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A framework for discrete variable representation~DVR! basis sets is developed that is suitable for
multidimensional generalizations. Those generalizations will be presented in future publications.
The new axiomatization of the DVR construction places projection operators in a central role and
integrates semiclassical and phase space concepts into the basic framework. Rates of convergence
of basis set expansions are emphasized, and it is shown that the DVR method gives exponential
convergence, assuming conditions of analyticity and boundary conditions are met. A discussion of
nonorthogonal generalizations of DVR functions is presented, in which it is shown that projected
d-functions and interpolating functions form a biorthogonal basis. It is also shown that one of the
generalized DVR proposals due to Szalay@J. Chem. Phys.105, 6940 ~1996!# gives exponential
convergence. ©2002 American Institute of Physics.@DOI: 10.1063/1.1473811#
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I. INTRODUCTION

This paper is the first in a series that presents the res
of our recent investigations into multidimensional discre
variable representation~DVR! basis sets. The basic ideas
the DVR method go back to the 1960’s,1,2 and the method
has become widely popular especially since the pionee
work of Light and others in the 1980’s.3–11 A recent review
has been given by Light and Carrington,12 and another article
we have found useful for general information is Baye a
Heenen.13

There has long been felt a need for multidimensio
DVR functions.14 Cartesian products of one-dimension
DVR functions are easy to construct, but typically do n
obey the boundary conditions needed on spaces, suc
those occuring in molecular physics, which are not the
selves Cartesian products of one-dimensional spaces.
these reasons we have been interested to find ways of
structing nontrivial~that is, non-Cartesian-product!, multidi-
mensional DVR basis sets. Our first step in doing this wa
try to understand the known, one-dimensional DVR ba
sets from as deep a standpoint as possible, in order to
eralize them to higher dimensions. This paper presents
results of the first stage of this research, in which we a
omatize the DVR construction in a way which is not bias
toward one-dimensional examples and identify some of
underlying principles.

In the process, we have developed several ideas. F
we have integrated the basic theory of DVR functions w
phase space or semiclassical concepts, which we feel ar
important part of understanding their properties and the p
ciples of their construction. The phase space perspectiv
8690021-9606/2002/116(20)/8691/13/$19.00
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DVR functions has been explored previously by Poirier a
Light.15–17 In our axiomatization of the DVR construction
we have promoted projection operators to a central role,
emphasized the phase space meaning of these. We have
paid considerable attention to the rates of convergence
different basis set methods, and emphasized the favor
case of exponential convergence. In particular, we have d
onstrated that the DVR method provides exponential conv
gence under certain circumstances~analyticity of the poten-
tial, proper attention to boundary conditions, etc.!. Although
it is well known that the DVR method often gives rap
convergence, we believe our argument for the exponen
convergence of the DVR method is new. Another novel e
ment is our new proof of the Darboux–Christoffel formula,
basic result in the theory of one-dimensional, orthogo
polynomial DVR functions. Finally, we present a theory
DVR functions which are generalized by relaxing the usu
orthogonality conditions. The idea of such generalized DV
functions was first put forward by Lightet al.18 and was later
developed by Szalay,19 but we have presented several ne
ideas including the duality between the set of projec
d-functions and the set of interpolating functions and a pr
of exponential convergence with a certain form for the m
trix elements of the potential energy.

II. PROJECTION OPERATORS, PHASE SPACE,
AND EXPONENTIAL CONVERGENCE

In our axiomatization of the DVR construction we hav
promoted projection operators to a central role, a step
turns out to be important when constructing multidime
sional examples. In this we were strongly influenced by
treatment of Baye and Heenan.13 Moreover, projection op-
1 © 2002 American Institute of Physics
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8692 J. Chem. Phys., Vol. 116, No. 20, 22 May 2002 Littlejohn et al.
erators have a geometrical interpretation in phase sp
which is very suggestive, not only for understanding the
ficiency and rate of convergence of known DVR basis s
but also for designing new ones. In favorable circumstan
DVR basis sets lead to exponential convergence in the
culation of eigenvalues and eigenfunctions. In this sect
we discuss the conditions under which exponential conv
gence holds and the factors which can destroy it.

We begin with projection operators. LetH be a Hilbert
space of wave functions, and let$un&,n50,...,N21% be a
truncated, orthonormal basis. Let

P5 (
n50

N21

un&^nu ~2.1!

be the projection operator onto the subspaceS spanned by
the truncated basis set, so thatS5PH. In practice P is
specified by the truncated basis$un&%. The stationary phase
logic of this paper requires that at least part of the basis b
truncated spectral basis, but it may contain additional st
that do not fit this description.20 We prefer to emphasizeP
itself as the primary object because the basis which spaS
is not unique and because in multidimensional problems
often much less obvious what is to be regarded as a p
leged choice of the basis$un&%. Moreover,P may be inter-
preted in terms of a region of phase space, which is indep
dent of the choice of basis spanningS. The phase spac
interpretation ofP plays an important role in this paper, an
also in the problem of basis set optimization, that is,
problem of choosing aP which is efficient for a particular
class of wave functions one wishes to find. This problem
been considered by several authors.4,16,17,21–28The phase
space interpretation ofP is a natural outcome of the
Wigner–Weyl formalism,29–31 which has recently been spe
cifically elaborated upon by Poirier.15 Here we shall merely
use a simple model problem to present the intuitive idea

Suppose we are trying to solve the Morse oscillator i
harmonic oscillator basis. Figure 1~a! illustrates the Morse
potential~above! and the phase space of the Morse oscilla
~below!. In the phase space diagram, a set of nested clas
orbits is drawn, having actionsI n5(1/2p)rp dx5n\, n
51,2,... ~the circle in the figure will be explained momen
tarily!. Thus, the area of thenth orbit is nh5n(2p\) ~the
orbit containsn Planck cells of phase space area!. These are
not the quantized orbits of WKB theory, which satisfyI n

5(n11/2)\, n50,1,...; the quantized orbits are half wa
between the orbits drawn in the figure. We have drawn
figure this way because we wish to imagine the quanti
orbits at the centers of annular strips, each of which conta
one Planck cell (h52p\) of phase space area.

Figure 1~b! illustrates a harmonic oscillator potenti
~above! and phase space~below!. The potential is the har
monic approximation to the Morse potential at the bottom
the well. The phase space picture of the harmonic oscilla
also contains a set of nested orbits, in this case circles,
ing actionsI n5(1/2p)rp dx5n\. The number of harmonic
oscillator orbits and Morse oscillator orbits drawn~10! is the
same.

The circle in the Morse oscillator phase space is the
~tenth! harmonic oscillator orbit. This circle completely en
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closes the first three of the Morse oscillator orbits, but
fourth extends beyond it a small amount near thex-axis. This
means that if we solve the Morse oscillator in a harmo
oscillator basis truncated at the tenth basis state (n59 in the
usual numberingn50,1,...), then the first three Morse os
cillator states (n50,1,2) will be reasonably well converged
but the fourth (n53) will have some qualitative error in
the eigenfunctionc3(x) near the right turning point, and
the qualitative disagreement will get worse for higher sta
n54,5,... .

