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We derive an effective Hamiltonian for a quantum system constrained to a submaifeldonstraint
manifold) of configuration spacé&he ambient spag¢édy an infinite restoring force. We pay special attention to
how this Hamiltonian depends on quantities which are external to the constraint manifold, such as the extrinsic
curvature of the constraint manifold, the curvature of the ambient space, and the constraining potential. In
particular, we find the remarkable fact that the twisting of the constraining potential appears as a gauge
potential in the constrained Hamiltonian. This gauge potential is closely related to the geometric phase origi-
nally discussed by Berry. The constrained Hamiltonian also contains an effective potential depending on the
extrinsic curvature of the constraint manifold, the curvature of the ambient space, and the twisting of the
constraining potential. The general nature of our analysis allows applications to a wide variety of problems,
such as rigid molecules, the evolution of molecular systems along reaction paths, and quantum strip

waveguides.
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[. INTRODUCTION the transverse zero point energy as an effective potential on

the constraint manifold\We call this the adiabatic potentigl.
) ] o The adiabatic potential also appears classically if the initial

We derive an effective Hamiltonian for a quantum systemye|ocity of the system has a nonzero component normal to
subject to an infinite restoring force. Though our results arghe constraint manifold. Classically, the adiabatic potential
quite general, we are motivated by several specific applicacan always be eliminated by choosing an initial velocity tan-
tions, such as stiff molecular bonds in rigid molecules andgent to the constraint manifold. Quantum mechanically,
clusters of rigid molecules, molecular systems evolvinghowever, due to the Heisenberg principle, the transverse ac-
along reaction paths, and electrons confined to quantum strifion and hence the adiabatic potential can never be elimi-
waveguides. nated.

For comparison, consider first a classical system. We have The present paper focuses on effects of the ambient space
in mind a system which initially occupies any position in the and constraining potential other than the adiabatic potential.
full configuration spacécalled the ambient spacbut is sub-  Following da Costd6—-8,10, we assume that the constrain-
sequently confined to a submanifoldalled the constraint ing potential has the same form in the neighborhood of each
manifold) by the introduction of a restoring force, which in a point of the constraint manifoldin a manner to be made
certain limit becomes infinite. Here, the Hamiltonian is sim- precise latey. The adiabatic potential is thereby forced to be
ply the kinetic energy plus the constraining potential, whichconstant along the constraint manifold and can subsequently
we assume is constant along the constraint manifold. Assunbe ignored.(In Sec. IV C, we discuss briefly how a small
ing the initial velocity is tangent to the constraint manifold, it amount of variation in the adiabatic potential can be accom-
is well known that the system’s trajectory remains on themodated. In two noteworthy paper$6,7], da Costa, using
constraint manifold and that its motion is determined solelythis assumption, derived the effective Hamiltonian for a sys-
by the form of the kinetic energy tangent to the manifoldtem of n constrained point particles. This Hamiltonian con-
[1,2]. This kinetic energy, in turn, depends only on the Rie-tains two terms. The first is proportional to the Laplacian on
mannian metric of the constraint manifold. Thus, the motionthe constraint manifold, and therefore depends only on the
of the constrained classical system depends only on the irintrinsic metric of the constraint manifold. The second, how-
trinsic metric of the constraint manifold and is independentever, is an effective potential, called the extrapotential,
of the ambient space, the embedding of the constraint maniwhich depends not only on the intrinsic curvature, but also
fold within the ambient space, or the details of the constrainthe extrinsic curvature of the constraint manifold. This ex-
ing potential. It is a remarkable fact, then, that for a quantunirapotential is of ordefi? and therefore vanishes in the clas-
system this is no longer true. The constrained quantunsical (and semiclassicalimit. As a simple, yet illustrative,
Hamiltonian depends on the curvature of the ambient spacexample, consider a system definedRhconstrained to lie
the extrinsic curvatures of the constraint manifold, and oron a curve. For this system, the extrapotential is
properties of the constraining potential. —421(8p?), wherep is the radius of curvature. This result

It has been known for some time that a constrained quanaas obtained by da Cos}é]; the same result was obtained
tum system “senses” the local neighborhood of the con-earlier by Marcug3] and Switkeset al.[5] for curves inR2.
straint manifold[3-11). As a simple example, consider a This extrapotential has been studied by others as well, in-
guantum system whose motion transverse to the constraigtuding Jensen and Koppet] and Kaplan, Maitra, and
manifold is in the ground state. Due to the conservation oHeller [11]. Since the extrapotential depends on the extrinsic
the transverse action, the constrained quantum system seasrvature, it can never be derived from a procedure which

A. Summary of results
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quantizes the constrained classical systevhich depends closely related to the geometric phase originally introduced
only on the intrinsic curvatujean approach common in the by Berry in the context of adiabatic transport of quantum
literature of constrained quantum mechaniSee, for ex- stateq14]. It is interesting to note that the gauge potential is
ample, the review of DeWitt12].) of order#° and therefore, like the adiabatic potential, is es-
As mentioned above, once the constraining potential isentially of classical origin.
defined at one point of the constraint manifold, the constrain- The third and final consequence of the potential twist is
ing potential at all other points must have the same functhe addition of a term to the original extrapotential derived
tional form. However, this requirement does not completelypy da Costa. Unlike the extrapotential terms derived by da
determine the constraining potential since the orientation o€osta, the potential twist term is not a scalar function, but a
the potential is left unspecified. In other words, the equipokx k matrix of such functions with possible off-diagonal
tentials Surrounding the constraint manifold can twist interms Coup"ng the degenerate transverse modes.
some unspecified manner as one moves along the manifold. | some important applications, the ambient space has
This potential twist is a critical quantity in our theory. nonzero curvature. For example, consider the problem of
da Costa fixed the twisting ambiguity by imposing what ¢ostraining a molecule to lie on a molecular reaction path.
we call a “no twist” condition on the potential. Physically, pe jnternal space of such a molecule is in general not flat
thholso dcg??t:zogo;es?girr?tsnggﬁi ;glztct)(;'gg I\c:;::rﬁ; 'tr; tt?iz &2222%[15], and therefore, the constraint problem requires an analy-
{'ﬁis which includes the ambient curvature. Because of such

It can be viewed as an extension of the fact that in classic . . X
; T .etxamples, we do not assume in this paper that the ambient
mechanics nondissipative forces are normal to the constrain

manifold at the point of the manifold itself. da Costa astuterSp""Ce s flat. T.h © effects of.the ambient curva ture are most
realized that if the no twist condition were violated, the mo_notab_le as additional terms in the ext_rap(_)tentlal.
tion transverse to the constraint manifold would be coupled NS Paper has the following organization. In Sec. | B we
to the motion tangent to the manifold and the Sdimger ~ INtroduce many of the kgygconcept; through a simple ex-
equation would not separate. amplle: t_hat of a part|clg iR const.ra}lned to a curve. This
For some submanifolds there exist no potentials whicHsection is purely expository, containing no derivations. Sec-
satisfy the no twist condition. In Ref7] da Costa derived a tion | C briefly introduces the general problem. In Sec. Il we
local geometric criterion on the extrinsic curvature of a subfocus on the constraining potential. We take care to precisely
manifold which was necessary and sufficient to determinglefine what it means to have the same form at all points of
the existence of a nontwisting potential. Unfortunately, sevthe constraint manifold. We also define a tensor which mea-
eral common examples of constrained systems do not satisBures the twisting of the potential. In Sec. Il C we specify
this criterion. For example, consider a model of a polymer byhow the potential is to scale i, wheree— 0 represents an
n>2 point particles where the distance between each painfinite constraining force. The main computations of the pa-
ticle i and its neighboi +1 is fixed. Such systems fail da per are in Sec. Ill in which we expand the kinetic energy in
Costa’s criterior{13]. A system ofn>2 point particles con- ¢ and arrive at a preliminary expression, E8.31), for the
strained to form a rigid body similarly fails da Costa’s crite- constrained kinetic energy. Section Ill D is devoted to vari-
rion. Even for a submanifold which admits a nontwisting oys expressions for the extrapotential. In Sec. IV we apply
fo_“?”a'”'”tg p?t?n'fl'_?:’ the phyS|c|s m?ly rltev:artthheless déc]fateﬂfst-order perturbation theory to transform to a set of degen-
theory of constrained quantum mechanics which is not fime s ansverse modes, thereby oblaining &EY-(4.23,
. . ; . which are the main results of the paper. Section IV C briefly
ited to potentials without twist. discusses nonconstant constraining potentials. In Sec. V we

i T?'e pr_llrtmpal (?b]ecuve OI th|s [()japer '? to derl\t/e an ?t:ec'study the geometric origins of the gauge potential and vari-
Ivé Hamiftonian 1or a constrained quantum systém with ar, s e|ated connections. We also compute their curvatures.

) o . T 0
b|t_rary twisting of the potenﬂa}. The presence of the p.Oten.t'aISection VI contains some special cases, including constraint
twist leads to several qualitative changes in the Ham'lton'anmanifolds of codimensions one and two, rotationally invari-

F';zt’ thlfxl—ll(amlliqnla? IS not Ionge{. a scalI:er_ opera_ltor,lbutam constraining potentials, and harmonic constraining poten-
ratner a matrix ot operalors acting ondimensional - yjg5 |n Sec. VI E, we show that the gauge potential vanishes

vectpr-valued wave function defined over the constraink, . cartain systems with reflection symmetry. Conclusions
manifold. Herek is the degeneracy of the transverse energy, . iy sec. VII. There are four Appendixes. Appendix A

and each component of the vector wave function represents @ i-ins a very brief review of curves It?. Appendix B is

different fransverse mode. Of course, fo_r a nonQegeneratg review of the second fundamental form. Appendix C sum-
transverse energy, the constrained Hamiltonian is a SCaIe?ﬁarizes an expression we will need for the quantum kinetic

operator. ; ; :
. . energy. Appendix D contains some of the more laborious
The second and perhaps most interesting consequence r%?athgeymattiJ:F;I derivations

dropping the no twist condition is the emergence df &)

gauge potential, or connection, in the constrained Hamil-

tonian. This gauge potential is a coupling between the poten- B. A Simple example: A curve inR3

tial twist and the generalized angular momentum of the

transverse modes. Modes with no such angular momentum The ultimate objective of this paper is to constrain a quan-
are unaffected by the potential twist. The gauge potential isum wave function, defined on an arbitrary manifdtthe

042112-2



GAUGE FIELDS AND EXTRAPOTENTIALS IN . .. PHYSICAL REVIEW A63 042112

coordinatize the tube. The transverse mode,u?) is a
normalized eigenfunction of the transverse Hamiltoritin
=(mi+ m5)2+V, (ut,u?), where m;=—ihaloul, j=1.2,
and V, (ut,u?) is the potential energy which defines the
tube. The eigenvalue df, corresponding toy is called the
transverse energy. For simplicity, we assume that the trans-
verse energy is nondegenerate.

