

1

Point-in-Polygon Detection

by

Jared Petker

A senior thesis submitted to the faculty of

The University of California, Merced

In partial fulfillment of the requirements for the degree of

Bachelor of Science

School of Natural Sciences

University of California, Merced

April 2010

2

Abstract

Point-in-Polygon Detection

Jared Petker

School of Natural Sciences

Bachelor of Science

The Point-in-Polygon problem involves determining whether a point in a two-dimensional plane resides

inside, outside, or on the boundary of a given polygon. This topic is a very relevant and well-studied

topic in several fields of research – such as computer graphics and computer vision. Here I develop and

implement an algorithm with roots in the “grid-method”. This algorithm consists of a pre-processing,

sorting method, as well as a method for querying points for polygon inclusion. This search method will

be shown to have run-times on the order of O(m*log(n)), with m being the number of query points and

n being the number of edges representing the polygon. The algorithm is coded in Matlab and the

results of this algorithm’s performance versus Matlab’s built-in “inpolygon” method will be presented.

3

Contents

Table of Contents

Section 1 Introduction. 4

Section 2 The Algorithm 6
 i Pre-Processing . 6
 ii Search 10

a. Binary Search 10
b. Terminal Node’s Position 11
c. Cross Product Checks 11
d. Search Conclusions 15

Section 3 Data . 16
 i Runtime vs. Number of Edges. 16
 ii Runtime vs. Number of Query Points. 18

iii Pre-Processing Runtime . 19

Section 4 Conclusion . 22

Bibliography . 24

4

Section 1

Introduction

As humans, we have certain luxuries that a computer alone does not contain, with one of these luxuries

being the ability to see. With the want to create a computer system which is able to mimic the human’s

visual system, the area in computer science called computer vision was born. This is a heavily studied

area in computer science encompassing areas of research exploring topics such as object recognition

and path planning. However, computers fail to compare to humans even at low level types of

observations, such as determining if a point is inside a polygon. Many algorithms have been devised for

a computer to perform point-in-polygon detection, many of them having run-times along the order of

O(m*n) (with m being the number of query points for the detection and n being the number of

edges which define the polygon; from here on these two values will be represented by m and n

respectively). For simple implementations, and those which may not rely on speed, any one of these

types of algorithms would be respectable. Though in cases where speed may be of importance, more

intricate algorithms may be required.

An example which motivates the need for our new point-in-polygon detection algorithm can be

explained as follows. Imagine the classical modeling of an atom, such as hydrogen, in a 2-D plane with a

polygon representing its outermost boundary. This region can be defined rigorously in dynamical

systems theory using stable and unstable manifolds, which are generalizations of the familiar WHAT

5

WAS HERE. Inside of this boundary we have an electron which is free to move around within the atom

until ionization occurs when it escapes from the defined boundary. To completely consider every initial

condition this electron could take on, we may want to do batch calculations of electron trajectories by

placing many electrons within this boundary with different initial positions and conditions. Also, to

model this situation accurately we may want to use millions of different initial conditions as well as

thousands of edges for defining the polygonal bounds of the atom. At each time step we may want to

compute how many electron trajectories are still left inside of the atom. Here, by simply using one of

the early noted algorithms, these computations could take an exuberant amount of time; however, we

have devised an algorithm which will pre-process the initial polygon by using our own sorting method

and a searching method which can be used at each time step. This searching method will be shown to

have a run-time on the order of O(m*log(n)), a huge improvement over the previously mentioned

“simple” algorithms. This algorithm is programmed in Matlab’s programming environment and will be

tested against Matlab’s built-in point-in-polygon detection algorithm “inpolygon” which is believed to

have a run-time of O(m*n).

6

Section 2

The Algorithm

As explained, this algorithm consists of two steps – a preprocessing and searching step. Both steps are

governed by their own intricacies and algorithms but work towards the goal of point-in-polygon

detection. First the pre-processing will be outlined and explained, followed by the searching method.

i. Pre-Processing

Our algorithm’s pre-processing has its roots in what is referred to as the “gridding method” for pre-

processing a polygon (REF). In this method a bounding box is placed around the polygon and a grid is

created inside of this bounding box as seen in figure 1. Data is coached for each grid cell containing

information such as if its corners lie inside or outside of the polygon as

well as which edges cross the cell - which is imperative information used

for point-in-polygon queries. When a point for in-polygon detection is

queried the grid cell which contains this point is first found, (this query

point being the open circle in figure 1). The next step is to draw a line

from the point to one of the corners of the grid cell, shown by the arrow

pointing from the open circle to the corner of the cell which contains it.

The number of times this line crosses edges of the polygon will determine whether the point lies inside

Figure 1: A basic representation of
the gridding algorithm.

7

or outside of the polygon. The question for this algorithm comes with how large (or small) to make each

grid cell. If the grid cells are too large then many edges may need to be checked for every point query,

although too small of grid cells will create a huge amount of trivial cells, which also may not be desired.