To be more precise, consider the error in themth Morse
oscillator eigenstatecm(x)5^xum& when computed in a
truncated basis ofN harmonic oscillator eigenstates$un&,n
50,...,N21% asN increases. This error can be estimated
the matrix element̂ Num&, the coefficient of the first ne-
glected term in the expansion of the exact Morse oscilla
eigenstate in the harmonic oscillator basis. This matrix e
ment in turn can be approximated by using semiclass
~WKB! wave functions and the stationary phase approxim
tion. The matrix element̂Num& then becomes a sum of in
tegrals of the form,

E dxA¯ expH i

\
@6SN

HO~x!6Sm
MO~x!#J , ~2.2!

whereS5*p dx, where the ellipsis indicates the usual WK
amplitude factors and where the superscripts HO and
refer to the harmonic and Morse oscillators, respectively. T
integrals are summed over the choices of sign to get
matrix element̂ Num&. The stationary phase condition ca
be satisfied only when the two signs are opposite, so
the stationary phase points are the roots of (d/dx)@SN

HO

2Sm
MO(x)#50, or pN

HO(x)5pm
MO(x), where p5p(x) is the

momentum function defined by the classical orbits. Thus,
stationary phase points are represented geometrically by

FIG. 1. In~a!, the potential~above! and orbits in phase space~below! for the
Morse oscillator. The orbits have actionsI n5n\. The circle in the phase
space diagram is the outer harmonic oscillator orbit in~b!. In ~b!, potential
and phase space orbits for a harmonic oscillator. The potential is the
monic approximation to the Morse potential.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



it
d

e
e
e
ly
le

ix
ar
e-

t

a

tic
c

si
yt
h
ge

e

co
th
b

as
n

o

sis
the
ion
ig-
de

in
out
ary
H

ve
en if
nic

in
on-
ace

si-

co-
is
e is
lly

ec-

e
t of
. As
r
t
po-
d
, it
e on
ob-
ies

KB
ich
si-
the
ieb
ce
oth
f-
we

iag-
ei-

of

sta

8693J. Chem. Phys., Vol. 116, No. 20, 22 May 2002 Discrete variable representation basis sets
intersection of theNth harmonic oscillator quantized orb
with the mth quantized Morse oscillator orbit, as illustrate
in Fig. 2. ~See Littlejohn32,33 for a discussion of the multidi-
mensional case.!

As N increases~for fixed m) there comes a value ofN
where theNth circle covers themth Morse orbit, and asN
increases beyond that value there will be no more inters
tions of the two orbits. This means that there are no r
stationary phase points in the computation of the matrix
ement^Num&; the stationary phase points have effective
moved off the real axis and become complex. The comp
stationary phase points correspond to actionsS in the expo-
nent eiS/\ which have a positive imaginary part; the matr
element itself is exponentially decreasing in the imagin
part of S. Thus, if we describe the error in terms of its d
pendence onN, we expect this error to beO(1) ~that is,
large! when the two orbits have real intersections, and
decrease exponentially~ase2cN for some constantc) as the
area covered by the basis states expands beyond the
occupied by the Morse eigenstates.@To be more precise, the
error will go ase2c(N2N0) whenN is above but nearN0 , the
number of basis states which just cover themth Morse os-
cillator state.#

The harmonic oscillator basis is an example of anana-
lytic, spectral basis, that is, a basis consisting of the analy
eigenfunctions of some operator. Of course, the Morse os
lator eigenfunctions form another analytic, spectral ba
Exponential convergence occurs whenever one anal
spectral basis is expanded in terms of another, althoug
only sets in after the phase space area of the unknown ei
functions~or volume in higher dimensions! has been covered
by the basis, and if the constantc is small the convergenc
may not be satisfactory. That is, both the basis set sizeN0

above which exponential convergence sets in and the
stantc determining the rate of convergence depend on
basis, and determine its efficiency. Nevertheless, in favora
cases the exponential convergence is dramatic, and
general it seems to be a highly desirable property for a b
set to have. Bases which are not analytic generally do
give exponential convergence; these include splines~or any

FIG. 2. The integral for the computation of the matrix element^Num&, the
Nth expansion coefficient in the expansion of themth Morse oscillator state
in a harmonic oscillator basis, is dominated by contributions from the
tionary phase points, which are geometrically the intersections of theNth
harmonic oscillator orbit with themth Morse oscillator orbit.
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kind of piecewise fits! and ordinary ~multiresolution!
wavelets,34–36 which typically have compact support and s
are not analytic.

Exponential convergence is also destroyed if the ba
functions and the functions to be expanded do not satisfy
same boundary conditions. In current practice, this condit
is not always met, although boundary conditions can be
nored if the physical wave function has negligible amplitu
at the boundaries. In a recent paper37 we have examined the
boundary conditions satisfied by physical wave functions
the internal space of the 3-body problem. We also point
that particularly careful attention has been given to bound
conditions at collinear shapes in the treatment of the3

1

molecule in Ref. 38.
Exponential convergence will not hold either if the wa

functions to be expanded are themselves nonanalytic, ev
the basis is analytic. This occurs in the case of electro
wave functions, due to the cusp singularities.39 Such singu-
larities in configuration space give rise to long-range tails
momentum space. Wave functions which are analytic in c
figuration space normally correspond to momentum sp
wave functions which fall off exponentially asp→`; this
can typically be interpreted as a tunnelling into the clas
cally forbidden region in momentum space~beyond the mo-
mentum turning points!. Nuclear wave functions in the
Born–Oppenheimer approximation also have cusps at the
incidence of two nuclei, but of course the wave function
strongly suppressed by the potential there. Another issu
that in practice the potential energy surface is usua
nonanalytic, being made up of piecewise analytic fits to el
tronic structure data points. These nonanalyticities~where
the pieces fit together! will destroy exponential convergenc
at some level of accuracy regardless of the basis, bu
course no physics can depend on these nonanalyticities
for other types of singularities~at conical intersections o
singularities due to body frame,40–42etc.! it seems to us tha
it should be possible to handle these without loss of ex
nential convergence assuming other problems are solve~a
tall order!. To summarize a somewhat complex situation
seems to us that as a first pass one should concentrat
analytic bases for nuclear wave functions in molecular pr
lems, which is the philosophy we have adopted in our stud
of DVR bases.

The above analysis of convergence is based on W
theory, which applies to analytic eigenfunctions and wh
hopefully has intuitive advantages for chemists and phy
cists. It is necessary background for our discussion of
rate of convergence of the DVR method below. See Gottl
and Orszag43 for a more standard treatment of convergen
rates in expansions in orthogonal functions, in which smo
~rather than analytic! functions are emphasized, and the e
fects of boundary conditions are discussed. As far as
know, the rates of convergence of the DVR method~by
which we mean the errors incurred when the standard d
onal approximation is made for the potential energy and
genvalues of the truncated matrix are computed! have not
been considered in the mathematical literature.

