; on the corre-
sponding complex numbet, . By extension, the action of a
whereQ e SO(4). 4x 4 real matrixQ [which commutes with alS(6)] on a
In our subsequent definition of the harmonics, we shalreal four-vector, such as is equivalent to the action of the
choose one of the operators in our complete set to be theomplex 2<2 matrix,
angular momentuni, which is the generator of physical
rotations in S@2) according to Eq(3.8). In order to com- U—(qll %2)
plete our set of observables, we must then consider the op- oy O
erators which commute with. An obvious strategy for find-
ing such operators is to first consider the subgroup of45O acting on the corresponding complex two-vedor Further-
which commutes with all physical rotations in &) We  more, the constrainQ"Q=1 is equivalent toUTU=1, so
denote this subgroup bg. The generators off then com- U is a unitary matrix. Hencegg=U(2). [We do not need to
mute withL. impose the constraint det=+1 because this is already im-

(4.7
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plied by Eq.(4.3). This fact can also be seen on topological wPA= R(e,,— w2)wB, (4.12
grounds, sinc&; is connected.This completes the proof.

Note that if Q=5(8) for some 6, then the action of) whereR(e,,— 7/2) is a rotation by angle- 7/2 about the
leaves the shape of a configuration invariant. Thus, with rew, axis. Therefore, ifw™ has spherical anglesaf ay,
spect to the action on shape space, we might as well restrigd= 8,) with respect to the three axis, ther? has spherical
our attention to the groug defined as the subgroup ¢f  angles(a’=aq, B’ = o) with respect to the one axis, in the

whose e|ementsi taken in the Comp|ex2 representation' sense illustrated in Flg 2. This eXplainS the Slmllarlty be-
have unit determinant. We cafl=SU(2) thereduced sym- tween Egs(3.20 and(3.22.

metry group There is another class of reduced symmetry transforma-
Next we explicitly determine the action @ on thew  tions of interest which we have not yet encountered. Con-
coordinates. We first note the identity sider the matrixJ(6) e SU(2) given by
UfzU=R(U) ., 4.8 e 102 _
i ( )I] ] ( ) U(6)=( 0 ei0/2 :eflﬁ'rl/Z’ (412)

whereU e SU(2) and whereR(U);;=Tr(rUr;U")/2. The
function R(U) defined by these formulas is a representationyhich counter-rotates the two Jacobi vectags and z,,

of SU(2) by means of matrices in £8), but it is not the  ¢5sing the angle between them to opersbyThe action of
conventional one in the theory of rotations because of OU(j(g) on shape space is given by a rotation by argy&bout
reordering of the Pauli matrices. In our scheme, it;is not thew, axis. Thus opening the angle between the Jacobi vec-

oi, wWhich generates rotations about ftite axis. Explicitly, 55 amounts to a rotation in shape space aboutthaxis.
we have

R(exp(—i 67 7/2))=exp( O X) (4.9 B. Reduced-phase-space expressions for the generatorsiof

. oA ) . This subsection is devoted to classical mechanics. The
whered is the angle of rotatiom is the axis of rotation, and  c|culations we present here are not strictly necessary for the
7 is the vector 1, 7,,73). _ logical flow of the paper, but are presented for completeness

We can now compute the action of an element of3U  angd as preparation for the quantum calculations, which will
on shape space. Let be the shape of a poim in configu-  appear in Sec. IV C.
ration space anw/' be the shape dffz; whereU e SU(2). Sinceg is a symmetry of the kinetic energy, its generators
Then are conserved in the ca¥e=0. We note that the word “gen-
erator” can be used in several different senses: it can refer to
the matrix generators of a group; to the classical expressions
(functions of theg’s and p’s) which generate the canonical
whereR=R(U). ThusgG acts on thew coordinates by ele- transformations representing the group action; to the infini-
ments of S@3), andr; generates rotations about theaxis.  tesimal generator&hat is, the vector fields on the classical

In this article, we have already introduced several operaphase spagevhich generate the group action; or to the quan-
tors which belong to the reduced symmetry group. For extum operators which generate the group action on wave func-
ample, a democracy transformatign(3.12 commutes with  tions. We begin with the A 4 real matrix generators, which
all rotations(3.8), and so has an action on shape space. Thave denote byG,, k=1,2,3, which are defined by associating
two cases dé&t=-+1 and deK=—1 are best handled sepa- the 2x2 matrix U=exp(—ifn/2) e SU(2) with the 4x4
rately. If deK=+1, thenK is itself an element of the re- matrix Q=exp(¥G,) as explained in Sec. IV A. Explicitly,
duced symmetry group §Q), andsince it is also greal the G, are
matrix in SQ2), it can beexpressed al§ = exp(—iyr,/2) for