To lowest order in the width of the tube, an eigenfunction
¢ of the waveguide has the form

1,2 ) — 1,2
FIG. 1. A twisted gquantum waveguide. The cross sectional Pu,u%,a) = x (U7, u%) d(a). (1D

shape of the tube is constant and is chosen to be a triangle with NRs we take the limit where the transverse dimensions of the
reflection symmetry(Reflection symmetry would forcg\ ) to van- waveguide shrink to zertkeeping the quantum numbers of
ish.) The vectorsE; andE, determine the orientation of the sides of the transverse mode fixgcthe transverse energy obviously
th id a the dist I th is. g

© waveguide, ane measures fhe distance ajong the axis tends toward infinity. However, due to the constancy of the

ambient spadeto a(locally) arbitrary submanifoldthe con- ~ €ross sectional shape, this transverse energy, though very
straint manifold via some general constraining potential. 12rge, is itself constant along the curve. We thus subtract it
Before solving the full problem, however, it is instructive to Off, leaving a residual Hamiltoniaki, which we call the
consider a simpléthough certainly nontrivia) concrete ex- constrained Hamiltonian. Theﬂconstramed Hamiltonian acts
ample of the constraining procedure. We present no deriva@nly on ¢, resulting in the Schidinger equation
tions here; our results will be justified later in Sec. VI B.

We consider a curve embedded in flat three-dimensional Hi¢=E¢.
spaceR® and parametrized by its arclength (See Fig. 1).
SllJCh a curve is _characterlzed b_y its curvatdrand tor§|on of this constrained Hamiltonian.
7. (See Appe”d”? A.we take this curve to be the axis ofa As we will show later, the constrained Hamiltonian is not
guantum waveguide. That is, there is a tube enclosing the.

5 L
curve such that the potential is zero inside the tube and inﬁ§'Imply m(/2, wherem = ~i%4/da. Rather, there are effects

nite outside. We assume the cross section of the tube is Coﬁ_om the curvaturec and the rate at which the cross sectional

stant along the curve. More precisely, if we cut the tube‘c'h""pe twists along the curve. To make this latter

along a plane normal to the cur(ealled hereafter a normal co_nlc_::eptd Irzn%e prehqlshe, we dEf'?ﬁ thte i potenttlal ftht
plane, the cross sectional shape of the tube is independent (§_ v ( ~2 a) whic measures the rotation raté of the
where along the curve we cut. Two such cross sections hayd 0SS sectional shape. The potential twist admits the follow-

the same shape if one can be rotated into the other. Thig9 desi:ription. Le® dgnote the angle between the prir.u.:ipal
rotational freedom permits the cross sectional shape to twigtormaln (see Appendix Aand the frame &, ,E;), specifi-
as one moves along the curve, even if the curve itself igally n-E;=cos6, n-E,= —sinf. Let o=d6/da denote the
straight. The orientation of the cross sectional shape is speciotation rate of the frameH ,E,) with respect tm. ThenS
fied by two orthonormal vectots; andE; chosen from each s related tow and the torsionr by —S= 7+ w. Taking S
normal plane along the curve. The choice of orthonormal=(, we obtain the case considered by da Costa in [f&f.
frame €;,E,) is such that the cross sectional shdpéth e next define an angular momentum operatorin the

respect to this framés independent of. In Fig. 1 the cross  tangential direction by A =(ulm,—u?m;)/2. The con-
section is a triangle with no reflection symmetry. Such sym-trained Hamiltonian is then

metry is nongeneric and can cause certain terms to vanish.

(See Sec. VI B. H\\:K\\+Vexv 1.3
We assume that the transverse dimensions of the tube are

small compared to the radius of curvatyre-x~ ! and the Where

inverse torsionr . We can then separate out the “fast” 1

transverse degrees of freedom and obtain an effective one- _ 2

dimensional Hgamiltonian in the “slow” longitudinal, or tan- K”_i(m'+28<A>) ' 1.4

gential, coordinater. To accomplish this separation, we pick

a transverse mode(u?,u?) of the waveguide. Hereut,u?)

are the Cartesian coordinates in the normal plane taken with

respect to the framel(,E,); the quantities ¢*,u?,«) thus

(1.2

The principal objective of this paper is to determine the form

2
Vor — o k228D (0D, (19

and where the bracket notatigry denotes the expectation
value with respect to the transverse mode
The term “torsion” has two distinct meanings in differential _ Observe that the tangential kinetic enetgydeparts from

geometry. In this paper, we refer only to the torsion of a curveTfﬁ/2 due to the inclusion of the termS2A ), which couples
embedded ink® and not the torsion of a connection as typically the angular momentum of the transverse mode to the poten-
defined in Riemannian geometry. tial twist. This term is a gauge coupling, a fact we explore
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further in Sec. V. For now, we simply note that because the In Sec. | B, the constraint was imposed by a hard-wall
curve is one dimensional, the gauge coupling can be repotential that was infinite outside of a tube and zero inside.
moved from Eq.(1.4) by a gauge transformation. In the We then took the limit in which the width of the tube went to
present context, a gauge transformation consists of changiryy In the general problem, we impose the constraint by an
the phase of the wave functiat. This transformation is not ~arbitrary potentialV, , subject to a few reasonable condi-
without its consequences, however, as it will Obvious|yti0ns. This potentiallis deflned on a set of 'Coordinate's trans-
change the boundary conditions whighmust satisfy. Also, ~Verse to the constraint manifold and, for this reason, is called
we stress that if the constraint manifold has dimensiorf€ fransverséor constraining potential. The transverse po-
greater than one, it will not in general be possible to removd€ntial depends on a scaling parameterhich is analogous
the gauge coupling by a gauge transformation. to the width parameter of the tube; the constraint is imposed

As a final observation oK, notice that the gauge cou- by(t)akingf f(ﬂe Iimit(jgtgoes to g sl ire ot is that it b
pling is of order4®, which indicates that it is essentially a . ne ot the conditions we do STl require @4, 1S that It be

. . . ; . Independent of the location on the constraint manifold. This
classical quantity. This coupling should therefore appear in a

. . : . condition, as well as a few other minor conditions, are ex-
classical theory of constraints which takes into account th%lained fully in the next section
potential twist. '

Turning to the quantityV.,, we note that it is a real-
valued function ofa, containing no differential operators.
For this reason, we caW,, an extrapotential. The extrapo- A. Constancy of the transverse potential
tential contains two terms; #%«%/8 and Z%((A?)—(A)?).
The first of these was derived by da Costa for the case
=0 [6]. It has the physical effect of attractinfyto regions of
high curvature, a fact which may produce curvature-induce
bound states in the waveguide. Such bound states are of ¢
rent interes{16—18 and are reviewed by Duclos and Exner
[19]. The term—#2x?/8 is of orderA? and therefore disap-
pears in the classicdhnd semiclassicalimit. The second
term ofV,,, like the gauge coupling i, depends on both
the potential twistS and the angular momenturk. Notice,
however, that it is the standard deviation of the angular mo
mentum which appears M., . This means, for example, that

the second term 0¥, vanishes for transverse modes which space formed by geodesics emanating frpmormal to the

are angular momentum eigenstates. It is interesting t0 Obsgngiraint manifold. We call this the transverse spacq at
serve that, in contrast to the first term, the second termof .4 denote it by4,. The spacel, andi{, are related by the
has the physical effect of expelling the wave functipfrom o, 00nangial mapqwhich takes a vecioe N, into the point

regions of high twisS. Also, the second term is of ordéf, expve A. The point expre A lies on the geodesic emanat-
which means that, like the gauge couplingdp, it survives  jng from q in the direction ofv; it lies at a distanceV|
the classical limit. =({v,v))¥? from q along this geodesi¢We use the notation
(,) for the metric onA.) Thus, we find{,=expN,. We now
slightly modify our definition ofi4,. If the geodesics ema-
nating from the constraint manifoldin the neighborhood of
We describe here how the setup in Sec. | B is modified fory flow to an arbitrary length, they will in general intersect
the general problem. First, the ambient space in Sec. | B wasne another. This can be witnessed even in the simple ex-
assumed to b&3. In the general problem, we allow the ample of Sec. | B. Thus, in definirlg,, we assume that the
ambient space to be an arbitrary Riemannian manifoldgeodesics flow for a small enough length to avoid such in-
which we denote byd. The kinetic energy of the wave func- tersections and that this maximal length is independent of the
tion ¢, defined ovet4, is given byK=—#%2A/2, whereA is  point g on the constraint manifold. In summary, then, we
the Laplacian omd. Unlike Sec. | B, the ambient space is not foliate a neighborhoodwhich we call the tubular neighbor-
assumed to be flat, and, as we will discover, the curvature dfiood of the constraint manifold by the transverse spaces
the ambient space produces additional term¥dp. Uyq, which we have in turn related to the normal spakigs
Next, we constrain the wave function to lie in the vicinity by the exponential map. Using the exponential map to con-
of a (locally) arbitrary (embeddegsubmanifoldC of A with  struct tubular neighborhoods in this fashion is a standard
dimensionm and codimensiord. We call C the constraint technique. For details, see, for example, L&2@] and Van-
manifold. In Sec. | B, the constraint manifold was a one-hecke[21].
dimensional curve. The curvature and torsion of this curve Since we have identified normal vectors with points in the
played a critical role in the analysis. The appropriate generneighborhood of the constraint manifold, we view the trans-
alization of the curvature and torsion is the second fundaverse potentialV, as a function defined on the normal
mental formT, which is a rank-three tensofSee Appendix spaces. With this interpretation, we will require that, as a
B.) function ofq and the vectors ilN,, be independent af. By

Il. THE TRANSVERSE POTENTIAL

In Sec. | B we defined the constraining potential by first
specifying the form of the potential on a plane normal to the
urve and then specifying the orientation of this potential at
Il points along the curve. For the general case, we use the
Wame fundamental idea except that now, due to the curvature
of the ambient space, we must take care to define how we
generalize the concept of the normal plane.
It is useful to consider two separate but related spaces for
a given pointq on the constraint manifold. The first is the
linear space of all vectors normal to the constraint manifold.
We call this the normal space @tand denote it byN,. The
second space of interest is the submanifold of the ambient

C. The general problem
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independent, we really mean independent modulod3@g- Sv= PLVp”ev, (2.2
tations inNg . Let us make this more precise. As in Sec. | B,

we specify the qrientation of the transverse potential by aQyhereV is the Levi-Civita connectiofi23—25 on .4 and P,
orthonormal basi&,,, =1, ... d of the normal spacBly. 4 P, are the projection operators onto the normal and tan-

This basis forms a normal frame for the constraint mamfoldgent spaces of, respectively. It is straightforward to verify

which we call the potential frame. For a given normal VeCtOr ot S defined by Egs(2.1) and (2.2 is indeed a tensor.