To return to the projection operatorP, in the case of
analytic bases this operator is associated with a region

-
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8694 J. Chem. Phys., Vol. 116, No. 20, 22 May 2002 Littlejohn et al.
phase space. Of course, the range of unknown eigens
one wishes to find is also associated with a region of ph
space, and another projection operator. In general, the W
transform of a projection operator is a function which
some approximation is the characteristic function of a reg
of phase space~zero outside, unity inside!. This is only an
approximation, the nature of which has been recently
plored by Poirier,15 including some numerical examples. S
also Berry,44 who studies the Weyl transforms of projectio
operators for single states, and shows that they are smoo
d-functions concentrated on the quantizing orbit, plus os
lations. The smoothing is enough to spread thed-function
over the width of the annular strips illustrated in Fig.
producing an approximation to the characteristic function
the annular strip. We note that in this paper we never
these approximations for any quantitative purpose; our qu
titative conclusions rely on the stationary phase argum
given above for exponential convergence.

III. A GENERAL FRAMEWORK FOR DVR

We shall now present a framework for defining and d
cussing DVR functions which is not biased toward on
dimensional examples or the special case of orthogonal p
nomials.

Let M be the manifold~or space! upon which our wave
functions live. In model problems~and some real problems!
M may be the Euclidean spaceRn, but in molecular quantum
mechanicsM is typically one of the internal spaces of th
n-body problem, with nontrivial topology. We have exam
ined the topology and structure of these spaces in a serie
earlier papers.41,42,45The only mathematical manifolds whic
are Cartesian products of one-dimensional manifolds
planes, cylinders and tori~generally, products of circles an
lines!. Unfortunately, these do not include the internal spa
primarily of interest in molecular quantum mechanics. T
is one reason for being interested in non-Cartesian prod
multidimensional DVR bases.

Let us denote the Hilbert space of square-integra
wave functions onM by H5L2(M ) ~we assumeM has a
metric!. Let P be a projection operator onH, and let S
5PH be the subspace upon whichP projects. Let$xa ,a
50,...,N21% be a set ofN grid points on M . If M is
d-dimensional, then eachxa is represented by a set ofd
coordinates. Finally, we introduce the projectedd-functions
concentrated at the grid points,Da(x)5P@d(x2xa)#, which
we denote with a capitalD to emphasize that they came fro
d-functions. This is more convenient in Dirac notatio
uDa&5Puxa&, so thatDa(x)5^xuDa&.

With these definitions we have the following theorem

^DauDb&5Db~xa!5Da~xb!* , ~3.1!

which says that the matrix of scalar products of the projec
d-functions ~the overlap matrix! is given by evaluating the
projectedd-functions at each others’ grid points. The proof
trivial; we have

^DauDb&5^xauP†Puxb&5^xauPuxb&5^xauDb&5^Dauxb&,
~3.2!

where we useP†P5P25P andPuxa&5uDa&.
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This theorem has an immediate corollary, which sa
that the set of projectedd-functions,$Da(x),a50,...N21%
is orthogonal if and only if

Da~xb!5Kadab , ~3.3!

whereKa5^DauDa& is the squareed norm of the projecte
d-function~in general they are not normalized!. If in addition
the projectedd-functions do not vanish identically, thenKa

.0 and we can define a normalized~hence orthonormal!
version of these functions,

uFa&5
1

AKa

uDa&, ~3.4!

so that^FauFb&5dab .
We now define aDVR setas the combination of a pro

jection operatorP plus a set ofN grid points$xa% such that
Eq. ~3.3! holds with allKa.0. In view of the theorem~3.1!,
we are requiring that the projectedd-functions vanish at each
others’ grid points and that they do not vanish at their o
grid points. All the standard examples also satisfy anot
condition, which isN5dimS, that is, the number of grid
points ~hence the number of projectedd-functions! is equal
to the dimensionality of the space upon whichP projects.
~This space is sometimes infinite-dimensional, howev!
Since these functions are orthogonal and nonvanishing,
are necessarily linearly independent, and hence span the
spaceS ~in the finite dimensional case!. The $Fa(x)% are
then an orthonormal basis on this subspace.

The following will help translate the notation of this pa
per into that used by other authors. Most authors define
subspaceS as that spanned by an orthonormal set$fn%, that
is, the FBR. Thus,P5(nufn&^fnu. P is denotedI N by Light
et al.18 Most authors label grid points bya and call the grid
points themselvesxa , as we do. The functionsFa(x) are
calledua(x) by Light and Carrington.12 The squared norm o
the projectedd-functions,Ka , turns out to be the inverse o
the weights in the associated quadrature formula, denotedwa

or va by most authors.
We make one remark here about the caseNÞM

[dimS. Since the functionsDa(x), a50,...,N21, lie in
the subspaceS, at mostM of them are linearly independen
Thus the overlap matrix̂DauDb&, which is necessarily non
negative definite, satisfies

rank̂ DauDb&<M . ~3.5!

Thus, if N.M ~the most interesting case afterM5N, since
it allows more grid points for quadrature purposes than ba
functions!, the matrix^DauDb& is a singular matrix. In fact,
normally ~apart from some deliberate or perverse choices
grid points! the rank is preciselyM , and ^DauDb& has pre-
cisely M positive andN2M zero eigenvalues. Then Eq
~3.3! ~with Ka.0) is impossible. Henceforth in this articl
we shall deal only with the caseN5M ~but in future articles
we shall show how understanding the caseN.M is impor-
tant for constructing DVR sets on multidimensional space!.

DVR functions satisfy two properties simultaneous
The first is orthogonality,̂ DauDb&5Ka dab or ^FauFb&
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8695J. Chem. Phys., Vol. 116, No. 20, 22 May 2002 Discrete variable representation basis sets
5dab ; and the second is the interpolation property,Da(xb)
5Kadab , that is, eachDa(x) vanishes at all grid points
except its own.

We will call a set ofN linearly independent function
$La(x)% which span some given function spaceinterpolating
functions if they satisfyLa(xb)5dab for a given set ofN
grid points$xa%. These functions are unique if they exist.
the case of a DVR set, a set of interpolating functions wh
span the spaceS is given by

La~x!5
1

Ka
Da~x!. ~3.6!

For a DVR set, all three functions,Da , Fa , and La , are
proportional.

The orthogonality and interpolating properties of DV
functions give rise to two distinct ways to expand a functi
which belongs toS. That is, ifcPS, so that an expansion o
the form

c~x!5(
a

caFa~x! ~3.7!

exists, then the expansion coefficients can be determine
ther by orthogonality or by settingx5xb in Eq. ~3.7! and
using Eq.~3.3!. That is,

ca5E dx Fa* ~x!c~x!5
1

AKa

c~xa!. ~3.8!

Thus, whencPS, we can write

c~x!5(
a

1

AKa

c~xa!Fa~x!. ~3.9!

If c does not belong toS, then the two~nominal! ways
of determining the expansion coefficients do not give
same results, and the errors in the two expansions are d
ent. As we have seen in Sec. II, ifc lies well within the
region of phase space covered byP, then the errors in the
orthogonality expansion (ca5^Fauc&) are exponentially
small. We now show that the same is true for the interpo
tion expansion (ca5(1/AKa)c(xa)), under certain assump
tions that are common in practice.