W/ =(Uz)'7(Uz) =Rzi7zs=Ryw;,  (4.10

some angley (sincers;= o, is the only Pauli matrix which is 0 10 O

purely imaginary. Thus the action oK on shape space is G 11 -100 O

given by a rotation about ther; axis by angley. If instead 172 0o o0 o0 -1}

detK=—1, thenK is not an element of S@), but it does 0O 01 0O

belong toU(2). Therefore, we can writ = —iK’, where

K’ does belong to S(2), andwhere the phase factor i 0O 0 o0 1

represents a physical rotation by angler/2 [see Eq(3.8)]. 1 0 0 -1 0

The matriceK’ andK differ by a physical rotation and have Gz=§ o 1 0 o]l

the same action insofar as shape space is concerned. Now 10 0 0

K’ is a purely imaginary matrix in S{2), so it can be ex-

pressed asK’'=exg —im(n7+nm)/2] with nf+n3=1.

Thus, the action of eithéf or K’ on shape space is given by 00 -10

a rotation of7 about an axis perpendicular to thg axis. G :E 00 0 -1 _ (4.13
The matrixU=exp(nr/4) in Eq.(3.23, where it con- $¥2{10 o0 0

nects two configuration® andz™, is also an element of the 01 0 O

reduced symmetry group. If we let the shape coordinates of
these two configurations be® andwP”, respectively, then We denote the classical quantities corresponding to the
by Eq.(4.10 we have matricesGy by G, which are given by
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— L T
Gy=Ps: Gyl s= 3IM(Zi 7y Zs), (4.14) W[Im<% oz

]

+WkAJ}

where in the last equality we have used the correspondence

between the real and complex representations of the genera- az' az"
[ itie, =Im| (2'2)| -— nz|—(Z'12)| - — 2
tors of G. It is easy to show that the quantiti€®, have AW, AW
vanishing Poisson brackets with the kinetic energy +
T=ps-ps/2; the expressiongt.14) can be derived in a more _ 1 St d(zz') 2 (4.19
systematic manner from Noether's theorem, which gives 2i aw; ' k] & |
them as the scalar product of the momenta with the infini- ) )
tesimal generators of the classical group action. where we have used Eq&.16 and(3.27) in the first equal-

Since the groug, by construction, has an action on shapeity and where in the se(%or)d equality we have introduced the
space, it turns out to be possible to express the generatofyad or tensor produaz’ (like |z)(Z| in Dirac notation. The
G, as functions of the reduced-phase-space quantitiedduare brackets in the final expression are the matrix com-
(w,,L). To this end, we insert Eq$3.19 and(3.25 into ~ Mutator. Next, we express the definiti®16 of w; as

Eq. (4.14 to obtain W =Tr(zz' 7). (4.20
— 1. 1. az' i i i i ‘
Gy=— = Wt > W, Im| — 7z, 4.15 which we differentiate with respect tg; to get
a(zz")
. . 5kj=Tr Tk |- (42])
We next note the identity IW;
gz 1 w, The matrixa(zzT)lawj can be written as a linear combina-
Im(— rkz> =75 €k — —Ajwy. (4.1  tion of the identity and ther;, whose coefficients can be
IW,j w determined by the property Ta{r,) =25, . This gives
We temporarily defer the proof of this identity, and for now, azzh) 1
substitute Eq.(4.16 into Eq. (4.15 to arrive at the final w2 Titeh (4.22
result, j
. wherec is a number which does not concern us. Substituting
— Wi Wy - ) this into Eq.(4.19, we find
sz Ejk/W/ —_—— (0+AJW])
w 2 P
L w W[lm(v TvZ +WkAj}
—|wx (m—LA)— = —| , (4.17 ’
2w ‘
Try o= 5 e aln = (4.23
. . =—Z |7, 7«|Z= 5 €ijx,/L T/Z= 5 €k W/, .
where EQs.(3.39 and (3.28 have been used in the final 4i bk 2 Kk 2 Kk

equality. TheGy are identical to the conserved quantities

(2.5) of a charged particle in the field of a magnetic mono-
I I h in Eq.

