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Gauge fields and extrapotentials in constrained quantum systems
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We derive an effective Hamiltonian for a quantum system constrained to a submanifold~the constraint
manifold! of configuration space~the ambient space! by an infinite restoring force. We pay special attention to
how this Hamiltonian depends on quantities which are external to the constraint manifold, such as the extrinsic
curvature of the constraint manifold, the curvature of the ambient space, and the constraining potential. In
particular, we find the remarkable fact that the twisting of the constraining potential appears as a gauge
potential in the constrained Hamiltonian. This gauge potential is closely related to the geometric phase origi-
nally discussed by Berry. The constrained Hamiltonian also contains an effective potential depending on the
extrinsic curvature of the constraint manifold, the curvature of the ambient space, and the twisting of the
constraining potential. The general nature of our analysis allows applications to a wide variety of problems,
such as rigid molecules, the evolution of molecular systems along reaction paths, and quantum strip
waveguides.
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I. INTRODUCTION

A. Summary of results

We derive an effective Hamiltonian for a quantum syst
subject to an infinite restoring force. Though our results
quite general, we are motivated by several specific appl
tions, such as stiff molecular bonds in rigid molecules a
clusters of rigid molecules, molecular systems evolv
along reaction paths, and electrons confined to quantum
waveguides.

For comparison, consider first a classical system. We h
in mind a system which initially occupies any position in t
full configuration space~called the ambient space! but is sub-
sequently confined to a submanifold~called the constrain
manifold! by the introduction of a restoring force, which in
certain limit becomes infinite. Here, the Hamiltonian is si
ply the kinetic energy plus the constraining potential, wh
we assume is constant along the constraint manifold. Ass
ing the initial velocity is tangent to the constraint manifold,
is well known that the system’s trajectory remains on
constraint manifold and that its motion is determined sol
by the form of the kinetic energy tangent to the manifo
@1,2#. This kinetic energy, in turn, depends only on the R
mannian metric of the constraint manifold. Thus, the mot
of the constrained classical system depends only on the
trinsic metric of the constraint manifold and is independ
of the ambient space, the embedding of the constraint m
fold within the ambient space, or the details of the constra
ing potential. It is a remarkable fact, then, that for a quant
system this is no longer true. The constrained quan
Hamiltonian depends on the curvature of the ambient sp
the extrinsic curvatures of the constraint manifold, and
properties of the constraining potential.

It has been known for some time that a constrained qu
tum system ‘‘senses’’ the local neighborhood of the co
straint manifold@3–11#. As a simple example, consider
quantum system whose motion transverse to the const
manifold is in the ground state. Due to the conservation
the transverse action, the constrained quantum system
1050-2947/2001/63~4!/042112~20!/$20.00 63 0421
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the transverse zero point energy as an effective potentia
the constraint manifold.~We call this the adiabatic potential.!
The adiabatic potential also appears classically if the ini
velocity of the system has a nonzero component norma
the constraint manifold. Classically, the adiabatic poten
can always be eliminated by choosing an initial velocity ta
gent to the constraint manifold. Quantum mechanica
however, due to the Heisenberg principle, the transverse
tion and hence the adiabatic potential can never be el
nated.

The present paper focuses on effects of the ambient s
and constraining potential other than the adiabatic poten
Following da Costa@6–8,10#, we assume that the constrain
ing potential has the same form in the neighborhood of e
point of the constraint manifold~in a manner to be made
precise later.! The adiabatic potential is thereby forced to
constant along the constraint manifold and can subseque
be ignored.~In Sec. IV C, we discuss briefly how a sma
amount of variation in the adiabatic potential can be acco
modated.! In two noteworthy papers@6,7#, da Costa, using
this assumption, derived the effective Hamiltonian for a s
tem of n constrained point particles. This Hamiltonian co
tains two terms. The first is proportional to the Laplacian
the constraint manifold, and therefore depends only on
intrinsic metric of the constraint manifold. The second, ho
ever, is an effective potential, called the extrapotent
which depends not only on the intrinsic curvature, but a
the extrinsic curvature of the constraint manifold. This e
trapotential is of order\2 and therefore vanishes in the cla
sical ~and semiclassical! limit. As a simple, yet illustrative,
example, consider a system defined onR3 constrained to lie
on a curve. For this system, the extrapotential
2\2/(8r2), wherer is the radius of curvature. This resu
was obtained by da Costa@6#; the same result was obtaine
earlier by Marcus@3# and Switkeset al. @5# for curves inR2.
This extrapotential has been studied by others as well,
cluding Jensen and Koppe@4# and Kaplan, Maitra, and
Heller @11#. Since the extrapotential depends on the extrin
curvature, it can never be derived from a procedure wh
©2001 The American Physical Society12-1
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KEVIN A. MITCHELL PHYSICAL REVIEW A 63 042112
quantizes the constrained classical system~which depends
only on the intrinsic curvature!, an approach common in th
literature of constrained quantum mechanics.~See, for ex-
ample, the review of DeWitt@12#.!

As mentioned above, once the constraining potentia
defined at one point of the constraint manifold, the constra
ing potential at all other points must have the same fu
tional form. However, this requirement does not complet
determine the constraining potential since the orientation
the potential is left unspecified. In other words, the equi
tentials surrounding the constraint manifold can twist
some unspecified manner as one moves along the mani
This potential twist is a critical quantity in our theory.

da Costa fixed the twisting ambiguity by imposing wh
we call a ‘‘no twist’’ condition on the potential. Physically
this condition requires the restoring forces in the neighb
hood of the constraint manifold to be normal to the manifo
It can be viewed as an extension of the fact that in class
mechanics nondissipative forces are normal to the const
manifold at the point of the manifold itself. da Costa astut
realized that if the no twist condition were violated, the m
tion transverse to the constraint manifold would be coup
to the motion tangent to the manifold and the Schro¨dinger
equation would not separate.

For some submanifolds there exist no potentials wh
satisfy the no twist condition. In Ref.@7# da Costa derived a
local geometric criterion on the extrinsic curvature of a su
manifold which was necessary and sufficient to determ
the existence of a nontwisting potential. Unfortunately, s
eral common examples of constrained systems do not sa
this criterion. For example, consider a model of a polymer
n.2 point particles where the distance between each
ticle i and its neighbori 11 is fixed. Such systems fail d
Costa’s criterion@13#. A system ofn.2 point particles con-
strained to form a rigid body similarly fails da Costa’s crit
rion. Even for a submanifold which admits a nontwistin
constraining potential, the physics may nevertheless dicta
twisting potential. These examples illustrate the need fo
theory of constrained quantum mechanics which is not l
ited to potentials without twist.

The principal objective of this paper is to derive an effe
tive Hamiltonian for a constrained quantum system with
bitrary twisting of the potential. The presence of the poten
twist leads to several qualitative changes in the Hamilton
First, the Hamiltonian is no longer a scalar operator,
rather ak3k matrix of operators acting on ak-dimensional
vector-valued wave function defined over the constra
manifold. Here,k is the degeneracy of the transverse ener
and each component of the vector wave function represen
different transverse mode. Of course, for a nondegene
transverse energy, the constrained Hamiltonian is a sc
operator.

The second and perhaps most interesting consequen
dropping the no twist condition is the emergence of aU(k)
gauge potential, or connection, in the constrained Ham
tonian. This gauge potential is a coupling between the po
tial twist and the generalized angular momentum of
transverse modes. Modes with no such angular momen
are unaffected by the potential twist. The gauge potentia
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closely related to the geometric phase originally introduc
by Berry in the context of adiabatic transport of quantu
states@14#. It is interesting to note that the gauge potential
of order\0 and therefore, like the adiabatic potential, is e
sentially of classical origin.

The third and final consequence of the potential twist
the addition of a term to the original extrapotential deriv
by da Costa. Unlike the extrapotential terms derived by
Costa, the potential twist term is not a scalar function, bu
k3k matrix of such functions with possible off-diagon
terms coupling the degenerate transverse modes.

In some important applications, the ambient space
nonzero curvature. For example, consider the problem
constraining a molecule to lie on a molecular reaction pa
The internal space of such a molecule is in general not
@15#, and therefore, the constraint problem requires an an
sis which includes the ambient curvature. Because of s
examples, we do not assume in this paper that the amb
space is flat. The effects of the ambient curvature are m
notable as additional terms in the extrapotential.

This paper has the following organization. In Sec. I B w
introduce many of the key concepts through a simple
ample: that of a particle inR3 constrained to a curve. Thi
section is purely expository, containing no derivations. S
tion I C briefly introduces the general problem. In Sec. II w
focus on the constraining potential. We take care to precis
define what it means to have the same form at all points
the constraint manifold. We also define a tensor which m
sures the twisting of the potential. In Sec. II C we spec
how the potential is to scale ine, wheree→0 represents an
infinite constraining force. The main computations of the p
per are in Sec. III in which we expand the kinetic energy
e and arrive at a preliminary expression, Eq.~3.31!, for the
constrained kinetic energy. Section III D is devoted to va
ous expressions for the extrapotential. In Sec. IV we ap
first-order perturbation theory to transform to a set of deg
erate transverse modes, thereby obtaining Eqs.~4.21!–~4.23!,
which are the main results of the paper. Section IV C brie
discusses nonconstant constraining potentials. In Sec. V
study the geometric origins of the gauge potential and v
ous related connections. We also compute their curvatu
Section VI contains some special cases, including constr
manifolds of codimensions one and two, rotationally inva
ant constraining potentials, and harmonic constraining po
tials. In Sec. VI E, we show that the gauge potential vanis
for certain systems with reflection symmetry. Conclusio
are in Sec. VII. There are four Appendixes. Appendix
contains a very brief review of curves inR3. Appendix B is
a review of the second fundamental form. Appendix C su
marizes an expression we will need for the quantum kine
energy. Appendix D contains some of the more laborio
mathematical derivations.

B. A Simple example: A curve inR3

The ultimate objective of this paper is to constrain a qu
tum wave function, defined on an arbitrary manifold~the
2-2
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GAUGE FIELDS AND EXTRAPOTENTIALS IN . . . PHYSICAL REVIEW A63 042112
ambient space!, to a~locally! arbitrary submanifold~the con-
straint manifold! via some general constraining potentia
Before solving the full problem, however, it is instructive
consider a simple~though certainly nontrivial!, concrete ex-
ample of the constraining procedure. We present no der
tions here; our results will be justified later in Sec. VI B.

We consider a curve embedded in flat three-dimensio
spaceR3 and parametrized by its arclengtha. ~See Fig. 1.!
Such a curve is characterized by its curvaturek and torsion
t.1 ~See Appendix A.! We take this curve to be the axis of
quantum waveguide. That is, there is a tube enclosing
curve such that the potential is zero inside the tube and
nite outside. We assume the cross section of the tube is
stant along the curve. More precisely, if we cut the tu
along a plane normal to the curve~called hereafter a norma
plane!, the cross sectional shape of the tube is independe
where along the curve we cut. Two such cross sections h
the same shape if one can be rotated into the other.
rotational freedom permits the cross sectional shape to t
as one moves along the curve, even if the curve itsel
straight. The orientation of the cross sectional shape is sp
fied by two orthonormal vectorsE1 andE2 chosen from each
normal plane along the curve. The choice of orthonorm
frame (E1 ,E2) is such that the cross sectional shape~with
respect to this frame! is independent ofa. In Fig. 1 the cross
section is a triangle with no reflection symmetry. Such sy
metry is nongeneric and can cause certain terms to van
~See Sec. VI E.!