First we breakc into a partc1 lying in S, and another
c2 orthogonal toS, c5c11c2 . Then the error in the inter
polating expansion is

err~x!5c~x!2(
a

1

AKa

c~xa!Fa~x!

5c2~x!2(
a

1

AKa

c2~xa!Fa~x!, ~3.10!

since c1 has an exact interpolating expansion. Let err(x)
5^xue&. Then the squared norm of the error is given by

^eue&5^c2uc2&1(
a

1

Ka
uc2~xa!u2, ~3.11!

since the two major terms on the right-hand side of E
~3.10! are orthogonal. The first term of Eq.~3.11! was shown
to be exponentially small by the argument in Sec. II. T
Downloaded 13 Nov 2003 to 128.239.3.116. Redistribution subject to A
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second term is the squared norm ofc2 , computed by the
quadrature approximation, which need not be a good
sincec2 lies outsideS. The magnitude of the second ter
depends on the values of the functionc2 at the grid points.
Although c2 has a small norm, this does not in princip
preventc2 from taking on large values at certain points.
many practical circumstances, however, the values ofc2 will
be exponentially small.

Suppose, for example, thatS is spanned by an analytic
spectral basisfn(x), truncated at n,N. Then c2(x)
5(n5N

` anfn(x), where, according to the arguments in Se
II, aN is of ordere2cN and the termsan decrease exponen
tially after that. Now note that

uc2~x!u< (
n5N

`

uanuufn~x!u. ~3.12!

This sum will be dominated by the first few terms unless
maximum value offn(x) diverges fast enough to countera
the exponential decay of thean . In fact, this maximum value
may diverge; for example, the maximum value of the h
monic oscillator eigenfunctions goes asn1/12, and the maxi-
mum value of theYlm’s on the sphere diverges asl 1/6, but
these are very mild divergences that are completely ov
whelmed by the exponential decay of the coefficientsan . It
is also possible that the eigenfunctionsfn(x) themselves
diverge at some pointsx, for example, the radial eigenfunc
tions of the Dirac hydrogen atom do this, but these div
gences are due to the singularity of the potential atr 50, and
here we are assuming that all potentials are analytic.

A more general argument is the following. Suppo
c2(x) reaches a maximum value ofH in a lobe of widthDx.
Then the contribution of this lobe to the squared normn
5^c2uc2& is of orderH2Dx<n. We are assuming thatc(x)
is an eigenfunction in an analytic potential, so its Four
transform dies off exponentially beyond the classically
lowed region in momentum space. Similarly, the Four
transform ofc2 , which is the truncation ofc outside the
region of phase space covered byS, dies off exponentially
outside some momentum boundP0 of this region. This
means that the maximum momenta in the Fourier transfo
of the one lobe containing the maximum ofc2(x) is of the
order of P0 , or Dx.\/P0 . Thus, \H2/P0,n, or H
,(P0n/\)1/2. The cutoff momentumP0 is a slowly increas-
ing function ofN, the size of the truncated basis, but this
completely dominated by the exponential decay of
squared normn. Thus, the maximum value ofc2(x) decays
exponentially withN, and the squared norm of the error
the interpolating expansion~3.11! is exponentially small.

IV. STANDARD DVR SETS

In this section we show how certain standard DVR se
namely, sinc functions and DVR sets based on orthogo
polynomials, fit into the general formalism we have pr
sented, and we discuss convergence issues and phase
interpretations of these functions.

Sinc functions46,47 are in many ways the simplest ex
ample of a DVR basis and also an instructive one, one wh
is worth examination because of the many fundamen
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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points it illustrates. Sinc functions do not satisfy the boun
ary conditions required in many practical problems, b
when the boundary conditions are right~on the spacesR or
Rn), sinc functions produce exponential convergence acc
ing to the same principles of phase space area which app
any other DVR basis. Moreover, the long-range tails of s
functions are not a problem, as we explain.

We begin by showing how sinc functions fit into th
DVR formalism presented in Sec. III. For this we choo
M5R ~we work with one-dimensional wave functions!, we
choose the projection operator to be

P5E
2p0

1p0
dp up&^pu, ~4.1!

whereup& is a momentum eigenstate~a plane wave! andp0

is a momentum cutoff, and we choose the grid points to
xn5na, where a5p\/p0 is the lattice spacing. For sin
functions we usen instead ofa to label the grid points;n is
an arbitrary integer. The spaceS upon whichP projects is
infinite-dimensional, and consists of band-limited functio
that is, those whose momentum-space wave function v
ishes outsideupu<p0 . The DVR property follows from

Dn~x!5^xuPuxn&5E
2p0

p0 dp

2p\
eip(x2xn)/\

5
1

p

sin@p~x2na!/a#

x2na
, ~4.2!

which shows thatDn(xm)5dnm /a, so thatKn5a ~indepen-
dent ofn).

To prove that the functionsDn(x) are complete onS we
cannot simply count linearly independent functions, sinceS
is infinite-dimensional. Instead we note that the set of fu
tions in momentum space,

f n~p!5
1

A2p0

e2 inpp/p0 ~4.3!

is obviously orthonormal and complete for functions defin
on the interval2p0<p<p0 , since it is just a Fourier serie
basis on that interval. Transforming back tox-space, we find
that the Fourier transform off n(p) is AaDn(x)5Fn(x), so
the set$Fn(x)% is also orthonormal and complete onS.

A Fourier series basis on an interval converges slo
for functions which are not periodic~in fact, the function
should be analytic and periodic for exponential conv
gence!. Thus, we should at least requiref(p0)5f(2p0) for
the momentum space wave functions whosex-space counter-
parts we wish to expand in a sinc function basis. In appli
tions of sinc DVR functions in quantum mechanics, one w
probably be dealing with momentum space wave functi
f(p) which are very small atp56p0 , so that f(p0)
'f(2p0)'0. The general idea is illustrated in Fig. 3,
which we are thinking of solving a one-dimensional oscil
tor in a sinc function basis. The highest energy eigenfunc
desired corresponds to a classical orbit which is sketche
an oval in the diagram, and the region of phase space
ered by the sinc functions is the band2p0<p<p0 centered
on thex-axis. This band has infinite area, corresponding
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the infinite sinc function basis. We have chosenp0 to lie well
outside the classically allowed momentum values for
maximum energy desired, so that, if the potential is analy
the momentum space wave function will be very small a
decreasing exponentially atp56p0 . The parameterp0 ,
which is specified by the spacing of the lattice of sinc fun
tions throughp05p\/a, is a convergence parameter, and w
shall have exponential convergence in this parameter for a
lytic eigenfunctions.

