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We continue our study of the fractal structure of escape-time plots for chaotic maps. In the preceding
paper, we showed that the escape-time plot contains regular sequences of successive escape
segments, called epistrophes, which converge geometrically upon each end point of every escape
segment. In the present paper, we use topological techniquis stow that there exists a minimal
required set of escape segments within the escape-time (@lotjevelop an algorithm which
computes this minimal se¢3) show that the minimal set eventually displays a recursive structure
governed by an “Epistrophe Start Rule:” a new epistrophe is spawited + 1 iterates after the
segment to which it converges, whele is the minimum delay time of the complex. @003
American Institute of Physics[DOI: 10.1063/1.159831]2

Topological methods and symbolic dynamics have long map required for a point to escape the complex, plotted as a
been valuable tools for describing orbits of dynamical function along the line of initial condition§~ig. 2). For cha-
systems. For example, if a particle in the plane scatters otic systems, such escape-time plots have a complicated set
from three fixed disks, labeled A, B, and C, its orbit can  of singularities and structure at all levels of resolutforf
be characterized by a sequence of symbols, such as These fractal escape-time plots play a central role in a variety
...ABA*BCBCA.. ., giving the sequence of collisions of classical decay and scattering problems; we have been
with the disks. The asterisk gives the location of the par- particularly motivated by the ionization of atoms, especially
ticle at the present time; as time goes by the asterisk hydrogen in parallel electric and magnetic fields.
takes one step to the right. In this paper, we describe a The escape-time plot of a discrete map is divided into
new kind of symbolic dynamics, in which the symbol se- “escape segments,” intervals over which the escape time is
guence describes the structure of a curve in the plane. constant. In Paper |, we proved that there exist certain im-
The relevant curve is not the trajectory of a particle, but  portant sequences of consecutive escape segments, which we
rather an ensemble of initial points in phase space—the called epistrophes, at all levels of resolution. The epistrophes
line of initial conditions. This line winds around “holes” are characterized by the Epistrophe Theorem, whose core
in the plane in a manner described by the symbol se- results are(1) each end point of an escape segment spawns
guence. The dynamical map applied to the line induces a a new epistrophe which converges upon(&) in the limit
map on the symbol sequence, which is more complicated n;—<, every epistrophe converges geometrically, with rate
than a simple shift. We use this symbolic dynamics to equal to the Liapunov factor of the X point; (3) the
derive properties of the epistrophes introduced in the asymptotic tails of any two epistrophes differ by a simple
preceding paper. In particular, we use it to obtain a  scaling.
“minimal set of escape segments” and an “epistrophe The focus of Paper | was the asymptotic behavior of
start rule.” epistrophes. In the present paper, we address how epistro-
phes begin. We use the topological structure of the ho-
moclinic tangle and the line of initial conditions to show that
I. INTRODUCTION there is a certain minimal set of escape segments. For this
minimal set, we prove the Epistrophe Start R(ldeorem

As in the preceding papetPaper J, we study maps of 1), which says that after a sufficiently large time, each epis-
the phase plane, having an unstable fixed p@ntX poin)  trophe begins some number of iteratdsafter the segment
and an associated homoclinic tangle of stable and unstabigiat spawned ifi.e., the segment upon which the epistrophe
manifolds(Fig. 1). The stable and unstable manifolds inter- converges The numben is the same for all epistrophes of
sect transversely, bounding a region of phase speaed  a given map and is dependent on the topological structure of
the “complex”) from which a trajectory may or may not the tangle; explicitl,A=D+1, whereD is the minimum
escape. We consider an initial distribution of points along adelay time of the complex, that is, the minimum number of
curve passing through the compléke line of initial condi-  iterates a scattering trajectory spends inside the complex.
tions). The escape-time plot is the number of iterates of therhe bulk of our effort is devoted to developing an algebraic
algorithm for constructing the minimal set of escape seg-

3Electronic mail: kevinm@physics.wm.edu ments for a general line of initial conditions. This algorithm
YElectronic mail: jpdelo@wm.edu allows us to compute the initial structure of the escape-time
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0.8 of symbolic dynamics which we call “homotopic lobe dy-
06 namics.” From the symbol sequence, one can readily read off
the structure of the minimal set of escape segments. Lines
0.4 with different symbol sequences may have different minimal
sets; however, at long enough times, these minimal sets al-
02 ways obey the Epistrophe Start Rule.
a 0.0 Some escape segments, such as that marked with an as-
terisk in Fig. 2, are not within the minimal set guaranteed by
0.2 the topology. These segments are “surprises” which, within
04 the present topological analysis, we cannot predict. Since
they break the regular structure and since they often have no
-06 obvious connection with any of the epistrophes, we call them
08 “strophes” as in Sec. Il B of Paper |. Strophes interfere with

-1.0 0.5 0.0 0.5 10 15 2.0 25 the self-similar structure of the fractal and typically do not
go away in the asymptotic limit, resulting in what we called
FIG. 1. A phase space portrait is shown for our saddle-center map, WhiChepistrophic self-similarity” in Sec. Il C of Paper I. Despite
possesses a homoclinic tangle. The line of initial conditiggscoincides the presence of these strophes the minimal set often seems
with g=1.72. : ' : . .
to accurately describe the early and intermediate time struc-
ture of the escape-time plot.
Patterns similar to our Epistrophe Start Rule have been

lot for iterates before the Epistrophe Start Rul tsin. Th . ! .
plot for frerates betore the EpISrophe Start KUe Sets in eeen in other work. In the numerical study of Tiyapan and

Igorithm is th dt the Epistrophe Start Rul . ) .
?tlsge(l)fn M 1S then used fo prove the Lpistrophe Star ué]affel“ epistrophes and the Epistrophe Start Rule are evident