field u, we introduce the components, 1 =1, ... d with Like the second fundamental forf(see Appendix B S
respect toE, . The quantitiesu” coordinatize both the nor-  (iisfies the antisymmetry property

mal spaceN, and the transverse spatg, for which they

are commonly called Riemannian normal coordind®3. _

We use sans serif for the list of coordinates (d.Sd) = —(f.54d), 23
=(u?, ... u%, reserving the bold notation for the vector
field. The neighborhood of is therefore conveniently pa- )
rametrized by (,q). The heuristic constraint that, be in- 0N, we need only consider the cast=veNg, f=w
dependent of position on the constraint manifold can now bee Ng» @nde=x tangent toC, since all other cases vanish.
made precise by the following statement: the transverse pg2"CeS IS a tensor, we may assume tivaandw are vector

tential V, (u,q) as a function of ¢,q) is required to be in- fields ar_1d that their components with respect_E;pare con-
stant. Since the framg, is orthonormal{v,w) is constant,

whered,e,fe T, A are arbitrary. To prove the above equa-

dependent ofy. © SO
In general, the construction of the parametafspre- and therefore Eq. (2.2 implies (v,Sw)=(v,V,w)
sented here is only possible locally 6nThat is, it may be = —(VxV:W)=—(W,S).
impossible to definai* in the neighborhood of the whole
constraint manifold simultaneously. The construction can C. Scaling of the transverse potential

break down in two ways. First, it may be impossible to con-
struct a tubular neighborhood for the entire constraint mani-
fold. One can see this even with the simple example of Se
| B. If the one-dimensional curve spirals in on itself, then the

width of the tubular neighborhood is forced to go to(Re- : )
call that the width of the tubular neighborhood must be thelitr?]r ewgglig \::ae:qsuiarlzstﬁg]%%tfn?hil sga(;lé;r;r:Zeoge; igliﬁrgOb
’ al

same for all points on the constraint mamf(_)IaAssummg parametek. [We use the notatioW, (u;€) to emphasize this
that a tubular neighborhood does indeed exist for the mani; - i

o ) . .~ fact.] As the scaling parameter tends toward 0V, (u;e)
fold, there is still a second way in which the construction

may break down. This occurs if there does not exist a potengrows narrower and deeper. To make this statement precise,

tial frameE,, which is globally defined(This happens when W€ define a rescaled potentd ,

the normal bundle is nontrivialFor example, let the ambi-

ent space be a Mius strip and let the constraint manifold be

a curve which wraps around the Mdias strip once. Clearly, 5

there does not exist a normal frame fowhich is defined whereu” are rescaled transverse coordinates,

globally. It is our viewpoint that these two obstacl@s par-

ticular the firsj are not common in physical problems. Even UP= €Ut 2.5

if one did encounter a problem in which th# were not

definable globally, the results of this paper would still apply - ]

locally. We assume that* has no dependence itself @nWe also
make the very reasonable assumptions tha(u;e) is

B. The potential twist tensor smooth ine at e=0, by which we mean that, (U; €) can be

In this section we generalize the potential twisof Sec.  e€xpanded asV, (u; )=V (u)+ eV (u)+ Vi (u)+- -,
I B to a rank three potential twist tens¢also denotedS)  and furthermore tha¥°(u) does not vanish. In Sec. IV B,
defined for anyj e C. For an arbitrary vectoee T, A, Scisa  we will make some further reasonable assumptions on the
linear map onT,.A. [Here, T, A is the [d+m)-dimensional existence of bound states for the transverse potential and on
tangent space ofl atq.] Let xe T,.A be an arbitrary vector the smoothness im of the corresponding eigenenergies.
tangent toC. Then, we define To understand the consequences of the reld@ds), con-
sider a concrete example in whidh, (U;€)=V, (U) is a
finite-depth square well with ne dependence itself. Then
the physical potentiaV/, (u; ) is a finite-depth square well
Now let ve T4 A be an arbitrary vector normal t6. We  whose width scales as and whose depth scales as?/
extendv to a vector field orC (defined in the neighborhood Assuming the quantum number of the transverse mode is
of q) by assuming thav is normal toC and, furthermore, fixed, this scaling in the potential guarantees that the width
that its components with respectio, are constant. We now of the wave function scales a&s This is exactly the behavior
complete the definition o%, by prescribing we want from a system which lies closer and closer to the

In Sec. | B, we imposed constraints on the position of a
article by introducing an infinite square-well potential in the
directions transverse to the axis of a quantum waveguide.
The width of this well was proportional to a scaling param-

Vl(a;e)=62Vl(6L~J;e), (2.4

Sx=0. 2.1
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constraint manifold as tends toward 0. As another concrete ﬁ;b:lgguzo_ (3.3
example, we consider a harmonic transverse potential in Sec.
VI D. Next we note that
We should emphasize that is introduced as a formal
scaling parameter. It allows us to rigorously define the limit 0=[E,.[Ei .E]]I=[E, .BiEc]=[d/ou"B;]E., (3.4
of an infinite restoring force and thereby rigorously define
the constrained Hamiltonian. The constrained Hamiltonianwhere the first equality follows from the Jacobi identity and
however, does not depend enand from a practical stand- Eq. (3.1) and the third equality follows from Eq3.3). We
point, one need not worry about the exact definitior.ofhe  use the bracket notatign] in the final equality to emphasize
most important fact to keep in mind is that the width of thethat the differential operator acts only on the quantities inside
wave function scales as If this width is small compared to the bracket. Since thE, form a basis, we have
other relevant length scales in the systdar example, radii
of curvature then thee to 0 limit is justified. aBc
i
—=0. (3.5
aut
I1l. EXPANSION OF THE KINETIC ENERGY
The derivation of the constrained Hamiltonigsuch as Furthermore, since thi; are tangent t@ when restricted to
Egs. (1.3 —(1.5)] proceeds in two steps. The first is to ex- C, we haveg{j=0 onC. Combining this fact with Eq(3.5),
pand the kinetic energy in powers ef The second is to We find that
transform to a basis of transverse modes and to apply a first-
order perturbation treatment to the expanded Hamiltonian. Bi;=0 (3.6

This section is devoted to the first step.
within the tubular neighborhood. Thus, the distribution of

vector fieldsE; is integrable everywheréThe submanifolds

thus defined by Frobenius’s Theorem are manifolds of con-
We will express the kinetic energy in terms of a vielbein stantv, .)

E,,a=1,... d+m, on A Appendix C gives the necessary
background for this technique. To span the transverse dimen-
sions, we takée,=d/du”, u=1,... d, where it is under- _ _ _
stood that, for the purpose of the partial derivative, the posi- As in Appendix C, the momentum operators are defined
tion qe C is held fixed. In selecting vector fields to span theto be m,= —i#E,. They are not in general Hermitian since
remaining dimensions, we first choose an arbitrary set othe Hermitian conjugate is given by E¢C4). The kinetic
orthonormal vector fields;, i=d+1, ... d+m, defined energy is given byK= 7 G*"my/2, where Ga,=(E,,Ep)
over C and tangent ta&’. We then useE,, to Lie transport ~are the components of the metric tensor @ftf is the in-
these vector fields into the tubular neighborhood’ofrhat ~ verse ofG,y,.

A. Definition of the vielbein

B. Transformation of the kinetic energy

is, we require the Lie derivatives with respectig to van- Appendix C also provides the framework for scaling the

ish, quantum wave function by an arbitragtrictly) positive
functions: A—R [see Eq(C5)] in order to modify the form

[E..E]=0. (3.1 of the kinetic energy. We apply this scaling formalism here,
taking
We use the following notational scheme in this paper. The

indicesa,b,c, ... range from 1...,d+m and label the s=G", (3.7

basis vectorE, and any components with respect to this _ ) _ )

basis. The indiceg., v,, ... range from 1... d and label WhereG=detG,,. As mentioned in Appendix C, this scal-

the vector fieldsE, = a/du* and their related components. iNg defines a new inner product of wave functions. We ob-

The indices,j,k, ... range fromd+1, ... d+mand label Serve that the original inner product of two wave functigns

the vector fieldsE; and their related components. Except@nde’ is given by
where otherwise noted, we employ the convention that an
index a,b,c, ..., w,v,0, ..., Ori,jk, ... is implicitly : _J’ Gy o* ,
. o . = u, u,q), 3.8
summed over when occurring twice in the same expression. (ele”) VGr ¢ (ua)e'(u.a) 38
For future reference, we present some facts regarding the _
structure constantgs,, defined by(E,,E,]=BS,E.. First, ~Wherew is the d+m)-form
Eg. (3.1 immediately yields LCEFIA. AR @)

Bri=Bu=0. (3.2 —dul/A- - AdWAE* E+HDA L AE @M (3 )
Furthermore, sinc&,=d/du” is a coordinate basis on the Here,E*? is the basis of one-forms dual to the vielbéip.
transverse spaceég,, we find ,Bfw=0. Combining this with  We have also used the fact tHat #=du”. (Be careful not
Eg. (3.2, we have to confuse the notatiof]) with (,), the latter denoting the
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Riemannian metric otd.) From Eq.(C6) we therefore find
that the scaled inner product of twscaled wave functions
Y andy' is

<w|¢’>s=f v¢*(u,q) ¢’ (u,9). (3.10
This scaled inner product gives rise to a scaled Hermitia
conjugate, denoted as a superscrips)t Using Eqgs.(C4),
(C8), and(3.3), we find thatr,, is Hermitian with respect to
the scaled Hermitian conjugate,
WL(S)=7TM. (3.11
Furthermore, Eqs(C4), (C8), and (3.2) give the (scaled
Hermitian conjugate ofr; as
| O=m+iti gl =m+in . (3.12
We now restrict the momentum operatet to C. We
write 7j|o to make this explicit; we use the notatify for
any quantity restricted t6 since this corresponds t¢*=0.

For present purposes, we consider the constraint manifold in
its own right without being viewed as embedded in the am-

bient space. With this interpretation, the vector fieijdjo has

a well-defined Hermitian conjugate which we denote by

(7-rj|0)T. This Hermitian conjugate is given by EGC4),
where it is understood that the symi@Inow refers only to
the determinant of the metriG;; on C. However, since the
basisE;|, is orthonormal, we hav&=1, and hence

(7Tj|O)T:7Tj|O+iﬁ'}’]kkv (3.13
where the functions/I , defined orC, are the structure con-
stants forE lo- Slnce[E |0,E lo]=[Ei Ejllo, the structure
constantSyI are equal tcﬁ, |0 Comparlng Eq(3.13 to Eq.
(3.12, we now have the foIIowmg convenient description for
7] when restricted t@:

(W;r(s))|o:(77j|o)f-

(3.19

The scaled kinetic energy is given by E®9). Noting
Eqg. (3.1, we rewrite this as

Ks=3(m,G* 7+ m,GH o+ 7 OG" 7, + 7] Gl ;)

(3.19

+ Vs,
where

Vs=— (1 G moIn G][ m,In G]+ [7.O G myIn G1]).

(3.19

We will henceforth drop the index onKg, 1(s), and(|)s,
with the scaling being implicitly understood.

C. Expansion of the kinetic energy

In this section we expand the kinetic energy E8.15
through ordek®. Recall from Eq(2.5) thatu* is of ordere?,
and hence the momentum, = —ifd/du* is of ordere 1.
From Eq.(3.1), we see that the momentum is of ordere®.