There is another convergence parameter in the use
sinc DVR functions, which is the truncation size of the ba
~necessary since the basis is infinite!. That is, we must decide
how many lattice points inx-space to include in the basis.
is logical that we should go out beyond the turning points
x-space, but in view of the long-range tails of the sinc fun
tions, one might worry that it would be necessary to go
very long way. In fact, this is not so, since the expans
coefficients of a band-limited wave functionc in a sinc func-
tion basis are just proportional to the value of the wave fu
tion at the grid points, as shown by Eq.~3.9!. Sincec is
decreasing exponentially in the classically forbidden reg
~now in x-space!, the convergence is exponential in this tru
cation parameter, too. To be more precise about this, we m
worry about the fact that the unknown eigenfunctions are
truly band limited, so the expansion~3.9! is not strictly valid.
However, the amount by whichc differs from a band limited
function is related to the exponentially small value of t
momentum space wave function atp56p0 . Thus, if we fix
p0 and consider the error as we enlarge the numberN of
basis functions~that is, lattice points! in the truncated basis
we find a convergence which looks exponential up to
point we reach the errors due to the truncation of the m
mentum space wave function. Beyond that point, adding
ther basis functions does not help since even the infi
basis cannot represent momentum valuesupu.p0 .

If, however, we increasep0 at the same time we increas
the truncation size of the basis, we obtain convergence wh
is overall exponential. In practice this works quite easily, a

FIG. 3. Phase space diagram for finding the eigenfunctions and eigenv
of a one-dimensional oscillator in a basis of sinc functions. The desi
unknown eigenfunctions occupy the oval region of phase space, and the
functions occupy the band2p0<p<p0 centered on thex-axis.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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exactly as predicted by the theory. The final result is so
rectangle in phase space, bounded in thex-direction by the
truncation of the basis and in thep-direction by the momen-
tum cutoffp0 . This rectangle completely encloses the reg
containing the unknown eigenstates, and the ratio of b
states to the number of eigenstates found is the ratio of
area of the rectangle to the area of the classical orbit bou
ing the eigenstate region.

There remain some worries about the long-range tails
the sinc functions. The argument given above explains w
the expansion coefficients of a wave functionc in a sinc
function basis associated with grid points well into the cl
sically forbidden region must be exponentially small. Th
was based on the interpolation property for computing
pansion coefficients@the final expression in Eq.~3.8!#. But
we should also be able to use orthonormality to comp
these expansion coefficients@the center expression in Eq
~3.8!#. How can this integral be exponentially small, wh
the long range tail of the sinc function, centered out in
classically forbidden region, overlaps substantially with t
wave functionc in the classically allowed region? To unde
stand this, we express the overlap integral in terms of
complex integrals,

E dx
e6 ipx/a

x2na
c~x!, ~4.4!

where the grid pointxn5na is in the classically forbidden
region for c(x). Under these circumstances, the fracti
1/(x2na) can be regarded as slowly varying on the scale
the exponential throughout the classically allowed regi
wherec is large. Thus the functionf (x)5c(x)/(x2na) has
approximately the same momentum content asc(x) itself,
and the integral can be estimated by the Fourier transform
c evaluated atp56p0 . But by construction,f(p) is expo-
nentially small at these~momentum cutoff! values, so the
apparently dominant contribution to the integral~coming
from the classically allowed region forc) is, in fact, expo-
nentially small.

We now use Fig. 4 to make some points regarding
phase space perspective on the sinc functions. This is a
brid figure, with a sinc function centered on a certain g
point superimposed on a phase space diagram. The

FIG. 4. Phase space diagram for the sinc DVR basis, illustrating the Pl
cells ~vertical strips! associated with each basis function.
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2p0<p<p0 in phase space covered by the sinc functions
shown, and the grid pointsx5na are shown as dots on th
x-axis. In a diagram like this, it is natural to associate ea
basis state with a vertical strip of widtha, centered on the
grid points. Since the height of each strip is 2p052p\/a,
the area per strip is 2p\, a single Planck cell. In this way
the infinite area of the band is divided into Planck cells, o
for each basis state. This association is not merely a matte
making the area come out right, for the Lagrangi
manifold33 associated with the delta functiond(x2xn) cen-
tered on grid pointxn is the vertical line in phase space give
by x5xn . When the projection operatorP is applied to the
d-function to createDn(x), the Lagrangian manifold is ef
fectively truncated atp56p0 , giving a finite line segment
such as the vertical dotted line in the figure. The vertical s
is centered on this line much as the annular strips in Fig
are centered on the quantizing orbits. This picture can
made more quantitative by computing the Wigner function
the sinc function, which turns out to be approximately t
characteristic function of the vertical strip. The approxim
tion is rather crude, however, because of the large amoun
ringing due to the discontinuous cutoffs. Nevertheless, a
ture like this captures some important semiclassical featu
of the sinc function basis.

Now we make some remarks about orthogonal poly
mial DVR functions. Let$qn(x),n50,1,...% be a set of real,
one-dimensional polynomials, whereqn is of degreen, that
is orthonormal on an interval@a,b# with respect to a weight-
ing function r(x).0, *a

br(x)qn(x)qm(x)5dnm . Let fn(x)
5Ar(x)qn(x) be the weighted polynomial functions that a
orthonormal in the usual sense, and letPN5(ufn&^fnu.
Then, as is well known2,13 a DVR set results if the grid
points are chosen to be the roots ofqN(x) ~the first polyno-
mial omitted from the projection operator!. These facts fol-
low from the Darboux-Christoffel formula, a standard res
in the theory of one-dimensional, orthogon
polynomials.48,49

Unlike sinc DVR functions, the grid points of orthogon
polynomial DVR functions are spaced nonuniformly. Th
has a simple semiclassical interpretation. Consider the W
approximation tofN(x),

fN~x!5S 2

p

]2S

]I ]xD 1/2

cos@S~x,I !/\2p/4#, ~4.5!

whereI 5(N11/2)\ is the action of the quantizing orbit fo
the statefN and whereS5*p dx is measured from the lef
turning point. In the WKB approximation, the zeros offN

occur when the argument of the cosine is (a11/2)p, so the
spacing Dx between the roots is given byDS/\5(1/\)
3(]S/]x)Dx5p, or Dx5p\/p(x,I ), where p(x,I )
5]S/]x is the local momentum of the first neglected sta
This is identical to the spacing rule for sinc functions exce
that the constant spacing (a above! has been replaced by th
variableDx, and the constant momentum cutoff (p0 above!
has been replaced by the local momentump(x,I ). Obviously
the result is open to the same interpretation, that the D
state occupies a vertical strip in phase space containing
Planck cell (2p\) of area.

ck
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This idea is illustrated in Fig. 5, which exhibits the pha
space area occupied by the first 20 harmonic oscillator eig
states in two different ways. On the left are plotted the fi
20 annular strips, each of area 2p\. The Bohr–Sommerfeld
quantizing orbits~not shown! lie half way between the
circles in the figure, the latter of which have actionsI n

5(1/2p)rp dx5n\, n51,...,20. The wave function plotte
is f13(x), which occupies the annular strip bounded by t
heavy lines. On the right, the same area is divided into
vertical strips of equal area 2p\. Plotted on thex-axis are
the grid points forN520, which are the roots off20(x). The
wave function plotted is the DVR stateF13(x) ~roots are
labeled from a50 at the left!, which is proportional to
f20(x)/(x2x13). It clearly vanishes at all grid points exce
one. The phase space area occupied by this state is the
tical strip bounded by the heavy lines.

In this way we obtain a geometrical interpretation of t
unitary transformation which takes us from the orthogo
polynomial basis$fn(x)% to the DVR basis$Fa(x)%. That
is, it consists of dividing the phase space area occupied
the firstN states into Planck cells in two different ways.