A critical aspect of this paper is our use of homotopym the structure of the initial angle-final action pl@nalo-

theory. We develop the necessary formalism in Sec. I, and°ys Iio ét_Qf es(jcape-gn:g dp)ot S'|m|larly, Jung and
prior knowledge of homotopy theory is not required. Homo- C0-WOrker used symbolic dynamics _to _construct a treg-
topy theory provides an algebraic framework for describingd"'jlgram that gives a comparable descrl_ptlon of a scattering
the topological structure of curves in the phase plane. As Wgy_s:tem. In _e_ach case, the autho_rs consider a specific Im_e of
shall explain, the phase plane has a set of “holes” into WhichmItIaI cpndmons that is farﬁoutzyde of the complex and is
the line of initial conditions cannot pass. A symbol sequencéOpOIO%E%Iy simple. Easto ,fqllowed by Rom-Kedar and
can be used to describe how the line circumvents these hole t_hers, showed that recursive patterns also apply to ho-
As the dynamics maps the line forward, there is an induce

oclinic intersections between the stable and unstable mani-
dynamics on the symbol sequence, representing a new kins(%lds' Thus, it may not be surprising that comparable patterns

ould apply to the intersections between the stable manifold
and an arbitrary line of initial conditions, at least at suffi-
ciently large iterate. But at what iterate does this pattern set
in, and what is the minimal set before it sets in? Algorithm 1
answers both these questions, as well as giving a simple
proof of the Epistrophe Start Rule. An important observation
is that the escape-time plot depends both on the topology of
the tangle and on the topology of the line of initial condi-
tions.

The paper is organized as follows. Section Il motivates
our study by presenting numerical computations on a par-
ticular saddle-center map with a chosen line of initial condi-
tions. Section Il is the theoretical heart of the paper, in
which we formally develop homotopic lobe dynamics. Sec-
tion Il D contains Algorithm 1 for computing the minimal
set of escape segments. Section IlIF contains Theorem 1,
which includes the Epistrophe Start Rule. In Sec. IV we ap-
-0.08 -0.08 ply our techniques to the escape-time plots for two represen-
0.10 0.10 tative lines of initial conditions. Conclusions are in Sec. V.

Appendices A and B contain the proofs of Algorithm 1 and
-0.12 -0.12 . . . .

5 23 2 100 4 &5 15 16 0 m Theorem 1, respectively. Table | summarizes the notation in

AL n this article.

FIG. 2. Escape data; andn,, are plotted for the saddle-center map in Fig.

1. On the right, the number of iterates required to escape is plotted as a
function of p parametrizing the line of initial conditiong,. The escape Il. NUMERICAL DATA FOR AN EXAMPLE SYSTEM

segment marked by an asteriskrat= 15 is the first numerically computed .
segment that is not in the minimal set; it is a strophe. On the left is plotted ~ AS an example we study the majpt defined by Egs.

the winding number of the trajectory as it escapes to infinity. (A1)—(A3) of Paper | using parameter values=1.5, f
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TABLE I. Notation summary. ments atn;=3,4,5 in Fig. 2 correspond to the three
: intersections ofZ, with the lobesk_,,, n=3,4,5, shown in
M Dynamical map .
Zy Unstable fixed point Fig. 1. .
S u Tangled branches of the stable and unstable The Epistrophe Theorem of Paper | says that the escape-
manifolds time plot contains sequences of escape segments, called epis-
Pn, Qn (—ee<<n<e)  Homoclinic intersections trophes. Several epistrophes are denoted by arrows in Fig. 2.
‘. (oene) :22;’; :';Tj SCZ’;?U?; ® e The first epistrophe starts at=3 and converges monotoni-
no n —e<nN<® -
o Line of initial conditions cally upward, cont_amlng one escape segment for aach
t Path-class of’, =3. A second epistrophe begins a{=9 and converges
D Minimum delay time of the complex downward upon the end point of tiie=3 segment. We say
A, JA Active region and boundary of the active region that then; =3 segment “spawns” this epistrophe. Two more
/':QE‘AiOJTW) /':Ot'?s in the active rig'lo” epistrophes are spawned mt=10 and converge upon the
~ AUt ctive region minus holes two end points of then,=4 segment. Similarly, the,=5
&y Uy Paths alongS andi{ boundaries oE, - L0
S Co Paths alongs andi/ boundaries of, segment spa\(vns.two more epistrophes _beglnr_urrg atll.
€, Uns Sy Cn Path-classes f, , Uy, S,, Cn The data in Fig. 2 suggest the following Epistrophe Start
F Path-class;C, " - *Cp Rule: each end point of an escape segmenh aterates
(A%, a) Fundamental groupoid of path-classesAih spawns an epistrophe which beginsnat A iterates, where

having base points i in this caseA = 6. This recursive rule is formulated precisely

by Theorem 1 in Sec. llIF. In generah=D + 1, whereD
describes the global topology of the tang&ec. Il A). The

=0.25, m=0.57. Figure 1 shows a phase space portrait fofact thatA =6 in Fig. 2 is a consequence of the fact tBats
this map, along with the line of initial condition&, consid-  INtersectsCs (and no earlieC,, n<3) in Fig. 1.

ered here. The same map is plotted in Fig. 1, Paper |, but ©On the left of Fig. 2 are plotted the winding numbers
with a different line of initial conditions. of the escaping trajectories, i.e., the number of times a given