PHYSICAL REVIEW A63 042112

Furthermore, from Eq(3.5), we see thaﬂ,J is of ordere®,
and comblnlng this fact with Eq3.12 we find thatw is of
order €°. [Recall that “(s)” is now implicit.] These scallng
properties imply that to expand E¢3.15 to order €®, we
must expand/y, G, G'*, andG*" to orderse?, €°, !, and
2 respectively.
SmceE is an orthonormal frame at*=0, we have the

ri‘ollowmg identities:

(3.19
(3.18

where we use the notation ¢;" for the derivative d/du?’.
Equations(3.17 and (3.18 yleld the following expansions
of G2

Gab|0: Gab|o: Oab

Gab,a|0: _Gab,a|01

G'l(u)=68;+0(e), (3.19
GH(u)=GH ,|ou+0(€?)=—G,; ,lou”+0(€?),
(3.20

G*"(u)= Ot G‘“’,o|0u"+ %G"“”M|OUUUT+ 0(63)
+ %( - G,LLV,O’T+ ZG,ua,UGaV,T)|O
(3.2)

= 5,11,11 G,u,V,o'|0uU

Xuu™+O(€d).

The derivatives of the metri6G,, appearing above are
conveniently expressed in terms of the potential twist tensor
Sand the Riemannian curvatureon A. To see this, we first
introduce the components & T, andR via

Sabc:<Ea,SEch>, (3.22
Tabc:<Ea,TEch>, (3.23
Rabca=(Ea ’REcEdEb>’ (3.29

whereT is included for completeness and for future refer-
ence. In Appendix D, we derive the identities

G,uj,u’lO:SM(rj|0! (323
G,uV,o'|0=01 (326)
GMV,O’TlOZ - %(RMUVT+ RVO',LLT)|0 . (327)

In actuality, the|, notation onS,,,; is redundant sinc& is
only defined orC, but we will make use of this notation as a
convenient reminder. Inserting E48.25- (3.27) into Egs.
(3.19—(3.21), we obtain
Gl(u)=

5ij+0(€), (32&

GH(u)=—S,,ilou”+0(€?), (3.29
G#V(u) = 5,uv+ (%R/,L(TVTJ’_ S,u(rksvrk)|0uo—u7+ O(ES) '

(3.30
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where we have used the well-known symmetry of the Rie- D. Expressions for the extrapotential
mannian curvatureR,p.q= Rcgap- We next insert Egs.

In Appendix D 2, we derive the following manifestly co-
(3.28—(3.30 into Eq. (3.195 to arrive at the main result of PP g y

variant form for the extrapotential:

this section,
2 2
P _ i _Tim T [ Z Ry
K=Ki+KﬁJ+ Kr+VE,+0(e), (3.32 Vex= 3 ZTWJTi,ui TlMiTJMi+2RI#iM+ 3RM ,U-V) .
(3.37
where
Notice thatV®, is expressed solely in terms of the second
K, = %77”|07Tw (3.32 fundamental fornil of the constraint manifold and the Rie-

mannian curvatur®k of A evaluated orC with no depen-
KP=1(a|o+ S| A )T (m+S7 oA ). (3.3 dence on the potential twiS SettingR,p.q=0, EQ.(3.37)
P=z2(mlo loA ) (i iloAor), (333 agrees with da CostRef. [7], Eq. (33)]. da Costa also as-
sumes thaB=0. Since we do not make this assumption, Eq.

_1 voT| . . .
Kr=35R" |0Auvva (3.34 (3.37 is a generalization of da Costa’s result to both the case
of nonzero Riemannian curvature in the ambient space and
VR =Vdo. (3.35  nonzero twist of the potential.

There are several other convenient forms\d. We first
We have taken advantage of the antisymmetry property Eqntroduce the following notation:

(2.3), S,.,i=—S,,i, and the well-known antisymmetry rela- b
tionsR,,,,= —R, .= —R,, 0 introduce the operators R=R%4p|o, (339
= RH#Y
AMV:%(U/.LWV_UVWM):%(WVUM_WMUV)f (336) RL RHILV|O, (339)
. . . Ri=R%;lo, (3.40
which are generalized angular momentum operators acting
on the transverse space. That is, they generatel S@ta- R=Ri (3.41)
tions in the transverse space. They are the generalization of e '
the angular momentum defined in Sec. | B. T2= 3T =TT, =THIT (3.42
In Egs. (3.32—-(3.34, we have employed the standard
practice of raising tensor indices by contraction w@". M2=TabaTCbc=Ti“iij=T’“iTLJ , (3.43

Thus, 7= G*7,, S*''=GH3G"GI°S,,., etc. However,
sinceG2,= 8,;,, the raised components and lowered com-where we use EqgB4), (B6), and (B7) in Egs.(3.42 and
ponents of any tensor evaluatedwt=0 are actually equal. (3.43. The quantitiesk and R are the scalar curvatures on
One could, therefore, equally well have written E@32—- 4 and(, respectively. The quantity is called the mean
(3.34 with all components lowered. The purpose of usingcyrvature. Using the fact tth:RH_|_Rl+2RiMiM|O, we
raised components is simply to express these equations fgwrite Eq.(3.37) as
manifestly covariant form.

We now mention a few facts concerning the Hermitian 0 5 5 1
conjugate which we used to derive E.33. First, notice Vex=— s 2T°= M+ R=Ry~ §RL - (349
from Eq. (3.1) that AT,=A,,. Also notice that since
$*"'|, has no dependence arf, S*"'| andA ,, commute. ~ Furthermore, the Gauss E@®10) yields
This means in particular that the Hermitian conjugate in Eq. .
(3.33 may be applied to ther'|, term alone. Finally, we T?=M?*-R+TR, (3.49
used Eq(3.14 to relate ¢r|o)" to (7])|o. Notice from Eq.
(3.13 that if Ej| ¢ is a coordinate basis aihthen the Hermit-

2

from which we find

ian conjugate may be dispensed with altogether. 52 A 1

We call the termsK, , K, and K appearing in Eq. Vgx=—§(T2—R+R— §RL) (3.46
(3.31) the transverse kinetic energy, tifereliminary) tan-
gential kinetic energy, and the curvature energy, respec- 72 A 1
tively. The last termVE,, being a scalar, nondifferential op- =— E(MZ_ZRJF R+R— §Rl). (3.4
erator, we call the(preliminary) extrapotential. The three

termsKf, Kg, andVg, are all ordere®. The transverse ki- Assuming the tensdR is 0, Eq.(3.47) agrees with Ref[7],
netic energyK, is of ordere 2 and therefore goes to infinity Eq. (36).

as e shrinks to 0. The energy associated with this term will

the_refor_e be subtraqted of_f Wi_th the remain?ng three terms IV. THE CONSTRAINED HAMILTONIAN

giving rise to the residual kinetic energy. Notice that each of

the four terms in Eq(3.31) is Hermitian with respect to the In Sec. Il we expanded the kinetic energyednobtaining
(scaled Hermitian conjugate. two terms. One term, the transverse kinetic energy, is of
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order e~ ?; the other term is of ordee®. In this section we
apply (degeneratefirst-order perturbation theory to derive a

constrained Hamiltonian for the eigenenergies. In doing so,
we introduce the transverse modes characterizing the wave

function away from the constraint manifold.

A. Rescaling by e and the expansion of the Hamiltonian

By adding the potential energy, (u) to the kinetic en-
ergy Eq.(3.31), we have the following Hamiltonian:

H=H, +H+0(e), (4.1

where
H =K +V,, (4.2
HP=KP+Kg+VE,, (4.3

are called the transverse afateliminary tangential Hamil-
tonians, respectively.

In order to clarify the subsequent perturbation analysis
we explicitly exhibit thee dependence of various quantities
by rescaling them ire. To begin, we repeat the previous
definition Eq. (2.5 of the rescaled quantities® and also

define rescaled momen?aﬂ ,

U= eu”, (4.4)
1.
Tu= Ty (4.5

Notice that bothu* and7r, scale as®. In general, the scaled
version of a quantitydenoted with a tildgis defined such
that the lowest order nonvanishing term of its expansioa in
is of ordere®. Thus, for a quantity homogeneous én the
scaled version is independent @f For convenience, we re-
peat the definition Eq2.4) of the rescaled potential energy

V, and also define a rescaled transverse kinetic energy and

transverse Hamiltonian

T/L(INJ;G)ZGZVL(U;6)=62VL(6L~J;6), (4.6)
K, =€K, =3m,m,, 4.7
H,(e)=€’H, (e)=K, +V, (Ue). 4.8

By our previous assumptions in Sec. I1'C, (U; €) is smooth
in € and does not vanish a=0. As for K , it is clearly
independent of. Thus,H, (¢) is smooth ine at e=0; its
lowest-order term is ordes®, but depending oWV, , it may
have higher-order terms as well. Recall tlmft, Kgr, V&,
andH| are already independent efand therefore need no
further scaling. For notational continuity, however, we nev-
ertheless define

Kp=Kp, (4.9

04211
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Kr=Kg, (4.10
V=V, (4.1
HP=HP. (4.12
We rescale the full Hamiltonian by defining
H(e)=€®H(e)=H () +HP+0O(e%). (4.13

In a typical Taylor-series expansion bif(€), we would re-
move the ordek term fromH , (¢) and leave it as a separate
term. We would also combine the ordet term of H, (e)

with the tangential Hamiltoniamzﬁﬁ’. Here, however, we
wish to keep thee and €? terms together in the transverse

HamiltonianH , (€). We therefore define a new perturbation
parametetk = €2 and rewrite Eq(4.13 as

H(e,x)=H, (e)+xHP+O(€). (4.14

Our objective is to find the eigenvalues idf through order
€. Viewing € and « as formally independent in E@4.14),

our objective becomes finding the eigenvalue$othrough
second order ire and first order ink. Our procedure is to
assume that the eigenvaluestdf (e) can be solved exactly
(or at least through ordes®) and then apply first-order per-
turbation theory ink. To simplify notation, we drop the
dependencébut not k dependendgefor the duration of the
derivation.

B. Transformation to the transverse modes

The zeroth-order ternfin «) of H(«) is the transverse
HamiltonianH, , which has the form

(4.195

SinceH, depends only on the quantitie&, we may restrict
its domain to functions ofi* alone. For the moment we
adopt this understanding for the domainkbf . We pick an

eigenvalueE, (the transverse energgf H, with finite mul-
tiplicity k and bounded eigenstates. We call these eigenstates

the transverse modesvith energyE,). We let y,(U), n
=1,... k, denote an orthonormal basis of these transverse
modes. By orthonormal, we mean

<Xn|Xn’>u:f du'A-- '/\dud)(:(a))(n’(a): Onn s
(4.16
where theu subscript indicates integration only over the
variablesu* as opposed to the fulld+m) form v in Eq.