V. THE ACCURACY OF THE DVR APPROXIMATION
FOR THE POTENTIAL ENERGY

We have shown that the error in the expansion of a~pre-
sumably! unknown eigenfunction in a spectral basis tru
cated at sizeN goes ase2cN, whenN is large enough and
under appropriate conditions of analyticity and bound
conditions. Normally this implies the exponential conve
gence of the eigenvalues of the truncated matrix of
Hamiltonian in the spectral basis to the exact eigenvalue
the exact energy spectrum is nondegenerate, this also im
the exponential convergence of the eigenfunctions of
truncated problem to the exact eigenfunctions, althoug
there are near degeneracies the basis must be large enou
resolve these~the exponentially small error must be small
than the small energy splittings!. Thus we may say, exponen
tial convergence of the orthonormal expansion implies ex
nential convergence of the VBR method, to use the termin

FIG. 5. Illustrations of the phase space area occupied by the first 20 sta
the harmonic oscillator. On the left, the annular strips of equal area
occupied by the harmonic oscillator eigenstatesfn(x), n50,...,19. The
wave function plotted isf13(x), which corresponds to the annular str
bounded by heavy lines. On the right, the same area is divided into
vertical strips of equal area, occupied by the DVR states. The dots on
x-axis are the zeroes off20(x), and the wave function plotted is the DVR
state corresponding to roota513. The vertical phase space strip occupi
by this state is marked with heavy lines.
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ogy of Ref. 12. We will not prove these statements here si
their proof would take us too far astray and the issue
unrelated to the accuracy of the DVR method.

In the DVR method, however, there is an additional er
due to the usual diagonal approximation for the matrix e
ments of the potential energy,

^FauVuFb&'V~xa! dab . ~5.1!

We will show below that this error isO(1/N), which is much
larger than the error due to the truncation of the basis alo
Nevertheless, the final error in the eigenvalues and eig
functions in the DVR method is still exponentially sma
The discrepancy in the magnitudes of these two errors
been noted by several authors in the past, including W50

and Bayeet al.11 In this section we shall explain this para
doxical behavior.

The diagonal approximation~5.1! applies when working
in the DVR basis$uFa&% ~in this section we follow the nota
tion of Sec. III!. One can also work in the basis$ufn&%, in
practice often a spectral basis, in which case the approxi
tion ~5.1! is equivalent to a Gaussian quadrature approxim
tion for the matrix elements of the potential energy. T
computed eigenvalues are the same~thus they have the sam
error! since the two bases are unitarily equivalent, so for
purposes of studying the final error, either basis may be u
We have preferred to use the DVR basis because the a
ments can be extended to the nonorthogonal case studie
Sec. VI.

We begin by making some comments on the analysis
Wei50 of the accuracy of the DVR approximation. This is th
most careful treatment of this question that we are aware
in the existing literature. Wei notes that the error in the
agonal approximation for the matrix elements of the pot
tial energy in the DVR basis is actually rather large, but
makes the observation that if one transforms the DVR ma
to the spectral basis$ufn&% ~again in the notation of Sec. III!,
the ~quadrature! error is concentrated at the lower right co
ner of the matrix, that is, it only affects matrix elemen
connecting statesufn& with n near the cutoff valueN. These
are the states that in phase space live near the edges o
region covered by the projection operator. The analysis
particularly simple in the case of polynomial potentials,
which case~for orthogonal polynomial bases! the matrix for
V is band-diagonal and one can make statements abou
order of perturbation theory at which various corrections
cur. Wei does not make assertions about the behavior of
error as a function ofN, but he does give explicit erro
estimates for common cases of DVR functions and it is p
sible to extract from these the exponential converge
which we shall argue for below. We believe it should also
possible to use perturbation theory to derive the law of
ponential convergence, at least in the case of polynom
potentials.

Consider now the matrix element^FauVuFb&, in which
Fb(x) certainly belongs toS. If it were true thatV(x)Fb(x)
also belonged toS, then Eq.~5.1! would be exact. But in
fact, V(x)Fb(x) contains components outside ofS, typically
of order 1/N. We argue this first on semiclassical grounds
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The general idea is illustrated in Fig. 6, which is a sch
matic illustration of the region of phase space~a vertical
strip! occupied by a DVR functionFb(x) centered onxb .
When this function is multiplied by a slowly varying func
tion such asV(x), the momentum content is modified som
what, producing a slight ‘‘smearing’’ of the phase space
gion occupied by the function. This is indicate
schematically by the dotted lines in the figure. In particu
the product function in general contains some phase sp
components which go outside the region occupied by
DVR functions~the region associated with the projectionP).
Any slight smearing will do this, since the DVR function
Fb(x) extend all the way to the edge of this region.

More quantitatively, the wave number associated w
the top of the momentum strip is of the order of 1/a, where
a ~or Dx) is the spacing between DVR grid points. The DV
function has oscillations on this scale, or, equivalently, it h
momentum components which go all the way to the top
the strip. If we letL be the scale length of the potential, the
the product functionV(x)Fb(x) contains wave number
which go like 1/a11/L5(1/a)@11O(a/L)#. If N@1 DVR
functions are used to cover the range of the potential, t
a!L anda/L5O(1/N). Thus we expect the relative amou
by which V(x)Fb(x) extends outside the subspaceS to be
O(1/N), which implies an error of order 1/N in Eq. ~5.1!. We
have examined some cases of potentialsV(x) for which the
DVR matrix elements can be computed analytically, a
confirmed the 1/N behavior of the error of the diagonal ap
proximation.

To understand the exponentially small error in the DV
method, we begin with the eigenvalue problem restricted
the subspaceS, expressed in the DVR basis$Fa(x)%,

(
b

~^FauTuFb&1^FauVuFb&!cb5Eca , ~5.2!

where the matrix elements ofT andV are computed exactly
$ca% is the eigenvector, andc(x)5(acaFa(x) is the ap-
proximate eigenfunction. The only approximation here is
truncation of the basis; as argued above, this approxima

FIG. 6. When a DVR functionFb(x) is multiplied by a slowly varying
function such asV(x), the resulting function is pushed a small amou
beyond the bounds of the region of phase space occupied by the
function ~at the tops and bottoms of the vertical strip, as indicated schem
cally by the dotted lines!.
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introduces only exponentially small errors for eigenvalu
whose eigenfunctions lie well within the region of pha
space covered byP. These are the eigenfunctions we a
interested in; they satisfyPuc&5uc& plus exponentially
small corrections, orca5^Fauc&5(1/AKa)c(xa) to expo-
nential accuracy.