?3?2(’)) S0 long as we observe the correspondences in Eq C. Quantum-mechanical action of S@4) and Casimirs
One can also check that ti@ commute with the kinetic We now shift our focus from the classical action of @D

energy by working directly with the shape-space variable$n phase space to the quantum action of(@®@n wave

(w,7,L). The easy way to do this is to invoke what is al- functions. The action 0fQeSQ4) on a wave function

ready known about the motion of a charged particle in they(rs) is given by

from which identity(4.16 follows immediately.

field of a monopole. To this end, we lét be the Hamil- - _q
tonian(2.3), with the replacements given in E@Q.40. Then (Qy)(rs) =h(Q7ry), (4.24
—1 2
by Eq.(3.39, we haveT=L/2w+4wH, so that where the caret oveR indicates that it is acting on a wave
— — ~ function as opposed to a configurati¢® is an operator,
{Gk. T}=4w{Gy ,H}=0. (418 while Q is a matriy. Let M be an antisymmetric matrix in

the Lie algebra s@), let Q(\)=¢eM, and letQ(\) corre-

The first equality is due to the invariance wf under rota- spond toQ(\) according to Eq(4.24). Also, defineM by
tions in w space, and the second equality follows for the ~ y

— a—iAM
same reason that the angular momentum of(Edp) is con- Q(r)=e . Then

served in the magnetic monopole problem of Sec. Il. We A d

note, however, that our goal in this section was not merely to(M ) (rg)=i —| (Q\)¥)(ro=i —| (e *Mry)

show that the operators expressed in E417) are con- dA A=0 dh A=0

served, but, more importantly, to show that they are the re- 9

sult of the SW2) symmetry generated by th@, . :irsiMij< l!/) (ro). (4.25
We return to the proof of Eq4.16). We begin with s



Thus we have

(4.2

The operatorsl\?l are, up to normalization, the generalized
angular-momentum operators introduced by Snih]. It

M= —rsMj;ps;.

will be from these operators that we later construct the com
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whereB,, k=1,...,6, is an orthonormal basis of(dpin the
sense that TEiTBj)= dij - The operatorA? is of interest to

us because it is the appropriate generalization of tl{8) so
Casimir L2. Since we have shown that the operat@g,
which generatgj, have well-defined actions on wave func-
tions over shape space, it may at first appear tht be-
cause it is constructed from operators which do not generate

plete set of commuting observables used in defining the hyg’ does not have a well-defined action on wave functions

perspherical harmonics.

We now consider wave functions which are eigenfunc
tions ofL with eigenvaluem. We denote such functions with
an m subscript, for exampley,,,. Using expressior3.41),
we factor such a function according to

Pm((6,W) = \/% ™ hrm(w), (4.27)

over shape space. However, as we now explafgcan ac-

tually be expressed as a function of B¢ alone.

It is well known that sé4)=su(2)®su(2). Infact, we can
choose one of the su(2) Lie subalgebras to be the Lie algebra
of G. The operatolL is then in the other €8) subalgebra.

We pick an orthonormal basB, of sa4) to take advantage

of this decomposition. In particular, leB;=G;, and
Bi,3=F;,i=1,...,3, wherd;, i=1,...,3 is arorthonormal
basis of the su(2) Lie algebra orthogonal to the Lie algebra

where¢, is a scalar-valued function defined on shape spacgy¢ G. We now define the following operators, which are ob-

We note thatg,, is gauge dependent, unless=0. Never-
theless, we shall viewp,,, as the “wave function over shape
space.” )

Consider now the operato3, given by Eq.(4.26) with
M=Gy. From Eq.(4.26), we see that th&, are linear com-
binations of the operatorss; with coefficients that are func-
tions ofrg;. The operatorpg; are themselves linear combi-
nations of the operators; andL, according to the chain
rule. ThereforeG, is a linear combination of the operators
7; andL of the form

G =f(6,w)L+h;(6,w)m;. (4.28
Since L commutes with G, we find [L,f(68,w)]
=[L,h;(#,w)]=0. Thusf and h; have no dependence on
0.

Now considerGy acting on a wave function),, of the
form (4.27),

~ 1 '
(leﬂm)(ﬂ,w)=\/7—w ML (fm+him) prl (W). (4.29

From this equation, we see that we can define an action
Gy on wave functions over shape space by

(Gym) (W) =[(fM-+hy 7)) ] (W), (4.30
so that Eq.(4.29 reduces to
" 1 ) ~
(Githm) (6, W) = N MG (W). (43D

(We use the same notation f&k whether it operates on

viously Casimir’s of each subalgebra individually:

Gzzékék, (433)
Since the generatoi§; andF; satisfy[G;,F;]=0, we see
that G2 and F? are Casimir operators of the entire(4p
algebra. In fact, it turns out th&2=F2, which is proven in
the Appendix. This implies

A2=2(G?+F?)=4G?, (4.34
which verifies our claim that? can be expressed solely in
terms of theG, and, hence, has an action on wave functions
over shape space.