(3.9.
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We now adopt the understanding tiat acts on wave notationH; for the matrix of differential operators with com-

functions~of bothu* andg. Such an eigenfunction with ei- ponents '(:|”)nn,. Equation(4.18 can therefore be written
genvalueE, has the general form more compactly as

H“(ﬁ: EH(ﬁ. (4.2@

Having completed the perturbation analysis, we have

, ) , dropped the superfluous tildes frony and its eigenvalue
where the functionsp,(q) are arbitrary. We therefore iden- E;. Using Egs.(4.3), (3.33, and(3.34 and a little algebra,

tify an eigenfunctiony(u,q), having eigenvalu&, , with  we expres$ as
the k functions ¢,(q). Notice that with our current under-

k
¢<G,q>=n§1 Xn(U) (), (4.17)

standing for the domain of the operatdr , E, is a degen- H|=Kj+ Vex, (4.21
erate eigenvalue, even flae=1, because there is an infinite
basis of functionsp,(q). where
Recall the steps involved in first-order degenerate pertur- _ _
bation theory. First, one verifies that the desired eigenvalue Kj=3(m'[ol+ S oA N (mil+ 577 oA ), (4.22)
and eigenfunction is analytic in the perturbation parameter
(Here, we simply assume this faciext, one determines the Vey=VE I+ (35411877 + ERHVOT)| /_\fy)w
zeroth-order energy and zeroth-order eigenstates. Then, one
considers the operator formed by restricting the first-order —(%s/“iswi)|0/_\wj\m
term of the Hamiltonian to the space of zeroth-order eigen-
states. The first-order corrections to the energy are the eigen- =VB I+ (35 S‘”i)|o(/_\£fgm—/_\wj_xm)

values of this restricted operator. In the present case, the

zeroth-order energy iE, , and the zeroth-order eigenstates
are given by Eq.(4.17). The first-order correction to the

Hamiltonian iSKHﬁ’. Denoting the first-order correction to

+5RH77A ) (4.23

= uvoT!

and wherd is thekXxk identity matrix andA ,, and A2

nvoT

~ , i - . are thek X k matrices having the following components, re-
the energy by<E, the eigenvalue equation f&i is spectively,
k
) = A v r= A wXn')us 4.2
2 (HH)nn’Cﬁn’:E”(l)nv (413 ( y73 )nn <Xn| ) Xn >U ( 4)
(A2 o= (Xl A A X - (4.25

where the 'ﬂu)nn, are the differential operators ) _ )
Equations(4.21)—(4.23 encapsulate the main result of this

(F'Il)nn':<Xn|ﬁan b paper. We make the following observations.
(i) The constrained HamiltoniaH is a kxXk matrix of
N 4w - operators. It is the residual Hamiltonian remaining after the
:J dut/A- - Aduxg (U (HP xnr) (). infinite transverse enerdy, is subtracted off.
(i) The kinetic energy;, which we call the(final) tan-
(4.19 gential kinetic energy, differs from the “standard” kinetic
energy due to the appearance of a gauge potential. Physi-
We call (H)) oy the constramed or tangential, Hamiltonian. cally, the gauge potential couples the tangential momenta to
We now recall thatc= €” and reintroduce the explick  the generalized angular momentum of the transverse modes.
dependence. Summarizing our analysis thus far, we have (jii) The quantityV.,, which we call the(final) extrapo-
shown that an eigenvalue &f(e) through ordere? is given  tential, is akx k matrix of nondifferential operators.

by E, (e)+ 62~EH(E), whereE, (¢) andEH(e) are eigenvalues (iv) All off-diagonal coupling inH is due to the general-

~ ~ . ized angular momentum of the transverse modes.
of H, (€) and H)nn(€). OF course, assuming smoothness (v) For a nondegenerate transverse mdde 1), the con-
in e, it |s suff|C|ent to solve forE, (€) and E||(e) through

q 40 v, We will theref I strained Hamiltonian is a scalar operatéf which acts on
orderse” and e respectively. We will therefore only require scajar wave functions. In this case, we see the emergence of

EH(E) and () (€) evaluated at=0, which we denote by Eqs. (1.3 (1.5 presented in Sec. | B. The exact derivation

E” and (H||)nn, , respectively. Also, by virtue of Eq4.19), of these equations from the more general E421)—(4.23

we assume for the remainder of the paper that the transverséll be presented in Sec. VI B.

modesy,(u) are only ordere® eigenfunctions ofi, (e). The preliminary tangential kinetic ener@;ﬁ’, preliminary
We view Eq.(4.18 as ak-dimensional vector wave equa- extrapotentialVy,, and preliminary tangential Hamiltonian

tion for a vector wave function defined over the constrathf’ are distinguished from théinal) tangential kinetic en-

manifold. We introduce the bold notatiap(q) for the vec-  ergy K|, (final) extrapotentiaV,,, and constrained Hamil-

tor wave function with componenis, (q) and the sans serif tonianH; by the “p” superscript. We often drop the “pre-
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liminary” and “final” modifiers when referring to these vector fields ovet. The normal connectioR N is defined by
terms, relying on their symbols and context to make the pre-

cise meaning clear. V,“('v= P, Vyv=P, V,P v, (5.0

C. Nonconstant transverse potentials whereV is the Levi-Civita connection onl. Notice thafV)':‘V

Up to now we have assumed that the transverse otentig itself a normal vector field. The curvature B, denoted
P P N is computed to be

V, (u) is constanfmodulo SO() rotationg along the con-

straint manifoldC. For some physical systems thl_s assump- B)':'yv=(V)'fV’y\'—V}’)'V)'f—V'\f(y])v

tion holds exactly due to symmetry on the ambient space,

such as SO(3) rotations in the case of a rigid body. How- =P, (V\P, V,=V,P, V=V )PV

ever, for other systems, this assumption may be only ap-

proximately satisfied; the constraining potential may in fact =PL(Ry=ViP|Vy+V,P V)P v

vary along the constraint manifold. This is true, for example, =P, (Ry~T,Ty+ T,T)P,V, (5.2

of a molecule evolving along a reaction path; there is no

symmetry dictating that the frequencies of the small transwhere the first equality is simply the definition of the curva-

verse vibrations be constant. The purpose of this section is tQre, the second follows from E¢b.1), the third from noting

illustrate how small variations in the transverse potentialp —| — Py and Eq.(B8), and the forth from Eq(B1). As

may be easily included within our formalism. ,  expected, the curvature depends only on the nature of the
The key idea is to only allow dependencedat ordere”.  embedding of’ (via the tensofl) and on the curvature od.

Specifically, we assume the transverse potential can be e¥ e assume that the tensoB) and R vanish, then we

panded as obtain the class of embeddings considered by da dasta
- . - 1~ o2 3 For such embeddings, one can choose a potential frame with
Vi(u,0;€)=V](u)+eVi(u)+eVi(u,q)+0(e). vanishing twist, thus eliminating coupling between the trans-

(4.26 verse modeq.This follows from Eq.(5.5) below and the fact
_ _ . . ~ that for vanishing curvature, one can always find a frame for
Applying this expansion to Ed4.8), an eigenvaluee, of  hich the gauge potential vanishpalso, for a nontwisting
H, (assuming analyticity ire) can be expanded as potential frame, the submanifolds of constant potential are

_ _ - - orthogonal to the transverse spaégs Hence, at all points

E (0;6)=E) +eE[ +’E1(q)+O(€®).  (4.20  the restoring force is directed inward tangent to the

~ It is instructive to compute the gauge potential explicitly

The first two terms o, =E, /€* go to infinity ase goes to  for the connectioVN. For this computation we first choose
0. However, these two terms are constandiand may thus an arbitrary orthonormal fram@ot necessarily the potential
be subtracted off. The next-order tefsf(q) does depend frame V,, u=1,... d, for each normal spachl,. We
onq and is of the same order inasH . Thus,Ef(q) may denote the components of an arbitrary normal vector field

' N
be combined with the extrapotentigl, in H to form the ~ With respecttdv,, by v. Then, the components 8fg v are
effective potential given by

Ver(@)=Ve @) +E2(Q)1. (4.28 (VR =B+ (AN~ 0", (5.3

This is the only modification which needs to be made to oufwhere we have defined the gauge potential
formalism. Notice that the transverse modggu) need not
be modified since they are defined to be only orefeeigen- (AM) . =(V,, ,vgvy>=<vﬂ VEeV,). (5.9
functions ofH, and hence are unaffected by the teEf(q).
Due to the orthonormality of the,, (AiN)M is antisymmet-
V. ANALYSIS OF CONNECTIONS ric in u andv. The gauge potential can therefore be viewed
as a one-form orC with values in the Lie algebra sdy,
Both the preliminary and the final tangential kinetic ener-which contains all antisymmetridxd matrices. If we
gies Kﬁ’ and K exhibit a gauge potential proportional to chooseV ,=E,,, we recognize from Eq2.2) that the gauge
Sapc- In this section we study the geometric origins of thesepotential is related to the potential twist tensor by
gauge potentials and compute their curvatures.
We begin by reviewing the connection on normal vector (Ai’\')wzsﬂyi . (5.5
fields overC. We note that many equivalent definitions exist
for the general concept of a connection. For the purposes dfhis result will be important below for analyziri¢f andK .
this paper, a connection is taken to be a covariant derivative We now consider a functiog#(v,q), such as the quantum
operator which acts on some space of vector fields. For mor@ave function, defined in the neighborhood’ofWe use the
background, see any of a number of standard referd@8es  bold notationv instead of sans serif used earlier because we
25]. For the remainder of this section,is an arbitrary nor-  wish to emphasize the dependencejain the normal vector
mal vector field overC, andx andy are arbitrary tangent and not on its components with respect to a given frame,
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such as the potential framéThe connectiorVN which acts
on normal vector fields gives rise to another conneclidh
which acts on the functiony/(v,q). In order to define
(V‘)‘(pzﬂ)(v,q), we first choose a paty’(«) such thatg’(0)

=q and dq'/da)(0)=x. We then denote by'(«) the
unique normal vector at each poigt(«) satisfyingv’(0)

=v and (V},4,v')(a)=0. Then, the connectioR P is de-
fined by

(VIPy) (v,q)= a4 (5.6
X ' da

@

YV (@),q'(a)).
=0

The transverse kinetic energ¢fy’ can be directly related to
the covariant derivativ&?. To do this, it is useful to com-
pute the gauge potential oFlp explicitly. As before, we
consider an orthonormal framé, and denote the compo-
nents ofv by v*. Then, the function/(v,q) can also be
interpreted as a function of/(q), wherev=(v?, ... v9) is
the collection of components. We therefore have

(VEy)(v.0) (V' (@),q' ()
=0

=1

da

d
:Ow(V’(a),q)Jra :Ollf(v,q’(a))

a a

a
=(Eiv’“)(Q)%—i(V,QH(Eilﬂ)(WQ), (5.7

where in the third equality, the derivativetdv# andE; are
understood to havg andv” held fixed, respectively. From
Eq. (5.3 and the conditiorVE‘iv’ =0, we find

Ev'“=—(AN)* 0" (5.9
Inserting this result into Eq5.7) yields
(VW (v, a) =[E+AP)PI(v,q), (5.9
where
AP=(AMQ,,, (5.10

and where we have used the antisymmetrym'i")(w to in-
troduce the operator

q = 1 1% J 51
w2V er "V igun| 6.1
Obviously ifV,=E,, thenA ,,=—i4(,,. The relevance
of VIP for Kﬁ’ is now clear. By choosiny ,=E, and apply-
ing Egs.(5.9), (5.9, and(5.10 to Eq.(3.33, we see that
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Considering Eq(5.10, we see that the two gauge poten-
tials (AiN)M,, and A!‘p differ only in their representation of
so(d). For (AiN)M, we use a representation loy<d anti-
symmetric matrices, whereas fAFp we use a representation
by the operator€} ,,. Therefore, the curvature of the con-
nectionsVN andV/P are also related by simpIP/ switching the
representation of sdj. Hence the curvaturB/? of VIP is

Bu=(VIPVP = VPV =V )
(Bl Qb
=(Ry = TiTy+ Ty T)*"Q 4.