We are not allowed to set^FauVuFb&5V(xa)dab , since
this would introduce errors of order 1/N. Consider, however,
the sum (b^FauVuFb&cb5^FauVuc&. If c(x) lies well
within the region covered byS, then so doesV(x)c(x),
assumingV(x) is analytic and slowly varying. This is be
cause multiplying byV(x) only changes the amplitude of th
WKB wave function forc(x), not its phase;51 therefore the
stationary phase points in the expansion ofV(x)c(x) in an
analytic spectral basis are the same as those for the ex
sion of c(x) itself. Thus we haveVuc&5PVuc& plus expo-
nentially small corrections. The exponentially small error
the expansion ofVc will not be as good as the exponential
small error in the expansion ofc itself, so if we are achiev-
ing convergence by increasing the size of the region cove
by P, then some extra margin will be required to achieve
same accuracy in the expansion ofVc as we have in the
expansion ofc, but, assuming an analytic and slowly varyin
potential, both errors will be exponentially small. Thus, w
can expandV(x)c(x) in the same way we expandedc(x) in
Eq. ~3.9!,

V~x!c~x!5(
a

1

AKa

V~xa!c~xa!Fa~x!

5(
a

V~xa!Fa~x!ca , ~5.3!

plus exponentially small corrections. When this is used
Eq. ~5.2!, we get the usual DVR eigenvalue problem,

(
b

@^FauTuFb&1V~xa!dab#cb5Eca . ~5.4!

Therefore the eigenvalues of the DVR method are ex
nentially close to the exact eigenvalues, for eigenfunctio
which lie well within the region covered byP. For eigen-
functions which are near the edge of this region@these would
not be well converged even in the formulation~5.2!# the
approximation~5.3! is not particularly good, and their eigen
values will be substantially changed.

This is the best argument we know of for understand
the exponential convergence which is observed in numer
experiments with DVR functions. We remark that the arg
ment given here for exponential convergence in the D
method does not apply to the potential-optimized DV
method.52,53We do not know whether the latter method giv
exponential convergence.

It is interesting that the argument above can be gene
ized to operators other thanV. For example, likeV, the
momentum operatorp applied toc(x) changes only the am
plitude of the WKB wave function, not the phase. The sa
is true for any operator which is a slowly varying function
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8700 J. Chem. Phys., Vol. 116, No. 20, 22 May 2002 Littlejohn et al.
x and p. Thus, the kinetic energy can be treated like t
potential energy, so that, for eigenfunctions well within t
region covered byP, we can write

(
b

^FauTuFb&cb5^FauTuc&5
1

AKa

^xauTuc&

5(
b

1

AKa

^xauTuFb&cb , ~5.5!

plus exponentially small corrections. For example, in o
dimension with T5p2/2, the final matrix element is
^xauTuFb&5(21/2)Fb9 (xa). Note that with this approxima
tion, the matrix for the kinetic energy becomes no
Hermitian, in general. This manner of treating the kine
energy operator has been previously discussed by B
et al.11

VI. NONORTHONORMAL DVR BASES

In this section we consider a generalization of the DV
construction, obtained by relaxing the requirements for
thogonality. Generalizations of this type have previou
been considered by Lightet al.18 and Szalay.19 These differ
from one another partly in the choice of the DVR-like a
proximation for the matrix elements of the potential ener
We make the following three contributions to this subje
First, we point out that there are two distinct bases of fu
tions that arise in the nonorthogonal generalization of
DVR construction, one the projectedd-functions $Da(x)%,
and the other the interpolating basis$La(x)%, and that these
are dual to one other~they form a biorthogonal basis!. This
fact is independent of any DVR-like approximation for th
potential energy~that is, any strategy for obviating the use
quadratures for the matrix elements of the potential ener!.
Second, we have pointed out that in the interpolating fu
tion basis, one can contract the basis in the usual DVR m
ner, that is, by throwing away grid points where the wa
function is known to be small. Third, we have shown th
one of Szalay’s formulations of the generalized DV
method, that is, one of his DVR-like approximations for t
potential energy, leads to exponential convergence. We h
not, however, proposed any new approximation for the
tential energy.

We begin with a modification of the presentation in Se
III. Suppose we have a projection operatorP acting onH
5L2(M ) for some manifoldM , and suppose$xa% is a set of
N grid points, whereN5dimS andS5PH. Suppose, how-
ever, that the DVR conditions are not satisfied, so tha
uDa&5Puxa&, then Dab[^DauDb&5^xauDb&5Db(xa)
5Da(xb)* is not diagonal. The matrixDab is the overlap
matrix of the set of projectedd-functions$Da(x)%, and we
may consider using this set as a nonorthogonal basis.
shall assume that this matrix is nonsingular, which me
that the projectedd-functions are linearly independent.

We can still introduce a set of interpolating functio
$La(x)%, but these are not proportional to the$Da(x)%, as in
the DVR case. The interpolating functions are defined as
unique linear combinations of the$Da(x)% such that
La(xb)5dab . These functions are unique because of
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invertibility of the matrix Da(xb). Both sets,$Da(x)% and
$La(x)%, lie in the subspaceS, and span it, so thatPuDa&
5uDa& andPuLa&5uLa&.

Then it turns out that the interpolating functions are du
to the projectedd-functions, that is,

^DauLb&5^LbuDa&5dab . ~6.1!

This is easily proved as follows:

^DauLb&5^xauPuLb&5^xauLb&5Lb~xa!5dab . ~6.2!

The interpolating functions can be used in the usual way
expand arbitrary functionscPS,

c~x!5(
a

La~x!c~xa!. ~6.3!

In particular, consideruc&5Puy&, where y is fixed. Then
certainly uc& belongs toS, so the wave functionc(x)
5^xuPuy& can be expanded according to Eq.~6.3!. This
gives

^xuPuy&5(
a

La~x!^xauPuy&5(
a

^xuLa&^Dauy&. ~6.4!

Since this is true for allx andy, we can strip off̂ xu anduy&,
to obtain

P5P†5(
a

uLa&^Dau5(
a

uDa&^Lau. ~6.5!

Moreover, the overlap matricesDab5^DauDb& and Lab

5^LauLb& are inverses of each other, since

(
m

^LauLm&^DmuDb&5^LauPuDb&5^LauDb&5dab , ~6.6!

where we have used Eqs.~6.1! and ~6.5!. Finally, we note
that the coefficients needed to expandLa(x) as a linear com-
bination of theDa(x) are precisely the components of th
overlap matrixLab ,

La~x!5(
b

Db~x!Lba , ~6.7!

as follows immediately fromLa(xb)5dab and Eq. ~6.6!.
Thus, given the$Da(x)%, we can computeDab and thenLab

by matrix inversion, and finally the$La(x)%.
This nonorthogonal DVR formalism presents us w

three obvious choices of basis: the projectedd-functions
$Da(x)%, the interpolating functions$La(x)%, and some or-
thonormalized version of these,$Fa(x)%. Of these, Light
et al.18 have considered the third, while Szalay19 has pre-
sented a more general formalism that incorporates all th
Unlike the standard DVR case, these three classes of fu
tions are not proportional. The question is to what extent
usual advantages of DVR bases are maintained with the v
ous choices. These advantages are the convenient app
mation for the potential energy~which should not destroy the
exponential accuracy in the eigenvalues and eigenfunctio!
and the ability to contract the basis by throwing away poi
wherec is known to be small. In the following we show tha
a convenient approximation for the potential energy~with
exponential convergence to the final answers! is maintained
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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with both the projectedd-function and the interpolating func
tion bases, and that the basis set contraction can be appli
the interpolating function basis. The potential energy
proximation that leads to exponential convergence is on
the formulations of the nonorthogonal generalization of
DVR method previously considered by Szalay.