Our algorithm improves on the gridding method in many ways but begins the same – by surrounding

the polygon with a bounding box. However, unlike the gridding method, our algorithm does not place a

simple grid inside of this bounding box. Instead, a series of binary cuts are done onto the bounding box

through recursion, creating 2 smaller cells to deal with at each binary cut. Cuts are made onto the

current cell perpendicular to the edge of the box that is longest. These cuts are made onto the polygon

until one of three situations occurs:

1. When there are no edges of the polygon inside of or crossing the current cell, the cell is then

considered a terminal cell. Essentially, the cell in this case is empty, and any other partitions

conducted on this cell would produce a higher amount of trivial cells

2. When there is at most one vertex inside of the current cell with at most two edges crossing the

boundaries of the cell, no more partitions are done onto this cell. Partitioning further would not

eliminate this case from existing.

3. When there are no vertexes of the polygon inside of the current cell with at most one edge of

the polygon crossing the cell, partitioning is also considered complete by following the same

reasoning presented by case 2.

When one of these three conditions is met, no more cuts are done on that current cell and the

algorithm continues to run and go through recursion. At each step of recursion while the algorithm is

running, a binary tree structure is being created containing pertinent data for the pre-processing as well

as the following search. The data which is stored inside each node of the tree is listed here:

 The cell’s right and left child.

 The position and direction of the cut that splits that cell into two (if the cell is indeed cut).

8

 Whether the entire cell is inside or outside the polygon, or neither.

 Information about the edges which lie inside of or pass through the cell (if it is a terminal node).

This data is then used by the search function for determining if a query point is found inside or

outside of the polygon. Below is a simple non-convex polygon which shows how these binary cuts by the

pre-processing are made from start to finish.

The above is of course a simple example of the implementation of our algorithm. However, a

polygon which has so few edges would not benefit as much from this algorithm as a polygon with

thousands of edges. In Figure 3 a ten thousand sided circle can be seen with the pre-processing already

Figure 2: An example polygon is shown here (on top) with the pre-processing being conducted on it. At every step the
bold line represents the new binary cut being done on the current cell in question and labels representing the node in
the tree that that cell represents. The bottom figure represents the tree created by this polygon.

9

conducted on it. What is not visible in figure 3 (and will be seen in figure 4) is that the boundary of the

circle is actually slightly jagged so as to introduce some fine structure to the polygon. This helps in

displaying how the terminal grid cells arrange themselves along the edges of the polygon.

Some of the advantages of our algorithm over the previously described “gridding method” can

be seen. It is clear here that unlike the “gridding method” our algorithm ends up creating smaller cells

which are for the most part localized along the boundaries of the polygon. What is gained by this

approach is that for a completely random distribution of query points, the query point will be found

inside a cell that is already defined as entirely inside or entirely outside of the polygon, making searches

extremely fast. The fine structure of the cell formations along the boundary of the polygon can be seen

above in figure 4 where several of this algorithm’s terminating conditions can be seen.

Figure 3: A polygon with 10,000 edges is shown here

with the gridding created by the pre-processing shown

overlaid.

Figure 4: The fine structure around the edges of the
polygon is seen here

10

ii. Search

The searching method of our algorithm utilizes the binary tree structure which is returned by

the pre-processing. This binary tree only needs to be computed once for the polygon and can be used

from then on without alteration so long as the polygon goes unaltered as well. This makes the algorithm

very useful for cases where the polygon remains unchanged while being queried for large sets of point-

in-polygon detections. The entire journey of a single query point through the main loop of the function

occurs as follows:

a. Binary Search.

A binary search is conducted on the binary tree

structure to determine which cell the query point is found in.

The search begins at the top node of the tree, which contains

the main bounding box surrounding the entire polygon as

shown in figure 5. If the point in question is found inside of

this bounding cell then we look to that node’s left and right

child’s respective node. In each child’s node we check to see

which cell contains query point and move to this node in the

tree where this tree traversal continues. Once the search

reaches a terminal node which contains no children, the

terminal cell containing the query point has been found and

the next step of the search can be conducted. Figure 5 shows

the traversal through the tree as well as a visual walkthrough

of the polygon search.

Figure 5: (Top) A walkthrough of a query point
(open circle) being found by querying the tree
(bottom) on where to traverse to. Gray indicates
the nodes where traversal is occurring.

11

b. Terminal Node’s Position

There are several things that can be done now to determine the query point’s location, the first

of which is what most commonly occurs. In the pre-processing we defined if each terminal cell was

entirely inside the polygon entirely outside the polygon or neither. If the cell is defined as entirely

inside or entirely outside the polygon, then we know immediately whether the point is inside or outside

of the polygon. In the case where the cell’s position is not entirely inside or entirely outside of the

polygon, there is a final check to conduct in order to determine where the point lies.

c. Cross Product Checks

If this step is reached in locating the query point’s position then some of the structure from the

polygon itself must be used to finish the process. One piece of data which is required is the orientation

of the polygon. The orientation of the polygon is solely dependent on how the points defining the

polygon were ordered. When traversing the points defining the polygon, the points are listed in the

clockwise or counter-clockwise direction, thus defining the polygon’s orientation. Each orientation is

also tracked by considering a vector n which is pointing either into the polygon’s plane or out of it

(where a clockwise orientation may be tagged by a vector pointing into the plane, and a counter-

clockwise orientation would result in a vector pointing out of the plane). Now we arrive at one of three

cases dealing with how the edges of the polygon may be passing through the terminal cell.