We assume that the transverse dimensions of the tube
small compared to the radius of curvaturer5k21 and the
inverse torsiont21. We can then separate out the ‘‘fast
transverse degrees of freedom and obtain an effective
dimensional Hamiltonian in the ‘‘slow’’ longitudinal, or tan
gential, coordinatea. To accomplish this separation, we pic
a transverse modex(u1,u2) of the waveguide. Here (u1,u2)
are the Cartesian coordinates in the normal plane taken
respect to the frame (E1 ,E2); the quantities (u1,u2,a) thus

1The term ‘‘torsion’’ has two distinct meanings in differentia
geometry. In this paper, we refer only to the torsion of a cu
embedded inR3 and not the torsion of a connection as typica
defined in Riemannian geometry.

FIG. 1. A twisted quantum waveguide. The cross sectio
shape of the tube is constant and is chosen to be a triangle wit
reflection symmetry.~Reflection symmetry would forcêL& to van-
ish.! The vectorsE1 andE2 determine the orientation of the sides
the waveguide, anda measures the distance along the axis.
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coordinatize the tube. The transverse modex(u1,u2) is a
normalized eigenfunction of the transverse HamiltonianH'

5(p1
21p2

2)/21V'(u1,u2), where p j52 i\]/]uj , j 51,2,
and V'(u1,u2) is the potential energy which defines th
tube. The eigenvalue ofH' corresponding tox is called the
transverse energy. For simplicity, we assume that the tra
verse energy is nondegenerate.

To lowest order in the width of the tube, an eigenfuncti
c of the waveguide has the form

c~u1,u2,a!5x~u1,u2!f~a!. ~1.1!

As we take the limit where the transverse dimensions of
waveguide shrink to zero~keeping the quantum numbers o
the transverse mode fixed!, the transverse energy obvious
tends toward infinity. However, due to the constancy of
cross sectional shape, this transverse energy, though
large, is itself constant along the curve. We thus subtrac
off, leaving a residual HamiltonianH i , which we call the
constrained Hamiltonian. The constrained Hamiltonian a
only on f, resulting in the Schro¨dinger equation

H if5Eif. ~1.2!

The principal objective of this paper is to determine the fo
of this constrained Hamiltonian.

As we will show later, the constrained Hamiltonian is n
simply p i

2/2, wherep i52 i\]/]a. Rather, there are effect
from the curvaturek and the rate at which the cross section
shape twists along the curve. To make this lat
concept more precise, we define the potential tw
S5E1•(d E2 /da) which measures the rotation rate of th
cross sectional shape. The potential twist admits the follo
ing description. Letu denote the angle between the princip
normal n̂ ~see Appendix A! and the frame (E1 ,E2), specifi-
cally n̂•E15cosu, n̂•E252sinu. Let v5du/da denote the
rotation rate of the frame (E1 ,E2) with respect ton̂. ThenS
is related tov and the torsiont by 2S5t1v. Taking S
50, we obtain the case considered by da Costa in Ref.@6#.
We next define an angular momentum operatorL in the
tangential direction byL5(u1p22u2p1)/2. The con-
strained Hamiltonian is then

H i5K i1Vex , ~1.3!

where

K i5
1

2
~p i12S^L&!2, ~1.4!

Vex52
\2

8
k212S2~^L2&2^L&2!, ~1.5!

and where the bracket notation^ & denotes the expectatio
value with respect to the transverse modex.

Observe that the tangential kinetic energyK i departs from
p i

2/2 due to the inclusion of the term 2S^L&, which couples
the angular momentum of the transverse mode to the po
tial twist. This term is a gauge coupling, a fact we explo

e

l
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KEVIN A. MITCHELL PHYSICAL REVIEW A 63 042112
further in Sec. V. For now, we simply note that because
curve is one dimensional, the gauge coupling can be
moved from Eq.~1.4! by a gauge transformation. In th
present context, a gauge transformation consists of chan
the phase of the wave functionf. This transformation is no
without its consequences, however, as it will obviou
change the boundary conditions whichf must satisfy. Also,
we stress that if the constraint manifold has dimens
greater than one, it will not in general be possible to remo
the gauge coupling by a gauge transformation.

As a final observation onK i , notice that the gauge cou
pling is of order\0, which indicates that it is essentially
classical quantity. This coupling should therefore appear
classical theory of constraints which takes into account
potential twist.

Turning to the quantityVex , we note that it is a real-
valued function ofa, containing no differential operators
For this reason, we callVex an extrapotential. The extrapo
tential contains two terms,2\2k2/8 and 2S2(^L2&2^L&2).
The first of these was derived by da Costa for the casS
50 @6#. It has the physical effect of attractingf to regions of
high curvature, a fact which may produce curvature-indu
bound states in the waveguide. Such bound states are of
rent interest@16–18# and are reviewed by Duclos and Exn
@19#. The term2\2k2/8 is of order\2 and therefore disap
pears in the classical~and semiclassical! limit. The second
term ofVex , like the gauge coupling inK i , depends on both
the potential twistS and the angular momentumL. Notice,
however, that it is the standard deviation of the angular m
mentum which appears inVex . This means, for example, tha
the second term ofVex vanishes for transverse modes whi
are angular momentum eigenstates. It is interesting to
serve that, in contrast to the first term, the second term ofVex
has the physical effect of expelling the wave functionf from
regions of high twistS. Also, the second term is of order\0,
which means that, like the gauge coupling inK i , it survives
the classical limit.

C. The general problem

We describe here how the setup in Sec. I B is modified
the general problem. First, the ambient space in Sec. I B
assumed to beR3. In the general problem, we allow th
ambient space to be an arbitrary Riemannian manifo
which we denote byA. The kinetic energy of the wave func
tion c, defined overA, is given byK52\2n/2, wheren is
the Laplacian onA. Unlike Sec. I B, the ambient space is n
assumed to be flat, and, as we will discover, the curvatur
the ambient space produces additional terms inVex .

Next, we constrain the wave function to lie in the vicini
of a ~locally! arbitrary~embedded! submanifoldC of A with
dimensionm and codimensiond. We call C the constraint
manifold. In Sec. I B, the constraint manifold was a on
dimensional curve. The curvature and torsion of this cu
played a critical role in the analysis. The appropriate gen
alization of the curvature and torsion is the second fun
mental formT, which is a rank-three tensor.~See Appendix
B.!
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In Sec. I B, the constraint was imposed by a hard-w
potential that was infinite outside of a tube and zero insi
We then took the limit in which the width of the tube went
0. In the general problem, we impose the constraint by
arbitrary potentialV' , subject to a few reasonable cond
tions. This potential is defined on a set of coordinates tra
verse to the constraint manifold and, for this reason, is ca
the transverse~or constraining! potential. The transverse po
tential depends on a scaling parametere which is analogous
to the width parameter of the tube; the constraint is impo
by taking the limite goes to 0.

One of the conditions we do still require ofV' is that it be
independent of the location on the constraint manifold. T
condition, as well as a few other minor conditions, are e
plained fully in the next section.

II. THE TRANSVERSE POTENTIAL

A. Constancy of the transverse potential

In Sec. I B we defined the constraining potential by fi
specifying the form of the potential on a plane normal to t
curve and then specifying the orientation of this potentia
all points along the curve. For the general case, we use
same fundamental idea except that now, due to the curva
of the ambient space, we must take care to define how
generalize the concept of the normal plane.

It is useful to consider two separate but related spaces
a given pointq on the constraint manifold. The first is th
linear space of all vectors normal to the constraint manifo
We call this the normal space atq and denote it byNq . The
second space of interest is the submanifold of the amb
space formed by geodesics emanating fromq normal to the
constraint manifold. We call this the transverse space aq
and denote it byUq . The spacesNq andUq are related by the
exponential map which takes a vectorvPNq into the point
expvPA. The point expvPA lies on the geodesic emana
ing from q in the direction ofv; it lies at a distanceuvu
5(^v,v&)1/2 from q along this geodesic.~We use the notation
^,& for the metric onA.! Thus, we findUq5expNq . We now
slightly modify our definition ofUq . If the geodesics ema
nating from the constraint manifoldC in the neighborhood of
q flow to an arbitrary length, they will in general interse
one another. This can be witnessed even in the simple
ample of Sec. I B. Thus, in definingUq , we assume that the
geodesics flow for a small enough length to avoid such
tersections and that this maximal length is independent of
point q on the constraint manifold. In summary, then, w
foliate a neighborhood~which we call the tubular neighbor
hood! of the constraint manifoldC by the transverse space
Uq , which we have in turn related to the normal spacesNq
by the exponential map. Using the exponential map to c
struct tubular neighborhoods in this fashion is a stand
technique. For details, see, for example, Lang@20# and Van-
hecke@21#.

Since we have identified normal vectors with points in t
neighborhood of the constraint manifold, we view the tran
verse potentialV' as a function defined on the norm
spaces. With this interpretation, we will require thatV' , as a
function ofq and the vectors inNq , be independent ofq. By
2-4
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GAUGE FIELDS AND EXTRAPOTENTIALS IN . . . PHYSICAL REVIEW A63 042112
independent, we really mean independent modulo SO(d) ro-
tations inNq . Let us make this more precise. As in Sec. I
we specify the orientation of the transverse potential by
orthonormal basisEm , m51, . . . ,d of the normal spaceNq .
This basis forms a normal frame for the constraint manif
which we call the potential frame. For a given normal vec
field u, we introduce the componentsum, m51, . . . ,d with
respect toEm . The quantitiesum coordinatize both the nor
mal spaceNq and the transverse spaceUq , for which they
are commonly called Riemannian normal coordinates@22#.
We use sans serif for the list of coordinatesu
5(u1, . . . ,ud), reserving the bold notationu for the vector
field. The neighborhood ofC is therefore conveniently pa
rametrized by (u,q). The heuristic constraint thatV' be in-
dependent of position on the constraint manifold can now
made precise by the following statement: the transverse
tential V'(u,q) as a function of (u,q) is required to be in-
dependent ofq.

In general, the construction of the parametersum pre-
sented here is only possible locally onC. That is, it may be
impossible to defineum in the neighborhood of the whol
constraint manifold simultaneously. The construction c
break down in two ways. First, it may be impossible to co
struct a tubular neighborhood for the entire constraint ma
fold. One can see this even with the simple example of S
I B. If the one-dimensional curve spirals in on itself, then t
width of the tubular neighborhood is forced to go to 0.~Re-
call that the width of the tubular neighborhood must be
same for all points on the constraint manifold.! Assuming
that a tubular neighborhood does indeed exist for the m
fold, there is still a second way in which the constructi
may break down. This occurs if there does not exist a po
tial frameEm which is globally defined.~This happens when
the normal bundle is nontrivial.! For example, let the ambi
ent space be a Mo¨bius strip and let the constraint manifold b
a curve which wraps around the Mo¨bius strip once. Clearly
there does not exist a normal frame forC which is defined
globally. It is our viewpoint that these two obstacles~in par-
ticular the first! are not common in physical problems. Eve
if one did encounter a problem in which theum were not
definable globally, the results of this paper would still app
locally.

B. The potential twist tensor

In this section we generalize the potential twistS of Sec.
I B to a rank three potential twist tensor~also denotedS)
defined for anyqPC. For an arbitrary vectorePTqA, Se is a
linear map onTqA. @Here,TqA is the (d1m)-dimensional
tangent space ofA at q.# Let xPTqA be an arbitrary vector
tangent toC. Then, we define

Sex50. ~2.1!

