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Boundary conditions on internal three-body wave functions

Kevin A. Mitchell and Robert G. Littlejohn
Department of Physics, University of California, Berkeley, California 94720

~Received 18 August 1999; published 10 March 2000!

For a three-body system, a quantum wave functionCm
l with definite l andm quantum numbers may be

expressed in terms of an internal wave functionxk
l , which is a function of three internal coordinates. This

article provides necessary and sufficient constraints onxk
l to ensure that the external wave functionCm

l is
analytic. These constraints effectively amount to boundary conditions onxk

l and its derivatives at the boundary
of the internal space. Such conditions find similarities in the~planar! two-body problem where the wave
function~to lowest order! has the formr umu at the origin. We expect the boundary conditions to prove useful for
constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.

PACS number~s!: 31.15.Gy, 03.65.Fd, 03.65.Ge, 02.20.2a
s

l
-

n
m

A
xe
c-
t i
b
da

rn
e
b
ap

n
c

b
s

pe
i

alo
i

ter-
and

if
nc-
the
ent
-
is
ns,
ary

ated

ms

rnal
ns
ted
ave
ave
,
ess

ion
f
it is
ing
ut
ter-
her
dary
on.
the

n is
w

di-
n-
unt
ac-

e re-
d

ple,
ed
I. INTRODUCTION

Consider a wave functionCm
l for a system of three bodie

that is an eigenfunction ofLs
2 andLsz with quantum numbers

l and m, respectively, whereL s is the space-fixed orbita
angular momentum.~The s subscript stands for ‘‘space
fixed.’’! We regardCm

l , the ‘‘external wave function,’’ as a
function of the two Cartesian Jacobi vectors. It is well know
@1–3# that such a wave function can be written in the for

Cm
l 5(

k
Dmk

l* xk
l , ~1.1!

where the Wigner rotation matrixDmk
l is a function of the

three Euler angles and wherexk
l , the ‘‘internal wave func-

tion,’’ is a function of three internal or shape coordinates.
usual,k is regarded as the quantum number of the body-fi
Lz . The wave functionCm

l need not be an energy eigenfun
tion; for example, it could be an element of a basis se
terms of which an unknown energy eigenfunction is to
expanded. The basis sets we have in mind include stan
orthonormal bases, hyperspherical harmonics@4,5#, discrete
variable representation~DVR! bases @6–11#, and wave
packet@12# or wavelet@13# bases.

This paper concerns boundary conditions that the inte
wave functionxk

l must satisfy, given that the external wav
function Cm

l is a smooth function of the Cartesian Jaco
vectors. The boundary in question is the boundary of sh
space, which consists of the collinear configurations.~Our
definition of ‘‘boundary conditions’’ excludes consideratio
of the string or body-frame singularities of the wave fun
tion, which are discussed more fully below.! The applica-
tions we have in mind are mainly molecular~either bound
states of triatomic molecules or triatomic scattering pro
lems!, but the considerations we raise also apply to atom
other systems of bodies with Coulomb interactions~with cer-
tain qualifications discussed below!. We ignore spin in this
paper. We consider only three-body systems in this pa
but an important reason for studying boundary conditions
three-body systems is that it is good practice for the an
gous problem for systems of four or more bodies, which
generally more difficult and much less well understood.
1050-2947/2000/61~4!/042502~16!/$15.00 61 0425
s
d

n
e
rd

al

i
e

-

-
or

r,
n
-

s

There are at least two practical reasons for being in
ested in boundary conditions. First, if one attempts to exp
some unknown function in terms of a given basis, and
there are boundary conditions satisfied by the unknown fu
tion that are not satisfied by the basis functions, then
convergence will be slow. In important cases, the coeffici
of thenth term in the expansion will fall off either exponen
tially or algebraically withn, depending on whether the bas
does or does not satisfy the required boundary conditio
respectively. For example, it is a bad idea to use the ordin
Legendre polynomials to expand a function whoseu depen-
dence has the boundary conditions of one of the associ
Legendre functions form.0. The importance of properly
treating such boundary conditions in three-body proble
has been discussed previously by Kendricket al. @14#

Sometimes basis functions are created on the inte
space simply by writing down some internal wave functio
xk

l that are considered convenient, for example, distribu
Gaussians or wave packets. From the given internal w
functions, one can construct the corresponding external w
functions according to Eq.~1.1!. The question then arises
will these external wave functions have the same smoothn
and analyticity properties as some unknown wave funct
~usually an energy eigenfunction! that one wishes to find? I
not, the convergence will be poor. For another example,
common practice to create internal basis functions by writ
down the exact internal Hamiltonian, and then carving o
some piece of it that has eigenfunctions which can be de
mined analytically. Again there is a question as to whet
the basis functions created in this manner have the boun
conditions required of the desired unknown eigenfuncti
The answer to this question depends in part on whether
operator created by carving out a piece of the Hamiltonia
itself well behaved. The analysis of this paper will show ho
to answer these questions.

A second reason for being interested in boundary con
tions is that numerical methods for solving partial differe
tial equations on a grid must generally take careful acco
of boundary conditions, in order to guarantee reasonable
curacy and convergence. Grid and basis set methods ar
lated, since grid methods implicitly involve a set of localize
basis functions associated with the grid points. For exam
DVR methods involve a basis set consisting of localiz
©2000 The American Physical Society02-1
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KEVIN A. MITCHELL AND ROBERT G. LITTLEJOHN PHYSICAL REVIEW A 61 042502
wave functions, resembling diffraction patterns from a n
row slit. The often cited ‘‘unexpected accuracy’’~that is,
rapid convergence! of DVR methods is closely related t
satisfying the right boundary conditions. For example,
trapezoidal rule converges exponentially~rapidly! when an
analytic, periodic function is integrated over a period, but h
only power law~slow! convergence if the function is analyti
but not periodic, or if it is integrated only over a parti
period. Similarly, if the wrong DVR basis set is used for
given problem, the~by now expected! unexpected accurac
will be lost. We will have more to say about boundary co
ditions and rates of convergence in future publications,
this paper will concentrate on the boundary conditions the
selves.

We will momentarily present the principal results of o
analysis of boundary conditions in three-body systems,
first it is well to recall some facts about two-body syste
with rotational invariance. Thinking of energy eigenfun
tions, we will speak first of the problem of central forc
motion. In three spatial dimensions, the energy eigenfunc
can be writtenCm

l (r )5Ym
l (u,f)x l(r ), wherex l(r ) is the

internal or radial wave function, defined on the radial ha
line 0<r ,`, which is the internal space. According to th
standard textbook analysis@15#, the radial wave function be
haves asr l near r 50. This behavior holds when the tru
potentialV(r ) is analytic atr 50, but also in other cases suc
as that of the singular Coulomb potential.

The standard analysis that produces these results proc
by expanding the radial wave function in a Taylor ser
about r 50 and balancing terms on the two sides of t
Schrödinger equation. Unfortunately, this analysis leaves
impression that the behaviorx l;r l of the radial wave func-
tion nearr 50 applies only to energy eigenfunctions. Act
ally this behavior is much more general. Consider any w
functionCm

l (r ), which is an eigenfunction ofL2 andLz and
which is analytic atr50 when expressed in terms of th
Cartesian coordinates~x,y,z!. This would apply to the eigen
functions of any rotationally invariant operator that is w
behaved atr 50, including Hamiltonians with central poten
tials V(r ) which are analytic atr 50. With standard assump
tions about phase conventions the wave function can be w
ten Cm

l (r )5Ym
l (u,f)x l(r ), wherex l(r ) is the radial wave

function. We note that this form follows from the standa
theory of rotations and the fact thatCm

l is an eigenfunction
of Ls

2 and Lsz; we do not invoke separation of variable
since we are not necessarily separating any wave equa
Then it turns out thatx l(r ) is analytic atr 50, and that its
Taylor series begins with ther l term and thereafter contain
only the powersr l 12n, n51,2, . . . , that is, every other in-
teger power ofr. Energy eigenfunctions in the Coulom
problem do not fit this pattern, sinceCm

l (r ) has a cusp atr
50 and is not analytic there. This is becauseV(r ) is not
analytic atr 50. Although Coulomb radial wave functionsx l
do go asr l nearr 50, the Taylor series ofx l contains every
subsequent power ofr, not every other one.

It is also worthwhile mentioning the case of two bodies
two spatial dimensions, since planar two-body bound
conditions bear a strong analogy to the boundary conditi
04250
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in three-body systems. For the planar problem, an eigenfu
tion of Lsz can be writtenCm(r )5eimfxm(r ), where r
5(x,y), f is the azimuthal angle, andm50,61,62, . . . is
the quantum number ofLsz. If Cm is analytic in the two
Cartesian coordinates~x,y! at r50, then the radial wave
function xm(r ) is analytic atr 50, its Taylor series begins
with the r umu term, and it subsequently contains only eve
other power ofr, r umu12n, n51,2, . . . .

At this point a reader who works with three-body molec
lar problems may wonder what the relevance is of two-bo
boundary conditions atr 50, sincer 50 is the two-body col-
lision and the collision of atoms in molecular problems do
not happen at ordinary energies. The answer is that in th
body systems the collinear configurations play somewhat
same role as the two-body collision in the planar two-bo
problem, insofar as boundary conditions are concerned. T
is why it is important to know about two-body bounda
conditions atr 50, even for molecular problems. Collinea
configurations are not necessarily suppressed in three-b
molecular problems, and are often important.