We review the basic picture of phase space transpoﬁra!eqtqry winds around the central stable zone as it escapes
described in Paper | and Refs. 18, 19, 21, and 22. The matﬁ infinity. Notice that _aII _segments of the epl_str_ophe begin-
M has an unstable fixed poirfX point) denotedz and MNg atn;=3 have winding numben,,=1. Similarly, all
having Liapunov factorr> 1, which is the larger of the two S€9ments of the epistrophes spawned byrtje3,4,5 seg-
eigenvalues of\ linearized about,. The X point has an Ments have winding number, =2. The data in Fig. 2 thus
associated homoclinic tangle consisting of the brafobf ~ Suggest that all segments of an epistrophe have the same
the stable manifold and the branshof the unstable mani- Winding number and that this number is one greater than the
fold (Fig. 1). The complexis the region of phase space winding'number .of the segment which spawned the epi.stro—
bounded on the north by the segment®tonnecting the phe. This rule. WI|'| be precisely formulated and proved in a
homoclinic intersectiorP, to zx and bounded on the south SéParateé publication.
by the segment off connectingP, to zyx. The forward and
backward iterate®,= M "(Py) are homoclinic intersections
with the same sense &. The homoclinic intersectio®g
and its iterate®),= M "(Q,) have the opposite sense. We introduce a new kind of symbolic dynamics, where

Theescape zone §is the lobe bounded by the segmentsthe symbol sequences refer to paths in the plaather than
of S and/ joining Py to Q. It maps forward to the lobes trajectories of the mgpThis symbolic dynamics allows us to
E,, n=0, which all lie outside the complex, and backward identify and describe a minimal set of escape segments along
to the lobesE_,,, n>0, which all intersect the complex. an arbitrary line of initial conditions. The theory of homo-
Similarly, the capture zone g is the lobe bounded by the topy is central to our developmefit:>> Homotopy theory
segments o andl/ betweenQ_; andPy. It maps forward  allows us to ignore the detailed positions of the stable and
to the lobesC,, n>0, which all intersect the complex, and unstable manifolds and concentrate instead on their global
backward to the lobe€_,,, n=0, which all lie outside the topological structure. Homotopy theory also provides a natu-
complex. Under one iterate of the map the escape Eone  ral algebraic framework for describing this global structure.
maps from inside to outside the complex and the capture We consider a “saddle-center mapt, which has a
zoneC, maps from outside to inside the complex; the lobessimple homoclinic tangle, as seen in Fig. 1 and described
E_, andC, together form what is called arnstile?*?*Itis  precisely by Assumptions 1-5 in Pape®l.
important to emphasize that all points which escapenin
iterates lie in the escape zok&e ,.

In the escape-time plot shown in Fig. 2, the number of  We define theactive region Ato be the union of the
iteratesn; to escape is plotted as a function along the line ofcomplex with all of its forward and backward iterates. By
initial conditionsL,. Figure 2 is analogous to Fig. 2 of Paper construction, it is an invariant region of the phase plane. The
[, but for a different choice oL,. For a givenn;, the set of boundary ofA, denoted¥A, contains alternating segments of
escaping points is partitioned into open intervals cabed S andi/ (the outer boundaries of capture and escape zones
cape segmentsn escape segment is one connected compaas well as theX point?’ The boundaryA has a well-defined
nent OfE_niI"ICO. For example, the first three escape seg-orientation determined by the orientations®andid.

Ill. HOMOTOPIC LOBE DYNAMICS

A. The homotopy groupoid
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FIG. 3. Qualitative phase space portrait for the delay tbrel. Capture
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zoneC, overlaps escape zorie_;, so some orbits enter the complex on 5 4 Qualitative phase space portrait for delay tibe3. Here C,

one iterate and leave on the next. The complex is bounded by the UnStablR/erlapsE ,. C, and, link Q,_, to P, encircling holeH
—2°* n n n— n

manifold/ from zy to Py and by the stable manifol§ from P, back tozy .
The active regiorA is the union of the complex witk,,, n=0, andC,,
n<0. The boundaryA of A contains alternating segmeris andi/, of the
stable and unstable manifolds. The inner boundarie€ pfand C,, are,
respectively, denoted, andC,,. The intersection ofC,, with E,_, is the
“hole” H,_,.

Let D>0 be the smallest integer such th@g , ; inter-

n_a; likewise,
U, andé&, link P, to Q,, encircling holeH , .

capture zoneC,,, joining Q,_; to P,, and we definé/, to
be the path along thi# boundary of escape zoiig,, joining
P, to Q,, as shown in Fig. 3. These paths lie in the boundary

sectsE,. Considering all scattering trajectories which begindA of the active region. Similarly, for eachy we defineg, to
outside the complex, enter the complex, and eventually exitye the path along th& boundary ofg,, andC, to be the path
D is the smallest possible number of iterates spent inside thalong thel/ boundary ofC,,. These paths bound the lobEgs

complex. For this reason, we c@l the minimum delay time
of the complex or simply thelelay time The delay time is
equivalently defined by the first pre-iterale ., of Eg
which intersect£,. In Fig. 1, the delay tim® is equal to 5.
(The delay timeD agrees with Easton’s signatuée’ 9

For the cas® =1, shown in Fig. 3E_; intersectsC,,
forming an open regiol _;=E_;NC,, which we view as
a holein the active regiorA. Mapping this hole backwards
and forwards gives an infinite set of holds . More gener-
ally, for arbitrary D we define the hole#l,=E,NC, 4,
—oo<n<o, whereA=D+1. (See Fig. 4 for the casB
=3.) The seA* = A\U ,H,, is the active region minus all the
holesH,,. TheD holesH_, ... ,H_; are inside the com-
plex; all other holes are outside.

The homoclinic intersectionB,, and Q,,, —<n<,
form a subsetr of the boundarnpyA. Two paths(or directed
curves having the same initial and final poings,s, € « are
said to behomotopicif one can be continuously distorted
into the other without passing through a hélg and without
moving their end point& The concept of homotopy defines
equivalence classes of paths; the path-classhamotopy

andC, in the interior ofA. Since each path,, C,, U,, and

S, has end points i and does not pass through any of the
holesH,, each belongs to a well-defined homotopy class.
These classes are distinct, since none of the curves can be
distorted into any other, and we denote thenehyc,, u,,
ands,, respectively. These homotopy classes encode global
topological information about the structure of the tangle.