Now let vPTqA be an arbitrary vector normal toC. We
extendv to a vector field onC ~defined in the neighborhoo
of q) by assuming thatv is normal toC and, furthermore,
that its components with respect toEm are constant. We now
complete the definition ofSe by prescribing
04211
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where¹ is the Levi-Civita connection@23–25# on A andP'

andPi are the projection operators onto the normal and t
gent spaces ofC, respectively. It is straightforward to verify
that S defined by Eqs.~2.1! and ~2.2! is indeed a tensor.

Like the second fundamental formT ~see Appendix B!, S
satisfies the antisymmetry property

^d,Sef&52^f,Sed&, ~2.3!

whered,e,fPTqA are arbitrary. To prove the above equ
tion, we need only consider the cased5vPNq , f5w
PNq , and e5x tangent toC, since all other cases vanish
SinceS is a tensor, we may assume thatv andw are vector
fields and that their components with respect toEm are con-
stant. Since the frameEm is orthonormal,̂ v,w& is constant,
and therefore Eq. ~2.2! implies ^v,Sxw&5^v,¹xw&
52^¹xv,w&52^w,Sxv&.

C. Scaling of the transverse potential

In Sec. I B, we imposed constraints on the position o
particle by introducing an infinite square-well potential in t
directions transverse to the axis of a quantum wavegu
The width of this well was proportional to a scaling param
etere, which was assumed to be small. In the general pr
lem, we also require the potentialV' to depend on a scaling
parametere. @We use the notationV'(u;e) to emphasize this
fact.# As the scaling parametere tends toward 0,V'(u;e)
grows narrower and deeper. To make this statement pre
we define a rescaled potentialṼ' ,

Ṽ'~ ũ;e!5e2V'~eũ;e!, ~2.4!

whereũm are rescaled transverse coordinates,

um5eũm. ~2.5!

We assume thatũm has no dependence itself one. We also
make the very reasonable assumptions thatṼ'(ũ;e) is
smooth ine at e50, by which we mean thatṼ'(ũ;e) can be
expanded as Ṽ'(ũ;e)5Ṽ'

0 (ũ)1eṼ'
1 (ũ)1e2Ṽ'

2 (ũ)1•••,

and furthermore thatṼ'
0 (ũ) does not vanish. In Sec. IV B

we will make some further reasonable assumptions on
existence of bound states for the transverse potential an
the smoothness ine of the corresponding eigenenergies.

To understand the consequences of the relation~2.5!, con-
sider a concrete example in whichṼ'(ũ;e)5Ṽ'(ũ) is a
finite-depth square well with noe dependence itself. Then
the physical potentialV'(u;e) is a finite-depth square wel
whose width scales ase and whose depth scales as 1/e2.
Assuming the quantum number of the transverse mod
fixed, this scaling in the potential guarantees that the wi
of the wave function scales ase. This is exactly the behavio
we want from a system which lies closer and closer to
2-5
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constraint manifold ase tends toward 0. As another concre
example, we consider a harmonic transverse potential in
VI D.

We should emphasize thate is introduced as a forma
scaling parameter. It allows us to rigorously define the lim
of an infinite restoring force and thereby rigorously defi
the constrained Hamiltonian. The constrained Hamiltoni
however, does not depend one, and from a practical stand
point, one need not worry about the exact definition ofe. The
most important fact to keep in mind is that the width of t
wave function scales ase. If this width is small compared to
other relevant length scales in the system~for example, radii
of curvature! then thee to 0 limit is justified.

III. EXPANSION OF THE KINETIC ENERGY

The derivation of the constrained Hamiltonian@such as
Eqs. ~1.3! –~1.5!# proceeds in two steps. The first is to e
pand the kinetic energy in powers ofe. The second is to
transform to a basis of transverse modes and to apply a
order perturbation treatment to the expanded Hamilton
This section is devoted to the first step.

A. Definition of the vielbein

We will express the kinetic energy in terms of a vielbe
Ea , a51, . . . ,d1m, onA. Appendix C gives the necessa
background for this technique. To span the transverse dim
sions, we takeEm5]/]um, m51, . . . ,d, where it is under-
stood that, for the purpose of the partial derivative, the po
tion qPC is held fixed. In selecting vector fields to span t
remaining dimensions, we first choose an arbitrary se
orthonormal vector fieldsEi , i 5d11, . . . ,d1m, defined
over C and tangent toC. We then useEm to Lie transport
these vector fields into the tubular neighborhood ofC. That
is, we require the Lie derivatives with respect toEm to van-
ish,

@Em ,Ei #50. ~3.1!

We use the following notational scheme in this paper. T
indices a,b,c, . . . range from 1, . . . ,d1m and label the
basis vectorsEa and any components with respect to th
basis. The indicesm,n,s, . . . range from 1, . . . ,d and label
the vector fieldsEm5]/]um and their related component
The indicesi , j ,k, . . . range fromd11, . . . ,d1m and label
the vector fieldsEi and their related components. Exce
where otherwise noted, we employ the convention that
index a,b,c, . . . , m,n,s, . . . , or i , j ,k, . . . is implicitly
summed over when occurring twice in the same express

For future reference, we present some facts regarding
structure constantsbab

c , defined by@Ea ,Eb#5bab
c Ec . First,

Eq. ~3.1! immediately yields

bm j
c 5b j m

c 50. ~3.2!

Furthermore, sinceEm5]/]um is a coordinate basis on th
transverse spacesUq , we findbmn

c 50. Combining this with
Eq. ~3.2!, we have
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c 5bbm

c 50. ~3.3!

Next we note that

05†Em ,@Ei ,Ej #‡5@Em ,b i j
c Ec#5@]/]umb i j

c #Ec , ~3.4!

where the first equality follows from the Jacobi identity a
Eq. ~3.1! and the third equality follows from Eq.~3.3!. We
use the bracket notation@ # in the final equality to emphasiz
that the differential operator acts only on the quantities ins
the bracket. Since theEc form a basis, we have

]b i j
c

]um
50. ~3.5!

Furthermore, since theEi are tangent toC when restricted to
C, we haveb i j

s 50 onC. Combining this fact with Eq.~3.5!,
we find that

b i j
s 50 ~3.6!

within the tubular neighborhood. Thus, the distribution
vector fieldsEi is integrable everywhere.~The submanifolds
thus defined by Frobenius’s Theorem are manifolds of c
stantV' .)

B. Transformation of the kinetic energy

As in Appendix C, the momentum operators are defin
to bepa52 i\Ea . They are not in general Hermitian sinc
the Hermitian conjugate is given by Eq.~C4!. The kinetic
energy is given byK5pa

†Gabpb/2, whereGab5^Ea ,Eb&
are the components of the metric tensor andGab is the in-
verse ofGab .

Appendix C also provides the framework for scaling t
quantum wave function by an arbitrary~strictly! positive
functions:A→R @see Eq.~C5!# in order to modify the form
of the kinetic energy. We apply this scaling formalism he
taking

s5G1/4, ~3.7!

whereG5detGab . As mentioned in Appendix C, this sca
ing defines a new inner product of wave functions. We o
serve that the original inner product of two wave functionsw
andw8 is given by

^wuw8&5E AGn w* ~u,q!w8~u,q!, ~3.8!

wheren is the (d1m)-form

n5E* 1`•••`E* (d1m)

5du1`•••`dud`E* (d11)`•••`E* (d1m). ~3.9!

Here,E* a is the basis of one-forms dual to the vielbeinEa .
We have also used the fact thatE* m5dum. ~Be careful not
to confuse the notation̂u& with ^,&, the latter denoting the
2-6
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Riemannian metric onA.! From Eq.~C6! we therefore find
that the scaled inner product of two~scaled! wave functions
c andc8 is

^cuc8&s5E n c* ~u,q!c8~u,q!. ~3.10!

This scaled inner product gives rise to a scaled Hermi
conjugate, denoted as a superscript †(s). Using Eqs.~C4!,
~C8!, and~3.3!, we find thatpm is Hermitian with respect to
the scaled Hermitian conjugate,

pm
†(s)5pm . ~3.11!

Furthermore, Eqs.~C4!, ~C8!, and ~3.2! give the ~scaled!
Hermitian conjugate ofp j as

p j
†(s)5p j1 i\b jb

b 5p j1 i\b jk
k . ~3.12!

We now restrict the momentum operatorp j to C. We
write p j u0 to make this explicit; we use the notationu0 for
any quantity restricted toC since this corresponds toum50.
For present purposes, we consider the constraint manifo
its own right without being viewed as embedded in the a
bient space. With this interpretation, the vector fieldp j u0 has
a well-defined Hermitian conjugate which we denote
(p j u0)†. This Hermitian conjugate is given by Eq.~C4!,
where it is understood that the symbolG now refers only to
the determinant of the metricGi j on C. However, since the
basisEi u0 is orthonormal, we haveG51, and hence

~p j u0!†5p j u01 i\g jk
k , ~3.13!

where the functionsg i j
k , defined onC, are the structure con

stants forEi u0. Since @Ei u0 ,Ej u0#5@Ei ,Ej #u0, the structure
constantsg i j

k are equal tob i j
k u0. Comparing Eq.~3.13! to Eq.

~3.12!, we now have the following convenient description f
p j

†(s) when restricted toC:

~p j
†(s)!u05~p j u0!†. ~3.14!

The scaled kinetic energy is given by Eq.~C9!. Noting
Eq. ~3.11!, we rewrite this as

Ks5
1
2 ~pmGmnpn1pmGm jp j1p i

†(s)Ginpn1p i
†(s)Gi j p j !

1Vs , ~3.15!

where

Vs52 1
8 ~ 1

4 Gab@paln G#@pbln G#1†pa
†(s)Gab@pbln G#‡!.

~3.16!

We will henceforth drop thes index onKs , †(s), and^u&s ,
with the scaling being implicitly understood.

C. Expansion of the kinetic energy

In this section we expand the kinetic energy Eq.~3.15!
through ordere0. Recall from Eq.~2.5! thatum is of ordere1,
and hence the momentumpm52 i\]/]um is of ordere21.
From Eq.~3.1!, we see that the momentump i is of ordere0.
04211
n

in
-

Furthermore, from Eq.~3.5!, we see thatb i j
k is of ordere0,

and combining this fact with Eq.~3.12! we find thatp i
† is of

ordere0. @Recall that ‘‘(s)’’ is now implicit.# These scaling
properties imply that to expand Eq.~3.15! to ordere0, we
must expandVs , Gi j , Gim, andGmn to orderse0, e0, e1, and
e2, respectively.

SinceEa is an orthonormal frame atum50, we have the
following identities:

Gabu05Gabu05dab , ~3.17!

Gab
,su052Gab,su0 , ~3.18!

where we use the notation ‘‘,s ’’ for the derivative ]/]us.
Equations~3.17! and ~3.18! yield the following expansions
of Gab:

Gi j ~u!5d i j 1O~e!, ~3.19!

Gm j~u!5Gm j
,su0us1O~e2!52Gm j ,su0us1O~e2!,

~3.20!

Gmn~u!5dmn1Gmn
,su0us1 1

2 Gmn
,stu0usut1O~e3!

5dmn2Gmn,su0us1 1
2 ~2Gmn,st12Gma,sGan,t!u0

3usut1O~e3!. ~3.21!

The derivatives of the metricGab appearing above are
conveniently expressed in terms of the potential twist ten
Sand the Riemannian curvatureR on A. To see this, we first
introduce the components ofS, T, andR via

Sabc5^Ea ,SEc
Eb&, ~3.22!

Tabc5^Ea ,TEc
Eb&, ~3.23!