On the other hand, collisional configurations are imp
tant in Coulomb problems, where the wave function h
cusplike singularities@16,17#, again because of the nonan
lyticity of the potential. Since this paper studies the bound
conditions on the internal wave function that result from t
analyticity of the external wave function, and since the e
ternal wave function in Coulomb problems is not analytic
collisions, the analysis of this paper does not apply to co
sional configurations in Coulomb problems. But of cour
Coulomb problems also have collinear configurations, a
our analysis does apply to these, as long as they are not
collisional. We also exclude string or body frame singula
ties ~discussed momentarily! from consideration. We can
summarize by saying that the analysis of this paper applie
all the important boundary conditions in three-body molec
lar problems, and to some of them~the collinear, noncolli-
sional configurations! in Coulomb problems.

Regarding string or body frame singularities, some
searchers would include them in their definition of ‘‘boun
ary conditions.’’ These are the singularities of the three-bo
wave function which occur along a curve~the string! in
shape space emanating from the three-body collision.~This
string contains points where the body frame is not well d
fined.! Certainly these singularities are important in practic
but we prefer not to regard them as a part of the issue
boundary conditions. This is because they do not occur at
boundary of shape space and because the locations w
they do occur depends on the choice of body frame.~Thus,
they can be moved around by a change of frame.! We have
discussed string singularities separately in two recent pa
@18,19#. Pack has also studied these body frame singulari
@20#.

We now summarize the main results of this paper, wh
relate the analyticity of the three-body external wave fun
tion Cm

l to the behavior of the internal wave functionxk
l at

the boundary of the internal space. The boundary of collin
shapes is a plane specified byQ50 in Smith’s @21# hyper-
spherical coordinates, orw350 in the coordinates to be in
troduced below. One point of this plane is the three-bo
2-2
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BOUNDARY CONDITIONS ON INTERNAL THREE-BODY . . . PHYSICAL REVIEW A61 042502
collision, which is excluded from our analysis. At oth
points of this plane, we have established necessary and
ficient conditions onxk

l such that the external wave functio
Cm

l should be analytic functions of the six Cartesian com
nents of the two Jacobi vectors. IfCm

l is analytic at a collin-
ear configuration~not the three-body collision!, then the in-
ternal wave functionxk

l satisfies the following properties
First, xk

l is itself analytic at the collinear shape, when e
pressed in terms of certain internal coordinates to be
scribed below. Suffice it for now to say that one of the
coordinates, call itw3 , measures the mass-weighted distan
from the planew350 of collinear shapes, while the othe
two coordinates,w1 andw2 , indicate where we are on thi
plane.

The second property involves a modified version of
internal wave functionxm

l ~in contrast toxk
l ). The distinc-

tion is thatk is the eigenvalue of body-fixedLz whereasm is
the eigenvalue of body-fixedn̂•L , where n̂ is the body-
referred unit vector specifying the axis of a collinear sha
The vectorn̂ is defined on the boundary plane of the intern
space~excluding the triple collision!, and is a function of
where we are on that plane. Bothk andm range from2 l to
1 l , and the two internal wave functions are related by
rotation that maps the bodyẑ axis into then̂ axis. Then, as
we shall show, it turns out that ifxm

l is expanded in powers
of w3 , corresponding to movement in the internal spa
away from the boundary in the direction of increasingw3 ,
then the first nonvanishing power isw3

umu , and subsequently
only every other power occurs in the Taylor series,w3

umu12n,
n51,2, . . . .

The converse is also true: ifxk
l satisfies these two prop

erties at a collinear shape~not the triple collision!, then the
external wave functionCm

l is analytic. Obviously, these
boundary conditions are like those of the planar two-bo
problem atr 50, with w3 playing the role ofr. We have also
proved the~plausible! fact that at configurations that are n
at the boundary of the internal space~noncollinear configu-
rations!, the external wave functionCm

l is analytic if and
only if xk

l is analytic. This concludes the summary of o
main results.

In current practice it seems that when questions of bou
ary conditions of three-body internal wave functions ha
arisen it has been assumed that the wave functions of inte
have the same leading order behavior near the boundar
that of the hyperspherical harmonics. This in fact is usua
true, but we know of no study that proves this in a gene
context or that otherwise is devoted specifically to t
boundary conditions themselves. In our work the bound
conditions have been derived rigorously and to all orde
We would especially like to point out that our results we
obtained on the basis of analyticity and symmetry argume
alone, and that they are independent of the Hamiltonian
applicable to all reasonable coordinate systems and cho
of body frame.

The outline of this paper is as follows. Section II contai
the main result of the paper, Theorem 1, which concerns
boundary conditions satisfied by the internal wave functi
We have stated this theorem in as nontechnical languag
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possible. Section II also contains a description of how
boundary conditions are to be applied and discusses se
explicit conventions for internal coordinates and body fram
Sections III and IV are more technical, and are devoted
proving Theorem 1. Section III states and proves bound
conditions for the simpler case of the planar two-body pro
lem. Section IV uses the results of Sec. III to prove t
conditions for the three-body problem. Section V conta
the conclusions. An Appendix collecting several facts ab
the representations ofSO(2) is included for reference.

II. THE THREE-BODY BOUNDARY CONDITIONS

A. Review of three-body formalism

Before stating the boundary conditions on three-bo
wave functions, we review some necessary facts about
three-body problem. We closely follow the notation a
spirit of Littlejohn and Reinsch@3#. A three-body configura-
tion in the center of mass frame is described by two~mass-
weighted! Jacobi vectorsr sa , a51,2. Jacobi vectors are
standard topic inn-body problems@22,3#. The s subscript
indicates thatr sa is referred to the space, or laborator
frame. For obvious reasons, we will call the space of Jac
vectors ‘‘configuration space.’’

It is often convenient to specify a configuration by i
shape and orientation. By the shape, we mean the config
tion modulo physical rotations; it is parameterized by thr
rotationally invariant quantities~called internal, or shape, co
ordinates!. We will denote shape coordinates in general
qm , m51,2,3. A specific and particularly useful set of su
coordinates is (w1 ,w2 ,w3) ~henceforth called the ‘‘w-
coordinates’’! defined by

w15r s1
2 2r s2

2 5r2 cos 2Q cos 2F, ~2.1!

w252r s1•r s25r2 cos 2Q sin 2F, ~2.2!

w352ur s13r s2u5r2 sin 2Q, ~2.3!

where we have expressed thew-coordinates both in terms o
the Jacobi vectors and in terms of Smith’s@21,23# symmetric
hyperspherical coordinates~r,U,F!. Herer5(r s1

2 1r s2
2 )1/2 is

the hyperradius. Thew-coordinates have been used by ma
researchers over the years, including Gronwall@24#, Smith
@21#, Dragt @25#, Iwai @26#, Aquilanti et al. @23#, and others.
The w-coordinates have ranges2`,w1 , w2,`, 0<w3
,` and are in one-to-one correspondence with three-b
shapes. Thus shape space is the closed half-space conta
the physical region of coordinate spacew3>0. Sometimes it
will also be convenient to consider the region of coordin
spacew3,0, which we call the unphysical region. Th
boundary planew350 consists of all collinear shapes. Th
boundary conditions to be presented below occur along
plane. We definew5(w1

21w2
21w3

2)1/2 to be the ‘‘radius’’ in
w1w2w3-space and note the identity,

w5~w1
21w2

21w3
2!1/25r2. ~2.4!
2-3
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KEVIN A. MITCHELL AND ROBERT G. LITTLEJOHN PHYSICAL REVIEW A 61 042502
The originw50 is the three-body collision and is an esp
cially singular point.

The orientation of a configuration is defined relative
some convention for body frame. A body frame convent
may be defined by specifying the functionsra(q), wherera
represents the body components of the Jacobi vectors
whereq represents an arbitrary shape.@Equivalently,q stands
for (q1 ,q2 ,q3)#. Our rule is to attach ans subscript to quan-
tities referred to the space frame, and to omit this subsc
for quantities referred to the body frame. The quantit
ra(q) can also be thought of as specifying a reference or
tation for a given shapeq, relative to which other orienta
tions of the same shape are referred. In the reference o
tation, the space frame is identical to the body frame. T
orientation of the configuration is defined as the rotation m
trix RPSO(3) which rotates the reference configuration in
the actual configuration,

r sa5Rra~q!. ~2.5!

We discuss several common choices of body frame in Se
C, but for now we leave the body frame unspecified.

For collinear shapes,R is not uniquely determined by Eq
~2.5! and there is no unique body frame associated wit
particular choice of reference orientation. Nevertheless,
functions ra(q) are normally well defined at collinea
shapes, and the assignment of a reference orientation
collinear shape will prove to be a useful concept. We w
have more to say in Sec. II B about the singular nature of
body frame at collinear shapes.

We now turn to the three-body wave functionC and give
a quick derivation of Eq.~1.1! from angular momentaum
theory. The wave functionC depends on the two Jacob
vectorsr sa . Rotations act on such wave functions by

„R~Q!C…~r sa!5C~QTr sa!, ~2.6!

whereR is the rotation operator parameterized by the ro
tion matrix QPSO(3), andT is the transpose. We conside
a collection of 2l 11 wave functionsCm

l , 2 l<m< l , with
definite total angular momentuml and transforming unde
the action ofSO(3) via the standard representation,

Cm
l ~QTr sa!5„R~Q!Cm

l
…~r sa!5(

k
Dkm

l ~Q!Ck
l ~r sa!,

~2.7!

whereDkm
l (Q) is the Wigner rotation matrix ofQ. We use

the ~active! conventions of Messiah@15# and Biedenharn and
Louck @27#. We define the internal wave function by

xk
l ~q!5Ck

l
„ra~q!…. ~2.8!