Let IT(A*,«) be the collection of all homotopy classes
of paths inA* having end points inx. For a path-class;
eII(A*,a) joining 5, to s; and a path-clasa, e I1(A*,«a)
joining s; to s,, their producta;a, joins s to s, and is
constructed by first traversing a representative péile a;
followed by a representativd, € a,. The homotopy class of
a constant path, i.e., one which remains at a given p®int
€ « for all times, is denoted (with the end poinse « being
understood from context for all aell(A*,a), la=al
=a. For a classaell(A*,a), its inversea ! contains a
representative path fromn, but traversed backwards; clearly,
aa '=1. The sefl(A*,a) thus has most of the structure of
a group(multiplication, identity, and invergesxcept in one
respect: the produci;a, is not defined between arbitrary

class a is the set of all paths homotopic to an arbitrary pathelementsa; anda, but only between elements such that the
Aea. Thatis, two paths belong to the same homotopy clasfinal point of a; equals the initial point of,. A set with
if they can be distorted one into the other without changingsuch a restricted product is called a groupdidand
the end points or passing through any hole; likewise, twdl(A*,«) is called thefundamental groupoid of path-classes

homotopy classes andb are equal if a pattd in classa can
be distorted into a patB in classb.

in A* having base points im.
The dynamical mapM, acting on points in the plane,

We are particularly interested in the following paths. Forinduces a map on the path-classes, which forms a kind of

eachn, we defineS, to be the path along th& boundary of

symbolic dynamics on the symbots,, c,, u,, ands,.
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When M acts on these elements, it simply shifts their indi-

e epep L aaaa en can
M(en)=ens1, (1a
M(Cn)=Cny1, (1b)
M(Up)=Uns1, (19
M(sp)=Sp+1. (1d) & & @PrQi e QP Qo R QiPiQaPaQ

B. The minimal set of escape segments FIG. 5. Basis paths are shown for the active reghth with an infinite

We now turn our attention to the line of initial condi- number of holedd, punctured in itA* is bounded below byA, which has
. . . been straightened into a line. The basisIbfA*,«) contains the path-
tIOI_’]S, which we assume is given by a pal@that(l) has end classess,, andu, (—o<n<®) which link Q,_, to P, andP, to Q,, along
points \j A€ dA, (2) does not self-intersect, an@) does  sa. The basis also includes the path-classgs —=<n=<D (bounding
not intersect any holel,, or theX point zy.%° For the homo-  capture zongsande,, 0<n<w= (bounding escape zoneJhe classes,,
topy analysis, we must shift the end points £f so that 0<n. encircle the holesi,, and the classes,, n<D, encircle the holes

o ; . ; H_p.n_1- (Note that the ordering of the holes shown in the diagram does
they lie in the setx. For example’ we shift the initial point by not coincide with the order of their indiceszor D=1 or 3, the reader may

first traversing a pathl@ be_fore trayersingco; Ki begins verify that the curves drawn above agree topologically with those in Figs. 3
at one of the two points ire on either side ofr;, runs and 4.

alongdA, and finally terminates a; . By thus shifting both
end points, we assign t6, a well-defined homotopy class
Coell(A*,a).3t We
The intersection of with escape zonE _, is the set of
points that escape on timh iterate, and any connected com-
ponent of this set is called @scape segmergometimes we
will use the terme_,-segmento emphasize an intersection (...,-1,Co; C1,...Cpn; €0,€1,...;
with E_,. (The indexn may, in fact, be either positive or
negative) In this article, we answer the following two ques-
tions regarding a minimal set of escape segments. shown schematically in Fig. 5. The elements . .. cp are
Question 1: What is the minimum number of intersec-Special in that they are the only basis elements which must
tions possible between a representative péffe €, and a  enter the interior of the complex, encircling thi2 holes

then select path-classes(...,c_1,C9;C1,--.,
Cp;€p.€1,...) that encircle the holes il*, so that the
complete basis is

e 3S.1+805S1y -+ ---M_q,Ug,Uqg, .. 0), 2

representative patd’  ece_,? Hop,....H_1. _ .
The minimum number oé_ -segments is half the mini- The representative patt&,, &,, S,, andl, for this
mum number of intersections. basis satisfy(see Fig. 5 (1) no path in the basis intersects

Question 2: Letlje £, g/_nle CH g’_nze e n, (n, itsc_alf or any other path in the _bae{isxcept perhaps at Fhe end
point; (2) each representativ€, and C, in the basis en-
circles exactly one hole, and each hole is encircled exactly
once. Furthermordg3) all homotopy classes of relevance to
us, specifically, c,, ande,, —o<n<w, have a unique
finite reduced expansion in the badiq{A reduced expansion
is a sequence of elements in which any two adjacent factors
a anda ! have been canceledBecause of these properties

I£n anzv;erlng thesehqg,esn%r:gs, we allpvy c_)ursilves to dISénd the simple picture shown in Fig. 5, we call this basis the
tort Lo and€&_ , into pathsLy and&” | to minimize the num- “untangled basis.”

ber of intersections. Thus we are constructing a “distorted
escape zoneE’ , whose intersection withC is a set of
“distorted escape segments.” Henceforth, we omit the de- . ,
scriptor “distorted” and leave it understood. D. Symbolic dynamics of path-classes

The answer to the above two questions will be obtained ~Now we develop the symbolic dynamics that will de-
from the algebraic algorithm in Sec. Ill D, which will lead in scribe the minimal set of escape segments. First, however,
turn to a proof of the Epistrophe Start Rule in Sec. IIlIF.  we must assign a direction to each escape segment. Recall
that the two end points of ag,-segment {-c<n<) are
intersection points between a paffje e, and a pathl’
e €. Using the orientation of;, one of these end points
occurs first. We define the direction of an escape segment to