(5.13

We now consider &-dimensional vector-valued function
&(q) with componentsp,(q). The connectioV P induces a
connectionV! on ¢ by the formula

(5.19

n'=1

k
<VQ¢>n=<xn viPy Xn,¢n,> .

The tangential kinetic energi(, is closely related to the
connectionV! as we now show. We take the orthonormal
frameV , to beE, , and we recall thay,(u) is a function of
u* alone and¢(q) is a function ofq alone. Then applying
Egs.(5.9), (5.9, and(5.10, we find

ViPXn=(S)"" QX (519
VP bn=x¢bn, (5.16
where §,) ,,=(E, .SE,). Then Eq.(5.14) yields
vi=xi+al, (5.17)
A= (S0 Qs (5.18
whereQ ,,, is thekxXk matrix with components
(@) nn = Xl QX - (5.19

From Eq.(5.195, we note that the componentsﬁif can also
be written as

(AU()nn':<Xn|V|>‘<an’>u- (5.20
Equations(5.17 and(5.18 show that the tangential kinetic
energyK;, Eq.(4.22, is given by

hZ
K== (VE)'VE, (5.21)

analogous to Eq5.12 for Kf.
The connectioV! is closely related to the adiabatic trans-

hZ
— __(vlmtyle
Kﬁ)_ 2 (VEi) VEi' (5.12 port of quantum states and the associated geometric phase
due to Berry[14]. If a set ofk degenerate quantum states
Thus the preliminary tangential kinetic energy is just propor-¢,(7), n=1, ... k, depending smoothly on a set of ex-

tional to the Laplacian defined in terms of the connectionternal parameters)= (7, . ..

vlP. [Compare Eq(5.12 to Eq.(C2).]

\m), 1S subject to an adia-
batic variation («) of these parameters, then tlgg(«)
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:gn(ﬂ(a)) satisfy <§n|d§n’/da>:2i<§n|a§n’/‘97]i>
X(d#n;/da)=0. Simon[26] recognized that this condition
defines a connection

ve. =il+A-B (5.22
alan; &7]| i .
acting on the vector-valued wave functiés (&4, . . . ,&k)
parametrized by;. The gauge potentiaﬂiB is akXx k matrix

with components
agn,>
an |

(5.23

(A?)nn’: < én

If the parametersy; are themselves quantized, then the mo-

mentum conjugate tayp; is not simply —i%(d/dx;)l, but
rather—i# V5, =—ih(aldp+AP). This situation applies,

PHYSICAL REVIEW A63 042112
(dS)(X,y) =Ry~ TuTy+ Ty T}~ S+ Sny)“”(-5 2

Combining Eq.(5.28 in turn with Eq.(5.24), we arrive at
the following useful formula for the curvature &

Bly=(Ry—T,Ty+ TyTx—S,S,+ 5,50*"Q,,,
+(S0*"(S)7TQ 0 Qo] (5.29

Using the commutation relations E(.26) the above equa-
tion can be recast as

Bly=(Ry— T, Ty+T,T)*"Q

y7a%
+[(S)""(S) ™= (S (S)"1(Q2,,Q,,— 2 ),
(5.30

. 2 . . .
for example, to the Born-Oppenheimer theory of moleculeswhereQ %), _is thek> k matrix with components

wherein the parameters; describe the positions of the nu-
clei and the&, represent the quantum state of the electrons

(Q(Z)

Mvor)nn’:<Xn|Q,uVQO'TXn’>' (531)

[27]. For the constrained quantum systems considered in this

paper, the ordering ia adiabatically separates the transverse

modesy,, (analogous to the&,) from the motion along the
constraint manifold(analogous to the space af). There-
fore, the gauge potenti@lﬂ occurring in Eq.(5.17) is essen-
tially the same as Berry’'s gauge potentl‘s'ﬁ occurring in

VI. SPECIFIC CASES AND EXAMPLES

We consider several concrete examples to help clarify the
general theory.

A. Codimension-one case

Eq. (5.22. We say “essentially the same” because the co-

ordinate derivative)/d»; of Eq. (5.23 has been replaced by

the covariant derivativ@ P of Eq. (5.20, this covariant de-

We assume here that the codimension of the constraint
manifold isd=1. Since there is only one normal direction,

rivative being the geometrically natural connection for thewe expect the potential twist to vanish. Indeed, this follows

transverse modes.
We next compute the curvature of the connectidn In

terms of the gauge potential =(S)“"Q,,, we have

Bl,= (dAl (x,y)+[ AL Al]
=(dS) (X V) Qs (SI*(S) 7T Qo]
(5.24)

wheredS*” is the exterior derivative 08", viewed as a
one-form overC. We determined §*” from the formula Eqg.
(5.13 for the curvatureBIP. We first note

Blo=(dAIP)(x,y)+[AlP AlP]
= (dS)(%Y)Q,.,+(S)*(S)7 Q.. 0,1,
(5.25

where we have used Eg&.5 and (5.10. It is straightfor-
ward to verify that the() ,, satisfy the following commuta-
tion relations:

[Q;LV ’QO'T] = %(5,(LO'QTV+ 6VTQO'/.L+ 5/.LTQV0'+ 51/09,1”)!
(5.26

and hence Eq5.25 reduces to

BIO=[(dS"")(x,y)+(S,8,~§,80*"1Q,,,. (5.27)
Combining this equation with E45.13 produces

from the antisymmetry propers,,i=—S,,i [Eq.(2.39] and
the fact thatu=v=1. Similarly, the normal components of
the Riemannian curvatum,,,,, also vanish due to the well-
known antisymmetry propertyR,pcq= — Rpacd= — Rabde-
From this fact followsR, =R™;,/o=0 andR=R;. The ex-
pressions foff? and M ? can also be simplified by introduc-
ing the rank two symmetric tensdlV defined on vectors
tangent taC and with component®/';=T'y; . (This tensor is
often called the Weingarten magrhen 72=Tr (W?) and
M?2=(TrW)2. Hence, the tangential Hamiltonian Hg.21)
becomes

H‘|=K”+Vex, (6.1

Kj=37 o mil, (6.2
72 .

Vex=VBJ=— 3(72—72+ Ry!

72 .

=— g (MZ=2R+2R))l

2
=— 3(272—/\/12», (6.3

where we have used Eg&.44), (3.46, and (3.47). Notice

that the tangential kinetic energy is proportional to the stan-
dard Laplacian oic. All reference toA ,, has vanished, and
hence all coupling between the degenerate transverse modes

042112-13



KEVIN A. MITCHELL

has been eliminated. Thedimensional Schidinger equa-
tion therefore separates into independent scalar Schro
dinger equations.

We consider the case where the ambient spéde a flat
two-dimensional space and the constraint manifélis a

curve in that space. Then, we note thet R=Ry=0. Fur-

thermore, the second fundamental form, or equivalently th
Weingarten map, has only one nonzero component. We d%—

note this component bW=W,;,=«x=1/p, where « is the
extrinsic curvature angd is the radius of curvature. Then, the
extrapotential is

=— —K>. (6.4)

As in Sec. | B the sign oiv8, is such thate is attracted to

regions of high curvature. This extrapotential was derived

earlier by Marcug3] and Switkes, Russell, and Skinréi.
We next consider the case wheré is a flat three-
dimensional space and is a two-dimensional surface. We

PHYSICAL REVIEW A 63 042112

Vex=VEI+(28S)|o(AP =A%)+ 3R [oA%. (6.12

We consider the case of Sec. | B whedes a flat three-
dimensional space andis a one-dimensional curve. First,

we note7AQ=R=Rl=R”=O. Next, we denote the single
component of tangential momentum hy= ;. SinceC is

Bne dimensionalgr = —iﬁ&/&a=ﬂ'ir, where « is the geo-

esic length. Furthermore, the potential twist is determined
by the sole componeidl=S;. The second fundamental form
can be identified with a normal vectd®=T'#' of magni-
tude k= 1/p. Hence M *=T'“T! ;=THT, = k*=1/p?. Us-
ing Eq.(3.47), Egs.(6.11) and(6.12 therefore simplify to

K= 3 (ml+2SA)?, (6.13
2

h
— 5 K71+ (28 (AP =A%),

VEX= 8

(6.19

Assuming a single nondegenerate transverse mode, EQs.

still have thatR="7R=0. Furthermore, the eigenvalues of (6.13 and(6.14 yield Egs.(1.4) and(1.5).

the second rank two-dimensional tenddt; are ;= 1/p;
andk,=1/p,, wherep; andp, are the two extrinsic radii of
curvature. Then the extrapotentMf, is conveniently writ-
ten

ﬁZ
VB =— g[2 Tr(W?)—(Trw)?]
__ﬁ_z(i_i)z
-8 pP1 P2
ﬁ2
:—g(Kl_Kz)z- (6.5

This result was previously derived by Jensen and Kdgpe
as well as da Cost®].

B. Codimension-two case

We assume here that the codimension of the constraint

manifold isd=2. This allows us to define quantiti&s, A,
andA® by

/LVI_SE/“H (66)

‘/-\,U,V:‘/_\Ep,va (Bn

/_\53120'7':/_\(2)6#1/60'7'1 (68)

where €, is the 2<2 antisymmetric tensor withe ;=

—€,,=1. Furthermore, we have

R,uvo’rz %RL 6/.“/60'7" (69)

We express the tangential Hamiltonian E4.21) as
HHZ KH+VGX’ (61@
Kj=3('[ol+2SoA) T (mi1+2SA), (6.1

C. Rotationally invariant transverse potential

In this section, we assume the transverse pote¥tial)
is rotationally invariant, depending only on the radius
= (u*u*)*?in the normal space. The potential fraig can
therefore be any orthonormal frame we like. This freedom in
the choice of potential frame produces a large range of pos-
sible potential twist tensor§, with the actual choice of
being simply a matter of convention. The Hamiltonidpin
Eq. (4.21), however, should be independdnp to a rescal-
ing of the wave functionp) of any such conventions. In the
remainder of this section, we show explicitly how the depen-
dence onS drops out ofH; under the assumption of rota-
tional invariance.