D. Reduced symmetry generators
on shape-space wave functions

In Sec. IV B we expressed the classical genera@yof
the reduced symmetry group in terms of shape-space quan-
tities. Our principal result was given in E¢.17. In this
subsection, we will perform the analogous calculation for the
uantum-mechanical generato®, regarded as operators
cting on wave functions on shape space. In effect, we will
determine the explicit form of the coefficierftaindh; in Eq.
(4.30. As it turns out, the result is identical in form to the
classical result4.17), with the ordering indicated.
Let Q(\) =exp\G,) e SO(4), andconsider its(inverse
action on a configurations. We will write

TN =Q '(M)rs,

where here and below we use a tilde to indicate the
\-dependent quantities which result from this action. The

(4.39

wave functions over configuration space or wave functiongbsence of the tilde will indicate initial valudat A=0).

over shape spadeln analogy with the classical conserved
guantities G, discussed above, the operatdgg will be
shown to equal the quantum operat@2s5) of a particle in
the field of a magnetic monopole.

We now consider the Casimir operathf of sq4) given

by
(4.32

From the definition(4.24 of the quantum action of S@),
we have

QM) )6, W) = 4 6,), (4.36

\/Avhere'§=75()\), Ww=Ww(\). We differentiate this and use
Qx(N\)=exp(=iAGy) to find the following expression for
Gy:
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R d R d - V. HYPERSPHERICAL HARMONICS IN THE PLANAR

(GC(OW =i QUMYOW) =i P(6.W). THREE-BODY PROBLEM
" e (4.37 In this section we derive formulas for Smith’s hyper-
spherical harmonics by expressing them in terms of mono-

By assuming thaty= ¢, is an eigenfunction of. with ei-  pole harmonics. We note that the hyperspherical harmonics
genvaluem, as in Eq.(4.27), the above equation yields are a complete set of wave functions defined on the unit
N sphere in configuration spad¥. The explicit form of these
(Ghm) (6,W) harmonics depends on three things: the complete set of com-

muting observables of which the harmonics are eigenfunc-

_ i d imd . o~ tions, the coordinate system on shape space in which the
- \/T—Tr dn (€™ (W) harmonics are expressé¢ahore specifically, the angular co-
A=0 ordinate system on the spherevinspace, and the choice of
gimé _ Ibr(W) gauge. The complete set of commuting observables is taken
= ( —mo’(0) (W) +i w/ (0) |, to be (A%,L,N), where the operatd is left unspecified for
\/ﬂ IW; now except to note that it is chosen from the operators which

(4.39 generate the reduced symmetry gro@ipthis ensures that
N commutes withL. The choice ofN as well as the speci-
where the prime indicates differentiation with respecito fication of coordinates and gauge are presented below, where
From Egs.(4.10 and(4.9) we see that we discuss Smith’s two conventions for hyperspherical har-

_ R monics(the symmetric and uncoupled representations
W(\)=R(exp(iA7/2))w=exp —rgX)w, (4.39

whereg, is the unit vector along the, axis, and the signs in A. The symmetric representation
the exponents correspond to the inverse matrix in(E@5.

Differentiating this by and settingy = 0, we obtain In the symmetric representation, we choose the operator

N to beN;=2G;. We specify the gauge to be the principal-
W/ (0)= €W - (4.40  axis gaugeg3.21) and the shape-space angles todband 3
as given in Fig. 3. We give a brief account of why these
We seek a similar expression fgf(o), and tothis end we choices constitute the symmetric representation. In Sec.

note that IV A, we saw that proper democracy transformations have an
action on shape space given by rotations abouwthexis.
eMW2z = el f7({). (4.4  (In that subsection, democracy transformations were pre-
sented as mappings of configuration space or shape space
Upon differentiating this byx and settingh =0, we find onto itself, but they are easily transcribed into operators
. which act on wave functions on configuration space or shape
7k 27 (0)z+ gz(w) W (0), (4.42 space). The operatoGs=N3/2 generates rotations about the
2 w; ! w3 axis and, hence, commutes with the proper democracy