Rabcd5^Ea ,REcEd
Eb&, ~3.24!

whereT is included for completeness and for future refe
ence. In Appendix D, we derive the identities

Gm j ,su05Sms j u0 , ~3.25!

Gmn,su050, ~3.26!

Gmn,stu052 1
3 ~Rmsnt1Rnsmt!u0 . ~3.27!

In actuality, theu0 notation onSms j is redundant sinceS is
only defined onC, but we will make use of this notation as
convenient reminder. Inserting Eqs.~3.25!– ~3.27! into Eqs.
~3.19!–~3.21!, we obtain

Gi j ~u!5d i j 1O~e!, ~3.28!

Gm j~u!52Sms j u0us1O~e2!, ~3.29!

Gmn~u!5dmn1~ 1
3 Rmsnt1SmskSntk!u0usut1O~e3!,

~3.30!
2-7
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where we have used the well-known symmetry of the R
mannian curvatureRabcd5Rcdab. We next insert Eqs
~3.28!–~3.30! into Eq. ~3.15! to arrive at the main result o
this section,

K5K'1K i
p1KR1Vex

p 1O~e!, ~3.31!

where

K'5 1
2 pmu0pm , ~3.32!

K i
p5 1

2 ~p i u01Smn i u0Lmn!†~p i1Sst
i u0Lst!, ~3.33!

KR5 1
6 Rmnstu0LmnLst , ~3.34!

Vex
p 5Vsu0 . ~3.35!

We have taken advantage of the antisymmetry property
~2.3!, Smn i52Snm i , and the well-known antisymmetry rela
tions Rmnst52Rnmst52Rmnts to introduce the operators

Lmn5 1
2 ~umpn2unpm!5 1

2 ~pnum2pmun!, ~3.36!

which are generalized angular momentum operators ac
on the transverse space. That is, they generate SO(d) rota-
tions in the transverse space. They are the generalizatio
the angular momentumL defined in Sec. I B.

In Eqs. ~3.32!–~3.34!, we have employed the standa
practice of raising tensor indices by contraction withGab.
Thus, pm5Gmapa , Smn i5GmaGnbGicSabc , etc. However,
sinceGabu05dab , the raised components and lowered co
ponents of any tensor evaluated atum50 are actually equal
One could, therefore, equally well have written Eqs.~3.32!–
~3.34! with all components lowered. The purpose of usi
raised components is simply to express these equation
manifestly covariant form.

We now mention a few facts concerning the Hermiti
conjugate which we used to derive Eq.~3.33!. First, notice
from Eq. ~3.11! that Lmn

† 5Lmn . Also notice that since
Smn i u0 has no dependence onum, Smn i u0 andLmn commute.
This means in particular that the Hermitian conjugate in E
~3.33! may be applied to thep i u0 term alone. Finally, we
used Eq.~3.14! to relate (p i u0)† to (p i

†)u0. Notice from Eq.
~3.13! that if Ei u0 is a coordinate basis onC then the Hermit-
ian conjugate may be dispensed with altogether.

We call the termsK' , K i
p , and KR appearing in Eq.

~3.31! the transverse kinetic energy, the~preliminary! tan-
gential kinetic energy, and the curvature energy, resp
tively. The last termVex

p , being a scalar, nondifferential op
erator, we call the~preliminary! extrapotential. The three
termsK i

p , KR , andVex
p are all ordere0. The transverse ki-

netic energyK' is of ordere22 and therefore goes to infinity
ase shrinks to 0. The energy associated with this term w
therefore be subtracted off with the remaining three ter
giving rise to the residual kinetic energy. Notice that each
the four terms in Eq.~3.31! is Hermitian with respect to the
~scaled! Hermitian conjugate.
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D. Expressions for the extrapotential

In Appendix D 2, we derive the following manifestly co
variant form for the extrapotential:

Vex
p 52

\2

8 S 2Tim jTim j2Tim
iT

j
m j12Rim

im1
2

3
Rmn

mnD U
0

.

~3.37!

Notice thatVex
p is expressed solely in terms of the seco

fundamental formT of the constraint manifold and the Rie
mannian curvatureR of A evaluated onC with no depen-
dence on the potential twistS. SettingRabcd50, Eq. ~3.37!
agrees with da Costa@Ref. @7#, Eq. ~33!#. da Costa also as
sumes thatS50. Since we do not make this assumption, E
~3.37! is a generalization of da Costa’s result to both the c
of nonzero Riemannian curvature in the ambient space
nonzero twist of the potential.

There are several other convenient forms forVex
p . We first

introduce the following notation:

R5Rab
abu0 , ~3.38!

R'5Rmn
mnu0 , ~3.39!

Ri5Ri j
i j u0 , ~3.40!

R̂5R̂i j
i j , ~3.41!

T 25 1
2 TabcTabc5Tim jTim j5Tm i j Tm i j , ~3.42!

M 25Tab
aTc

bc5Tim
iT

j
m j5Tm i

iTm j
j , ~3.43!

where we use Eqs.~B4!, ~B6!, and ~B7! in Eqs. ~3.42! and
~3.43!. The quantitiesR andR̂ are the scalar curvatures o
A and C, respectively. The quantityM is called the mean
curvature. Using the fact thatR5Ri1R'12Rim

imu0, we
rewrite Eq.~3.37! as

Vex
p 52

\2

8 S 2T 22M 21R2Ri2
1

3
R'D . ~3.44!

Furthermore, the Gauss Eq.~B10! yields

T 25M 22R̂1Ri , ~3.45!

from which we find

Vex
p 52

\2

8 S T 22R̂1R2
1

3
R'D ~3.46!

52
\2

8 S M 222R̂1R1Ri2
1

3
R'D . ~3.47!

Assuming the tensorR is 0, Eq.~3.47! agrees with Ref.@7#,
Eq. ~36!.

IV. THE CONSTRAINED HAMILTONIAN

In Sec. III we expanded the kinetic energy ine, obtaining
two terms. One term, the transverse kinetic energy, is
2-8
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order e22; the other term is of ordere0. In this section we
apply ~degenerate! first-order perturbation theory to derive
constrained Hamiltonian for the eigenenergies. In doing
we introduce the transverse modes characterizing the w
function away from the constraint manifold.

A. Rescaling bye and the expansion of the Hamiltonian

By adding the potential energyV'(u) to the kinetic en-
ergy Eq.~3.31!, we have the following Hamiltonian:

H5H'1H i1O~e!, ~4.1!

where

H'5K'1V' , ~4.2!

H i
p5K i

p1KR1Vex
p , ~4.3!

are called the transverse and~preliminary! tangential Hamil-
tonians, respectively.

In order to clarify the subsequent perturbation analy
we explicitly exhibit thee dependence of various quantitie
by rescaling them ine. To begin, we repeat the previou
definition Eq. ~2.5! of the rescaled quantitiesũm and also
define rescaled momentap̃m ,

um5eũm, ~4.4!

pm5
1

e
p̃m . ~4.5!

Notice that bothũm andp̃m scale ase0. In general, the scaled
version of a quantity~denoted with a tilde! is defined such
that the lowest order nonvanishing term of its expansion ie
is of ordere0. Thus, for a quantity homogeneous ine, the
scaled version is independent ofe. For convenience, we re
peat the definition Eq.~2.4! of the rescaled potential energ
Ṽ' and also define a rescaled transverse kinetic energy
transverse Hamiltonian

Ṽ'~ ũ;e!5e2V'~u;e!5e2V'~eũ;e!, ~4.6!

K̃'5e2K'5 1
2 p̃mp̃m , ~4.7!

H̃'~e!5e2H'~e!5K̃'1Ṽ'~ ũ;e!. ~4.8!

By our previous assumptions in Sec. II C,Ṽ'(ũ;e) is smooth
in e and does not vanish ate50. As for K̃' , it is clearly
independent ofe. Thus, H̃'(e) is smooth ine at e50; its
lowest-order term is ordere0, but depending onṼ' , it may
have higher-order terms as well. Recall thatK i

p , KR , Vex
p ,

andH i
p are already independent ofe and therefore need n

further scaling. For notational continuity, however, we ne
ertheless define

K̃ i
p5K i

p , ~4.9!
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K̃R5KR , ~4.10!

Ṽex
p 5Vex

p , ~4.11!

H̃ i
p5H i

p . ~4.12!

We rescale the full Hamiltonian by defining

H̃~e!5e2H~e!5H̃'~e!1e2H̃ i
p1O~e3!. ~4.13!

In a typical Taylor-series expansion ofH̃(e), we would re-
move the ordere term fromH̃'(e) and leave it as a separa
term. We would also combine the ordere2 term of H̃'(e)
with the tangential Hamiltoniane2H̃ i

p . Here, however, we
wish to keep thee and e2 terms together in the transvers
HamiltonianH̃'(e). We therefore define a new perturbatio
parameterk5e2 and rewrite Eq.~4.13! as

H̃~e,k!5H̃'~e!1kH̃ i
p1O~e3!. ~4.14!

Our objective is to find the eigenvalues ofH̃ through order
e2. Viewing e andk as formally independent in Eq.~4.14!,
our objective becomes finding the eigenvalues ofH̃ through
second order ine and first order ink. Our procedure is to
assume that the eigenvalues ofH'(e) can be solved exactly
~or at least through ordere2) and then apply first-order per
turbation theory ink. To simplify notation, we drop thee
dependence~but not k dependence! for the duration of the
derivation.

B. Transformation to the transverse modes

The zeroth-order term~in k) of H̃(k) is the transverse
HamiltonianH̃' , which has the form

H̃'52
\2

2

]

]ũm

]

]ũm
1Ṽ'~ ũ!. ~4.15!

SinceH̃' depends only on the quantitiesũm, we may restrict
its domain to functions ofũm alone. For the moment we
adopt this understanding for the domain ofH̃' . We pick an
eigenvalueẼ' ~the transverse energy! of H̃' with finite mul-
tiplicity k and bounded eigenstates. We call these eigenst
the transverse modes~with energy Ẽ'). We let xn(ũ), n
51, . . . ,k, denote an orthonormal basis of these transve
modes. By orthonormal, we mean

^xnuxn8&u5E du1`•••`dudxn* ~ ũ!xn8~ ũ!5dnn8 ,

~4.16!

where theu subscript indicates integration only over th
variablesum as opposed to the full (d1m) form n in Eq.
~3.9!.
2-9
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We now adopt the understanding thatH̃' acts on wave
functions of bothũm and q. Such an eigenfunction with ei
genvalueẼ' has the general form

c~ ũ,q!5 (
n51

k

xn~ ũ!fn~q!, ~4.17!

where the functionsfn(q) are arbitrary. We therefore iden
tify an eigenfunctionc(ũ,q), having eigenvalueẼ' , with
the k functionsfn(q). Notice that with our current under
standing for the domain of the operatorH̃' , Ẽ' is a degen-
erate eigenvalue, even fork51, because there is an infinit
basis of functionsfn(q).

Recall the steps involved in first-order degenerate per
bation theory. First, one verifies that the desired eigenva
and eigenfunction is analytic in the perturbation parametek.
~Here, we simply assume this fact.! Next, one determines th
zeroth-order energy and zeroth-order eigenstates. Then,
considers the operator formed by restricting the first-or
term of the Hamiltonian to the space of zeroth-order eig
states. The first-order corrections to the energy are the ei
values of this restricted operator. In the present case,
zeroth-order energy isẼ' , and the zeroth-order eigenstat
are given by Eq.~4.17!. The first-order correction to the
Hamiltonian iskH̃ i

p . Denoting the first-order correction t

the energy bykẼi , the eigenvalue equation forẼi is

(
n851

k

~H̃ i!nn8fn85Ẽifn , ~4.18!

where the (H̃ i)nn8 are the differential operators

~H̃ i!nn85^xnuH̃ i
pxn8&u

5E du1`•••`dudxn* ~ ũ!~H̃ i
pxn8!~ ũ!.