Consider first the interpolating functions as a basis
the eigenvalue problem. Letc be an eigenfunction that i
contained well within the phase space region covered byP,
so that an expansion of the form~6.3! is valid to exponential
accuracy. Write this asc(x)5(acaLa(x), where the coeffi-
cients are given byca5c(xa)5^Dauc&. Then these coeffi-
cients are the eigenvectors of

(
b

~^LauTuLb&1^LauVuLb&2ELab!cb50. ~6.8!

Note that sinceca is the value ofc at the grid pointxa , we
can contract the basis in this formulation simply by throwi
away grid points where the wave function is known to
small.

We can also make a DVR-like approximation to the m
trix elements of the potential energy in Eq.~6.8!. Following
the steps in Sec. V and assuming thatc(x) lies well within
the region covered byP, we first note that(b^LauVuLb&cb

5^LauVuc&, to exponential accuracy. Next, we note th
if V is analytic and slowly varying, thenV(x)c(x) has
an expansion like c(x) in Eq. ~6.3!, V(x)c(x)
5(bV(xb)c(xb)Lb(x) plus exponentially small correc
tions, so that̂ LauVuc&5(bLabV(xb)cb . Thus, the eigen-
value problem~6.8! becomes

(
b

~^LauTuLb&1LabV~xb!2ELab!cb50. ~6.9!

This is the analog of the diagonal approximation to t
matrix elements of the potential energy in the standard D
case. Note that the matrix is non-Hermitian. The eigenval
that are well converged are real and have orthogonal eig
vectors, to exponential accuracy. The eigenvalues that are
well converged are not real, in general, nor are their eig
vectors even approximately orthogonal. It is these latter
genvalues and eigenvectors, which we do not care about,
are responsible for the non-Hermiticity of the matrix in E
~6.9!.

The eigenvalue problem can also be formulated in
basis$Da(x)%, and again one can make DVR-like approx
mations on the matrix elements of the potential energy. T
easiest way to derive this is to conjugate Eq.~6.9! by the
matrix Dab . This leads to

(
b

~^DauTuDb&1V~xa!Dab2EDab!db50, ~6.10!

where the wave function is given byc(x)5(bdbDb(x).
The expansion coefficients are related to the values of
wave function by db5^Lbuc&5(gLbg cg , which shows
~since cg5c(xg)! that the coefficientdb depends on the
value of the wave function at all the grid points, in gener
Thus, there is no easy way of contracting the basis$Da(x)%.
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A class of problems we have had in mind is one in whi
the wave function occupies perhaps only a small portion
the manifold in question. For example, scattering wave fu
tions on the hypersphere may be highly localized, depend
on the hyper-radius and the number of fragments in the fi
state. If hyperspherical harmonics are used as a basis54,55

then very large bases may be required for the short wa
lengths necessary to represent the localized wave functi
In such cases the basis set contraction offered by~usual,
orthonormal! DVR functions would be a great advantage,
multidimensional, orthonormal DVR functions were ava
able on such spaces. We remark that non-DVR methods s
as the hyperquantization algorithm56 already offer such ad-
vantages, although the general framework is based on a
lar momentum algebra and is rather different from that p
sented here.

The nonorthonormal basis$Da(x)% does not allow basis
set contraction in any obvious way, so it would seem that o
would have to work with very large matrices~whose size is
enough to cover the whole space, even though the des
wave functions are localized!. Thus the exponential conver
gence and convenience of the potential energy matrix wo
not help much. In the interpolation basis$La(x)%, however,
basis set contraction is easy and would lead to much sm
matrices~of a size determined by the region of space oc
pied by the wave function, not by whole space!. On the other
hand, the functions$La(x)% and the overlap matrixLab

themselves seem to be more difficult to determine, as t
require an inversion of a large matrix~determined by the size
of the space!. One way out is to use a set of grid poin
which are the orbits of a group action on the space; for
ample, in the case of the ordinary 2-sphere, if points$xa% are
generated by the action of the 60-element icosahedral gr
then the size of the matrices to be inverted to findLa(x) or
Lab is reduced by a factor of 60. We shall elaborate up
these and similar considerations in future publications.

Another issue with nonorthonormal bases is that of
near linear dependencies develop as the size of the bas
is increased, that is, the overlap matrix acquires very sm
eigenvalues. These can easily outstrip machine precis
This happens with distributed Gaussians57 and also with
overdense coherent state bases or Gabor expansions, w
have been used in quantum calculations.58 Such near linear
dependencies can limit the precision with which the eig
values are determined, and also introduce extra paramete
be adjusted in the process of obtaining convergence. We h
found, however, in numerical experiments with project
d-function bases, that the overlap matrices can be q
stable. For example, with up to hundreds of grid points
the sphere and withP containing all spherical harmonics ou
to some maximuml value, the condition of the matrixDab

~defined as the ratio of the largest to the smallest eigenva!
can be kept less than 10. This requires that the grid point
as equally spaced as possible; we interpret this to mean
each projectedd-function is allotted one Planck cell of phas
space. We followed some variations on the schemes of So
lev and Vaskevic59 in the construction ‘‘equally spaced’’ grid
points on the sphere.

We now comment on previous work on nonorthogon
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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DVR bases,18,19 which we interpret somewhat and transla
into the notation of this section for comparison. We note t
our overlap matrixDab is denotedD̃ in Light et al.,18 while
other notational differences have been summarized in S
III. In Light et al.,18 the authors consider an orthonormaliz
version of the basis$Da(x)%, which we define and write in
our notation as

uFa&5(
b

uDb&~D21/2!ba , ~6.11!

so that^FauFb&5dab . These authors argue that in the ba
$Fa(x)% the matrix elements of the potential energy sho
be approximated by

^FauVuFb&5V~xa! dab , ~6.12!

which, if the DVR basis were orthogonal, would be the sta
dard diagonal approximation. It is also noted that this
proximation is exact wheneverV(x)Fb(x) belongs to the
subspaceS, even for nonorthogonal DVR bases. It is, how
ever, not the same as the diagonal-like approximation see
Eqs.~6.9! or ~6.10!, which as we have shown leads to exp
nential convergence. We have been unable to find a rea
why Eq. ~6.12! should lead to exponential convergenc
Szalay19 develops another generalization of the DV
method, in fact a whole family of generalizations, whi
includes both that of Lightet al. and also the formulations
~6.10! and~6.9! above, but he does not seem to consider
question of basis set contraction. Szalay also presents
merical experiments testing the various methods.

VII. CONCLUSIONS

In conclusion, we have axiomatized the DVR constru
tion by placing projection operators in a central role a
integrating phase space and semiclassical concepts. We
emphasized exponential convergence and shown that it h
in the DVR method. We have discussed the standard, o
dimensional examples of DVR functions from the standpo
of our formalism. We have also discussed nonorthogo
generalizations of DVR functions, and showed that they, t
lead to exponential convergence. In future publications
will show how the framework presented in this paper can
used to develop multidimensional and other generalizati
of the DVR method.
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