_ transformations. As for the improper democracy transforma-
wherez=2(w) and we have canceletl’. We multiply each  tions, we showed that they have an action on shape space
side of this byz", and after taking the imaginary part and which is equivalent to a rotation by about an axis lying in
rearranging terms, we find the following expression forthe w,w, plane. When these are transcribed into operators
0'(0): acting on wave functions on shape space, they do not com-
mute withN5, but rather take it inte- N5 under conjugation.
These facts explain why Smith called this representation
“symmetric.” We note that improper democracy transfor-
mations are equivalent to particle interchartigethe case of
where we have used Eg8.16), (3.27), and(4.40. We in-  identical particles
sert Egs.(4.40 and (4.43 into Eqg. (4.39 to arrive at the Let ¢, be a hyperspherical harmonic with angular mo-
main result of this section mentumm. Note that,, factors as shown in Eq4.27),

except that¢,, does not depend on the hyper-radiios

equivalentlyw). The angled and the functionp,,, depend on
(4.44 the choice of gauge, which we have already specified as the

principal-axis gauge. Next, since the operatars and N

We see that the operato@, are of the same form as the €an be constructed from th@,, they only affect thegy,
operators(2.5), taking into account the substitutio3.40.  factor of ¢r,,, as illustrated in Eq(4.31). The forms of the
From Eq.(4.44), we find thatA? has the form operatorsN;=2G; and A°=4G?, when acting onp,,,, are

given by Eqgs.(4.44) and(4.45, respectively. With the sub-

stitutions(3.40), these operators are the same as the angular-
. (449 momentum operatoris? andL 5 for the magnetic monopole,

which are shown in Eq€2.8) and(2.9). Therefore, with the
where the cross terms vanish as in the classical calculatiorfurther substitutionsy’—\/2 and u—n/2, the eigenvalues

~ 1w
0’(0)=[§W+WXA(W)

, (4.43

k

G=|WX(w—mA)—

2Wk'

2

m
|wX (77— mA)|%+

A2=4ékék:4 5
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of A’=4G? andN3=2G;3 become\ (A +2) andn, respec-  Ypfh o ol @, f) =€ ME2YRE | (@, B)
tively. We henceforth writeg, ,, instead of ¢, for the

eigenfunctions. Thus we have =5 ) Dﬁ,/im/z(—ﬂ,a,o), (5.9
m 2
2 — 2
A% prmn=4| WX (7—mA)| +(E }‘b)\mn where we have used Eq2.12 for Yns,one (With
g—m/2, /—\/2, andu—n/2). Note that Eq(5.5) implies
=N\ +2) drmn, (5D that theYHs, /2., Satisfy the same phase relatiofs13 as

the Yo /2n2- Note also that ther\? 5./, are normalized
to unity with respect to the volume element @itadg.
m w > ! ; :
WX (mm—mA)— = —} Dy =Ny mn- In fixing the final form of the hyperspherical harmonics,
2w, we require that they be normalized to unity. We write
(5.2 drgdredrgdrg=r3drdQ for the volume element, where
r=|rg is the hyperradius. Equatioii3.15 and(3.23 can be
According to Egs(2.10 and(2.11), the quantum numbers ysed to translate the volume elememt,dr,dredrg, from
m, \, andn have the constraints, the Jacobi coordinates into the coordinatess, 6,r), which
results in dQ = zsinadddadB. This equality can also be
found in Smith[Ref. [29], Eq. (38)], using the relations
(5.10 below to translate Smith’s result into our notation.
(Smith’s coordinateb ranges between 0 andr2thus cover-
m,\,n=even or m,\,n=odd. (5.4)  ing shape space twice. Our coordinates cover shape space
only once, and, therefore, we must include an additional fac-
tor of 2 when translating the volume element into our coor-
dinates) The hyperspherical harmonics must be normalized
with respect tad(). Since the monopole harmonics given in

the latter are in the north regular gauge and we require thEd- (3-8 are already normalized to unity with respect to the

principal-axis gauge for the former. Therefore, we now make’@lume eIeF“rpent sindadp, by ~ taking
a digression into the subject of gauge transformations ofPamn(@.B8)=2Y /2 no(e.B), the hyperspherical harmon-

N3pymn=2

—Asm,n=<\, (5.3

An easy way to obtain the eigenfunctiogs ., in Egs.
(5.1 and (5.2 is to use the monopole harmonics in Eq.
(2.12 (with the necessary changes of nota}ioexcept that

wave functions on shape space. ics will be normalized to unity with respect @). There-
We consider for a moment the general case of an arbitrar{Pre, the final form of the hyperspherical harmonics in the
gauge potentiaA and a transformed gauge potential, ~ SYMMetric representation is

which are related by Eq3.30. Let G be given by Eqg.
(4.44) with gauge potentiah and letG, also be given by Eq.