By a basis of a groupoid we mean a minimal set of point alongL’ from the secondend point to thefirst end
elements that generate the entire groupoid. To construct point. (See Fig. 6. Recall thatZ’ has an independent direc-
basis of the fundamental groupoitl(A*,«), we first tion defined by its own parametrization. An escape segment
include the path-classeq...,S 1,50:S1s---;---M_1, is said to “point forward” if its direction is the same a&'
Ug,Uq, ...) along the boundary of the active regioii. and to “point backward” otherwise. A point o4’ is said to

#n,) be paths which minimize all possible pairwise- and
self-intersections. In particul:;\f‘c“’,nl and Einz do not inter-

sect each other or themselves, afyhas the minimum num-
ber of escape segments at bothand n, iterates. What are
the positions of the escape segments aiterates relative to

those at p iterate®>3*

C. The untangled basis of path-classes
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M(cp)=F tug'F, @)
where
F=cicy--Cp. (8)

For convenience, one may also use the following for-
mula, which explicitly maps F forward

M(F)=cj'uy'F. 9

Carry out any cancellations of factors using at=1, so
that € is expressed as a reduced expansion in the un-
tangled basis

Then
FIG. 6. We illustrate the convention for assigning a direction to each escape 1 . .
segment. Each of the two bold segments shown has a first and second ef@  Each y, or u, = factor (n=0) in the expansion of

point; the first end point precedes the second end point as one moves for- corresponds to a segment that escapes jigN—n
ward along the_ patit;, . T_he direction of each segment points from the iterates and that points backwards or forwards, respec-
second to the first end point. tively.
(b) The relative positions of the,tfactors in the expansion
of £ are the same as the relative positions of their

lie on the “positive” side of an escape segment if the seg- corresponding escape segments alahg
ment points toward it and on the “negative” side otherwise. ] . o )

We need the forward iterates of all untangled basis ele- ~ This algorithm is justified in Appendix A.
ments expressed in terms of the untangled basis. For mogt Examples
elements, this is given by E@l). Only one additional equa-

tion is needed. We apply Algorithm 1 to compute the minimal set of

. escape segmenfsip to n;=3) for the simple exampl®
M(cp)=Cp,1=F U "eFsp.1, (3)  =1,¢€y=cp=c,. Carrying out step 2, the first three iterates
whereF is an abbreviation for the path-class of £, are computed to be
F=c10,C0€,...Cpep. (4) to=cy, (109

Notice that the right-hand side of E(B) [after substituting flchluilcy (10b)
in Eq. (4)] is expressed entirely in terms of the untangled

_~-1 -1.-1 -1
basis(2). Equation(3) is proved by first observing t2=c, UoCaUy €1 "Uo C1, (109
e_1=U_1(coegFep sy ep(epF tep tey 1), (5) t3=c;* U001U101 Uo C1U2 ‘e, U001U1 ‘c; fug ey,
(100

which, though rather lengthy, can be directly verified from a

figure such as 3 or 4; one simply concatenates the basis patW:bere theu,-factors have been underlined for greater visibil-
as shown on the right and then distorts the resulting path int8y- We now consider the consequences of results A and Bin
&_,ee_;. By applying M to both sides of Eq(5) and the algorithm. Examining; , it contains a single factary ',
solving for cp.,, one obtains Eq(3). It is convenient to Which yields a single forward pointing escape segment at

explicitly compute the forward iterate & from Eq. (3), n;=1, as shown in Fig. (8. Iterating forward to(,, this
111 n;=1 escape segment corresponds to the faefdrin Eq.
M(F)=e,7c; Uy "€FSp+1€p1- (®  (100; on either side of this factor are factoug and ug %,

For the purpose of computing the minimal set of escapé&orresponding, respectively, to backward and forward point-
segments, thee,, basis elementsn=0) and thes, basis INg segments that escape mt=2. lterating once more{;
elements(all n) can simply be omitted from any expression has fouru-factors eitherug or ug *) corresponding to four
that contains them, resulting in significant computational€scape segments af=3 and with relative positions and
simplification; for example, Eq<3), (4), and(6) above be- directions shown in Fig. (&).

come Eqgs.(7)—(9) below. This is explained more fully in Considering now an arbitrafp, €,=cp propagates for-

Appendix A. We can now state the algorithm for constructingward as

the minimal set of escape segments up to a given itdate €o=Cp, (119
Algorithm 1: Let £, be the line of initial conditions and

£,eII(A*,a) its homotopy class €1=cp1=F 'uy'F, (11b)

(1) Expand ¢, in the untangled basis, omitting any 62:cD+2=(F’luocl)uil(cflualF), (110
e,-factors for =0 and all s,-factors for —oco<n<<e. - —

(2) Computel by iterating ¢, forward N times using Egs. €3=Cp.3=(F tugcau;cy)uy H(c; tug teg tug '),
(1b) and (1c), and - T - T (119
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@\ 4 ; )] by F. The Epistrophe Start Rule

After a certain number of iterates, the minimal set for
T T any L, has a simple recursive structure described by the
1 following theorem, which is proved in Appendix B.

| 1 Theorem 1:Let M be a “saddle-center map” satisfying
; Assumptions 45 of Paper | (Ref. 26) and having an arbi-
2 0 +A trary minimum delay time B-1. Let £, be the line of initial

T conditions. There exists some iteratg>N0 such that the
| T -1 minimal set of escape segments at at N, iterates can be
S 1 | constructed from the following two recursive rules.