The internal wave function is a multicomponent wave fun
tion which we call a ‘‘spinor.’’ The spinor index isk, 2 l
<k< l . Using Eqs.~2.5!, ~2.7!, and~2.8! we obtain the final
result

Cm
l ~r sa!5Cm

l
„Rra~q!…5(

k
Dmk

l* ~R!xk
l ~q!. ~2.9!
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The importance of Eq.~2.9! is that it completes the one-to
one correspondence between the external and internal w
functions. Equation~2.8! gives the internal wave function in
terms of the external wave function while Eq.~2.9! gives the
external wave function in terms of the internal wave fun
tion. One must realize, however, that all 2l 11 components
of xk

l must be specified to constructCm
l , whereas only one

Cm
l is needed to constructxk

l . This is because the differen
Cm

l ’s are not independent but related by raising and lower
operations, whereas thexk

l ’s are not.

B. Statement of boundary conditions

We now turn to the principal question addressed in t
paper: What are necessary and sufficient conditions on
internal wave functionxk

l (q) that ensure that the externa
wave functionCm

l (r sa) is analytic? Naively, one might ex
pect the only condition to be thatxk

l (q) is itself analytic, but
this is not sufficient as we now explain.

First, we review some fundamental issues regarding a
lyticity. Further clarification of these points may be found
any basic reference on differential geometry, for exam
Refs. @28# and @29#. To say that a function of several var
ables is analytic at a point means that the function agr
with its Taylor series in a neighborhood of that point. To s
that a function defined on a smooth manifold is analytic a
point means that the function, when represented in a suit
choice of coordinates, is an analytic function of those co
dinates at that point. The choice of coordinates is criti
since a function analytic with respect to one set of coor
nates may not be analytic with respect to another. Th
whenever we say that a function defined on a smooth m
fold is analytic, we must be careful to say with respect
what set of coordinates. Now, if two sets of coordinates
related to one another by an invertible analytic function~with
analytic inverse! then these two sets of coordinates are s
~in standard mathematical terminology! to be ‘‘compatible.’’
A function analytic with respect to one set of coordinates
also analytic with respect to a compatible set of coordina
Thus, the analyticity of a function is defined relative to
entire set of compatible coordinates.

As an example, consider the planeR2, and take the stan
dard~x,y! coordinates as the privileged coordinates defin
analyticity. Polar coordinates (r ,u) are compatible with
(x,y) everywhere except at the origin~and on a radial line!.
Thus, a function such asf (r ,u)5r which is an analytic func-
tion of the polar coordinates may still not be an analy
function at the origin ofR2. One needs additional boundar
conditions at the origin to guarantee that a function analy
in polar coordinates is truly analytic onR2. This example
contains the core idea of why boundary conditions may
needed to guarantee analyticity of a function. We expl
this example further in Sec. III.

When considering the three-body wave functionCm
l , we

take the privileged set of coordinates defining analyticity
be the Jacobi coordinatesr sak ,a51,2,k5x,y,z. The reason
for choosing these coordinates is that in practice the poten
energy and the wave functions are typically analytic~except
at collisions! with respect to these coordinates. So long
2-4
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BOUNDARY CONDITIONS ON INTERNAL THREE-BODY . . . PHYSICAL REVIEW A61 042502
one only uses Jacobi coordinates, this fact is sufficient
the rest of this paper could be skipped. However, as alre
pointed out, a shape and orientation description of confi
ration space is often advantageous and this naturally invo
expressingCm

l in shape and orientation coordinates as in E
~2.9!. An important fact is that shape and orientation coor
nate are never compatible at collinear shapes, because
rotation matrixR is not defined by Eq.~2.5!. This is much
like the relation between rectangular and polar coordinate
the origin of the plane, discussed earlier, and it explains w
the analyticity ofxk

l alone is not sufficient to guarantee th
analyticity of Cm

l at collinear shapes.
We will also be interested in the analyticity of function

defined on the internal space~such as the internal wave func
tion xk

l ). We have found it most useful to take th
w-coordinates as the privileged coordinate system with
spect to which the analyticity of such functions is define
All internal coordinate systems in common use are comp
ible with thew-coordinates at most locations in shape spa
On the internal space there is the additional issue of wha
mean by analyticity at the boundaryw350. We will say that
a function defined on the internal space is analytic at a p
ticular point on the boundary if the function has an analy
continuation into the nonphysical regionw3,0 in the neigh-
borhood of that point.

The analyticity of the functionsra(q) requires specia
comment. These functions have singularities on cer
curves~‘‘strings’’ ! in w1w2w3-space, which emanate from
the three-body collisionw50 and go out to infinity. The
location of these strings depends on the convention for b
frame@18–20#. In the following we wish to work with body
frame conventions that remove the strings from the region
interest in the internal space.

The reader may wonder about the analyticity of the Eu
angles, or of functions of them. As it turns out, we nev
need to worry about such issues, because the main resu
this paper, which is the establishment of necessary and
ficient conditions for the analyticity ofCm

l , only involves
the analytic properties ofxk

l . The results we prove below ar
valid for arbitrary conventions for Euler angles.

Turning away now from general notions of analyticity, w
observe that at a collinear shape, which is not the triple c
lision, there is a well-defined~up to sign! unit vector, de-
noted by n̂, pointing along the body-referred axis of co
linearity. The vectorn̂ depends on the position along th
boundary plane and is undefined off of the plane. We the
fore choose a convention for extendingn̂ off of the boundary
plane. That is, we choose a functionn̂(q), defined on shape
space, which points along the collinear axis when evalua
at a collinear shape. When evaluated at a noncollinear sh
we only require thatn̂(q) lie in the plane spanned byr1(q)
and r2(q).

We now introduce a certain basis of spinorstm(q), 2 l
<m< l , which are eigenspinors of the projectionn̂(q)•L of
the body-referred angular momentum operatorL onto the
collinear axis. These spinors are chosen to satisfy

~ n̂•L !tm5mtm , ~2.10!
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tm
† tm85(

k
~tm!k* ~tm8!k5dmm8 , ~2.11!

where † represents the Hermitian conjugate. Here them sub-
script does not index the components oftm but rather labels
the spinor; the 2l 11 components themselves are denoted
(tm)k , 2 l<k< l and are taken with respect to the norma
ized eigenbasis ofLz , using standard phase conventions. N
tice that Eqs.~2.10! and ~2.11! determinetm(q) only up to
an overall phase, which is another convention we have
freedom to choose. We define an alternative version of
internal wave function by

xm
l 5tm

† x l5(
k

~tm!k* xk
l , ~2.12!

where x l is the column vector (x2 l
l ,...,x l

l)T. Since the
spinorstm are orthonormal, Eq.~2.12! may be inverted to
give

xk
l 5(

m
~tm!kxm

l . ~2.13!

Given some region of interest in the internal space, th
are conventions involved in choosing the coordinatesqm , the
functionsra(q), which specify the reference orientations, t
function n̂(q), which extends the collinear axis away fro
the boundary, and the spinorstm(q). We will be particularly
interested in a certain class of conventions which taken
gether we call ‘‘valid’’ conventions. At a noncollinear shap
a set of conventions is said to be valid ifqm is compatible
with the w-coordinates and the functionsra(q), n̂(q), and
(tm)k(q) are analytic. In particular, this means that the sha
in question does not lie on a string singularity. At a colline
shape, we still require the compatibility of the internal coo
dinates with thew-coordinates and the analyticity ofra(q),
n̂(q), and (tm)k(q). However, we further require that th
boundary plane be given byq350. We also require that vari
ous functions be either even or odd. Specifically,

qm~2w3!5qm~w3!, m51,2, ~2.14!

q3~2w3!52q3~w3!, ~2.15!

~ n̂•ra!~2q3!5~ n̂•ra!~q3!, ~2.16!

~P'ra!~2q3!52~P'ra!~q3!, ~2.17!

n̂~2q3!5n̂~q3!, ~2.18!

~tm!k~2q3!5~tm!k~q3!, ~2.19!

where we have suppressed the dependence onw1 , w2 , q1 ,
and q2 and whereP'(q) denotes the projection operato
onto the plane orthogonal ton̂(q).

With the preceding setup, we state the main result of t
paper.

Theorem 1.Let a configurationr sa ~which is not the triple
collision! have shapeq, and assume valid conventions for th
2-5
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shape coordinatesqm , the reference orientationra(q), the
vectorn̂(q), and the spinortm(q) in the neighborhood ofq.
~i! If q is noncollinear, thenCm

l is analytic atr sa if and only
if xm

l ~equivalentlyxk
l ) is analytic atq.

~ii ! If q is collinear, thenCm
l is analytic atr sa if and only if

xm
l ~equivalentlyxk

l ) is analytic atq with the Taylor series

xm
l ~q1 ,q2 ,q3!5 (

n50

`

amn~q1 ,q2!q3
umu12n , ~2.20!

whereamn is an analytic function of (q1 ,q2).

The most striking aspect of this theorem is that the wa
function grows asq3

umu away from the collinear shapes. W
can provide the following heuristic physical interpretation
this rule. If a classical three-body system, under the influe
of a smooth potential, approaches a collinear configurat
any angular momentum about the collinear axis will creat
centrifugal barrier that prevents the system from reaching
collinear configuration. Quantum mechanically, the centri
gal barrier acts to suppress the wave function in the cla
cally forbidden region. The more quanta of angular mom
tum about the collinear axis, the more the wave function
suppressed resulting in theq3

umu growth. This interpretation is
dynamical in nature since it depends on the notion o
Hamiltonian. We stress, however, that the derivation
Theorem 1 will depend only on notions of analyticity an
symmetry.

C. Explicit examples of boundary conditions

We analyze the boundary conditions explicitly for seve
common choices of valid conventions. Our purpose is to
lustrate the general theory with some familiar conventio
and to show how some well-known properties of certain
ternal wave functions, such as hyperspherical harmon
come about. Of course, the properties we derive apply to
internal wave function for which the external wave functi
is analytic.