12

Case 1: 1 Edge Crossing

This first case is also the most trivial of the three cases. Here we simply have one edge which is

crossing the terminal node’s cell as seen in figure 6.

In this example as with the two following, the solid arrowed lines represent the edges as well as the

directional orientation of the polygon; in this case we assume the polygon as listed in the clockwise

direction and tag the orientation with a vector n pointing into the plane. Knowing this, to determine the

point’s location relative to the polygon we take the cross product between a, the edge of the polygon

crossing the cell, and p1, the vector from the base of a to the query point p (which is defined by the

open circle). The cross product of these two vectors will result in a vector pointing into the plane of the

polygon, which is parallel with the polygon’s orientation vector n. This means that the query point

would be determined to be inside of the polygon. If the cross product returned a vector pointing out of

Figure 6: The simplest situation of edges crossing the terminal node’s cell is seen
here where only one cross product must be computed to determine the query
point’s position (shown as the open circle above).

13

the plane, anti-parallel with the orientation’s vector, the point would then be determined as outside.

These can be defined mathematically as:

Rules for Case 1:

- If a × p1 is parallel to n p is inside of the polygon.

- If a × p1 is anti-parallel to n p is outside of the polygon.

Case 2: 2 Edges Crossing

There can be two different situations which arise from two edges crossing the terminal node’s cell.

The first is shown in figure 7 below.

In this situation we must employ a slightly different method than we did before. With the case

of two edges crossing the terminal node’s cell we need to first compute the cross product between the

two edges crossing the cell. In Figure 7, these two edges are represented by the vectors a and b. The

cross product a x b will yield a vector pointing into the plane, parallel to the polygon’s orientation vector

n. Knowing this we must now calculate two more cross products between vectors a and p1, and b and

Figure 7: Here the situation with two edges crossing a cell can be seen. By
implementing the use of cross products described, we can determine that the point p
is indeed inside of the polygon.

14

p2. For the point p to be considered inside of the polygon both cross products a x p1 and b x p2 must be

parallel with n, which in this case they are. If either of these two cross products were to yield a vector

pointing out of the plane, anti-parallel to the orientation vector and the cross product of vectors a and b,

the point would be outside of the polygon. Mathematically this transfers to:

Rules for case 2:

Assuming a x b is parallel to n,

- If a × p1 and b × p2 is parallel to n p is inside of the polygon.

- If a × p1 or b × p2 is anti-parallel to n p is outside of the polygon.

The next situation is very similar to previous, however the cross product between a and b

evaluate to a vector pointing out of the polygon’s plane. This can be seen below in figure 8.

With this case, there is a different, but similar, set of rules for determining the point’s position.

Since the cross product between a and b evaluate to a vector pointing out of the plane, the cross

products between a and p1, and b and p2 must both point out of the plane for the point to be

Figure 8: As in figure 7 we have two edges crossing the polygon, however the way
the edges are oriented with respect to the bounding box is a little different here.
However, we can still use our cross product procedure to determine that the point p
is inside of the polygon.

15

considered outside of the polygon, otherwise it is inside. Again, we can formulate this mathematically

as:

Rules for case 3:

Assuming a × b is anti-parallel to n,

- If a × p1 or b × p2 is parallel to n p is inside the polygon.

- If a × p1 and b × p2 is anti-parallel to n p is outside the polygon.

d. Search Conclusions:

This simple technique proves to be very fast because of the binary tree structure used. No

matter where the query point is located, the search for any specific point will be at worst on the order of

O(log(m)) , assuming the use of a polygon which does not demonstrate any type of fine scale structure.

In this case, the running time could vary widely depending on the formation of the polygon. For

polygons defined by a high amount of edges, this method will usually end with a query point being

found in a terminal node’s cell that is already defined as inside or outside of the polygon, however in the

case of this not occurring, a simple calculation must be done to determine where the point is in respect

to the polygon as explained.

16

Section 3

Data

The following is data which has been collected from comparing our algorithm to Matlab’s built

in function “inpolygon”. We believe Matlab uses a simple and commonly used technique for point-in-

polygon detection, and is conducted as follows. Assuming the polygon is defined by n points in an array

P, this algorithm computes the summation of angles between the query point and every pair of points

defining each edge of the polygon (i.e. the angle between the query point and P[n] and P[n+1]). If this

summation computes to 2π (or near 2π within some tolerance), then the point is inside the polygon. If

the summation computes to zero (or near zero) then the point is outside of the polygon. Below is some

data collected comparing our function “treeInPoly” to Matlab’s “inpolygon”.

i. Runtime vs. Number of Edges:

The next two figures show the runtime vs. number of edges defined by the polygon for a fixed

10,000 point query. The polygon used is a smooth circle where the amount of edges vary per test. At

lower number of edges, it can be seen that our algorithm is actually slower than when the polygon

contains a higher number of edges – this is most likely due to cross products needing to be calculated

more frequently whereas at higher edge counts more of the terminal cells are already defined as inside

or outside of the polygon, making for less computations in hardware.