First, we observe that the transverse Hamiltonian Eq.
(4.2) has the form

2

AZ 1 9 .9 A v 61
- Y ottt 1 (u), (6.19

2 401

HJ_:

whereA? is the Casimir operator

AZ=A, AP (6.16

Therefore, an eigenfunctiory, of H, is necessarily an
eigenfunction ofA2. We denote by such an eigenfunction
whose A? eigenvalue isk. A basic fact concerning the
eigenspaces of the Casimii® is that they block diagonalize

the generators\ . That is, () A ,x5 )=0 if N#N"2
Based on the definitions Eq&4.24) and (4.25 for A

MUVoT
and A, , this fact implies that for the space of transverse

“This  follows  quickly ~ from [AZA,,]=0.
()\7)\,)<X|}‘\]|Ay.vxﬁ’>u:<X2|[A2!Auy]X:\1’>U:O

Note,
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modes for a givenE,, A®?) =AuvA,,. Similarly, and the transverse modes can therefore be labeled by the

0@ —0 o . Wwe theref;)#e:UsTee from E¢4.23 that all number of quanta,, in each degree of freedom. We de-
LA note such a mode by, wheren=(n,, ... ng). Inserting

Sd d d t , I L
ependence drops out . Eqgs.(6.21) and(6.22 into Eq. (3.36 yields
Vey= VB I+ s RH#77| oA A gr (6.17

if
ConsideringK;, even though Eq(4.22 is written in Aw:m[(“’ﬂ_‘”v)(auav_alaz)
terms of the potential twish, we showed in Sec. Yspecifi- ey
cally Eg. (5.21)] that K; can be expressed in terms of the +(w,+0,)(ala,~ala,)], (6.27)
Laplacian associated with the connectidi. From Eq.
(5.30 and the results above, we see that the curvaBliref  from which one quickly sees

this connection is independent §f
<Xn|A,qun>u:0- (6.28

A significantly more involved computation yields
Now if two connection&’! andV!" have the same curvature,

B‘Ly:(ny_TxTnyTyTx)“VQW. (6.18

then their associated Laplacians can only differ by a rescal- 2 1 wi+ w?

; : an XA A giXn)u=— 32| N+ 5] n,+ 5 -
ing of the wave function. Hence, the Hamiltoni&d) for i urBorXn/u 8 2N 2) w0,
different choices of the potential twiStcan at most differ by .

such a rescaling. X(6,r0,5— 0,60,7)- (6.29

We now assume that= y, is a nondegenerate transverse
o ~mode. The tangential Hamiltonian E@.21) is therefore a
We assume that the transverse potential is quadratic in thecajar operator. Using Eqé6.28 and (6.29), Hy is

D. Harmonic transverse potentials

ul"

1 Hj=Kj+Vex, (6.30

ViU =2 S (w,(e)urur (6.19 .
)2 .

K||=§7TI|0T’7Ti y (631)

and that the oscillation frequencies dependeovia o, (¢€)

=w, /€%, with », being independent o. (For clarity, we

, o AT h? . 1
make summation over the indicgs v, o, ... explicit in Ver= VB — — > SIS+ s RMY
this section. We introduce the standard machinery of rais- 8 v 3 0
ing, lowering, and number operators for each degree of free- 2, 2
dom, x|1=2n +l n +E w (632)

L2V 2) w0, ’
1 . Ty, . . )
a,=——| JVo,u,ti—|, (6.20  The most striking aspect of the above equations is that, due
V2h ” to the vanishing of x|A ,, x).. the tangential kinetic energy

K| is proportional to the standard Laplacian on the constraint

h + manifold. Thus, all of the effects of extrinsic curvature and
ut=\/-—a,+a,) (6.21 . : ; ; .
2w, * M potential twist are contained in the extrapotential .

. Jho, T E. Potentials with reflection symmetry
m,=—I 5 (a,—a,), (6.22 o .
The vanishing of(x|A ,,x), (and hence the potential

twist as wel) from K; in Eg. (6.3) follows from general

NM=aLaM, (6.23 considerations of reflection symmetry, and therefore occurs
for a large class of symmetric potentials.
[a, ,a,f]z Opv- (6.29 Let Qe O(d) be a reflection acting on the transverse co-
ordinatesu=(u?, . .. ,u% and assume that, for a given
Notice thata, andN,, scale as’. The transverse Hamilto- u” is mapped to-u” and all other coordinates remain fixed.
niansH, andH, have the usual form Thus,Q=Q '=Q". Furthermore, assume thet (u) is in-

variant under the action d, that isV, (Qu)=V, (u). The
1 reflection Q also has an induced action on the transverse
N, + 5)' (6.29 modes, which we denote b and which is given by
(Qxn) (W)= x,(Q 'u). Due to the symmetry 0¥, , Q com-
mutes withH | ,

Hi(e)=2> fiw,(e)
M

1
N, + >

Ak (6.26

H =2 ho
+ % “u [Q,H,]=0. (6.33
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Furthermore, the following are easily verified: vibration energy levels of such molecul@ghrough the low-
est three orders in the Born-Oppenheimer ordering param-
Qu'Q'=—-u, (6.349  eter. See, for example, Papeksand Aliev [28].) For
. semirigid molecules, the constraining potentiaésulting
Qm,Q'=—m,, (6.39  from the semirigid bondsis well approximated by a har-
. monic potential. Hence the gauge potentialkip vanishes.
QA Q' =—Ay, forall u. (6.36 (We assume a nondegenerate vibrational state; see Sec.

W id inal d VI D.) For this reason, a semirigid molecule is a poor ex-
€ now consider a single nondegenerate transversgmme for viewing the effects of the gauge potentatlleast
mode, denoted simply by. Due to Eq.(6.33, y must also

. : . . for nondegenerate modgsA more interesting example
be an eigenfunction o with eigenvalue either-1 or — 1 J B d b

. 5 S ; might be a cluster of rigid molecules held together by weak
(since Q°=1). TComblnlng these facts with E46.36 and /5 der Waals forces. The potentials between such molecules
recallingQ=Q"', we have

can be quite anharmonic and unsymmetric, meaning the
_ gauge potential is not forced to vanish. Such systems might
Ol ux0u= Q1A . QXD therefore provide a fruitful context in which to observe the

:<Xn|QAUMQTXn>u physical consequences of this gauge potential.
== (Xl Aeux)u (6.39 ACKNOWLEDGMENTS
and hence The author wishes to acknowledge Jerry Marsden and
A o g I 6.3 Alan Weinstein, who were instrumental in the initial motiva-
(X|Agux)y=0 for all u. (638 tion of this problem. The author is also especially grateful to

Robert Littlejohn, for many extended discussions and
thoughtful insight, and to Michael Mier for his careful re-

view of the manuscript. This work was supported by the
Engineering Research Program of the Office of Basic Energy

again given by Eq(6.31 and the only effect of the potential Sciences at the U.S. Department of Energy under Contract
L : L No. DE-AC03-76SF00098.

twist is to be found ifV,. This is the case for such common

potentials as the simple harmonic oscillator, analyzed in the

preceding section, as well as tHelimensional square well. ~ APPENDIX A: A BRIEF REVIEW OF CURVES IN R®

Note that this analysis says nothing about the off-diagonal

. We ci few important f rveshA which
terms of (A ,,)nn for a system with degenerate transverse, ecteate portant facts about curves ¢

) : .“we need in the body of the paper. For greater depth, see, for
_modes, for such systems, there may indeed be a nonvamsﬁi—(ample, Spival24]. Consider a curvex(a) in R3. The
ing gauge potential.

parametrization of the curve is given lay which measures
the arclength along the curve. Hence the tangent vector
=dx/dea is of unit length. We denote the principal normal

We have rigorously derived the effective Hamiltonian of aand the binormal by andb, respectively. They are given by
constrained quantum system by considering the limit as the

If the potentialV, (u) is symmetric with respect to at least
d—1 suchQ reflections, possessing—1 distinct and or-
thogonal reflection axes”, then(x|A ,,x), vanishes for all
m,v=1,...d. For such highly symmetric potentialg; is

VIl. CONCLUSIONS

restoring force becomes infinite. In doing so, we have been _ di/de

careful to avoid unnecessary assumptions on the curvature of n=————, (A1)
the ambient space, the form of the constraint manifold, and |dt/de]|

the manner of the constraining potential. This general ap-

proach yields important new terms in the effective potential b=txn. (A2)

Vey, a@s outlined in Secs. Il D and IV B, as well as a gauge

potential in the tangential kinetic enerd, as outlined in The vectors i,ﬁ,ﬁ) form an orthonormal right-handed

h b lied t | | £ ohvsical i frame. The derivatives of this frame are given by the famous
our theory 1o be applied to several examples of physical IMgq ot Frenet formulas which may be summarized as
portance. These examples include reaction paths for molecu-

lar reaction and scattering problems, twisted quantum

waveguides, the double pendulum, and models of polymers q t 0 « O]t

by rigid constraints. . _ —ln|l=l-« 0 ~||nl, (A3)
Perhaps the most important example of a constrained da| o —- oll=

quantum system is the quantum rigid body. Physically, we b T b

have in mind systems such as semirigid molecules. Though

we lack the space to include the analysis here, we have apvhere «(«) and 7(«) are called the curvature and torsion,
plied our theory to such molecules. Assuming that the stanrespectively. The curvature and torsion have units of recip-
dard Born-Oppenheimer ordering is valid, our constrainedocal length. The reciprocal of is the radius of curvature

Hamiltonian reproduces the standard results for the rotatione=« 1.
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APPENDIX B: THE SECOND FUNDAMENTAL FORM APPENDIX C: THE QUANTUM KINETIC ENERGY

L. . . WITH RESPECT TO A VIELBEIN
The extrinsic curvature of a submanifafdembedded in a

manifold.A is conveniently specified by a rank-three tengor We present two expressions for the kinetic energy of a
called the second fundamental form. Since the second furguantum system on a Riemannian manifold of dimension
damental form is of critical importance in the body of this These expressions differ in the scaling of the quantum wave
paper, we briefly review a few of its relevant properties. Forfunction. We refer the reader to earlier related analy3és-
greater detail, see Ref9,30. 33] for derivations and discussion.