The first example uses thew-coordinates and a bod
frame which coincides with the principal axes. The bod
referred Jacobi vectors are given parametrically by

r1~w1 ,w2 ,w3!5Fa1b

2& S 11
w1

abD 1/2 w2

uw2uG ẑ
2Fa2b

2& S 12
w1

abD 1/2G x̂, ~2.21!

r2~w1 ,w2 ,w3!5Fa1b

2& S 12
w1

abD 1/2G ẑ
1Fa2b

2& S 11
w1

abD 1/2 w2

uw2uG x̂, ~2.22!

a5Aw1w3, ~2.23!

b5Aw2w3. ~2.24!
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Since the collinear axis for a collinear shape is given
n̂(w1 ,w2)5 ẑ, we define the extension to noncolline
shapes by

n̂~w1 ,w2 ,w3!5 ẑ. ~2.25!

Equations~2.21! and ~2.22! exhibit a discontinuity in the
function ra(w1 ,w2 ,w3) along thew3 axis. In fact the refer-
ence orientation approaches a continuum of different valu
depending on the direction of approach. Thew3 axis forms
the string singularity of the principal axis frame. This strin
consists of oblate symmetric tops, and the discontinuity th
is a direct result of the ambiguity in the choice of the pri
cipal axes due to the degeneracy of the principal moment
inertia. Another singularity occurs in the principal ax
frame, arising from the double-valued nature of the fram
Upon circling thew3 axis once, the principal axis frame doe
not return to its original value, but rather has rotated byp.
Thus, to make the principal-axis frame single-valued
quires introducing a branch cut. In Eqs.~2.21! and~2.22!, we
have chosen this branch cut to be the two-dimensional
facew250, w1.0. Such string singularities and branch cu
are common to other choices of body frame as well and
discussed further in Ref.@18#.

We comment briefly on the validity of the convention
introduced here. Thew-coordinates are trivially valid every
where, with thew3 coordinate being transverse to the colli
ear shapes. The functionn̂(q)5 ẑ is constant and hence ana
lytic everywhere. It obviously satisfies Eq.~2.18! as well.
Away from the frame singularities discussed above,ra(q) is
analytic, and it is straightforward to show that Eqs.~2.16!
and ~2.17! are satisfied. From Eq.~2.25! we may take
(tm)k(q)5dmk , which is clearly analytic and satisfies E
~2.19!. Hence these conventions are valid everywhere exc
at the frame singularities.

Away from the frame singularities and away from th
boundary of shape space, Theorem 1 tells us that analyt
of xk

l (q) is a necessary and sufficient condition for analyt
ity of Cm

l (r sa). In order to guarantee analyticity ofCm
l (r sa)

on the boundary of shape space~away from the positivew1

axis where there is a frame singularity!, xk
l (q) must have the

Taylor series

xk
l ~w1 ,w2 ,w3!5 (

n50

`

akn~w1 ,w2!w3
uku12n , ~2.26!

where of courseakn(w1 ,w2) is analytic.
In the next example, we keep the principal axis frame,

change coordinates from thew-coordinates to the symmetri
hyperspherical coordinates~r, F, Q! defined in Eqs.~2.1!–
~2.3!. The coordinateQ is transverse to the boundary o
shape space that occurs atQ50. These hyperspherical coo
dinates are compatible everywhere except thew3 axis and
the two-dimensional surfacew250, w1.0, where they ex-
perience a coordinate singularity. Note that the location
the coordinate singularities agrees exactly with the locat
of the singularities in the principal axis frame. We aga
choosen̂(q)5 ẑ and (tm)k5dmk . It is again true that the
conventions are valid everywhere except at the frame sin
2-6
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larities. Little modification to the form of Eq.~2.26! is nec-
essary except to change the coordinates, which gives

xk
l ~r,F,Q!5 (

n50

`

akn~r,F!Q uku12n. ~2.27!

Of course, the coefficientsakn(r,F) in the above equation
are different from those in Eq.~2.26!. The form of the wave
function in Eq. ~2.27! can be witnessed in the results
Wolniewicz @30# for hypershperical harmonics in the sym
metric representation.

In the next example, we again use thew-coordinates but
choose a different body frame, called thezxz frame in Ref.
@3# or the BFt1 frame in Ref. @20#. This frame placesr1
along the positivez axis andr2 in thexzplane. Explicitly, the
reference configurationra(w1 ,w2 ,w3) for the zxzframe is

r1~w1 ,w2 ,w3!5~1/& !~w1w1!1/2ẑ, ~2.28!

r2~w1 ,w2 ,w3!5~1/& !
1

~w1w1!1/2~w3x̂1w2ẑ!.

~2.29!

We again taken̂(q)5 ẑ and (tm)k(q)5dmk , and it is easy to
see that Eqs.~2.14!–~2.19! are again satisfied. Equation
~2.28! and ~2.29! exhibit a string singularity on the negativ
w1 axis, which consists of shapes satisfyingr150. Intu-
itively, we explain the location of the string by the followin
observation: ifr150, then the orientation ofr2 within thexz
plane is not fixed. The conventions are valid everywhere
of the string; there is no branch cut for thezxzframe as there
was for the principal axis frame. The Taylor series given
Eq. ~2.26! is again applicable for the present conventions.
course the coefficientsakn(w1 ,w2) are different here and th
domain of validity is also different.

In the next example, we continue to use thezxz frame,
n̂(q)5 ẑ, and (tm)k(q)5dmk , but use a different set of hy
perspherical coordinates~r,z,u! defined by

w15r2 sin 2z, ~2.30!

w25r2 cos 2z cosu, ~2.31!

w35r2 cos 2z sinu. ~2.32!

These are the asymmetric hyperspherical coordinates
Smith @21,23#. They are compatible everywhere in the phy
cal region except on thew1 axis, where there is a coordina
singularity. Notice that this coordinate singularity includ
the singularities in thezxzframe, which occur on the nega
tive w1 axis. The coordinateu is transverse to the collinea
shapes, which occur at bothu50 andu5p. We concentrate
on the boundaryu50 first. Since the conventions are val
over the entire half-planeu50, the Taylor series

xk
l ~r,z,u!5 (

n50

`

akn~r,z!u uku12n ~2.33!

is sufficient to guarantee analyticity of the external wa
function. With regards to the half-planeu5p, by our defi-
04250
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nition the conventions are not valid there because we req
the boundary be given byq350. Nevertheless, by using new
coordinates (r,z,u85p2u), the conventions are valid on
this half-plane. If the external wave function is to be analy
on this half-plane,xk

l must satisfy a Taylor series inu8 iden-
tical in form to Eq.~2.33! for u. One set of functions that do
satisfy the appropriate conditions at bothu50 andu5p are
the associated Legendre polynomialsPk

l (u). An internal
wave functionxk

l (r,z,u)5bk(r,z)Pk
l (u), with bk(r,z) ana-

lytic, therefore lifts to an analytic external wave function~in
the region of validity!. Internal wave functions of this form
arise naturally when constructing hyperspherical harmon
~See, for example, Aquilantiet al. @5,4#.!

III. THE PLANAR TWO-BODY PROBLEM

Before proving the theorem on three-body boundary c
ditions, we discuss the two-body problem in the plane. N
only is this simpler case useful practice for the three-bo
problem, but in fact our proof of the three-body results rel
on the the two-body results presented here.

First, we must adapt the basic concepts and notation
troduced for the three-body problem for use with the tw
body problem. The configuration space of a two-body s
tem, in the center of mass frame, is just the two-dimensio
plane, the relative position of one body with respect to
other being denoted here asr sPR2. The shape of the two-
body system depends only on the separation distancer be-
tween the bodies, and we denote the shape coordinat
q(r ). We assign to each shapeq a reference orientation
r (q). The reference orientationr (q) is simply a point on the
circle of radiusr (q) centered at the origin ofR2. This fact
makes the reference orientations much easier to visua
here than for the three-body problem; the reference orie
tions all lie on a curve beginning at the origin and interse
ing each concentric circle once as it moves out to infinity.
arbitrary configurationr s is given by

r s5Rr ~q!, ~3.1!

whereRPSO(2) denotes the orientation of the system. W
will denote the rotation angle ofR by u.

As an example, one could choose the internal coordin
to beq(r )5r and the reference orientation to be

r ~r !5r x̂. ~3.2!

This choice produces shape and orientation coordin
(r ,u), which are the usual polar coordinates onR2.

We now discuss the two-body wave functionC. The ac-
tion of QPSO(2) on C is

„R~Q!C…~r s!5C~QTr s!. ~3.3!

We denote byCm a wave function which transforms accord
ing to the irrepm of SO(2),

Cm~QTr s!5„R~Q!Cm…~r s!5e2 imaCm~r s!, ~3.4!

wherea is the rotation angle ofQ. The internal wave func-
tion xm(q) is defined by
2-7
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xm~q!5Cm„r ~q!…. ~3.5!

Given xm(q) we may recover the external wave functio
Cm(r s) with the aid of Eqs.~3.1!, ~3.4!, and~3.5!,

Cm~r s!5Cm„Rr ~q!…5eimuxn~q!. ~3.6!

Equations~3.3!–~3.6! are obviously analogous to Eqs.~2.6!–
~2.9! for the three-body problem.

We take the Cartesian coordinates (r sx ,r sy) @that is, the
usual space-fixed~x,y!# as the privileged coordinates for de
fining analyticity of functions on configuration space. W
take the radial coordinater as the privileged coordinate fo
defining analyticity of functions on shape space. Sincer is a
positive quantity, we must give special consideration to
boundaryr 50. A function on shape space is said to be a
lytic at r 50 if it can be analytically continued~as a function
of r! into the regionr ,0.