17

Figure 9: The quickness of our algorithm as the number of edges rises can be seen here.

Figure 10: Matlab’s “inpolygon” linear performance is very well demonstrated here.

18

ii. Runtime vs. Number of Query Points:

Both algorithms scale linearly when varying the number of query points and fixing the number

of edges defining the polygon. Shown below are figures which reflect this linear scaling.

Figure 11: The run time vs. # of query points can be seen here using our algorithm and a
fixed 10,000 edges. The algorithm should scale linearly in the number of query points,
which it does as shown.

Figure 12: Matlab’s “inpolygon” linear scaling can still be seen here.

19

iii. Pre-Processing Performance:

The performance of the pre-processing can vary widely. It’s performance is highly dependent

on the type of polygon being processed. Simpler polygons which do not exhibit fine scale structure will

likely be processed much faster than those which do, such as the smooth circle used for the previous

testing. When the polygon tends to be of a “nice” form, the runtime of the pre-processing tends to be

linear as seen in figure 13. Figure 13 shows the runtime vs. the number of edges for the pre-processing

of a smooth circle with 10,000 edges used for the previous testing.

However, this linearity is only due to the simplicity of the polygon. For a more interesting look

into the runtime of this algorithm, we consider a circle with jagged edges which exhibit some fine scale

structure. Figure 3 and figure 4 display what this polygon looks like as a whole, as well as along the

edges where it exhibits some jaggedness. Figure 14 shows the results of the runtime vs. the number of

edges of the polygon when making this change.

Figure 13: The runtime of our algorithm’s pre-processing is shown as the number of edges in
the polygon rises. The run time seems to be on the order of polynomial.

20

To determine what order the exponential is defining the pre-processing, we can do a log-log plot

of this data. This can be seen in Figure 15 below.

Figure 14: The exponential nature of the pre-processing can be seen here, as the running time
grows exponentially with increasing the number of edges in the polygon

Figure 15: Here we want to zoom in on where the slope gets larger, which occurs at higher
edges counts. This is where the fine scale structure will affect the pre-processing the most.

21

It can be seen that as the edge count grows, the slope of the line actually changes. This is

because at lower edge counts the pre-processing algorithm is not affected as much by the fine scale

structure, as it isn’t too prevalent. However, as the edge count grows, so does the affect of the

jaggedness on the pre-processing. Because of this, we extrapolate the slope from the sloped region to

the right of the plot to determine the degree of the polynomial defining the pre-processing. We can

then determine that the pre-processing runs along the order of O(n2.6) for this.

22

Section 4

Conclusion

Our algorithm presents a new twist on already defined ways of computing point-in-polygon

locations. As stated, it builds upon the gridding algorithm however optimizes it in several respects.

Instead of placing a uniform sized grid on the given polygon, we instead perform binary cuts onto this

polygon, creating a tree structure which can be queried for point locations relative to the polygon. This

design may create a bit of overhead with respect to the pre-processing when considering more

complicated polygons with fine scale structure. However, for more smooth polygons of simpler

structure, this algorithm outperforms Matlab’s built-in function “inpolygon” by a large amount. Again,

this is due to the fact that the searching portion of our algorithm has a runtime on the order of

O(m*log(n) where as “inpolyon” has a runtime on the order of O(n*m). The data produced has

reinforced these notions, showing that “inpolygon” scaled linearly no matter which parameter, edges of

the polygon or query points, is scaled with respect to runtime. Our algorithm, however, was shown to

be linear in increasing the number of query points and for a nice structured polygon, and was shown to

have a near zero slope when increasing the edge count while locking in the number of query points.

Though for some cases it may not be the best to use our algorithm, as its pre-processing could become

cumbersome when using a polygon exhibiting fine scale or complicated structure, there are many places

where its use can highly speed up productivity. In the case counting the number of escape trajectories

23

of hydrogen from a given bounding polygon, as stated before, this algorithm works extremely well. Our

algorithm, treeInPoly, has proven that it is far superior to Matlab’s built-in function “inpolyon”, and is

very competitive, if not better to use depending on the situation than other point-in-polygon detection

algorithms.

24

Bibliography

[1] Goodman, J. E. , and O'Rourke, J. , eds. Handbook of Discrete and Computational

Geometry, Boca Raton, FL , April 2004 , Second Edition, Print.

[2] Haines, Eric, "Point in Polygon Strategies," Graphics Gems . Ed. Heckbert, Paul. Academic Press,
1994. Print.

[3] Schneider, Philip J. , and Eberly, David H. , Geometric Tools for Computer Graphics, Elsevier

Science, USA, 2003, Print.