~4.19!

We call (H̃ i)nn8 the constrained, or tangential, Hamiltonia
We now recall thatk5e2 and reintroduce the explicite

dependence. Summarizing our analysis thus far, we h
shown that an eigenvalue ofH̃(e) through ordere2 is given
by Ẽ'(e)1e2Ẽi(e), whereẼ'(e) andẼi(e) are eigenvalues
of H̃'(e) and (H̃ i)nn8(e). Of course, assuming smoothne
in e, it is sufficient to solve forẼ'(e) and Ẽi(e) through
orderse2 ande0 respectively. We will therefore only requir
Ẽi(e) and (H̃ i)nn8(e) evaluated ate50, which we denote by
Ẽi and (H̃ i)nn8 , respectively. Also, by virtue of Eq.~4.19!,
we assume for the remainder of the paper that the transv
modesxn(ũ) are only ordere0 eigenfunctions ofH̃'(e).

We view Eq.~4.18! as ak-dimensional vector wave equa
tion for a vector wave function defined over the constra
manifold. We introduce the bold notationf(q) for the vec-
tor wave function with componentsfn(q) and the sans seri
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notationH̃i for the matrix of differential operators with com
ponents (H̃ i)nn8 . Equation~4.18! can therefore be written
more compactly as

Hif5Eif. ~4.20!

Having completed the perturbation analysis, we ha
dropped the superfluous tildes fromHi and its eigenvalue
Ei . Using Eqs.~4.3!, ~3.33!, and~3.34! and a little algebra,
we expressHi as

Hi5Ki1Vex , ~4.21!

where

Ki5
1
2 ~p i u0I1Smn i u0LI mn

†~p i I1Sst
i u0LI st!, ~4.22!

Vex5Vex
p I1~ 1

2 Smn iSst
i1

1
6 Rmnst!u0LI mnst

(2)

2~ 1
2 Smn iSst

i !u0LI mnLI st

5Vex
p I1~ 1

2 Smn iSst
i !u0~LI mnst

(2) 2LI mnLI st!

1 1
6 Rmnstu0LI mnst

(2) , ~4.23!

and whereI is thek3k identity matrix andLI mn andLI mnst
2

are thek3k matrices having the following components, r
spectively,

~Lmn!nn85^xnuLmnxn8&u , ~4.24!

~Lmnst
(2) !nn85^xnuLmnLstxn8&u . ~4.25!

Equations~4.21!–~4.23! encapsulate the main result of th
paper. We make the following observations.

~i! The constrained HamiltonianHi is a k3k matrix of
operators. It is the residual Hamiltonian remaining after
infinite transverse energyE' is subtracted off.

~ii ! The kinetic energyKi , which we call the~final! tan-
gential kinetic energy, differs from the ‘‘standard’’ kineti
energy due to the appearance of a gauge potential. Ph
cally, the gauge potential couples the tangential moment
the generalized angular momentum of the transverse mo

~iii ! The quantityVex , which we call the~final! extrapo-
tential, is ak3k matrix of nondifferential operators.

~iv! All off-diagonal coupling inHi is due to the general
ized angular momentum of the transverse modes.

~v! For a nondegenerate transverse mode (k51), the con-
strained Hamiltonian is a scalar operatorH i which acts on
scalar wave functions. In this case, we see the emergenc
Eqs. ~1.3!–~1.5! presented in Sec. I B. The exact derivatio
of these equations from the more general Eqs.~4.21!–~4.23!
will be presented in Sec. VI B.

The preliminary tangential kinetic energyK i
p , preliminary

extrapotentialVex
p , and preliminary tangential Hamiltonia

H i
p are distinguished from the~final! tangential kinetic en-

ergy Ki , ~final! extrapotentialVex , and constrained Hamil-
tonianHi by the ‘‘p’’ superscript. We often drop the ‘‘pre-
2-10
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liminary’’ and ‘‘final’’ modifiers when referring to these
terms, relying on their symbols and context to make the p
cise meaning clear.

C. Nonconstant transverse potentials

Up to now we have assumed that the transverse pote
V'(u) is constant@modulo SO(d) rotations# along the con-
straint manifoldC. For some physical systems this assum
tion holds exactly due to symmetry on the ambient spa
such as SO(3) rotations in the case of a rigid body. Ho
ever, for other systems, this assumption may be only
proximately satisfied; the constraining potential may in f
vary along the constraint manifold. This is true, for examp
of a molecule evolving along a reaction path; there is
symmetry dictating that the frequencies of the small tra
verse vibrations be constant. The purpose of this section
illustrate how small variations in the transverse poten
may be easily included within our formalism.

The key idea is to only allow dependence onq at ordere2.
Specifically, we assume the transverse potential can be
panded as

Ṽ'~ ũ,q;e!5Ṽ'
0 ~ ũ!1eṼ'

1 ~ ũ!1e2Ṽ'
2 ~ ũ,q!1O~e3!.

~4.26!

Applying this expansion to Eq.~4.8!, an eigenvalueẼ' of
H̃' ~assuming analyticity ine) can be expanded as

Ẽ'~q;e!5Ẽ'
0 1eẼ'

1 1e2Ẽ'
2 ~q!1O~e3!. ~4.27!

The first two terms ofE'5Ẽ' /e2 go to infinity ase goes to
0. However, these two terms are constant inq and may thus
be subtracted off. The next-order termẼ'

2 (q) does depend

on q and is of the same order ine asHi . Thus,Ẽ'
2 (q) may

be combined with the extrapotentialVex in Hi to form the
effective potential

Ve f~q!5Vex~q!1Ẽ'
2 ~q!I. ~4.28!

This is the only modification which needs to be made to
formalism. Notice that the transverse modesxn(u) need not
be modified since they are defined to be only ordere0 eigen-
functions ofH' and hence are unaffected by the termẼ'

2 (q).

V. ANALYSIS OF CONNECTIONS

Both the preliminary and the final tangential kinetic en
gies K i

p and Ki exhibit a gauge potential proportional t
Sabc . In this section we study the geometric origins of the
gauge potentials and compute their curvatures.

We begin by reviewing the connection on normal vec
fields overC. We note that many equivalent definitions ex
for the general concept of a connection. For the purpose
this paper, a connection is taken to be a covariant deriva
operator which acts on some space of vector fields. For m
background, see any of a number of standard references@23–
25#. For the remainder of this section,v is an arbitrary nor-
mal vector field overC, and x and y are arbitrary tangen
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vector fields overC. The normal connection¹N is defined by

¹x
Nv5P'¹xv5P'¹xP'v, ~5.1!

where¹ is the Levi-Civita connection onA. Notice that¹x
Nv

is itself a normal vector field. The curvature of¹N, denoted
BN, is computed to be

Bxy
N v5~¹x

N¹y
N2¹y

N¹x
N2¹ [x,y]

N !v

5P'~¹xP'¹y2¹yP'¹x2¹ [x,y] !P'v

5P'~Rxy2¹xPi¹y1¹yPi¹x!P'v

5P'~Rxy2TxTy1TyTx!P'v, ~5.2!

where the first equality is simply the definition of the curv
ture, the second follows from Eq.~5.1!, the third from noting
P'5I 2Pi and Eq.~B8!, and the forth from Eq.~B1!. As
expected, the curvature depends only on the nature of
embedding ofC ~via the tensorT) and on the curvature ofA.
If we assume that the tensorsBN and R vanish, then we
obtain the class of embeddings considered by da Costa@7#.
For such embeddings, one can choose a potential frame
vanishing twist, thus eliminating coupling between the tra
verse modes.@This follows from Eq.~5.5! below and the fact
that for vanishing curvature, one can always find a frame
which the gauge potential vanishes.# Also, for a nontwisting
potential frame, the submanifolds of constant potential
orthogonal to the transverse spacesUq . Hence, at all points
the restoring force is directed inward tangent to theUq .

It is instructive to compute the gauge potential explici
for the connection¹N. For this computation we first choos
an arbitrary orthonormal frame~not necessarily the potentia
frame! Vm , m51, . . . ,d, for each normal spaceNq . We
denote the components of an arbitrary normal vector fielv
with respect toVm by vm. Then, the components of¹Ei

N v are

given by

~¹Ei

N v!m5Eiv
m1~Ai

N!m
nvn, ~5.3!

where we have defined the gauge potential

~Ai
N!mn5^Vm ,¹Ei

N Vn&5^Vm ,¹Ei
Vn&. ~5.4!

Due to the orthonormality of theVm , (Ai
N)mn is antisymmet-

ric in m andn. The gauge potential can therefore be view
as a one-form onC with values in the Lie algebra so(d),
which contains all antisymmetricd3d matrices. If we
chooseVm5Em , we recognize from Eq.~2.2! that the gauge
potential is related to the potential twist tensor by

~Ai
N!mn5Smn i . ~5.5!

This result will be important below for analyzingK i
p andKi .

We now consider a functionc(v,q), such as the quantum
wave function, defined in the neighborhood ofC. ~We use the
bold notationv instead of sans serif used earlier because
wish to emphasize the dependence ofc on the normal vector
and not on its components with respect to a given fram
2-11
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such as the potential frame.! The connection¹N which acts
on normal vector fields gives rise to another connection¹ ip

which acts on the functionc(v,q). In order to define
(¹x

ipc)(v,q), we first choose a pathq8(a) such thatq8(0)
5q and (dq8/da)(0)5x. We then denote byv8(a) the
unique normal vector at each pointq8(a) satisfyingv8(0)
5v and (¹d/da

N v8)(a)50. Then, the connection¹ ip is de-
fined by

~¹x
ipc!~v,q!5

d

da U
a50

c„v8~a!,q8~a!…. ~5.6!

The transverse kinetic energyK i
p can be directly related to

the covariant derivative¹ ip. To do this, it is useful to com-
pute the gauge potential of¹ ip explicitly. As before, we
consider an orthonormal frameVm and denote the compo
nents ofv by vm. Then, the functionc(v,q) can also be
interpreted as a function of (v,q), wherev5(v1, . . . ,vd) is
the collection of components. We therefore have

~¹Ei

ipc!~v,q!5
d

da U
a50

c„v8~a!,q8~a!…

5
d

da U
a50

c„v8~a!,q…1
d

daU
a50

c„v,q8~a!…

5~Eiv8m!~q!
]c

]vm ~v,q!1~Eic!„v,q…, ~5.7!

where in the third equality, the derivatives]/]vm andEi are
understood to haveq and vn held fixed, respectively. From
Eq. ~5.3! and the condition¹Ei

N v850, we find

Eiv8m52~Ai
N!m

nv8n. ~5.8!

Inserting this result into Eq.~5.7! yields

~¹Ei

ipc!~v,q!5@„Ei1Ai
ip
…c#~v,q!, ~5.9!

where

Ai
ip5~Ai

N!mnVmn , ~5.10!

and where we have used the antisymmetry of (Ai
N)mn to in-

troduce the operator

Vmn5
1

2 S vm

]

]vn 2vn

]

]vmD . ~5.11!

Obviously if Vm5Em , thenLmn52 i\Vmn . The relevance
of ¹ ip for K i

p is now clear. By choosingVm5Em and apply-
ing Eqs.~5.5!, ~5.9!, and~5.10! to Eq. ~3.33!, we see that

K i
p5

\2

2
~¹Ei

ip!†¹Ei

ip . ~5.12!