For the three-body problem, there were four different co
ventions that had to be specified. For the two-body probl
we need only specify two conventions: the shape coordin
q and the reference orientationr (q); there is no analog o
n̂(q) or tm(q) for the two-body problem. Away from the
two-body collision, these two conventions are said to
‘‘valid’’ if the shape coordinateq is compatible withr and if
r (q) is analytic. At the two-body collision,q must still be
compatible withr and r (q) must still be analytic. However
we also require thatq50 coincide with the two-body colli-
sion and that the following conditions be met

q~2r !52q~r !, ~3.7!

r ~2q!52r ~q!. ~3.8!

We now state the following two-body theorem, which
analogous to Theorem 1 for the three-body problem.

Theorem 2.Let a configurationr s have shapeq, and as-
sume valid conventions for the shape coordinateq and the
reference orientationr (q) in the neighborhood ofq.
~i! If qÞ0, thenCm is analytic atr s if and only if xm is
analytic atq.
~ii ! If q50, thenCm is analytic atr s50 if and only if xm is
analytic at 0 with the Taylor series

xm~q!5 (
n50

`

amnq
umu12n, ~3.9!

where theamn are constant complex coefficients.

Proof. For the entirety of this proof, when we say that
function of either the Cartesian coordinates or shape coo
nate is analytic, we mean only that it is locally analytic at t
specific points,r s or q respectively, mentioned in the stat
ment of the theorem.

Equation~3.4! shows that ifCm is analytic at an arbitrary
r s , then Cm is analytic at any other orientationQTr s with
QPSO(2) arbitrary. We therefore assume without loss th
the specific configurationr s in the statement of the Theorem
is the reference orientationr .
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~i! AssumeqÞ0. AssumeCm(r sa) is analytic. From Eq.
~3.5!, the fact thatr (q) is analytic, and the fact that th
composition of analytic functions is analytic,xm(q) is ana-
lytic.

Next assumexm(q) is analytic. By the assumption o
compatibility, q(r ) is analytic. Furthermore,r (r s)5(r sx

2

1r sy
2 )1/2 is an analytic function of the Cartesian coordinate

Hence,q(r s)5q„r (r s)… is analytic. Turning to the rotation
matrix R in Eq. ~3.1!, its rotation angleu is given by
u(r s ,r )5arcsin „ẑ•(r3r s /r 2)…, which is an analytic func-
tion of r s and r . ~We only consideru in the range2p/2
,u,p/2 since we are only checking for analyticity at th
reference orientationu50.) Furthermore,r (r s)5r „q(r s)… is
analytic sincer (q) is analytic by the validity assumption an
q(r s) was shown to be analytic above. Hence,

u~r s!5u„r s ,r ~r s!… ~3.10!

is analytic. Since exp(imu) is an analytic function ofu, we
conclude that

Cm~r s!5eimu~rs!xm„q~r s!… ~3.11!

is an analytic function of the Cartesian coordinates.
~ii ! Assumeq50. AssumeCm(r sa) is analytic. By the

same argument as in case~i!, xm(q) is analytic atq50. To
prove Eq.~3.9!, we differentiate Eq.~3.4! d times with re-
spect tor s ,

(
k1 ...kd

Qj 1k1
...Qj dkdS ]

]r sk1

¯

]

]r skd

CmD ~QTr s!

5e2 imaS ]

]r s j1

¯

]

]r s jd

CmD ~r s!, ~3.12!

whereQjk , j ,k5x,y, are the components ofQ. Evaluating
Eq. ~3.12! at r s50 produces

(
k1 ...kd

Qj 1k1
...Qj dkdS ]

]r sk1

¯

]

]r skd

CmD ~0!

5e2 imaS ]

]r s j1

¯

]

]r s jd

CmD ~0!. ~3.13!

Equation ~3.13! shows that the rank d tensor
(]/]r s j1

...]/]r s jd
Cm)(0) transforms under the completel

symmetrized action ofSO(2) as an irrep ofSO(2) labeled
by m. ~See Appendix.! The decomposition of the fully sym
metrized action ofSO(2) on rankd tensors decomposes int
irreps as shown in Eq.~A1!. If m does not label one of the
irreps included in Eq.~A1!, that is, if mÞd, d22, . . . ,
2(d22),2d, then (]/]r s j1

...]/]r s jd
Cm)(0)50. Conse-

quently, the chain rule and Eq.~3.5! show that
2-8
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S dd

dqd
xmD ~0!5 (

k1 ...kd

drsk1

dq
~0!¯

drskd

dq
~0!

3S ]

]r sk1

¯

]

]r skd

CmD ~0!50 ~3.14!

when mÞd,d22, . . . ,2(d22),2d. This shows that the
appropriate Taylor coefficients vanish in order to produce
Taylor series in Eq.~3.9!.

Now assume thatxm is analytic atq50 with Taylor se-
ries shown in Eq.~3.9!. We first complete the proof of Theo
rem 2 assuming the internal coordinateq(r )5r and the ref-
erence configurationr (r )5r x̂. We explicitly construct a
function C̃m(r s) by

C̃m~r s!5 (
n50

`

(
k1 ...kumu12n

3amn~ tm
umu12n!k1 ...kumu12n

r sk1
...r skumu12n

,

~3.15!

where theamn are the same Taylor coefficients as in E
~3.9! and thetm

umu12n are the rankumu12n tensors defined by
Eq. ~A2!. Clearly the transformation property Eq.~A3! of the
tm
umu12n shows thatC̃m satisfies Eq.~3.4!. Hence, we may

apply the same analysis toC̃m as we have forCm . In par-
ticular, C̃m is uniquely determined via Eq.~3.6! by the in-
ternal wave functionx̃m defined by Eq.~3.5!

x̃m~r !5C̃m~r x̂!5 (
n50

`

amnr
umu12n, ~3.16!

where we have used Eqs.~3.15! and~A4!. Sincexm and x̃m
have the same Taylor series,xm5x̃m . Furthermore, the
unique correspondence between internal and external w
functions guarantees thatCm5C̃m . From Eq.~3.15!, we see
that Cm5C̃m is analytic at 0 by construction. This com
pletes the proof of Theorem 2 for the specific conventio
chosen above.

We mention two noteworthy special cases of Theorem
which the above analysis has now proven. First, iff (r ) is an
even analytic function, thenf (r s)5 f „r (r s)… is an analytic
function of the Cartesian coordinates.~This fact is quite
trivial to prove from scratch by simply considering the Ta
lor series of the two functions.! Second, if f (r ) is an odd
analytic function, thenf (r s)5 f (r ,u)5exp(iu)f(r) is an ana-
lytic function of the Cartesian coordinates, where (r ,u) are
the standard polar coordinates.

We now assume arbitrary valid conventionsr (q) and
q(r ) for the reference orientation and shape coordinate
spectively. To complete the proof of Theorem 2 for the
conventions, we first define and discuss three useful fu
tions F(r s), G(r s), andH(r s) related to these convention
By the validity assumptions,r (r ) is an odd analytic function
in the neighborhood ofr 50, and hencer̂ (r )5r (r )/r is an
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even analytic function in the neighborhood ofr 50. Define
the matrix-valued functionF(r ) by

F~r !5 x̂r̂T~r !1 ŷ„ẑ3 r̂ ~r !…T. ~3.17!

Notice thatF(r ) is the unique matrix inSO(2) satisfying

F~r ! r̂ ~r !5 x̂. ~3.18!

Since r̂ (r ) is an even analytic function, we see from E
~3.17! thatF(r ) is an even analytic function. Hence, from th
first of the two special cases of Theorem 2 mentioned abo
F(r s)5F„r (r s)… is also analytic. Notice of course thatF(r s)
is invariant under all rotationsQPSO(2),

F~Qr s!5F~r s!. ~3.19!

By the validity assumptions,q(r ) is an odd analytic func-
tion of r. Hence, from the second of the two special cases
Theorem 2 mentioned above, the function

G~r s!5eiuq~r ! ~3.20!

is an analytic function of the Cartesian coordinates.@Here
(u,r ) are the standard polar coordinates inR2.# We define a
vector-valued version ofG(r s), denotedG(r s), by

G~r s!5Re„G~r s!…x̂1Im„G~r s!…ŷ5q~r ! r̂ s . ~3.21!

Obviously,G(r s) is also an analytic function of the Cartesia
coordinates. Recall that the compatibility of the coordinatq
guarantees thatq(r ) has an inverse, which we denote b
q21, that is,q21

„q(r )…5r . The functionG(r s) therefore has
an inverse given by

G21~r s!5q21~r ! r̂ s , ~3.22!

as may be verified by inserting this formula into Eq.~3.21!.
Equations~3.21! and ~3.22! easily admit the following re-
sults

G~Qr s!5QG~r s!, ~3.23!

G21~Qr s!5QG21~r s!, ~3.24!

whereQPSO(2) is arbitrary.
We define a new functionH(r s) by

H~r s!5F~r s!G~r s!. ~3.25!

This function has several important properties. First, sin
bothG(r s) andF(r s) are analytic,H(r s) is analytic. Second,

H„r ~q!…5F„r ~q!…G„r ~q!…5qx̂, ~3.26!

which follows from Eqs.~3.18! and ~3.21!. A third fact is
that H is invertible. This fact requires more work to prov
which we do by explicitly constructingH21. Let r s8
5H(r s). Then,

r s5G21
„F21~r s!r s8…5F21~r s!G

21~r s8!, ~3.27!
2-9
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where we use the definition ofH and the fact thatG is
invertible in the first equality and the second equality follo
from Eq.~3.24!. Now, the magnitudes ofr s8 andr s are related
by

ur s8u5uF~r s!G~r s!u5uG~r s!u5q~ ur su!, ~3.28!

where we have used Eq.~3.21! in the final equality. Turning
this relation around and using Eq.~3.22! we have,

ur su5q21~ ur s8u!5uG21~r s8!u. ~3.29!