25

Source Code

function tree=getTree(data)
% gT Takes a 2-dimensional convex polygon defined by an M x 2
% array of data points and Builds/Returns a Matlab structure
% resembling a tree to be used by the fastInPoly function for
% point-in-polygon determination.
%
% Syntax:
% tree=getTree(data)
%
% Input:
% data = An M x 2 matrix/array consisting of the data points
% that define the 2-dimensional convex polygon.
% NOTE: data can also also be a filename containing
% the polygonal data points.
% Output:
% tree = A matlab structure which basically represents a
% binary tree containing data which is used by the
% fastInPolygon function for point-in-polygon
% determination.
%
% History:
% Jared Petker 5/17/2010 (updated)
% E-mail: JPetker@ucmerced.edu

global index; global Tree;
index=0;
if ischar(data) %data is a filename string

 try
 data=csvread(data);
 catch E
 throw(E)
 end

elseif isnumeric(data) %data is an array

else
 error('input must be a filename string or numeric array');
end

 %figure;
 %hold on;
[tree]=init(data); %initialization
refineNode(tree,1,0); %serves as the recursive function for creating the

tree
Tree(index+1:end,:)=[]; %trim back the array if it is too large
defTermPos(); %define empty terminal nodes as in/out
tree=Tree; %redefine the global Tree array for output

clear global; % clear those globals!!!

26

end

function refineNode(node,i,dir)
%% refineNode
global index; global base; global Tree;

index=index+1;
if (index~=1)
 if (dir) %1=left
 Tree(i,3)=index;
 else
 Tree(i,4)=index;
 end
 base(index).Lines=node.Lines;
end
Tree(index,15)=i;

base(index).bBox=node.bBox;

bBox=node.bBox;
[pointsIn linesC] = pointAdder(); %adds points to the node structure

%Creation of the left/right nodes if needed
if pointsIn>1 || linesC==1
 Tree(index,6:13)=reshape(bBox',[1 8]);
 %if lengthX > lengthY, or lengthX=lengthY, cut in x
 if bBox(2,1) - bBox(1,1) > bBox(1,2) - bBox(4,2) || bBox(2,1) - bBox(1,1)

== bBox(1,2) - bBox(4,2)

 leftNode.bBox=[bBox(1,1) bBox(1,2); ...
 bBox(1,1)+(bBox(2,1)-bBox(1,1))/2 bBox(2,2); ...
 bBox(1,1)+(bBox(2,1)-bBox(1,1))/2 bBox(3,2); ...
 bBox(4,1) bBox(4,2)];

 rightNode.bBox=[bBox(1,1)+(bBox(2,1)-bBox(1,1))/2 bBox(1,2); ...
 bBox(2,1) bBox(1,2); ...
 bBox(3,1) bBox(3,2); ...
 bBox(1,1)+(bBox(2,1)-bBox(1,1))/2 bBox(3,2)];

 leftNode.points=base(index).points;
 rightNode.points=leftNode.points;
 leftNode.Lines=base(index).Lines;
 rightNode.Lines=leftNode.Lines;
 Tree(index,1:2)=[leftNode.bBox(2,1),1];
 ind=index;
 refineNode(leftNode,ind,1);
 refineNode(rightNode,ind,0);

 %if lengthY > lengthX, cut in y
 else

 leftNode.bBox=[node.bBox(1,1) node.bBox(1,2);node.bBox(2,1)

node.bBox(2,2);node.bBox(2,1) node.bBox(2,2)-(node.bBox(2,2)-

27

node.bBox(4,2))/2 ;node.bBox(1,1) node.bBox(2,2)-(node.bBox(2,2)-

node.bBox(3,2))/2];
 rightNode.bBox=[node.bBox(1,1) node.bBox(2,2)-(node.bBox(2,2)-

node.bBox(3,2))/2;node.bBox(2,1) node.bBox(2,2)-(node.bBox(2,2)-

node.bBox(3,2))/2;node.bBox(2,1) node.bBox(4,2);node.bBox(1,1)

node.bBox(4,2)];

 leftNode.points=base(index).points;
 rightNode.points=leftNode.points;
 leftNode.Lines=base(index).Lines;
 rightNode.Lines=leftNode.Lines;
 Tree(index,1:2)=[leftNode.bBox(3,2),0];
 ind=index;
 refineNode(leftNode,ind,0); % FUNCTION RECURSIVELY CALLED TO

CREATE INFORMATION FOR THE LEFT NODE
 refineNode(rightNode,ind,1); % FUNCTION RECURSIVELY CALLED TO

CREATE INFORMATION FOR THE RIGHT NODE

 end
 % Plot(node);
elseif pointsIn==1

 pointsOfInterestOnePoint(); %appneds POI points if one point is through

box

 Tree(index,1:2)=inf;
 Tree(index,14)=1;
 %Plot(node);
else
 % inpolygon
 pointsOfInterestOneLine();
 Tree(index,1:2)=inf;
 Tree(index,14)=1;
 % Plot(node);
end

end

function node=init(polyPoints)
%% init
%Initializes and forms the full "data" structure as well as the root node
%for the tree
global base; global Tree; global I;