l l (i) Epistrophe Continuation Rul&very segment (in the
i minimal set) that escapes at-Nl iterates has on its

e, immediate positive side a segment that escapes at N

l v iterates and which has the same direction

(i)  Epistrophe Start RuleEvery segment that escapes at

123 1234 . :er N—A iterates (A=D+1) spawns immediately on

7 7 QQ both of its sides a segment that escapes at N iterates

and which points toward the spawning segment

FIG. 7. The escape-time plots are shown qualitatively¢fpr cp where(a)
D=1 and(b) D is arbitrary. At eachn; , a segmentin the minimal setthat Explicitly, Ng= max{—nc+1 -n, 0}+ D+2, where n, and

escapes im; iterates is represented by an arrow giving the direction of the . Lo )
segmenty ; itself points up. The minimal set is determined by EtPd for Ny are, respectlvely, the lowest indices of thﬁ @nd

(@) and Eq.(11h for (b). Note that two new segments are spawnedD up-factors in the expansion of the path-cla&sof £, in the
+1 iterates beyond the first segment, an example of the Epistrophe Statthtangled basis

Rule. To say that ane, -segment lies “on the immediate
positive/negative side of” ae,,-segment means that in the
minimal set there is no earlierena-segment, N3

€4=Cp4a=(F tuoCiu;CousCa)uz t <maxny,n,}, between the two. Notice that new epistrophes
A —1 1_ 1_ L - are spawned by the Epistrophe Start Rule; the Epistrophe
X(C3 Uy "¢y Uy ¢y UG F), (11&  Continuation Rule simply propagates those epistrophes

started earlier. Notice also that segments of an epistrophe
point in the direction of convergence of the epistrophe. The
early structure of the minimal sébeforeNy) can be com-
puted using the algorithm in Sec. Il D. Thus, the algorithm
gives the early behavior of the minimal set, and the simpler
X(C,?_llu;_lz. ) .cz_lul_lcl_luglF), (116 recursive rules give the subsequent behavior.

_ (-1 -1
€n=Cp4n=(F "UgC1U1Cs . . .Uy 2Cq—1)Up "y

IV. EXAMPLES
€p+1=Cop+1=(F UoCsUsCp - .. Up—1Cp)Up - Using the mapM discussed in Sec. Il and illustrated by
X(CBIUBfl- ] .CgluilcfluglF), (119 I_:|g. 1, we _conS|de_r_the escape-time plots for two different
_ — lines of initial conditions.

€D+2:C2D+2:(F_1UOC1U1C2 .. -qulCD) A. Line 1
X(UpF ~tug tFupt,FtugFug ) We consider the line of initial conditiong, in Fig. 1.
—_— — — — First we determine the homotopy class&f. Since neither
X(cptupty. . .cyturte tug tF). (11h  end point of £, is in @, we must shift each end point as

described in Sec. Il B. Since the initigdouthernmostend
The minimal set of escape segmentsfgrcp, as con- point is on the curvé/_; (the southern boundary & _3),
structed from results A and B in the algorithm, is shownwe can shift it either east ©_5 or west toQ_5; we choose
schematically in Fig. (). The set contains an upward- and a Q _3 since this will guarantee that the beginning &f still
downward-converging epistrophe, with two additional seg-intersectE& 5. Since the fina(northernmostend point is on
ments ain;=D+ 2. These two segments are the beginningghe curveS; (the northern boundary @5), it does not mat-
of two new epistrophes spawnéd=D + 1 iterates after the ter whether we shift it east tB; or west toQ,; we choose
first segment. This spawning behavior is also visible in Fig.Q,. Following step 1 in the algorithm, we scrutinize Fig. 1
7(a) for A=D+1=2. In the next section we show that all to determine that the homotopy claége II1(A*,«) of the
lines of initial conditions have a minimal set that eventuallyadjusted curve i€o=c_,u_,C_ju_iCoeoFes 'ss ‘e, 's, !
displays such spawning behavior. Xe; 153‘1. (The reader is invited to verify this by drawing a
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large copy of Fig. 1, putting in the holes, and constructing
the curve resulting from the formujaAfter omitting e,- and

Geometry and topology of escape. Il

s,-factors, this simplifies to

€OZC_2U_2C_1U_1COF.

12

Following step 2, we mag, forward using Eqs(1b), (10),

(7), and(9) with D=5,

899

€,=C_qu_4CoF, (133
€,=CqF, (13b)
€3=uy'F, (130
€4=u; ey tuy 'F, (130
€s=u, *c, tu; *es tug tF, (13
€e=uz'csu, tc; tuy teg tug tF, (13f)
€7=uy *c; 'uztcstuy tey tuy ter tug UF, (139

€g=us ‘cg tuy tey tug teg tu, te, tug tey tug tF,

(13h
€o=Ug 'FtugFug *cg tuy tey tug tegt
Xuy e, tup ey tug tF. (13i)

For greater visibility, we have underlined eadg-factor.
Mapping forward once more, we find

io=u;' F7* ug ¢y up c;' ugt F ug® F°

N 3 10 9 10 4
Xug F ugt cgtuzt eyt ugt ezt uyt oyt
10 5 6 7 8

xurt et ugt F (14)

9 10

Below eachu,-factor in Eq.(14), we have recorded the num-

(a)eo 44‘
T
;
T
I Ny
1234567891011
n;
(b)gol"“"';;*
*
T

I

Central Stable Zone
i

l No

1234567891011
n;

FIG. 8. The escape-time plots are shown qualitatively for two example lines
of initial conditions: (a) and (b) are determined by Eqg14) and (17),
respectively. In each plot we indicate the valueNyf after which all seg-
ments in the minimal set can be deduced using Theorem 1.

ber of iterates to escape; the arrow indicates whether the

segment is forward- or backward-pointing. The results of

Egs.(13) and(14) are shown qualitatively in Fig.(8); they

should be compared with the calculation in Fig. 2. We examsegment, either in the minimal sgtig. 8(@)] or the numeri-

ine these results in detail.