Throughout this appendix, e, f denote arbitrary vector We express the kinetic energy in terms of a vielbein. By a
fields tangent taA and defined ove€; w, X, y, z denote  vielbein on a Riemannian manifold, we mean a set of vector

vector fields tangent t6; andv denotes a vector field normal fields E;, a=1,...n, forming a basis of each tangent
to C. The second fundamental form appliede@ndf, de-  space. The structure constags, of the vielbein are defined
notedTf, is a vector field defined by by

TSf= PLVPHGPHH_ P”V pHePLf, (B1) [E..E,]= ngEC, (C1)

whereV is the Levi-Civita connection ol andPj andP,  \yhere[,] denotes the Lie bracket. The structure constants
are, respectively, the tangent and normal projection operatotgnish if and only if the vielbein is a coordinate basis, that is

of .2 It is straightforward to verify thaT is in fact a tensor. if and only if there exists a set of coordinate’ such that
Furthermore, the second fundamental form satisfies the iderEa:&/axa' We denote the components of the Riemannian

tities metric with respect to the vielbein iy, and the inverse of
(d,Tf)=—(f,Td) (82 Gan by G o
TE Tl We define the kinetic energy of the quantum system by
Ty=Tyx, (B3) K=—#2A/2, whereA is the Laplacian. In terms of the viel-

bein, the kinetic energy ig31],
where(,) denotes the Riemannian metric gh In terms of

_ : i h? 1
the componentd ;.= (E,, Te Ey) introduced in Sec. Il C, K = 7E;GabEb= EW;GabWba (C2)
we have
Tabe™ ~ Thacs (B4) where
Taij=Tajis (B5) ma=—1hE,, (C3
Tap,.=0, (B6)  are the momentum operators. In the above t denotes the
Hermitian conjugate. In general, the momentg are not
Tua=Tija=0, (B7)  Hermitian. They do, however, satisfy the following useful

' . . identi
where the first two equations are simply component formsde tity

for Egs. (B2) and (B3) and the last two follow easily from .
Eq. <§1).( a3 g = ot [maln VG +i% B2y, (Ca)
In Secs. DI and Il D, we need the Gauss equation, a

well-known identity relating the second fundamental foFm Where G=detGg,. The bracket notation in EqC4) indi-
. . A ) . cates that the quantity inside the brackets is a scalar; that is,
the Riemannian curvatui@ of C, and the Riemannian cur-

. . : 4 acts only on In/G.
vatureR of A. The Riemannian curvatures are defined by Often it is useful to scale the original wave functiprby

Raf=(VVe— VeVa— Viga)t. (B8) some real positive functiosito form a new wave functiog,

ﬁXYZz(@X@y_ @yﬁx_@[x,y])zy (Bg) lr//: Se. (C5)

Such a scaling produces a new kinetic energy operator acting
on the new wave functiog.. By conveniently choosing the
scale factors, the new kinetic energy may acquire a more
convenient form than the old kinetic energy. To demonstrate
how the kinetic energy transforms, we first observe that the
scaled wave functions have a different inner product than the
unscaled wave functions. Denoting the unscaled inner prod-

uct by(|), the scaled inner produ¢t)s is defined by
%0ur definition of the second fundamental form differs in the

choice of domain and range from that in RgZ9]. We follow the 1
definition of Ref.[30]. (Yl )s= <§ W

whereV denotes the Levi-Civita connection 6nThe Gauss
equation is the29]

(W,Rey2) = (W,Ryy2) +(T,z, Tyw) —(T,z, T,W).
(B10)

1
—w’>, (C6)

S
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for arbitrary wave functionsy and '. This scaled inner
product in turn defines a scaled Hermitian conjugst® of
an operatolA. Specifically,

1
AT = SZATEZ. (C7)
Applying Eq.(C7) to Eg.(C4), we find
W;(S) = W;— 2[m,lns]. (C8)

The scaling of the wave function transforms the kinetic

energy operatoK into K;=sK(1/s). It can be showr31]
thatKg reduces to

1
Ks== 71 OG®m + Vg, (C9

2
where
Vs=— (G maIn s]|[ myIn 8]+ [71© G m Ins]])
= LG m ns][ myIns]—[7LG m,Ins]]). (C10)
APPENDIX D: MATHEMATICAL DETAILS

1. Proof of identities (3.29-(3.27)
To prove Eq.(3.25, we first note

Gm,a|o:(VEUGM1)|o
:(VE(,<E;NE1>)|0

=(Ve, E. Eplot(EL, Ve Elo, (DD

where in the first equality, we replaced the coordinate derival
tive by the covariant derivative, treatii@,; as a scalar func-

tion. The second equality is the definition Gf,;, and the

third equality follows from the Leibniz rule and the vanish-
ing of the metric tensor under covariant differentiation. We

next define the vector

M,,=Ve E (D2)

oW m
which we now demonstrate vanishes@rro prove this, we
first show that it is everywhere symmetric jn and o by
using the general formula
Vse—Vd=[d,e], (D3)
whered ande are arbitrary vector fields od. By substitut-
ing d=E, and e=E, and recalling tha{E, ,E,]=0, we

find thatM ,,=M . SinceM,,, is symmetric, it vanishes if

and only ifv“v#M,,=0 for an arbitrary list of(constant

real numbers?. For such an arbitrary list, we define the

vector fieldv=v’E, over A. Since dv*/du’=0, we see
from Eq. (D2) thatv“v#M,,=V,v. Since the quantitiea”
are defined via geodesic flow away fraiman integral curve

of v which passes throughl is itself a geodesic. By the

geodesic equation,V(,v)|o=0. Thus,v’v*M,,[oc=0 and
hence

PHYSICAL REVIEW A 63 042112

(Ve E)lo=0. (D4)
We return to Eq(D1) and write
Gp,j,o'|0:<E/.L 'VEO_EJ>|0:<E/¢ vVEan'>|O:S,ua'j|Ol
(DY)

where the first equality follows from EdD4), the second
from Egs.(D3) and(3.1), and the third from Eqg3.22 and
(2.2). This completes the derivation of E(B.25.

To prove Egs(3.26 and(3.27), we fix a pointq on the
constraint manifold and restrict our attention to a single
transverse spadd, which we temporarily forget is embed-
ded in A. Recall that the vectorg, are tangent td{, and
G,,=(E,,E,) is the metric tensor otY,. Furthermore, the
coordinatesu” are Riemannian normal coordinates &,
and it is well known that the expansion of the metric to
second order in the Riemannian normal coordinat¢833%

GMV(U):éyV_%RMUVT|OUUuT+ T (DG)
whereR is the Riemannian curvature of the transverse space
Uy . The vanishing in Eq(D6) of the term linear iru proves
Eq. (3.26.

The quadratic term in EqD6) yields

__1 =)
G/.LV,(TTlO_ - §(RM0'VT+ RV(T,U,T)|O '

To complete the proof of Eq3.27), we must prove that the

componentsR,,,,,/o Of the Riemannian curvature o,
agree with the component%/w,,f|o of the Riemannian cur-
vature onA. To prove this, we use the Gauss relation given
by Eqg. (B10) and which we reexpress here in component
orm

(D7)

R,u.o'VT: R +Ta0'VTa/.LT_TaO'TTa/.LV .

(D8)

novT

Since we are applying the Gauss equation to the submanifold
Uy instead ofC, we place an overbar on the symbols for the
second fundamental form and the Riemannian curvature.
Here,T is the second fundamental formif . Recall thatP,

and P, were defined to be, respectively, the tangent and
normal projection operators ontb We extend the definition

of these operators far” not equal to 0 by defining?; and

P, to be the normal and tangent projection operators, respec-
tively, ontol, . With this definition, the second fundamental

form T is given by[see Eq(B1)]
Td=P|Vp P.f+P. Ve P, (D9)

wheree andf are arbitrary vector fields ové, which are
tangent taA. SinceE,, is tangent td{, everywhere, we have

Tour=(Ey.Tg E,)=0. (D10)
Furthermore, sinc&; is normal tol4, atu“=0, we have

?i,uv|0:<Ei a?EVE,u>|0:<Ei !VEVE/.L>|0:OI (D11)
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where the last equality follows from E@D4). Combining  The various derivatives d5;; appearing in the above may be
Egs.(D10) and(D11) yie|d5?aw|o:?aw|o=0 from which  reexpressed using the following identities, to be derived mo-

follows, using EQ.(D8), R,,¢,,/0=Ryalo- This concludes mentarily,
the proof of Eq.(3.27).

Gij ulo=2Tijlo. (D18
2. Proof of identity (3.37)
o . Gijurl0= (Taui Tavit Tauj Tavit SauiSas
Considering the first term of Eq3.16), we observe that
sinceG,p|o= 8ap + S5, Sani — Rigjv— Rjuin)lo- (D19)
[ InG]|o=0, (D12 Upon inserting Egs(D18) and (D19) into Eq. (D17) one
. obtains Eq.(3.37).
[7,InG]lo=—i%(G*Gpy )]0 Returning to Eq(D18), it is derived via
=—ihG
Gaaulo Gij,M|0:(VEM<EiiEj>)|O
=—ihG; o, (D13)
jj,ml0 :<VEiE,u'Ej>|O+<Ei'VEjE,LL>|0
where we have used E.26 in the last step of EqD13).
Equations(D12) and (D13) yield =2Ti,jlo, (D20)
1 . h? where in the second equality we used the Leibniz rule and
2 (G man Gl mpin G])o=~ ~(Gii ,.Gjj ) o- interchanged the derivatives by virtue of E633) and(3.1).

(D14)  The final equality follows from the definition of the second
fundamental form Eq(B1) and Eqs.(B2) and (B3).

Considering the second term of E&.16), we note Considering Eq(D19), we have
[73G** mpin G1|o= ([} ,G*")[ mpin G] Gijulo=(Ve Ve (B Elo
, JVE,
abp,_T
+G* ][ mpInGI]]o. (D15 =(VeE, Ve Elot(VeE, Ve EWlo
The first term of Eq(D15) vanishes from Eq€3.11), (3.12), (Ve VeE, ENo+(E Ve VEE,o
v Ty | [ - j M .

(3.29, (3.30, and(D12). The second term evaluates to

D21
(G wl[mInGIDlo .

=[m [ 7. InG]llo interchanged derivatives by virtue of Eq®3) and (3.1).

=ﬁ2(Gab,#Gabyﬂ—Gaa,W)|o We next note that the covariant derivative Bf, by E; is
5 given by
=42 2S,,iS,,i+Gii ,Gii u+ =Ry Gii ,
wvi S vi Hp=iju g arp i, up 0 (VEiEu)|0:(PIIVEiEM+ PLVEiEM)|0:(TEiEM+SEiEu)|0'

(016 (D22)

where the first equa”ty follows from Eqisll)’ (312’ Whe!’e the first equality follows from the faCtthaﬁ‘F PL is
(3.17), and (D12), the second equality is a straightforward the identity and the second from the definitions E@&1)

computation, and the third equality results from E@s25—  and(2.2) and the fact thaE, is normal toC. We also ob-
(3.27). Collecting the preceding results, we find serve from Eq(D4) that (Vg Ve E,)|o=0, and therefore
VP — 72 le 6 16 G -G (Ve VeElo=(Re £Elo, (D23)
ex g | g ik i et Gij wGij ™ Gii,uu VE E;

where we have used EQg$3.1) and (B8). Inserting Egs.
(D17) (D22) and(D23) into Eq.(D21) yields the desired result Eq.

2
+2S,,:S,,+ =R .
0 (D19).

wvi S vi 3 mvp
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