%pre-allocate the array for the tree, the Tree will usually consist of ~4
%times the amount of points that define the polygon, if this amount
%happens to be too much, the size is clipped afterwards.
Tree=zeros(size(polyPoints,1)*4,15);

s = struct('points',cell(1),'Lines',cell(1),'bBox',cell(1));
base = repmat(s,size(polyPoints,1)*4,1);

base(1).points=polyPoints; %points in each node of the tree

node.points=polyPoints;
xMin=min(polyPoints(:,1));

28

xMax=max(polyPoints(:,1));
yMin=min(polyPoints(:,2));
yMax=max(polyPoints(:,2));

node.bBox=[xMin yMax;xMax yMax;xMax yMin;xMin yMin];
base(1).bBox=node.bBox;
Tree(1,6:13)=reshape(node.bBox',[1 8]);

if polyArea(polyPoints)>0
 Tree(1,5)=-1;
else
 Tree(1,5)=1;
end

for i = 1:(size(base(1).points,1)-1)
 base(1).Lines(i,1:4)=[base(1).points(i,1) base(1).points(i,2)

base(1).points(i+1,1) base(1).points(i+1,2)];
end
base(1).Lines(end+1,1:4)=[base(1).points(end,1) base(1).points(end,2)

base(1).points(1,1) base(1).points(1,2)];

%%sorting
[X I]=sort(base(1).points(:,1));
Y=base(1).points(I,2);
base(1).sortedPoints=[X Y];

end

function [pointsIn linesC] = pointAdder()
%% pointAdder
% Loops through checking what points/lines are crossing the bounding cell
% and adding them to their respective arrays
global base; global index;

linesC=0;
pointsIn=0;

ind=1;
nLines=base(index).Lines;
bBox=base(index).bBox;
tempPoints=zeros(size(nLines,1),2);
Lines=zeros(size(nLines,1),size(nLines,2));
% Lines=zeros(size(nLines,1),size(nLines,);
for rowNum=1:size(nLines,1)
 firstPoint=nLines(rowNum,1:2);
 lastPoint=nLines(rowNum,3:4);

 %% FIRST POINT
 if firstPoint(1) > bBox(1,1) && firstPoint(1) < bBox(3,1) &&

firstPoint(2) >bBox(3,2) && firstPoint(2) < bBox(1,2)
 firstPointIN=1;
 pointsIn=pointsIn+1;
 tempPoints(pointsIn,1)=nLines(rowNum,1); %#ok<AGROW>
 tempPoints(pointsIn,2)=nLines(rowNum,2); %#ok<AGROW>
 tempPoints(pointsIn,3)=0; %#ok<AGROW>

29

 elseif firstPoint(1) < bBox(1,1) || firstPoint(1) > bBox(3,1) ||

firstPoint(2) < bBox(3,2) || firstPoint(2) > bBox(1,2)
 firstPointIN=0;
 else
 pointsIn=pointsIn+1;
 tempPoints(pointsIn,1)=nLines(rowNum,1); %#ok<AGROW>
 tempPoints(pointsIn,2)=nLines(rowNum,2); %#ok<AGROW>
 tempPoints(pointsIn,3)=1; %#ok<AGROW>
 firstPointIN=1;
 end

 %% SECOND POINT

 if lastPoint(1) >= bBox(1,1) && lastPoint(1) <= bBox(3,1) && lastPoint(2)

>= bBox(3,2) && lastPoint(2) <= bBox(1,2)
 lastPointIN=1;
 elseif lastPoint(1) < bBox(1,1) || lastPoint(1) > bBox(3,1) ||

lastPoint(2) < bBox(3,2) || lastPoint(2) > bBox(1,2)
 lastPointIN=0;
 end

 %%LINES

 if firstPointIN~=0 || lastPointIN~=0
 Lines(ind,:)=nLines(rowNum,:); %#ok<AGROW>
 ind=ind+1;
 else
 t=0;
 if lastPoint(1)<firstPoint(1)
 if lastPoint(1)>bBox(2,1) ||

firstPoint(1)<bBox(1,1)
 t=1;
 end

 elseif firstPoint(1)>bBox(2,1) ||

lastPoint(1)<bBox(1,1)

 t=1;

 end

 if lastPoint(2)<firstPoint(2) && t==0
 if lastPoint(2)>bBox(2,2) ||

firstPoint(2)<bBox(3,2)
 t=1;
 end

 elseif firstPoint(2)>bBox(2,2) ||

lastPoint(2)<bBox(3,2)

 t=1;

 end
 if t==0 && ifLineCrosses(firstPoint,lastPoint,bBox)==1
 Lines(ind,:)=nLines(rowNum,:); %#ok<AGROW>

30

 ind=ind+1;
 end
 end

end

tempPoints(pointsIn+1:end,:)=[];