(1) As stated in Algorithm 1, each, or u,, * factor in €
corresponds to a segment 6§, that escapes im;=N-—n
iterates. Equatioril4) gives the minimal set of escape seg-
ments up ton;=10. (2) After a certain iteratdNy, we can
determine the minimal set using the Epistrophe Continuatio
Rule and Epistrophe Start Rule in Theorem 1. Explicitly,
Ng=max—n.+1,—n,,0}+D+2; examining Eq.(12) we
seen.=n,=—2, and sinceD =5, Ny=10. So, for all iter-

cal data(Fig. 2), because this point is an intersection be-
tween L, and theunstablemanifold.

IJ?. Line 2

We consider the line of initial conditions, in Fig. 1 of
Paper I. In order to define the homotopy class of this line, it
must first be adjusted. From Fig. 1, Paper |, we see fhat

atesn;=10, Algorithm 1 and Theorem 1 give identical re- intersects the holesl ;=E_;NCg andH _s=E_sNC;.
sults. (3) Direct computationFig. 2) indicates that up tm, We adjustL, within each of these holes so that it runs along
=14, there are no additional escape segments outside tllee boundary of the hole, on either the east or west side, and
minimal set. The first segment in the computation which isnot through the hole itself. For the northern héle 5, we

not in the minimal set is indicated by an asterisk in Fig. 2 atadjust £, to run along the eastern boundary, so that it still
n;=15; it is an example of what we call a stropti{d) No  passes througk 5. For the southern holel _;, we adjust
epistrophe converges upon the lower end point ofrthe3 Ly to run along the western boundary. As in Sec. IV A, the
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end points ofLy must also be adjusted, so that they liedin
We shift the southern end point B_; and the northern end

Chaos, Vol. 13, No. 3, 2003

point to P; .

The homotopy clasé, e I1(A*,a) of the adjusted curve

is £o=U_1CoeqCq1, Which simplifies to

€o=U_1CqCy. (15
Then ¢, maps forward as
€1=UqC4Cy, (168
€,=U4CyC3, (16b
€3=U5C3Cy, (160
€4=U3C,Cs, (160
€5=U,CsF "tug 'F, (160
¢g=usF tciu; *ci tug 'F, (16f)
€7=ugF ~tugc,c,u, e, tur ter tug tF, (169
€g=U7F ~tugCcquiCoc3us teg tuy te, tuy teg tug TR,
o ~(16h
€9=UgF ~ugC1U;C,oU,C5C,
xuy ey tuztes tuy e, tuy tey tug TR, (16i)

and

610: UQF_1U0C1U1C2U2C3U3C4C5
Xug tegtuy ey tugteg tuy ey tup ey tug TR,

(16))

€=U F" 1 ug ¢y u; ¢, Uy C3 Uz C4 Uy CsF 2

N

1 11 10 9 8 7

Xugt F ug'F* upg F ust et ugt ¢t
11 5 1 6 7

xuzst ezt ust et ugt ert gt F (17)
8 9 10 1

The data from Eq(17) are summarized in Fig.(B). This
should be compared with the numerical calculation in Fig. 2explaining the patterns shown in Fig. 2. In addition, we will
of Paper I.
Equation(17) gives the minimal set of escape segmentselectric and magnetic fields.

up ton;=11. In this case, examining E¢l5), n,=0 and
n,=—1, yielding Ng=max1,1,0; +5+2=8. Therefore for
n;=8, the minimal set can be generated from Theorem 1
rather than the algorithm. The first numerically computed
segment which is not in the minimal set stroph¢ does not
occur untiln;=16; it is indicated by an asterisk in Fig. 2 of

Mitchell et al.

a minimal set of escape segmefddgorithm 1). After some
number of iterates, this set has a simple recursive pattern
(Theorem } described by{(1) at each iterate, add new seg-
ments that perpetuate all earlier epistroph@;at A=D

+1 iterates after a given segment, spawn two new epistro-
phes on either side of this segment. These results say nothing
about the lengths of segments or the separation between seg-
ments, and in particular say nothing about convergence prop-
erties of epistrophes. On the other hand, the results of Paper
| do address such issues, and we find that epistrophes con-
verge geometrically upon the end points of the segments that
spawn them and furthermore that all epistrophes differ as-
ymptotically by an overall scale factQEpistrophe Theorem,
Paper }.

The minimal set of escape segments typically omits
some segmentéstrophes that appear in the actual numeri-
cally computed escape-time plot. Nevertheless, the results of
Paper | apply to such strophic segments as well. There will
be an epistrophe which converges upon an end point of a
strophe(Epistrophe Theorejm However, we cannot in gen-
eral predict at which iterate such an epistrophe will begin.
On the other hand, the numerical evidence of Fig. 2 and of
Fig. 2 in Paper | is suggestive that even in this case, the
epistrophes often begif iterates beyond the strophe.

Strophes occur due to structure in the loBes, that we
have ignored in our simple topological picture of the tangle.
For example, E,, may develop additional “fingers” or
“branches” as it is mapped backwards. These fingers spread
out into the phase space, creating additional intersections
with the line of initial conditions(In some cases, such fin-
gers can be connected with the presence of an island chain
inside the complex, such as the prominent period-5 chain in
Fig. 1) In general, a countable infinity of topological param-
eters is needed to completely describe the fingéfs!®
though we expect a finite number of parameters to suffice for
the escape-time plot up to a given finite number of iterates.
The homotopy formalism presented here can be generalized
to incorporate these additional topological parameters,
thereby predicting at least some of the strophe segments. We
will address these issues in a future paper.

In future work, we will also study winding numbers,

apply our results to the ionization of hydrogen in parallel
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Paper I. As above, no epistrophe converges upon the lower
end point of then,=1 segment because it is an intersectionAPPENDIX A: PROOF OF ALGORITHM 1
betweenl, and the unstable manifold.