Thus the preliminary tangential kinetic energy is just prop
tional to the Laplacian defined in terms of the connect
¹ ip. @Compare Eq.~5.12! to Eq. ~C2!.#
04211
-
n

Considering Eq.~5.10!, we see that the two gauge pote
tials (Ai

N)mn and Ai
ip differ only in their representation o

so(d). For (Ai
N)mn , we use a representation byd3d anti-

symmetric matrices, whereas forAi
ip we use a representatio

by the operatorsVmn . Therefore, the curvature of the con
nections¹N and¹ ip are also related by simply switching th
representation of so(d). Hence the curvatureBip of ¹ ip is

Bxy
ipc5~¹x

ip¹y
ip2¹y

ip¹x
ip2¹ [x,y]

ip !c

5~Bxy
N !mnVmnc

5~Rxy2TxTy1TyTx!
mnVmnc. ~5.13!

We now consider ak-dimensional vector-valued functio
f(q) with componentsfn(q). The connection¹ ip induces a
connection¹ i on f by the formula

~¹x
i f!n5K xnU¹x

ip (
n851

k

xn8fn8L
u

. ~5.14!

The tangential kinetic energyKi is closely related to the
connection¹ i as we now show. We take the orthonorm
frameVm to beEm , and we recall thatxn(u) is a function of
um alone andf(q) is a function ofq alone. Then applying
Eqs.~5.5!, ~5.9!, and~5.10!, we find

¹x
ipxn5~Sx!

mnVmnxn , ~5.15!

¹x
ipfn5xfn , ~5.16!

where (Sx)mn5^Em ,SxEn&. Then Eq.~5.14! yields

¹x
i 5xI1Ax

i , ~5.17!

Ax
i 5~Sx!

mnVI mn , ~5.18!

whereVI mn is thek3k matrix with components

~Vmn!nn85^xnuVmnxn8&u . ~5.19!

From Eq.~5.15!, we note that the components ofAx
i can also

be written as

~Ax
i !nn85^xnu¹x

ipxn8&u . ~5.20!

Equations~5.17! and ~5.18! show that the tangential kineti
energyKi , Eq. ~4.22!, is given by

Ki5
\2

2
~¹Ei

i !†¹Ei

i , ~5.21!

analogous to Eq.~5.12! for K i
p .

The connection¹ i is closely related to the adiabatic tran
port of quantum states and the associated geometric p
due to Berry@14#. If a set of k degenerate quantum state
jn(h), n51, . . . ,k, depending smoothly on a set ofm ex-
ternal parametersh5(h1 , . . . ,hm), is subject to an adia-
batic variationh(a) of these parameters, then thejn(a)
2-12
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5jn„h(a)… satisfy ^jnudjn8 /da&5( i^jnu]jn8 /]h i&
3(dh i /da)50. Simon@26# recognized that this condition
defines a connection

¹]/]h i

B 5
]

]h i
I1Ai

B ~5.22!

acting on the vector-valued wave functionj5(j1 , . . . ,jk)
parametrized byh. The gauge potentialAi

B is a k3k matrix
with components

~Ai
B!nn85 K jnU]jn8

]h i
L . ~5.23!

If the parametersh i are themselves quantized, then the m
mentum conjugate toh i is not simply 2 i\(]/]h i)I, but
rather2 i\¹]/]h i

B 52 i\(]/]h i I1Ai
B). This situation applies

for example, to the Born-Oppenheimer theory of molecu
wherein the parametersh i describe the positions of the nu
clei and thejn represent the quantum state of the electro
@27#. For the constrained quantum systems considered in
paper, the ordering ine adiabatically separates the transve
modesxn ~analogous to thejn) from the motion along the
constraint manifold~analogous to the space ofh i). There-
fore, the gauge potentialAx

i occurring in Eq.~5.17! is essen-
tially the same as Berry’s gauge potentialAi

B occurring in
Eq. ~5.22!. We say ‘‘essentially the same’’ because the c
ordinate derivative]/]h i of Eq. ~5.23! has been replaced b
the covariant derivative¹ ip of Eq. ~5.20!, this covariant de-
rivative being the geometrically natural connection for t
transverse modes.

We next compute the curvature of the connection¹ i. In
terms of the gauge potentialAi5(Sx)

mnVI mn , we have

Bxy
i 5~dAi!~x,y!1@Ax

i ,Ay
i #

5~dSmn!~x,y!VI mn1~Sx!
mn~Sy!

st@VI mn ,VI st#,

~5.24!

where dSmn is the exterior derivative ofSmn, viewed as a
one-form overC. We determinedSmn from the formula Eq.
~5.13! for the curvatureBip. We first note

Bxy
ip5~dAip!~x,y!1@Ax

ip ,Ay
ip#

5~dSmn!~x,y!Vmn1~Sx!
mn~Sy!

st@Vmn ,Vst#,

~5.25!

where we have used Eqs.~5.5! and ~5.10!. It is straightfor-
ward to verify that theVmn satisfy the following commuta-
tion relations:

@Vmn ,Vst#5 1
2 ~dmsVtn1dntVsm1dmtVns1dnsVmt!,

~5.26!

and hence Eq.~5.25! reduces to

Bxy
ip5@~dSmn!~x,y!1~SxSy2SySx!

mn#Vmn . ~5.27!

Combining this equation with Eq.~5.13! produces
04211
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~dSmn!~x,y!5~Rxy2TxTy1TyTx2SxSy1SySx!
mn.

~5.28!

Combining Eq.~5.28! in turn with Eq. ~5.24!, we arrive at
the following useful formula for the curvature of¹ i:

Bxy
i 5~Rxy2TxTy1TyTx2SxSy1SySx!

mnVI mn

1~Sx!
mn~Sy!

st@VI mn ,VI st#. ~5.29!

Using the commutation relations Eq.~5.26! the above equa-
tion can be recast as

Bxy
i 5~Rxy2TxTy1TyTx!

mnVI mn

1@~Sx!
mn~Sy!

st2~Sy!
mn~Sx!

st#~VI mnVI st2VI mnst
(2) !,

~5.30!

whereVI mnst
(2) is thek3k matrix with components

~Vmnst
(2) !nn85^xnuVmnVstxn8&. ~5.31!

VI. SPECIFIC CASES AND EXAMPLES

We consider several concrete examples to help clarify
general theory.

A. Codimension-one case

We assume here that the codimension of the constr
manifold isd51. Since there is only one normal directio
we expect the potential twist to vanish. Indeed, this follo
from the antisymmetry propertySmn i52Snm i @Eq. ~2.3!# and
the fact thatm5n51. Similarly, the normal components o
the Riemannian curvatureRmnst also vanish due to the well
known antisymmetry propertyRabcd52Rbacd52Rabdc.
From this fact followsR'5R11

11u050 andR5Ri . The ex-
pressions forT 2 andM 2 can also be simplified by introduc
ing the rank two symmetric tensorW defined on vectors
tangent toC and with componentsWi

j5Ti
1 j . ~This tensor is

often called the Weingarten map.! Then T 25Tr (W2) and
M 25(Tr W)2. Hence, the tangential Hamiltonian Eq.~4.21!
becomes

Hi5Ki1Vex , ~6.1!

Ki5
1
2 p i u0

†p i I, ~6.2!

Vex5Vex
p I52

\2

8
~T 22R̂1Ri!I

52
\2

8
~M 222R̂12Ri!I

52
\2

8
~2T 22M 2!I, ~6.3!

where we have used Eqs.~3.44!, ~3.46!, and ~3.47!. Notice
that the tangential kinetic energy is proportional to the st
dard Laplacian onC. All reference toLmn has vanished, and
hence all coupling between the degenerate transverse m
2-13
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KEVIN A. MITCHELL PHYSICAL REVIEW A 63 042112
has been eliminated. Thek-dimensional Schro¨dinger equa-
tion therefore separates intok independent scalar Schro¨-
dinger equations.

We consider the case where the ambient spaceA is a flat
two-dimensional space and the constraint manifoldC is a
curve in that space. Then, we note thatR̂5R5Ri50. Fur-
thermore, the second fundamental form, or equivalently
Weingarten map, has only one nonzero component. We
note this component byW5Wii 5k51/r, wherek is the
extrinsic curvature andr is the radius of curvature. Then, th
extrapotential is

Vex
p 52

\2

8

1

r252
\2

8
k2. ~6.4!

As in Sec. I B the sign onVex
p is such thatf is attracted to

regions of high curvature. This extrapotential was deriv
earlier by Marcus@3# and Switkes, Russell, and Skinner@5#.

We next consider the case whereA is a flat three-
dimensional space andC is a two-dimensional surface. W
still have thatR5Ri50. Furthermore, the eigenvalues
the second rank two-dimensional tensorWi j are k151/r1
andk251/r2, wherer1 andr2 are the two extrinsic radii of
curvature. Then the extrapotentialVex

p is conveniently writ-
ten

Vex
p 52

\2

8
@2 Tr~W2!2~Tr W!2#

52
\2

8 S 1

r1
2

1

r2
D 2

52
\2

8
~k12k2!2. ~6.5!

This result was previously derived by Jensen and Koppe@4#
as well as da Costa@6#.

B. Codimension-two case

We assume here that the codimension of the constr
manifold isd52. This allows us to define quantitiesSi , LI ,
andLI (2) by

Smn i5Siemn , ~6.6!

LI mn5LI emn , ~6.7!

LI mnst
(2) 5LI (2)emnest , ~6.8!

where emn is the 232 antisymmetric tensor withe125
2e2151. Furthermore, we have

Rmnst5 1
2 R'emnest . ~6.9!

We express the tangential Hamiltonian Eq.~4.21! as

Hi5Ki1Vex , ~6.10!

Ki5
1
2 ~p i u0I12Si u0LI !†~p i I12SiLI !, ~6.11!
04211
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Vex5Vex
p I1~2SiSi !u0~LI (2)2LI 2!1 1

3 R'u0LI 2. ~6.12!

We consider the case of Sec. I B whereA is a flat three-
dimensional space andC is a one-dimensional curve. Firs
we note R̂5R5R'5Ri50. Next, we denote the singl
component of tangential momentum byp i5p i . SinceC is
one dimensional,p i52 i\]/]a5p i

† , wherea is the geo-
desic length. Furthermore, the potential twist is determin
by the sole componentS5Si . The second fundamental form
can be identified with a normal vectorTm5Tim i of magni-
tudek51/r. Hence,M 25Tim

iT
j
m j5TmTm5k251/r2. Us-

ing Eq. ~3.47!, Eqs.~6.11! and ~6.12! therefore simplify to

Ki5
1
2 ~p iI12SLI !2, ~6.13!

Vex52
\2

8
k2I1~2S 2!~LI (2)2LI 2!. ~6.14!

Assuming a single nondegenerate transverse mode,
~6.13! and ~6.14! yield Eqs.~1.4! and ~1.5!.

C. Rotationally invariant transverse potential

In this section, we assume the transverse potentialV'(u)
is rotationally invariant, depending only on the radiusu
5(umum)1/2 in the normal space. The potential frameEm can
therefore be any orthonormal frame we like. This freedom
the choice of potential frame produces a large range of p
sible potential twist tensorsS, with the actual choice ofS
being simply a matter of convention. The HamiltonianHi in
Eq. ~4.21!, however, should be independent~up to a rescal-
ing of the wave functionf) of any such conventions. In th
remainder of this section, we show explicitly how the depe
dence onS drops out ofHi under the assumption of rota
tional invariance.