Lines(ind:end,:)=[];

base(index).points=tempPoints;
base(index).Lines=Lines;

switch pointsIn
 case 0
 if size(base(index).Lines,1)>1
 linesC=1;
 end

 case 1
 if size(base(index).Lines,1)>2
 linesC=1;
 end
end

end

function success = pointsOfInterestOneLine()
%% pointsOfInterestOneLine
%
global index; global base; global Tree;
success=0;
if size(base(index).Lines,1)
 Tree(index,6:7)=base(index).Lines(1:2);
 Tree(index,8:9)=base(index).Lines(3:4);
 Tree(index,10:11)=inf;
 Tree(index,5)=-1;
 success=~success;
end

end

function pointsOfInterestOnePoint()
%% pointsOfInterestOnePoint
global base; global index; global Tree;

Tree(index,5)= -1;
points=base(1).points;
ind=find(points(:,1)==base(index).points(1) & points(:,2) ==

base(index).points(2));

if ind~=1 && ind ~=size(points,1)

31

 Tree(index,6:11)=[points(ind-1,1:2) points(ind,1:2) points(ind+1,1:2)];
elseif ind==1
 Tree(index,6:11)=[points(end,1:2) points(ind,1:2) points(ind+1,1:2)];
else
 Tree(index,6:11)=[points(ind-1,1:2) points(ind,1:2) points(1,1:2)];
end

end

function Area = polyArea(Data)
%% Area
%Area = polyArea(Data) => returns the area of the polygon while iterating
%through the points. Positive Area means the polygon's direction is CCW,
%negative means CW

Area=0;
Data(end+1,:)=Data(1,:);

for rowNum=1:size(Data,1)-1

 x1=Data(rowNum,:);
 x2=Data(rowNum+1,:);

 Area = Area + (x2(1) - x1(1)) * (x2(2) + x1(2)) / 2;
end

end

function Plot(node)
%% plot
x=node.bBox(:,1);
y=node.bBox(:,2);
x(end+1)=node.bBox(1,1);
y(end+1)=node.bBox(1,2);
plot(x,y);

end

function num = ifLineCrosses(thisP,lastP,bBox)
%% ifLineCrosses

num=0;
for bPos=1:3

 cX=bBox(bPos,1);
 cY=bBox(bPos,2);
 dX=bBox(bPos+1,1);
 dY=bBox(bPos+1,2);
 denominator = (thisP(1) - lastP(1)) * (dY - cY) - (thisP(2) - lastP(2)) *

(dX - cX);

 numeratorA = (lastP(2) - cY) * (dX - cX) - (lastP(1) - cX) * (dY - cY);
 A = numeratorA / denominator;

32

 numeratorB = (lastP(2) - cY) * (thisP(1) - lastP(1)) - (lastP(1) - cX) *

(thisP(2) - lastP(2));
 B = numeratorB / denominator;

 if (denominator == 0)
 %lines llastP(2) on top of each other, do nothing
 elseif (A < 0 || A > 1 || B < 0 || B > 1)
 %lines don't cross, do nothing
 else

 num=1;

 break;

 end
end

end

function defTermPos()
global Tree; global base;

mask=find(Tree(:,5)~=-1 & Tree(:,3)==0);
if ~isempty(mask)
%mask(1)=[];
end

for i=1:size(mask)

 maskedNode=Tree(mask(i),:);

 if Tree(maskedNode(15),3)==mask(i) %Tree(i) is a left Node, go to the

parents right node

 parent=Tree(maskedNode(15),:);
 curNode=Tree(parent(4),:); %parents left node
 if parent(2) %use cut and the min/mlastP(1)y
 anchors=[parent(1) parent(9);parent(1) parent(11)]; %anchors,

must make sure one of these two points is at each traversed node
 else
 anchors=[parent(6) parent(1);parent(8) parent(1)];
 end

 %look at curNode's left and right to see which one contains 1 (or
 %more) of the anchors

 while ~curNode(14)

 if ~isempty(find(base(curNode(3)).bBox(:,1)==anchors(1,1) &

base(curNode(3)).bBox(:,2)==anchors(1,2),1))
 curNode=Tree(curNode(3),:); %left
 curAnchor=(anchors(1,:));
 elseif isempty(find(base(curNode(4)).bBox(:,1)==anchors(1,1) &

base(curNode(4)).bBox(:,2)==anchors(1,2),1))

33

 curNode=Tree(curNode(4),:); %left
 curAnchor=(anchors(1,:));
 elseif isempty(find(base(curNode(3)).bBox(:,1)==anchors(2,1) &

base(curNode(3)).bBox(:,2)==anchors(2,2),1))
 curNode=Tree(curNode(3),:); %right
 curAnchor=(anchors(2,:));
 elseif isempty(find(base(curNode(4)).bBox(:,1)==anchors(2,1) &

base(curNode(4)).bBox(:,2)==anchors(2,2),1))
 curNode=Tree(curNode(4),:); %right
 curAnchor=(anchors(2,:));
 end
 if isinf(curNode(1)) && curNode(5)~=-1

 p=Tree(curNode(15),:);
 if Tree(p(3),:)==curNode
 temp=Tree(p(4),:);
 else
 temp=Tree(p(3),:);
 end
 tempAnchor=anchors;
 if p(2) %use cut and the min/mlastP(1)y
 anchors=[p(1) temp(9);p(1) temp(11)]; %anchors, must make

sure one of these two points is at each traversed node
 else
 anchors=[temp(6) p(1);temp(8) p(1)];
 end
 if anchors(1,:)~=curAnchor
 if anchors(2,:)~=curAnchor
 anchors=tempAnchor;
 end
 end
 curNode=temp;
 end
 end