As witnessed by Eq.~3.19!, F(r s) depends only on the mag
nitude of its argument, and hence Eqs.~3.27! and ~3.29!
combine to produce

r s5F21
„G21~r s8!…G21~r s8!, ~3.30!

which givesr s in terms ofr s8 . Hence,

H21~r s8!5F21
„G21~r s8!…G21~r s8!. ~3.31!

Another fact regardingH is that if QPSO(2) is arbitrary,
then

H~Qr s!5F~Qr s!G~Qr s!5F~r s!QG~r s!

5QF~r s!G~r s!5QH~r s!, ~3.32!

where the second equality follows from Eqs.~3.19! and
~3.23! and the third equality follows from the commutativit
of the groupSO(2). From Eq.~3.32! follows an analogous
identity for H21

H21~Qr s!5QH21~r s!. ~3.33!

We now have the proper background to complete
proof. SinceH is invertible, we introduce the functionC̃m
by

C̃m~r s!5Cm„H
21~r s!…, ~3.34!

Cm~r s!5C̃m„H~r s!…. ~3.35!

We see from Eq.~3.33! that C̃m satisfies Eq.~3.4! sinceCm
satisfies Eq.~3.4!. We define the internal wave functio
x̃m(q) using the old conventionr (q)5qx̂,

x̃m~q!5C̃m~qx̂!. ~3.36!

Using the new conventionr (q), we havexm(q) given by

xm~q!5Cm„r ~q!…5C̃m~H„r ~q!…!5C̃m~qx̂!, ~3.37!

where the second equality follows from Eq.~3.35! and the
third from Eq. ~3.26!. Thus, the functional form ofxm(q)
and x̃m(q) are identical. Since we have assumed thatxm is
analytic atq50 with the Taylor series in Eq.~3.9!, x̃m is
also analytic with the identical Taylor series. Now since
have proved Theorem 2 for the old conventions used to
fine x̃m(q), we have thatC̃m(r s) is an analytic function of
04250
e

e-

the Cartesian coordinates. Furthermore, sinceH(r s) is ana-
lytic, Eq. ~3.35! implies thatCm(r s) is analytic. W

IV. PROOF OF THREE-BODY BOUNDARY CONDITIONS

In this section, we prove Theorem 1.

Proof. For the entirety of this proof, when we say that
function of either the Jacobi coordinates or shape coordin
is analytic, we mean only that it is locally analytic at th
specific points,r sa or q respectively, mentioned in the theo
rem.

A common fact we will use several times is that th
Wigner matricesDmk

l (Q) are analytic functions of the rota
tion matricesQPSO(3). Equation~2.7! thus shows that if
Cm

l is analytic at an arbitraryr sa , thenCm
l is analytic at any

other orientationQTr sa with QPSO(3) arbitrary. We there-
fore assume without loss that the specific configurationr sa in
the statement of the Theorem is the reference orientationra .

~i! Assumeq is noncollinear. The proof here is a straigh
forward generalization of the proof of part~i! of Theorem 2.
First assumeCm

l (r sa) is analytic. From Eqs.~2.8! and
~2.12!, the fact that bothra(q) and (tm)k(q) are analytic,
and the fact that the composition of analytic functions
analytic,xm

l (q) andxk
l (q) are both analytic.

Next assumexm
l (q) is analytic. From Eq.~2.13! and the

fact that (tm)k(q) is analytic, xk
l (q) is also analytic. The

validity assumption guarantees thatq(wm) is analytic. From
Eqs. ~2.1!–~2.3! it is evident that the functionswm(r sa) are
themselves analytic. Therefore,q(r sa)5q„wm(r sa)… is ana-
lytic.

We now focus on the orientation matrixR in Eq. ~2.5!,
which may be expressed in terms of the vectorsr sa andra as

R~r sa ,ra!5
1

ur13r2u2 @r s1v1
T1r s2v2

T1~r s13r s2!~r13r2!T#,

~4.1!

v152r23~r23r1!, ~4.2!

v252r13~r13r2!. ~4.3!

To confirm the above expression forR, we need only verify
Eq. ~2.5! and show thatR(r13r2)5r s13r s2 , both of which
follow easily from the simple identities

va•ra5ur13r2u2, ~4.4!

va•~r13r2!50, ~4.5!

v1•r25v2•r150. ~4.6!

Sincer13r2 does not vanish, it is clear thatR(r sa ,ra) is an
analytic function of the vectorsr sa andra . Since bothra(q)
andq(r sa) are analytic, the functionra(r sa)5ra„q(r sa)… is
analytic. Hence,R(r sa)5R„r sa ,ra(r sa)… is also analytic.
Recalling that the Wigner matrices are analytic functions
R and thatq(r sa) is analytic, we see that
2-10
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Cm
l ~r sa!5(

k
Dmk

l* „R~r sa!…xk
l
„q~r sa!… ~4.7!

is an analytic function of the Jacobi coordinates.
~ii ! Assumeq is collinear. We define a new set of coo

dinates on configuration space consisting of two shape c
dinates, two orientation coordinates, and two coordina
constructed from the one remaining shape coordinate and
one remaining orientation coordinate. We call these coo
nates the ‘‘mixed coordinates.’’ The majority of the remai
der of the proof will be dedicated to defining the mixe
coordinates and proving the most important fact about th
that they are compatible with the Jacobi coordinates at
collinear configuration.

First, we discuss the parameterization of the rotation m
trix R in Eq. ~2.5!. Consider an arbitrary unit vectorê lying
in the northern hemisphere~excluding the equator!, with
n̂(q) as the north pole. We defineU(q,ê)PSO(3) to be the
unique rotation such that

U~q,ê!n̂~q!5ê ~4.8!

and such that its rotation axis lies on the equator. Spe
cally, the rotation axis ofU lies in the direction of

a~q,ê!5n̂~q!3ê, ~4.9!

and the rotation angle ofU has the value arcsinuau. Thus,
U(q,ê) is explicitly given by

U~q,ê!5exp@ f „ua~q,ê!u…„a~q,ê!3…#, ~4.10!

f ~x!5
arcsinx

x
, ~4.11!

where we have introduced the notationa3 for the 333
matrix which maps an arbitrary vectorv into a3v. The pur-
pose of Eqs.~4.10! and ~4.11! is to demonstrate the analy
icity of U(q,ê). Observe that arcsin(x) is an odd analytic
function on the interval~21,1!, and hence,f (x) is an even
analytic function on~21,1!. This in turn implies thatf (a)
5 f (uau) is an analytic function ofa. From Eq.~4.9! and the
fact that n̂(q) is analytic atq350, a(q,ê) is analytic atq3
50 and at allê in the northern hemisphere defined by t
north pole n̂(q350). The analyticity of the exponentia
function permits the following final statement. The functio
U(q,ê) expressed in Eq.~4.10! is an analytic function atq3
50 and at allê in the northern hemisphere withn̂(q350) as
the north pole.

For an arbitrary rotation angleu we defineV(q,u) to be
the rotation byu aboutn̂(q). Explicitly, this rotation is given
by

V~q,u!5n̂~q!n̂T~q!1@sinu„n̂~q!3…1cosu#P'~q!.
~4.12!

We now express the rotation matrixR in Eq. ~2.5! by

R~ ê,u!5U~q,ê!V~q,u!, ~4.13!

where we have parameterizedR by the quantitiesê andu.
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We assume without loss of generality thatn̂(q350)5 ẑ.
~This assumption simply amounts to a judicious choice
space frame.! We may thus defineW(q)PSO(3) in the
neighborhood ofq350 to be the unique matrix such that

W~q!ẑ5n̂~q! ~4.14!

and such that its axis of rotation lies in thexy plane. In fact,
we see from Eq.~4.8! that

W~q!5UT~q,ẑ!. ~4.15!

The analyticity property ofU implies thatW(q) is analytic at
q350. We use W(q) to define an orthonormal fram
n̂i(q), i 51,2,3, by

n̂1~q!5W~q!x̂, ~4.16!

n̂2~q!5W~q!ŷ, ~4.17!

n̂3~q!5W~q!ẑ5n̂~q!. ~4.18!

The functionsn̂i(q) are of course analytic.
The unit vectorê is determined by only two of its com

ponents, of which we chooseê15ê•n̂1 and ê25ê•n̂2 . The
third componentê3(ê1 ,ê2)5(ê1

21ê2
2)1/2 is an analytic func-

tion of the other two in the northern hemisphere. The fun
tion

ê~q1 ,ê1 ,ê2!5ê1n̂1~q!1ê2n̂2~q!1ê3~ ê1 ,ê2!n̂3~q!
~4.19!

is of course analytic.
We next define a pair of vectorssa(q,u), a51,2, by

sa~q,u!5V~q,u!ra~q!

5~ n̂•ra!~q!n̂~q!1@sinu„n̂~q!3…1cosu#~P'ra!~q!,

~4.20!

where we have used Eq.~4.12!. We introduce two new vari-
ablesu1 andu2 by

u15q3 cosu, ~4.21!

u25q3 sinu. ~4.22!

We defineu5q3 , which is convenient notation since whenu
is positive, it is the radial coordinate inu1u2-space, that is,
u5(u1

21u2
2)1/2. The vectorssa are conveniently parameter

ized by the new coordinates

sa~u1 ,u2!5~ n̂•ra!~u!n̂~u!1@u2„n̂~u!3…1u1#

3F ~P'ra!~u!

u G , ~4.23!

where we have dropped the explicit dependence onq1 and
q2 . Since f (u) is an even analytic function ofu, f (u1 ,u2)
5 f „(u1

21u2
2)1/2) is analytic inu1 andu2 . This fact, together

with Eqs.~2.16!–~2.18!, shows thatn̂, n̂•ra , (P'ra)/u, and
2-11
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hencesa are all analytic functions ofu1 andu2 . Reintroduc-
ing the explicit dependence onq1 and q2 , we see that
sa(q1 ,q2 ,u1 ,u2) is analytic.