2 )
(4.44 but with gauge potentiah’. It is straightforward to DRl 0@, B) = Nz &MY voma @, B)
verify that if Y is a wave function on shape space with an- 2m
gular momentunm, then 12
_ DT e (—B,a,20). (5.9
= A n2-m2(— B a,20). (5.
Gie M7y=e MG, Y. (5.5

) o ) ) This expression agrees, up to an overall sign, with Smith’s
Thus, if Y satisfies the eigenvalue equatidis]) and(5.2)  expression[Ref. [29], Eq. (115]. To verify this fact, one

with gauge potentiah, then the wave function must be careful with the conventions for tiematrices(see
footnote 1, and note that Smith uses a different set of coor-
Y/ =g imny (5.6) dinates ¢,®,0'), related to ours by

satisfies the same eigenvalue equations with gauge potential -
A’. Therefore, Eq(5.6) is the gauge transformation formula ¢=6, O0'=0+ Vi
for monopole harmonics.
We now apply this formula to the gauge potentiaf& of

Eqg. (3.33 and ANR of Eq. (2.2, making the notational Note that the phase relatiof®.13 of the monopole harmon-
changeg— 1/2, x—w, and (4, #)— (a, ) in the latter. We  ics imply the following phase relation for the},:

A

—+-+1

find
~ PP S Aon S
-1 - 1 _ (GI_HGZ)'//)\mn: E_E 2" o 'r//)\mn+2'

_ b=

B
> (510

NS

o
Ea

n 12

APA_ ANR:

2w Sina

where we follow Eq(3.30 (identifying A’ with AP*andA  Smith’s phase convention includes a minus sign multiplying
with ANR). Thus »= /2, and hence, the left-hand side of this equation.
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B. The uncoupled representation

(w,6,a,B) and W, 6',a’,B’) as two coordinate systems on

For the uncoupled representation, we choose the operat§Pnfiguration space, then points andrg have the same
N to beN,=2G,, we choose the gauge to be the bisectorcoord'nate values, as measured in the two systems.

gauge defined in Eq.3.19, and we use shape coordinates

(w,a',B") defined in Eq.(3.20. As noted in Sec. IV A,

Now consider the  hyperspherical harmonics
zpfmnw,a,ﬁ) in the symmetric representation, defined by

G, generates reduced symmetry operations which countenEq-2 (5.9, which are simultaneous eigenfunctions of

rotate the two Jacobi vectors. Thus, if the potential energy i

independent of the angle between the Jacobi vedigrsyill
be a symmetry of the Hamiltonian.

,L,N3). These are functions on configuration space, and
can be expressed in a variety of coordinates such as
Pian(Ts)s Yrmn(Zs), OF rmn(W,0,a,B8). Of course, these

Although the complete set of commuting observables, thdunctions are actually independent \of
gauge, and the coordinate system are all different in the sym- T0 obtain eigenfunctions df, from those ofN3, we note
metric and uncoupled representations, one can obtain tHat sinceG is a tensor operator, it satisfies the identity
harmonics in one representation rather easily from the ha©®(n,y)GQ(n,y)"=R(n,y) "'G. This implies that

monics in the other. This is because the observalieand
N,

by angle— 7/2 about thew, axis in shape space.
To see how this works, let; andr. be two configura-
tions, denoted in complex form kg andz,, which corre-

spond to shapew andw’, respectively, according to Eq.
(3.13. Furthermore, we will suppose that these two configu
rations are related by a certain reduced symmetry operatio

Speaking first of &4 real matrices in S@), we will de-
note a reduced symmetry operation by(n,y)
=exp(yn-G), whereG=(G,,G,,G3) andn is a unit vec-
tor. The 4x4 real matrixQ(n,y) corresponds to the:22
complex matrix U(n,y)=exp(—iy-#2)eSU(2), the
3X3 real matrixR(n, y) =exp(ynx) e SO(3), and the op-
erator Q(n,y) =exp(~iym-G), which acts on wave func-
tions as in Eq.4.24. Here G=(G;,G,,G3). We will be
particularly interested in a rotation by 7r/2 about the two
axis; in the following we will write simply
Q=Q(&,—7/2), U=U(&,— 7/2), R=R(&,—w/2), and

Q=0Q(&,,— m/2) for this case. To return to the two configu-
rationsrg andr/, we will assume that they are related by this

rotation, so that

r«=Qrg, zs=Uz.

(5.12

Then it follows from Egs.(4.9) and (4.10 that w=Rw’,
which is essentially the same as K4.11). Also recall from
the discussion following Eq4.11) that if w’ has coordinates
(W,agq,B) inthe (w,a’,B') coordinate system, them has
the same coordinatesv(ag,B,) in the (w,a,B8) coordinate
system.