V. CONCLUSIONS

We need only verify statements A and B in Algorithm 1.
These are certainly true when all elements of the untangled
basis are allowed in the expansion{gf (i.e., we do not omit
the factors specified in step.IThis fact is evident by simply

The results of the present paper combine with the resultsonsidering how a path is constructed from a reduced prod-

of Paper 1 to create a detailed picture of escape-time plotsuct of the basis paths shown in Fig. 5; at each occurrence of
On the one hand, the present study predicts the existence afu,-factor, the path must cross under the hole and hence
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throughE,, thus creating an escape segment at the specifietd verify that when making these substitutions, there are no

location(and with the specified directionTheu, -factors are

cancellations of anw,-factors.(Here, we use the fact that

thus the key to determining the minimal set of escape segeowers ofy, such asy?, cannot occur in the expansion §

ments. Thec, basis elementsn=D) create newu,-factors
via Egs.(1b) and(3) and are thus themselves critical in de-
termining the minimal set. However, theg, (n=0) ands,
(—o<n<®) basis elements are “inert,” mapping forward
via Egs.(1a and (1d), never producing any,-factor. We

since this would imply that’, has a self-intersection.

The theorem is now a trivial consequence of the repre-
sentation of¢y as a product of elements in the &t Spe-
cifically, each occurrence of in the product yields a single
segment which escapes Mt-1 iterates, corresponding to

thus lose nothing by eliminating them altogether from anythe u;-factor of y in Eq. (B1), and a single segment which

expression which might contain them, as we have done i
Eqgs.(7)—(9). (One can verify that making these eliminations
does not produce spurious cancellations gfor u,-factors)

APPENDIX B: PROOF OF THEOREM 1

Defining the two path-classes
(B1)
(B2)

we have the following lemmadrecalling that alls, and e,
basis elements are omitted from our formulas

Lemma: For any NNy, ¢y can be expressed as a
product of elements in the set=%c,,...,cp ; 0,0,
Uy, ... ,up,00,Uupio,... ; v,m), assuming D>1; for D
=1, S=(c, ; 0O,0,0,uz,Us, ... ; v 7). (The symbol
[0 emphasizes the absence of the classgsuy, uy, )

Proof of Lemmalit follows from the propagation formu-
las(1b), (1c), and(7) and the definitions ofi. andn,, that for
N=maxX—n.+1,—n,,0}, €y can be expressed as a product
of the elementsd;,...,cp ; Ug,Uq,...). Thus, for N

Y=UgCaUy,

— -l -1lp-1
n=Uy "Fu,"F~ U,

=N,, €y can be expressed as a product of the elements

(Cp+3y---Cops2 ; Upyio,Upys,...).Since the elements
Up+2,Upi3, ... are in the ses, we need only verify that
the elementgp . 3, ...,Cop 1o CaN be expressed as products
of elements inS, a fact which follows from rewriting Egs.
(110—-(11h as

-1.-1

cp+a=(F 1y (cou; "e (v HF), (B3a)

Co+a=(F~1yCoup)(cauz fez M) (usy e Py IF), (B3b)

_(c-1 -1 .-1
Cpn=(F yCaUy...Ch_2Un_2)(Ch_1U,=1Ch ")

X(uptoent, . uy e, ty TR, (B3c)
Cop+1=(F 1yCoUyp .. .Cp_3Up_1)(CpUptcp?)

X(upticpty .. uyte, Yy i), (B3d)
Cop+2=(F tyCoUy . . .Cpup) (F~17F)

X(uplept ... uyte, ty R, (B3e)

for the case D>1. For D=1, Eg. (10d) yields c,
=cytyc; tnciy tc,. This completes the proof of the
lemma.

For N=N,, we expandly as a product of elements in
S. By using Egs.(B1) and (B2) to eliminatey and 7, we
obtain the expansion dfy in the untangled basis. It is easy
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rescapes aN iterates, corresponding to the-factor of y.
The form of Eq.(B1) also implies that the directions and
relative positions of these two segments obey the Epistrophe
Continuation Rule.

Similarly, Eq.(B2) implies that each occurrence gfin
the representation dfy yields a segment which escapes at
N—A iterates and two segments which escaph #erates;
the directions and relative positions of these segments obey
the Epistrophe Start Rule. Since the basis elemeptau,
andu, occur in the expansion dfy only within the y- and
n-factors, these two rules completely determine the minimal
set of escape segmentshtiterates.QED
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active region; here, we truncate it and consider only the piece idsidie 6Ln2 satisfying the conditions of Question 2. That this is indeed possible is
practice, the line of initial conditions may also pass through a higler established by the following lemma, which is a simple corollary to a
zx; here we assume for simplicity that it does not. In Sec. IVB wWe theorem of Turae¥Theorem 2 of Ref. 3% Lemma: Given a set of homo-
consider an example in which, does intersect a hold, . topy classes @ II(A*,a), i=1,...m, there exists a choice of represen-
3lEach end point can be shifted either forward or backward at#glf an tatives A;ea;, i=1,...m, such that for each,ithe number of self-

end point lies onS,,, for somen, this choice does not affect the minimal intersections of4; is minimized and for each pair, ij, the number of
set of escape segments. However, if an end point lidg,qrthen that end pairwise-intersections betweed, and A; is minimized

. .. . . j
of £, terminates insid&, , meaning that’, ends in an escape segment. ssy;r6 generally, for a pathd that does not interseat, and that has a

D_epen_dlng upon the dlrectl_on n Wh'Ch we shift this end pqmt, We can -\ ell-defined homotopy class iH(A*,a), the homotopy class ofl has a
either include or exclude this terminal segment from the minimal set. By . . o )
unique finite reduced expansion in the basis.

convention, we shift the end point in the direction which includes the34( )
terminal segment. See the examples in Sec. IV. V. G. Turaev, Mat. Sb106, 566 (1978 [Math. USSR Shornik35, 229

*2One may ask whether it is even possible to choose cufjest” , , and (1979].
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