Using similar arguments as above, from Eqs.~4.9! and
~4.10! we see that both a(q1 ,q2 ,u1 ,u2 ,ê5 ẑ) and
U(q1 ,q2 ,u1 ,u2 ,ê5 ẑ) are analytic. Hence, Eq.~4.15! shows
that W(q1 ,q2 ,u1 ,u2) is analytic, from which follows, using
Eqs. ~4.16!–~4.18!, that then̂i(q1 ,q2 ,u1 ,u2), i 51,2,3, are
analytic. Hence, Eq. ~4.19! shows that
ê(q1 ,q2 ,u1 ,u2 ,ê1 ,ê2) is analytic. From this result we als
have, using Eqs.~4.9! and ~4.10!, that

a~q1 ,q2 ,u1 ,u2 ,ê1 ,ê2!

5a„q1 ,q2 ,u1 ,u2 ,ê~q1 ,q2 ,u1 ,u2 ,ê1 ,ê2!…

and

U~q1 ,q2 ,u1 ,u2 ,ê1 ,ê2!

5U„q1 ,q2 ,u1 ,u2 ,ê~q1 ,q2 ,u1 ,u2 ,ê1 ,ê2!…

are both analytic.
We define the mixed coordinates to be the variab

(q1 ,q2 ,u1 ,u2 ,ê1 ,ê2). We can expressr sa in terms of the
mixed coordinates as follows

r sa~q1 ,q2 ,u1u2 ,ê1 ,ê2!

5Rra5UVra

5U~q1 ,q2 ,u1 ,u2 ,ê1 ,ê2!sa~q1 ,q2 ,u1 ,u2!,

~4.24!

where we have used Eqs.~2.5!, ~4.13!, and~4.20!. Since we
have already shown that bothU(q1 ,q2 ,u1 ,u2 ,ê1 ,ê2) and
sa(q1 ,q2 ,u1 ,u2) are analytic, we see that the Jacobi coor
nates are analytic functions of the mixed coordinates.

To show compatibility of the mixed coordinates with th
Jacobi coordinates we need now only show that the mi
coordinates are analytic functions of the Jacobi coordina
First, since the internal coordinatesqm are valid coordinates
they are analytic functions of thew-coordinates. By inspect
ing Eqs.~2.1! and~2.2!, we see thatw1(r sa) andw2(r sa) are
analytic, even at a collinear shape. However, because o
absolute value in Eq.~2.3! the same can not be said o
w3(r sa). However, the functionw3

2(r sa) is analytic. Thus,
we have the following lemma: Any analytic function o
(w1 ,w2 ,w3

2) may be viewed, via composition, as an analy
function of r sa . Using this lemma and noting thatq1(wm)
and q2(wm) are analytic functions which by Eq.~2.14! are
also even inw3 , we see that the two mixed coordinat
q1(r sa) andq2(r sa) are both analytic functions of the Jaco
coordinates.

Note that the coordinateq3(r sa) is not analytic. However,
since q3

2(wm) is analytic and by Eq.~2.15! also even in
w3 ,q3

2(r sa) is analytic. This fact allows us to generalize o
previous lemma regarding thew-coordinates to arbitraryq.
As we will have frequent need of this more general lemm
we record it below.
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Lemma 1.If f (q) is an analytic function which is even in
q3 , then f (r sa)5 f „q(r sa)… is analytic.

This lemma, together with Eqs.~2.16!–~2.18!, proves the
analyticity of the following functions:

~ra•n̂!~r sa!,uP'rau2~r sa!,r a
2~r sa!,n̂~r sa!.

Furthermore, Eqs.~4.9! and~4.10! show thatU is even inq3
and henceU(rsa ,ê)5U„q(r sa),ê… is analytic at the collinear
configuration and at allê in the northern hemisphere wit
n̂(q350) at the north pole. Equation~4.15! proves the ana-
lyticity of W(r sa)5W„q(r sa)… and hence Eqs.~4.16!–~4.18!
prove the analyticity of the basis vectorsn̂i(r sa)
5n̂i„q(r sa)…, i 51,2,3.

The vectorê is determined by the equation

ê5Rn̂, ~4.25!

which follows from Eqs.~4.12!, ~4.13!, and ~4.8!. We ob-
served earlier that away from a collinear shape, the matriR
is given by Eq.~4.1!, which results in the following formula
for ê

ê5n1~q!r s11n2~q!r s2 , ~4.26!

na5
va•n̂

va•ra
, ~4.27!

where we have used Eq.~4.4! and the fact that

~r13r2!•n̂50 ~4.28!

sincen̂ is assumed to lie in the plane spanned byr1 andr2 .
We will now show that Eq.~4.26! is valid not only at non-
collinear configurations, but at collinear configurations
well. More specifically, we will prove thatê(r sa) is analytic
at collinear configurations.

Considering Eq.~4.26! in the neighborhood of a collinea
configuration, we first assume that neitherr1 nor r2 vanishes.
Obviously, to show thatê„r sa… is analytic, we need only
show thatna(r sa)5na„q(r sa)… is analytic. From Lemma 1
this amounts to showing thatna(q) is analytic and even in
q3 . That na(q) is even inq3 is easily proved by inserting
Eqs.~4.2! and~4.3! into Eq.~4.27! and using Eqs.~2.16! and
~2.17!. To show thatna(q) is analytic requires the following
observation: The ratio of two functions which are both an
lytic at a given point is also analytic at that point provide
that the ratio is not infinite.~This fact is easily proved by
considering the Taylor series of the two functions.! As q3
tends toward 0, by our previous assumption,r sa does not
vanish, nor doesn̂. The quantityva , however, does vanish
but since it appears to first order in both the numerator
denominator of Eq.~4.27!, the ratio is finite atq350. Thus,
na(q) is analytic, and hencena(r sa) and consequently
ê(r sa) are analytic as well.

If one of the Jacobi vectors, sayr s1 , vanishes at the col-
linear configuration, the preceding analysis must be modi
due to the appearance ofr1 in the denominator of Eq.~4.27!.
In this case, we define a new set of vectors
2-12
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ts15r s11r s2 , ~4.29!

ts25r s12r s2 , ~4.30!

and their counterpartsta in the body frame which satisfy

tsa5Rta , ~4.31!

analogous to Eq.~2.5!. Notice that neithert1 nor t2 vanishes
at the collinear shape since this could only occur ifr2 were
also to vanish, which only occurs for the triple collisio
Now, Eqs.~4.1!–~4.3!, ~4.26!, and~4.27! are all valid if one
replacesr sa and ra by tsa and ta , respectively. We may
repeat the same line of reasoning as above to show tha
new na(q), with ra replaced byta , is analytic and even in
q3 . Thus from Lemma 1, the newva(r sa) and henceê(r sa)
are both analytic. Sincen̂1(r sa) andn̂2(r sa) are analytic, we
finally find that the two mixed coordinatesêi(r sa)5
ê(r sa)•n̂i(r sa), i 51,2, are analytic functions of the Jaco
coordinates.

We turn now to the final two mixed coordinatesu1 and
u2 . They are defined by Eqs.~4.21! and~4.22!, but may also
be expressed as

u15q3 cosu5n̂1•~q3VP'!n̂1

5n̂1•UT~q3RP'!n̂15n̂1•U T Mn̂1 , ~4.32!

u25q3 sinu5n̂2•UTMn̂1 , ~4.33!

where

M5q3RP' . ~4.34!

The second equality in Eq.~4.32! follows from Eq. ~4.12!
and the orthogonality ofn̂1 andn̂. The third equality follows
from Eq. ~4.13!.

Recall that U(r sa ,ê) and ê(r sa) are analytic. Hence
U(r sa)5U(r sa ,ê(r sa)… is also analytic. We also recall tha
the n̂i(r sa), i 51,2,3, are analytic. Thus, inspecting Eq
~4.32! and~4.33!, we need only show thatM(r sa) is analytic.
The matrixM may be written with the aid of Eq.~4.1! as

M~q,r sa!5r s1p1~q!1r s2p2~q!1~r s13r s2!p3
T~q!,

~4.35!

pa5
q3P'va

va•ra
, a51,2, ~4.36!

p35
q3P'~r13r2!

ur13r2u2 . ~4.37!

We first assume thatr1 andr2 do not vanish at the collinea
shape. To prove thatM(r sa)5M„q(r sa),r sa… is analytic, we
need only show thatpa(r sa), a51,2, andp3(r sa) are ana-
lytic. From Lemma 1 we must therefore show thatpa(q),
a51,2, andp3(q) are analytic and even inq3 . Using the
definitions Eqs.~4.2!, ~4.3!, ~4.36!, and~4.37! and the valid-
ity conditions Eqs.~2.16! and ~2.17!, it is straightforward to
prove thatpa(r sa), a51,2, andp3(r sa) are even inq3 . As
with our proof of the analyticity ofna(q), to prove that
04250
he

.

pa(q), a51,2, is analytic all we need to do is show that t
ratio in Eq. ~4.36! is not infinite whenq3 tends toward 0.
~Both the numerator and denominator are analytic functi
of q.! This fact follows readily from our assumption thatra
does not vanish and from the fact thatva , which does vanish
at q350, appears linearly in both the numerator and deno
nator. Proving thatp3(q) is analytic requires a bit more care
Since both the numerator and the denominator in Eq.~4.37!
are analytic functions, we again need only verify thatp3(q)
does not blow up atq350, whence

lim
q3→0

p3~q3!5 lim
q3→0

F 2q3

w3~q3!G lim
q3→0

FP'S r13r2

ur13r2u D G~q3!,

~4.38!

where we have used the definition Eq.~2.3! of w3 . We now
note

lim
q3→0

q3

w3~q3!
5

1

~]w3 /]q3!~0!
5

]q3

]w3
~0!, ~4.39!

which cannot be infinite sinceq3 is an analytic function of
w3 . @We have used l’Hospital’s rule in the second step
Eq. ~4.39!.# The second limit in Eq.~4.38! cannot be infinite
either, sinceP' is well-defined atq350 and

r13r2 /ur13r2u

is a unit vector. Thus,p3(q) is analytic atq350. Hence, we
have shown the analyticity ofpa(r sa), a51,2, andp3(r sa)
from which follows analyticity ofM(r sa) and ui(r sa), i
51,2. If the assumption thatr1 and r2 do not vanish at the
collinear shape proves to be false, then we can prove
analyticity ofM(r sa) by applying the same trick used earlie
of defining the vectorstsa . We omit the straightforward de
tails of completing this argument. This finishes the proof
the compatibility of the mixed coordinates with the Jaco
coordinates.