First, we observe that the transverse Hamiltonian
~4.2! has the form

H'52
\2

2

1

ud21

]

]u
ud21

]

]u
1

L2

2u2 1V'~u!, ~6.15!

whereL2 is the Casimir operator

L25LmnLmn. ~6.16!

Therefore, an eigenfunctionxn of H' is necessarily an
eigenfunction ofL2. We denote byxn

l such an eigenfunction
whose L2 eigenvalue isl. A basic fact concerning the
eigenspaces of the CasimirL2 is that they block diagonalize

the generatorsLmn . That is, ^xn
luLmnxn8

l8&u50 if lÞl8.2

Based on the definitions Eqs.~4.24! and ~4.25! for LI mnst
(2)

and LI mn , this fact implies that for the space of transver

2This follows quickly from @L2,Lmn#50. Note,

(l2l8)^xn
luLmnxn8

l8&u5^xn
lu@L2,Lmn#xn8

l8&u50.
2-14
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modes for a givenE' , LI mnst
(2) 5LI mnLI st . Similarly,

VI mnst
(2) 5VI mnVI st . We therefore see from Eq.~4.23! that all

S dependence drops out ofVex ,

Vex5Vex
p I1 1

6 Rmnstu0LI mnLI st . ~6.17!

ConsideringKi , even though Eq.~4.22! is written in
terms of the potential twistS, we showed in Sec. V@specifi-
cally Eq. ~5.21!# that Ki can be expressed in terms of th
Laplacian associated with the connection¹ i. From Eq.
~5.30! and the results above, we see that the curvatureBi of
this connection is independent ofS,

Bxy
i 5~Rxy2TxTy1TyTx!

mnVI mn . ~6.18!

Now if two connections¹ i and¹ i8 have the same curvature
then their associated Laplacians can only differ by a res
ing of the wave function. Hence, the HamiltonianHi for
different choices of the potential twistScan at most differ by
such a rescaling.

D. Harmonic transverse potentials

We assume that the transverse potential is quadratic in
um

V'~u;e!5(
m

1

2
„vm~e!…2umum ~6.19!

and that the oscillation frequencies depend one via vm(e)
5ṽm /e2, with ṽm being independent ofe. ~For clarity, we
make summation over the indicesm, n, s, . . . explicit in
this section.! We introduce the standard machinery of ra
ing, lowering, and number operators for each degree of f
dom,

am5
1

A2\
S Avmum1 i

pm

Avm
D , ~6.20!

um5A \

2vm
~am1am

† !, ~6.21!

pm52 iA\vm

2
~am2am

† !, ~6.22!

Nm5am
† am , ~6.23!

@am ,an
†#5dmn . ~6.24!

Notice thatam andNm scale ase0. The transverse Hamilto
niansH' and H̃' have the usual form

H'~e!5(
m

\vm~e!S Nm1
1

2D , ~6.25!

H̃'5(
m

\ṽmS Nm1
1

2D , ~6.26!
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and the transverse modes can therefore be labeled by
number of quantanm in each degree of freedomm. We de-
note such a mode byxn wheren5(n1 , . . . ,nd). Inserting
Eqs.~6.21! and ~6.22! into Eq. ~3.36! yields

Lmn5
i\

4Avmvn

@~vm2vn!~aman2am
† an

†!

1~vm1vn!~an
†am2am

† an!#, ~6.27!

from which one quickly sees

^xnuLmnxn&u50. ~6.28!

A significantly more involved computation yields

^xnuLmnLstxn&u52
\2

8 F2S nm1
1

2D S nn1
1

2Dvm
2 1vn

2

vmvn
21G

3~dmtdns2dmsdnt!. ~6.29!

We now assume thatx5xn is a nondegenerate transver
mode. The tangential Hamiltonian Eq.~4.21! is therefore a
scalar operator. Using Eqs.~6.28! and ~6.29!, H i is

H i5K i1Vex , ~6.30!

K i5
1

2
p i u0†p i , ~6.31!

Vex5Vex
p 2

\2

8 (
mn

S Smn iSmn i1
1

3
Rmn

mnD U
0

3F122S nm1
1

2D S nn1
1

2Dvm
2 1vn

2

vmvn
G . ~6.32!

The most striking aspect of the above equations is that,
to the vanishing of̂xuLmnx&u , the tangential kinetic energy
K i is proportional to the standard Laplacian on the constra
manifold. Thus, all of the effects of extrinsic curvature a
potential twist are contained in the extrapotentialVex .

E. Potentials with reflection symmetry

The vanishing of^xuLmnx&u ~and hence the potentia
twist as well! from K i in Eq. ~6.31! follows from general
considerations of reflection symmetry, and therefore occ
for a large class of symmetric potentials.

Let QPO(d) be a reflection acting on the transverse c
ordinatesu5(u1, . . . ,ud) and assume that, for a givens,
us is mapped to2us and all other coordinates remain fixe
Thus,Q5Q215Q†. Furthermore, assume thatV'(u) is in-
variant under the action ofQ, that isV'(Qu)5V'(u). The
reflection Q also has an induced action on the transve
modes, which we denote byQ and which is given by
(Qxn)(u)5xn(Q21u). Due to the symmetry ofV' , Q com-
mutes withH' ,

@Q,H'#50. ~6.33!
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Furthermore, the following are easily verified:

QusQ†52us, ~6.34!

QpsQ†52ps , ~6.35!

QLsmQ†52Lsm for all m. ~6.36!

We now consider a single nondegenerate transv
mode, denoted simply byx. Due to Eq.~6.33!, x must also
be an eigenfunction ofQ with eigenvalue either11 or 21
~since Q25I ). Combining these facts with Eq.~6.36! and
recallingQ5Q†, we have

^xuLsmx&u5^QxuLsmQx&u

5^xnuQLsmQ†xn&u

52^xuLsmx&u , ~6.37!

and hence

^xuLsmx&u50 for all m. ~6.38!

If the potentialV'(u) is symmetric with respect to at lea
d21 suchQ reflections, possessingd21 distinct and or-
thogonal reflection axesus, then^xuLsmx&u vanishes for all
m,n51, . . . ,d. For such highly symmetric potentials,K i is
again given by Eq.~6.31! and the only effect of the potentia
twist is to be found inVex . This is the case for such commo
potentials as the simple harmonic oscillator, analyzed in
preceding section, as well as thed-dimensional square well
Note that this analysis says nothing about the off-diago
terms of (Lmn)nn8 for a system with degenerate transver
modes; for such systems, there may indeed be a nonva
ing gauge potential.

VII. CONCLUSIONS

We have rigorously derived the effective Hamiltonian o
constrained quantum system by considering the limit as
restoring force becomes infinite. In doing so, we have b
careful to avoid unnecessary assumptions on the curvatu
the ambient space, the form of the constraint manifold,
the manner of the constraining potential. This general
proach yields important new terms in the effective poten
Vex , as outlined in Secs. III D and IV B, as well as a gau
potential in the tangential kinetic energyKi , as outlined in
Secs. IV B and V. Furthermore, this general approach allo
our theory to be applied to several examples of physical
portance. These examples include reaction paths for mol
lar reaction and scattering problems, twisted quant
waveguides, the double pendulum, and models of polym
by rigid constraints.

Perhaps the most important example of a constrai
quantum system is the quantum rigid body. Physically,
have in mind systems such as semirigid molecules. Tho
we lack the space to include the analysis here, we have
plied our theory to such molecules. Assuming that the st
dard Born-Oppenheimer ordering is valid, our constrain
Hamiltonian reproduces the standard results for the rotat
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vibration energy levels of such molecules~through the low-
est three orders in the Born-Oppenheimer ordering par
eter. See, for example, Papousˇek and Aliev @28#.! For
semirigid molecules, the constraining potential~resulting
from the semirigid bonds! is well approximated by a har
monic potential. Hence the gauge potential inK i vanishes.
~We assume a nondegenerate vibrational state; see
VI D.! For this reason, a semirigid molecule is a poor e
ample for viewing the effects of the gauge potential~at least
for nondegenerate modes.! A more interesting example
might be a cluster of rigid molecules held together by we
van der Waals forces. The potentials between such molec
can be quite anharmonic and unsymmetric, meaning
gauge potential is not forced to vanish. Such systems m
therefore provide a fruitful context in which to observe t
physical consequences of this gauge potential.

ACKNOWLEDGMENTS

The author wishes to acknowledge Jerry Marsden
Alan Weinstein, who were instrumental in the initial motiv
tion of this problem. The author is also especially grateful
Robert Littlejohn, for many extended discussions a
thoughtful insight, and to Michael Mu¨ller for his careful re-
view of the manuscript. This work was supported by t
Engineering Research Program of the Office of Basic Ene
Sciences at the U.S. Department of Energy under Cont
No. DE-AC03-76SF00098.

APPENDIX A: A BRIEF REVIEW OF CURVES IN R3

We cite a few important facts about curves inR3 which
we need in the body of the paper. For greater depth, see
example, Spivak@24#. Consider a curvex(a) in R3. The
parametrization of the curve is given bya which measures
the arclength along the curve. Hence the tangent vectt̂
5dx/da is of unit length. We denote the principal norm
and the binormal byn̂ andb̂, respectively. They are given b

n̂5
dt̂/da

udt̂/dau
, ~A1!

b̂5 t̂3n̂. ~A2!

The vectors (t̂,n̂,b̂) form an orthonormal right-hande
frame. The derivatives of this frame are given by the famo
Serret-Frenet formulas which may be summarized as

d

daF t̂

n̂

b̂
G5F 0 k 0

2k 0 t

0 2t 0
GF t̂

n̂

b̂
G , ~A3!

wherek(a) and t(a) are called the curvature and torsio
respectively. The curvature and torsion have units of rec
rocal length. The reciprocal ofk is the radius of curvature
r5k21.
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APPENDIX B: THE SECOND FUNDAMENTAL FORM

The extrinsic curvature of a submanifoldC embedded in a
manifoldA is conveniently specified by a rank-three tensoT
called the second fundamental form. Since the second
damental form is of critical importance in the body of th
paper, we briefly review a few of its relevant properties. F
greater detail, see Refs.@29,30#.

Throughout this appendix,d, e, f denote arbitrary vecto
fields tangent toA and defined overC; w, x, y, z denote
vector fields tangent toC; andv denotes a vector field norma
to C. The second fundamental form applied toe and f, de-
notedTef, is a vector field defined by

Tef5P'¹Pie
Pif1Pi¹Pie

P'f, ~B1!

where¹ is the Levi-Civita connection onA andPi andP'

are, respectively, the tangent and normal projection opera
of C.3 It is straightforward to verify thatT is in fact a tensor.
Furthermore, the second fundamental form satisfies the id
tities

^d,Tef&52^f,Ted&, ~B2!

Txy5Tyx, ~B3!

where^,& denotes the Riemannian metric onA. In terms of
the componentsTabc5^Ea ,TEc

Eb& introduced in Sec. III C,
we have

Tabc52Tbac , ~B4!

Tai j5Ta ji , ~B5!

Tabm50, ~B6!

Tmna5Ti ja50, ~B7!

where the first two equations are simply component for
for Eqs. ~B2! and ~B3! and the last two follow easily from
Eq. ~B1!.

In Secs. D I and III D, we need the Gauss equation
well-known identity relating the second fundamental formT,
the Riemannian curvatureR̂ of C, and the Riemannian cur
vatureR of A. The Riemannian curvatures are defined by

Rdef5~¹d¹e2¹e¹d2¹ [d,e] !f, ~B8!