Now, suppose the configuratiag has orientation anglé
in the principal-axis gauge, and configuratizinhas orienta-
tion angled’ in the bisector gauge, so that

z=e'PAw), z.=€e?Bw),

(5.13

wherez™ andz® are defined by Eqg3.21) and(3.19. But
Eq. (3.23 is equivalent toz"A(w)=Uz%(w’), which when
combined with Eqs(5.12 and (5.13 gives simply#=24'.
We will call this common angledy. Thus, if we think of

the principal axis and bisector gauges, and the
(w,a,B) and (w,a’,B’) coordinate systems are all related
by the same reduced symmetry operation, which is a rotatio

QG,Q'=G;,,

lhere we continue the notati@Ahz Q(ez,— l2), etc. From
this it follows that if we write

(5.19

WS (19 =(Q Y (1o, (5.19

_ﬁhen ¢ is an eigenfunction of £%,L,N;) with quantum

numbers §,m,n).

We will take Eq.(5.15 as the definition of the hyper-
spherical harmonics in the uncoupled representation. To ex-
press these harmonics in the coordinatés,¢’',8’), we
first note that

QY2 (rd) = ¥S(Qro), (5.16

and then we replace; in this equation by, and use Egs.
(5.12 and(5.15 to find

(5.17

P19 = Rmn(Ts).

By expressing s andr. in the two coordinate systems, we
have

L0 =060,a" = ag,B' = Bo)
= Yrmn( 0= 00, @=a0,8=Bo).  (5.18

In other words, the hyperspherical harmonics in the un-
coupled representation have the same functional form with
respect to the coordinate®'(«’,B’) as those in the sym-
metric representation have with respect to the coordinates
(0,a,B). Therefore, by Eq(5.9), we have

(A+1)2 R
Wpﬁfg—m/z(—ﬁ a',20").
(5.19

This can be reconciled with Smith’'s resRef. [29], Eq.
(74)) by noting that Smith uses coordinat¢és , ¢_, andy
given by

0 )=
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Finally, it is easy to obtain the coupling coefficients, i.e., element of SU(2) which rotates one equilibrium point into
the unitary transformation connecting the harmonics in theynother.
two representations. We simply note that because we are |t js natural to ask whether the gauge theoretical treatment
using the phase gonvenho(ﬁ-l])- the fU”Ct'OHS%mn. (for  of the hyperspherical harmonics can be generalized to cover
fixed A andm, variablen) form a standard set of basis func- the three-dimensional problem or to include more than three
tions in an irreducible representation of &). Therefore,  particles. In principal, there is no reason to believe that it
cannot since the gauge theory itself can be applied to the
- S L two- and three-dimensionai-body problems for arbitrary
QMY (19 =2 ¥ (rd[DV2(0,— 12,0010 20000 n. The development in this paper would require significant
n’ (5.21) modification to handle the three-dimensional three-body har-
' monics. This is largely due to the fact that in the three-
dimensional problem, the reduced symmetry group must
commute with all rotations in SO(3) instead of just @D
The reduced symmetry group is therefore a proper subgroup
of SU(2), which consists, in fact, of just the democracy trans-
e /2 s formations. Thus the operators used to define the hyper-
Y= 2 R G /AT N (5.22  spherical harmonics do not act on shape-space wave func-
n’ tions, and the problem of finding hyperspherical harmonics
does not obviously reduce to a problem of finding harmonics
s _ A2 uc on shape space. The planabody problem does not have
Yimn HE Aoz w2 712 Y .23 these difficulties. In this case, the reduced symmetry group is
SU(n—1), the generators of which, together with provide
is the reduced Wigner matrix. The above can€hough operators to construct a complete set of commuting
observables. Thus the problem of finding hyperspherical har-
|monics on configuration space can be reduced to finding har-
monics on shape space. This approach is, however, not with-
out complications, as the space of shapes with unit hyper-
radius is no longer a simple sphere for the plandrody
VI. CONCLUSIONS problem (i>3) but is instead the complex projective space

By connecting the hyperspherical harmonics with theCP"~? [46]. Thus the harmonic analysis of the complex pro-

monopole harmonics, one can exploit the properties ofective spaces may be of interest for future work on the pla-

monopole harmonics to understand the properties of hypef@r n-body problem.

spherical harmonics. This is especially true with respect to

changes in body frame conventions; we can transform the

harmonics from one body frame convention to another by ACKNOWLEDGMENTS

means of gauge transformations on the monopole harmonics.