We turn now to the eigenspinorstm satisfying Eqs.~2.10!
and ~2.11!. We denote by (Lsi)mm8 , i 5x,y,z, m,m85
2 l ,...,l , the components of the space-referred angular m
mentum operatorLsi with respect to theLsz eigenbasis. The
matricesLsi transform under a rotationQPSO(3) as a vec-
tor operator,

(
j

Qji Ls j5Dl~Q!LsiDl†~Q!. ~4.40!

We denote by (Li)kk8 , i 5x,y,z, k, k852 l ,...,l , the com-
ponents of the body-referred angular momentum operatoLi
with respect to theLz eigenbasis. The components of the tw
operatorsLsi andLi , with respect to their respective base
are related by (Li)kk85(Lsi)k8k5(Lsi)kk8

* . ~See Ref.@3#,
Sect. 4.H for a derivation.! Thus, the matricesLi satisfy

(
j

Qji L j5Dl* ~Q!LiDlT~Q!. ~4.41!

In view of Eqs.~4.14! and ~4.41!, we have
2-13
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n̂•L5 ẑ•WTL5Dl* ~W!LzDlT~W!. ~4.42!

From Eq.~4.42! we see thattm can be expressed as

~tm!k5eisDmk
l ~WT!, ~4.43!

wheres(q) is a phase factor that must be analytic and ev
in q3 in order to guarantee the same properties for (tm)k(q).
This result, together with Eqs.~2.12! and ~2.13!, yields

xm
l 5(

k
e2 isDmk

l* ~WT!xk
l , ~4.44!

xk
l 5(

m
eisDkm

l* ~W!xm
l . ~4.45!

We may use Eq.~4.45! to rewrite Eq.~2.9! as

Cm
l 5eis(

m
Dmm

l* ~RW!xm
l 5eis(

m
Dmm

l* ~UVW!xm
l , ~4.46!

where we have used Eq.~4.13!.
We now assume thatCm

l (r sa) is analytic, which implies,
as in part~i!, that bothxk

l (q) and xm
l (q) are analytic, and

hencexm
l (q) has a Taylor series

xm
l ~q1 ,q2 ,q3!5 (

n50

`

bnm~q1 ,q2!q3
n , ~4.47!

wherebnm(q1 ,q2) is analytic. We must now only show tha
the appropriate coefficients vanish in the Taylor series
~4.47! to produce the Taylor series Eq.~2.20!. Sinces(q) is
analytic and even inq3 , Lemma 1 shows thats(r sa)
5s„q(r sa)… is analytic. Therefore the functionC̃m

l defined
by

C̃m
l ~q1 ,q2 ,u1 ,u2!5e2 is~q1 ,q2 ,u1 ,u2!

3Cm
l ~q1 ,q2 ,u1 ,u2 ,ê5 ẑ!, ~4.48!

is analytic. Sinceê5 ẑ, we see from Eq.~4.15! that the ma-
trix product UVW appearing in Eq.~4.46! is equal to
WTVW. From Eqs. ~4.12! and ~4.14! it is evident that
WTVWẑ5 ẑ, and henceWTVW is a rotation byu about thez
axis, whereu is the rotation angle ofV. Therefore,

Dmm
l* ~WTVW!5dmm exp~ imu!. ~4.49!

Thus, Eqs.~4.46! and ~4.48! combine to yield

C̃m
l ~u1 ,u2!5eimuxm

l ~q3!, ~4.50!

where we have dropped the explicit dependence onq1 and
q2 . From this equation and the fact that (u,q3) are the usual
polar coordinates with respect to the Cartesian coordin
(u1 ,u2), we may apply Theorem 2. In particular, sinc
C̃m

l (u1 ,u2) is analytic,xm
l (q3) has the Taylor series given i

Eq. ~3.9!. This implies that the appropriate coefficients in E
~4.47! vanish.
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Next assume thatxm
l (q), and hencexk

l (q), is analytic and
that xm

l (q) has the Taylor series given by Eq.~2.20!. Then

from Theorem 2, the functionC̃m
l (u1 ,u2) given in Eq.~4.50!

is analytic inu1 andu2 and based on the analyticity of th

coefficientsamn(q1 ,q2),C̃m
l (u1 ,u2 ,q1 ,q2) is analytic inq1

andq2 as well. We now rewrite Eq.~4.46! as

Cm
l 5eis(

m
Dmm

l* ~UW!eimuxm
l 5eis(

m
Dmm

l* ~UW!C̃m
l ,

~4.51!

where we have used Eq.~4.49! in the first equality and Eq.
~4.50! in the second. We have already shown thats, U, W,
and C̃m

l are analytic functions of the mixed coordinate
Thus, Cm

l is an analytic function of the mixed coordinate
and hence of the Jacobi coordinates as well. W

V. CONCLUSIONS

Assuming valid conventions, Theorem 1 solves the pr
lem of determining whether an internal wave function for t
three-body problem is associated with an analytic exter
wave function. The criteria presented are both necessary
sufficient. The proof invoked only general concepts of an
lyticity and group theory and there was never any need
assume that the external wave function was an eigenfunc
of a Hamiltonian or any other operator. The class of va
conventions for our results is very general and encompa
most of the conventions in common use.

We now propose several useful extensions of the pre
work which we plan to consider in future publications. Fir
Theorem 1 says nothing about the properties of the exte
wave function in the neighborhood of body frame singula
ties. Our justification for ignoring these singularities
present is that they may always be moved away from
region of interest by a change of body frame; they may e
be moved into the unphysical region of shape space. H
ever, in practice it is not always convenient to change bo
frames or to use a body frame that places the singularitie
the unphysical region. Therefore, one should like to hav
set of criteria on the internal wave function which guarante
the analyticity of the external wave function in the neighbo
hood of a body frame singularity.

A second desirable extension of the present work wo
be to develop a set of criteria applicable at the three-b
collision. Such an analysis would almost certainly invol
the analysis of body frame singularities mentioned abo
This is because the string~or strings! of body frame singu-
larities emanates from the three-body collision and no bo
frame avoids singularities at the three-body collision.

As mentioned in the introduction, the external wave fun
tion for three-body problems is not necessarily analytic at
points, the collisional configurations of Coulomb problem
being an obvious example. Yet another useful extension
the present work would be to develop criteria on the inter
2-14
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wave function that capture such singular behavior of the
ternal wave function.

Finally, it is natural to try and extend our analysis to fo
or more bodies. The case of four bodies is certainly m
challenging than that of three bodies. For the three-b
problem, we can always pick valid reference orientatio
ra(q), which are well-defined analytic functions in th
neighborhood of an arbitrary collinear shape~except the
three-body collision!. For the four-body problem, howeve
any reference orientationra(q), a51,2,3, we choose will
not be analytic at any collinear shape. This is because
body frames for the four body problem have singular s
faces emanating from all collinear shapes@19#. Extending the
analysis of this paper to the four body problem will nece
sarily require a deeper consideration of frame singularitie

ACKNOWLEDGMENTS

The authors greatly appreciate the thorough reading
critique given the manuscript by Dr. M. Mu¨ller. This work
was supported by the Engineering Research Program o
Office of Basic Energy Sciences at the U.S. Departmen
Energy under Contract No. DE-AC03-76SF00098.

APPENDIX: FACTS CONCERNING SO„2…

We collect some basic facts concerningSO(2) that are
necessary for the proof of Theorem 2. All irreducible rep
sentations~irreps! of SO(2) are one-dimensional and may b
labeled by an integerm, with 2`,m,`. The components
of a vector in an invariant one-dimensional carrier space
beled bym are multiplied by exp(2imu) when rotated byu.

The fundamental representation ofSO(2), that is the rep-
m
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resentation by 232 real orthogonal matrices, decompos
into the direct sum of them561 irreps, which we denote
11% 21. The two irreducible carrier spaces are spanned
the vectorse65(1,6 i )T. The d-fold tensor product of the
fundamental representation contains~with various multiplici-
ties! the irrepsd, d22, d24, . . . , 2(d24), 2(d22), 2d.
However, exactly one irrep for each allowed value ofm is
totally symmetric. That is, the fully symmetrized tens
product of the fundamental representation ofSO(2) decom-
poses as

S‹
d

~11% 21!5d% ~d22! % ~d24! %¯% 2~d24!

% 2~d22! % 2d, ~A1!

where ^ denotes the tensor product andS denotes the tota
symmetrization operator. The irrep labeled bym is spanned
by a totally symmetric rankd tensortm

d given by

~A2!

wherem5u2v andd5u1v. Explicitly, tm
d transforms as

(
k1 ...k2

Qj 1k1
...Qj dkd

~ tm
d !k1 ...kd

5e2 ima~ tm
d ! j 1 ...j d

, ~A3!

where (tm
d ) j 1 ...j d

are the components oftm
d . A final fact we

need, which follows readily from Eq.~A2!, is that

~ tm
d !x...x51. ~A4!
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