R̂xyz5~¹̂x¹̂y2¹̂y¹̂x2¹̂ [x,y] !z, ~B9!

where¹̂ denotes the Levi-Civita connection onC. The Gauss
equation is then@29#

^w,Rxyz&5^w,R̂xyz&1^Txz,Tyw&2^Tyz,Txw&.
~B10!

3Our definition of the second fundamental form differs in t
choice of domain and range from that in Ref.@29#. We follow the
definition of Ref.@30#.
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APPENDIX C: THE QUANTUM KINETIC ENERGY
WITH RESPECT TO A VIELBEIN

We present two expressions for the kinetic energy o
quantum system on a Riemannian manifold of dimensionn.
These expressions differ in the scaling of the quantum w
function. We refer the reader to earlier related analyses@31–
33# for derivations and discussion.

We express the kinetic energy in terms of a vielbein. B
vielbein on a Riemannian manifold, we mean a set of vec
fields Ea , a51, . . . ,n, forming a basis of each tangen
space. The structure constantsbab

c of the vielbein are defined
by

@Ea ,Eb#5bab
c Ec , ~C1!

where @ ,# denotes the Lie bracket. The structure consta
vanish if and only if the vielbein is a coordinate basis, tha
if and only if there exists a set of coordinatesxa such that
Ea5]/]xa. We denote the components of the Riemann
metric with respect to the vielbein byGab and the inverse of
Gab by Gab.

We define the kinetic energy of the quantum system
K52\2n/2, wheren is the Laplacian. In terms of the viel
bein, the kinetic energy is@31#,

K5
\2

2
Ea

†GabEb5
1

2
pa

†Gabpb , ~C2!

where

pa52 i\Ea , ~C3!

are the momentum operators. In the above † denotes
Hermitian conjugate. In general, the momentapa are not
Hermitian. They do, however, satisfy the following usef
identity

pa
†5pa1@paln AG#1 i\bab

b , ~C4!

whereG5detGab . The bracket notation in Eq.~C4! indi-
cates that the quantity inside the brackets is a scalar; tha
pa acts only on lnAG.

Often it is useful to scale the original wave functionw by
some real positive functions to form a new wave functionc,

c5sw. ~C5!

Such a scaling produces a new kinetic energy operator ac
on the new wave functionc. By conveniently choosing the
scale factors, the new kinetic energy may acquire a mo
convenient form than the old kinetic energy. To demonstr
how the kinetic energy transforms, we first observe that
scaled wave functions have a different inner product than
unscaled wave functions. Denoting the unscaled inner pr
uct by ^u&, the scaled inner product^u&s is defined by

^cuc8&s5 K 1
cU1 c8L , ~C6!
s s
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for arbitrary wave functionsc and c8. This scaled inner
product in turn defines a scaled Hermitian conjugateA†(s) of
an operatorA. Specifically,

A†(s)5s2A†
1

s2 . ~C7!

Applying Eq. ~C7! to Eq. ~C4!, we find

pa
†(s)5pa

†22@paln s#. ~C8!

The scaling of the wave function transforms the kine
energy operatorK into Ks5sK(1/s). It can be shown@31#
that Ks reduces to

Ks5
1

2
pa

†(s)Gabpb1Vs , ~C9!

where

Vs52 1
2 ~Gab@paln s#@pbln s#1†pa

†(s)Gab@pbln s#‡!

5 1
2 ~Gab@paln s#@pbln s#2†pa

†Gab@pbln s#‡!. ~C10!

APPENDIX D: MATHEMATICAL DETAILS

1. Proof of identities „3.25…–„3.27…

To prove Eq.~3.25!, we first note

Gm j ,su05~¹Es
Gm j !u0

5~¹Es
^Em ,Ej&!u0

5^¹Es
Em ,Ej&u01^Em ,¹Es

Ej&u0 , ~D1!

where in the first equality, we replaced the coordinate der
tive by the covariant derivative, treatingGm j as a scalar func-
tion. The second equality is the definition ofGm j , and the
third equality follows from the Leibniz rule and the vanis
ing of the metric tensor under covariant differentiation. W
next define the vector

Msm5¹Es
Em , ~D2!

which we now demonstrate vanishes onC. To prove this, we
first show that it is everywhere symmetric inm and s by
using the general formula

¹de2¹ed5@d,e#, ~D3!

whered ande are arbitrary vector fields onA. By substitut-
ing d5Es and e5Em and recalling that@Em ,Es#50, we
find thatMsm5Mms . SinceMsm is symmetric, it vanishes if
and only if vsvmMsm50 for an arbitrary list of~constant!
real numbersvs. For such an arbitrary list, we define th
vector field v5vsEs over A. Since ]vm/]us50, we see
from Eq. ~D2! that vsvmMsm5¹vv. Since the quantitiesum

are defined via geodesic flow away fromC, an integral curve
of v which passes throughC is itself a geodesic. By the
geodesic equation, (¹vv)u050. Thus, vsvmMsmu050 and
hence
04211
-

~¹Es
Em!u050. ~D4!

We return to Eq.~D1! and write

Gm j ,su05^Em ,¹Es
Ej&u05^Em ,¹Ej

Es&u05Sms j u0 ,
~D5!

where the first equality follows from Eq.~D4!, the second
from Eqs.~D3! and~3.1!, and the third from Eqs.~3.22! and
~2.2!. This completes the derivation of Eq.~3.25!.

To prove Eqs.~3.26! and ~3.27!, we fix a pointq on the
constraint manifold and restrict our attention to a sing
transverse spaceUq which we temporarily forget is embed
ded in A. Recall that the vectorsEm are tangent toUq and
Gmn5^Em ,En& is the metric tensor onUq . Furthermore, the
coordinatesum are Riemannian normal coordinates onUq ,
and it is well known that the expansion of the metric
second order in the Riemannian normal coordinates is@22#

Gmn~u!5dmn2 1
3 R̄msntu0usut1•••, ~D6!

whereR̄ is the Riemannian curvature of the transverse sp
Uq . The vanishing in Eq.~D6! of the term linear inu proves
Eq. ~3.26!.

The quadratic term in Eq.~D6! yields

Gmn,stu052 1
3 ~R̄msnt1R̄nsmt!u0 . ~D7!

To complete the proof of Eq.~3.27!, we must prove that the
componentsR̄msntu0 of the Riemannian curvature onUq
agree with the componentsRmsntu0 of the Riemannian cur-
vature onA. To prove this, we use the Gauss relation giv
by Eq. ~B10! and which we reexpress here in compone
form

Rmsnt5R̄msnt1T̄a
snT̄amt2T̄a

stT̄amn . ~D8!

Since we are applying the Gauss equation to the subman
Uq instead ofC, we place an overbar on the symbols for t
second fundamental form and the Riemannian curvat
Here,T̄ is the second fundamental form ofUq . Recall thatPi
and P' were defined to be, respectively, the tangent a
normal projection operators ontoC. We extend the definition
of these operators forum not equal to 0 by definingPi and
P' to be the normal and tangent projection operators, resp
tively, ontoUq . With this definition, the second fundament
form T̄ is given by@see Eq.~B1!#

T̄ef5Pi¹P'eP'f1P'¹P'ePif, ~D9!

wheree and f are arbitrary vector fields overUq which are
tangent toA. SinceEm is tangent toUq everywhere, we have

T̄smn5^Es ,T̄En
Em&50. ~D10!

Furthermore, sinceEi is normal toUq at um50, we have

T̄imnu05^Ei ,T̄En
Em&u05^Ei ,¹En

Em&u050, ~D11!
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where the last equality follows from Eq.~D4!. Combining
Eqs.~D10! and~D11! yields T̄a

mnu05T̄amnu050 from which
follows, using Eq.~D8!, R̄msntu05Rmsntu0. This concludes
the proof of Eq.~3.27!.

2. Proof of identity „3.37…

Considering the first term of Eq.~3.16!, we observe that
sinceGabu05dab ,

@p i ln G#u050, ~D12!

@pmln G#u052 i\~GabGba,m!u0

52 i\Gaa,mu0

52 i\Gj j ,mu0 , ~D13!

where we have used Eq.~3.26! in the last step of Eq.~D13!.
Equations~D12! and ~D13! yield

1

4
~Gab@paln G#@pbln G# !u052

\2

4
~Gii ,mGj j ,m!u0 .

~D14!

Considering the second term of Eq.~3.16!, we note

@pa
†Gab@pbln G##u05~@pa

† ,Gab#@pbln G#

1Gab
†pa

†@pbln G#‡!u0 . ~D15!

The first term of Eq.~D15! vanishes from Eqs.~3.11!, ~3.12!,
~3.29!, ~3.30!, and~D12!. The second term evaluates to

~Gab
†pa

†@pbln G#‡!u0

5†pm@pmln G#‡u0

5\2~Gab,mGab,m2Gaa,mm!u0

5\2S 2Smn iSmn i1Gi j ,mGi j ,m1
2

3
Rmnmn2Gii ,mmD U

0

,

~D16!

where the first equality follows from Eqs.~3.11!, ~3.12!,
~3.17!, and ~D12!, the second equality is a straightforwa
computation, and the third equality results from Eqs.~3.25!–
~3.27!. Collecting the preceding results, we find

Vex
p 52

\2

8 S 2
1

4
Gii ,mGj j ,m1Gi j ,mGi j ,m2Gii ,mm

12Smn iSmn i1
2

3
RmnmnD U

0

. ~D17!
is

04211
The various derivatives ofGi j appearing in the above may b
reexpressed using the following identities, to be derived m
mentarily,

Gi j ,mu052Tim j u0 , ~D18!

Gi j ,mnu05~Tam iTan j1Tam jTan i1Sam iSan j

1Sam jSan i2Rim j n2Rj m in!u0 . ~D19!

Upon inserting Eqs.~D18! and ~D19! into Eq. ~D17! one
obtains Eq.~3.37!.

Returning to Eq.~D18!, it is derived via

Gi j ,mu05~¹Em
^Ei ,Ej&!u0

5^¹Ei
Em ,Ej&u01^Ei ,¹Ej

Em&u0

52Tim j u0 , ~D20!

where in the second equality we used the Leibniz rule a
interchanged the derivatives by virtue of Eqs.~D3! and~3.1!.
The final equality follows from the definition of the secon
fundamental form Eq.~B1! and Eqs.~B2! and ~B3!.

Considering Eq.~D19!, we have

Gi j ,mnu05~¹En
¹Em

^Ei ,Ej&!u0

5^¹Ei
Em ,¹Ej

En&u01^¹Ei
En ,¹Ej

Em&u0

1^¹En
¹Ei

Em ,Ej&u01^Ei ,¹En
¹Ej

Em&u0 .

~D21!

In the second equality, we again applied the Leibniz rule a
interchanged derivatives by virtue of Eqs.~D3! and ~3.1!.
We next note that the covariant derivative ofEm by Ei is
given by

~¹Ei
Em!u05~Pi¹Ei

Em1P'¹Ei
Em!u05~TEi

Em1SEi
Em!u0 ,

~D22!

where the first equality follows from the fact thatPi1P' is
the identity and the second from the definitions Eqs.~B1!
and ~2.2! and the fact thatEm is normal toC. We also ob-
serve from Eq.~D4! that (¹Ei

¹En
Em)u050, and therefore

~¹En
¹Ei

Em!u05~REnEi
Em!u0 , ~D23!

where we have used Eqs.~3.1! and ~B8!. Inserting Eqs.
~D22! and~D23! into Eq. ~D21! yields the desired result Eq
~D19!.
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