Wu and Yang have provided a clear geometric constructio
¢

of the phase acquired by the monopole harmonics under su eory and the symmetries on shape space. This work was

a gauge transformatiof34]. Up to proportionality, this
phase is just the solid angle subtended between the new aS ppé)lrzt_eﬁlcboy?:P;ZSLJF.(S)é(%eE;partment of Energy under Contract

the old monopole strings. This construction, therefore, gives
a convenient geometric description of the phase acquired by

the hyperspherical harmonics under changes of body frame, _ ) )
Our formalism also easily handles Eckart frames. If the APPENDIX: EQUALITY OF THE CASIMIRS  G* AND F

equilibrium shape of a molecule is denoted Wyit can be In this appendix we prove the equality of the Casimir

shown that the gauge potential in the Eckart frame is giveryperatorsG? and F2, defined in Eq.(4.33. That equation

by a rotation applied tA" so as to place the monopole refers to operators; we begin our discussion here with the

string through—w. One would then construct the hyper- 4x 4, antisymmetric real matrices which constitiste(4).

spherical harmonics from the monopole harmon'{(gﬁ in- The matricesGy, k=1,2,3, which are generators of an

stead of they¢,, . The coupling coefficients between differ- su(2) subalgebra of §4), aredefined by Eqs(4.13. As

ent Eckart conventions could be found much as we found thexplained in Sec. IV C, there is another su(2) subalgebra of

coupling coefficients between the symmetric and uncoupledo(4),orthogonal to the first, and we IBt , k=1,2,3, be the

representations, except that one would have to deal with thgenerators of this orthogonal subalgebra. Explicit forms for
theF, are given below. From these two sets of generators we
construct two CasimirsG,G,=G? andFF,=F?2. We wish

2We believe there is an error in Smith's expression for the coul0 Show that these Casimirs are equaf=F>.

pling coefficientsa,(m_ ,s). If we denote the coefficients com-  1he matricesGy and Fy taken together form a basis in

puted by Smith as, (m_,s), then we believe the actual coupling S0(4). Another convenient basis is the set of matrices

coefficients (with Smith’'s phase conventions to be  (A12,A13,A14,A23,A0,A3,), Where thek/ component of

a,(m_,s)=a,(m_,—s). the matrixA;; is given by

where (0;- w/2,0) are the Euler angles (ij Thus from Eq.
(5.15 we have

wheredﬁ/,fzvn,2
be reconciled with Smith’s coefficiengs (m_ ,s) [Ref.[29],
Eq. (83)] if one takes into account the differences in overal

phase between our harmonics and Smith’s.

The authors would like to thank Matthias Reinsch for
any useful discussions, especially with respect to gauge
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1 Ci1=3AjA;=G*+F?,
(Aij)k/:E(ﬁik‘Sj/_5i/5jk)- (AL)
Co=1 €ijk AjAy, = — G2+ F2, (A3)
Note that thei-j index onA labels the matrix, and not the
components. The matrid;; is antisymmetric and nonzero where the indices are summed from 1 to 4. We wish to show
only in the slotsij and ji, and satisfiesh;;=—A;;. The that C,=0, which impliesG®’=F?. This is easily done by
transformation connecting the two bases is substituting Eq.(Al) into the second of Eq9A3), which
gives
1
Glzﬁ(AlZ_ASA)v .
(C)mn=17 €ijk AAD mi(A/)in

Gzzé(Am—Aze), =35 €ijk/(SimOjr = Sir Sjm) (SkrS/n— Sknd 1)

= 3 €ijk/ OimOjr Skr O,n=0. (A4)

1
63:5(—A13—A24), Similarly, the CasimirC, vanishes if the matrice§,,
Fr, andA;; are replaced by the operatdBs, Fy, andA;;
which correspond to them according to Eg.26. In this

1 h
E.=—(A.,+A ), case we nave
1 ‘/2 ( 12 34

1 Cr=1 Gijk/AijAk/
Fo=—(—Apu— Ay, :
2 ‘/2( 14 23)

_1 _ 1
=7 €ijik/ (A mnl Pm(A) gt tPq= 7 €ijkTPir /P

1 =1 €. (11 ,PiPc—iripedi,) =0, (A5)
FSZ%(_A13+A24), (AZ) 2 Cijks ]/plpk ]pk i/

where we omit thes subscripts used in the main body of the
where theG equations are equivalent to Eq4.13 and the  paper. This proves th&? andG?, defined in Eq(4.33, are

F equations serve to define tiirg explicitly. equal. We note that for other representations ¢#3p be-
Two Casimirs can be constructed from tAg and ex-  sides the two treated in this appendix, the two Casir@ifs
pressed in terms of th&, andF,. These are andF? are not necessarily equal.
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