 %compute if curNode is in or out
 Tree(mask(i),5) = isNodeIn(curNode,curAnchor(1,:));

 else %Tree(i) is a right Node, go to the parents left node
 parent=Tree(maskedNode(15),:);
 curNode=Tree(parent(3),:); %parents left node
 if parent(2) %use cut and the min/mlastP(1)y
 anchors=[parent(1) parent(9);parent(1) parent(11)]; %anchors,

must make sure one of these two points is at each traversed node
 else
 anchors=[parent(6) parent(1);parent(8) parent(1)];
 end

 %look at curNode's left and right to see which one contains 1 (or
 %more) of the anchors
 while ~curNode(14)
 if ~isempty(find(base(curNode(3)).bBox(:,1)==anchors(1,1) &

base(curNode(3)).bBox(:,2)==anchors(1,2),1))
 curNode=Tree(curNode(3),:); %left
 curAnchor=(anchors(1,:));
 elseif isempty(find(base(curNode(4)).bBox(:,1)==anchors(1,1) &

base(curNode(4)).bBox(:,2)==anchors(1,2),1))

34

 curNode=Tree(curNode(4),:); %left
 curAnchor=(anchors(1,:));
 elseif isempty(find(base(curNode(3)).bBox(:,1)==anchors(2,1) &

base(curNode(3)).bBox(:,2)==anchors(2,2),1))
 curNode=Tree(curNode(3),:); %right
 curAnchor=(anchors(2,:));
 elseif isempty(find(base(curNode(4)).bBox(:,1)==anchors(2,1) &

base(curNode(4)).bBox(:,2)==anchors(2,2),1))
 curNode=Tree(curNode(4),:); %right
 curAnchor=(anchors(2,:));
 end
 if isinf(curNode(1)) && curNode(5)~=-1

 p=Tree(curNode(15),:);
 if Tree(p(3),:)==curNode
 temp=Tree(p(4),:);
 else
 temp=Tree(p(3),:);
 end

 tempAnchor=anchors;
 if p(2) %use cut and the min/mlastP(1)y
 anchors=[p(1) temp(9);p(1) temp(11)]; %anchors, must make

sure one of these two points is at each traversed node
 else
 anchors=[temp(6) p(1);temp(8) p(1)];
 end

 if anchors(1,:)~=curAnchor
 if anchors(2,:)~=curAnchor
 anchors=tempAnchor;
 end
 end
 curNode=temp;
 end
 end
 %compute if curNode is in or out
 Tree(mask(i),5) = isNodeIn(curNode,curAnchor(1,:));
 end
end
end
function IN=isNodeIn(node,point)
global Tree
IN=logical(false);
in=Tree(1,5);
out=-in;
if isinf(node(10))
 pointsOfInterest=reshape(node(6:9),[2 2])';
 vector1=[pointsOfInterest(2,1)-pointsOfInterest(1,1)

pointsOfInterest(2,2)-pointsOfInterest(1,2) 0];
 vector2=[point(1)-pointsOfInterest(1,1) point(2)-pointsOfInterest(1,2)

0];
 signCross=sign([vector1(2).*vector2(3)-vector1(3).*vector2(2)...
 vector1(3).*vector2(1)-vector1(1).*vector2(3)...
 vector1(1).*vector2(2)-vector1(2).*vector2(1)]);
 if signCross(3)~=out

35

 IN=~IN;
 end
else
 pointsOfInterest=reshape(node(6:11),[2 3])';
 vector1=[pointsOfInterest(2,1)-pointsOfInterest(1,1)

pointsOfInterest(2,2)-pointsOfInterest(1,2) 0];
 vector2=[pointsOfInterest(3,1)-pointsOfInterest(2,1)

pointsOfInterest(3,2)-pointsOfInterest(2,2) 0];
 vector3=[point(1,1)-pointsOfInterest(1,1) point(1,2)-

pointsOfInterest(1,2) 0];
 vector4=[point(1,1)-pointsOfInterest(2,1) point(1,2)-

pointsOfInterest(2,2) 0];

 signCross1= [vector1(2).*vector2(3)-vector1(3).*vector2(2)...
 vector1(3).*vector2(1)-vector1(1).*vector2(3)...
 vector1(1).*vector2(2)-vector1(2).*vector2(1)];
 signCross2=[vector1(2).*vector3(3)-vector1(3).*vector3(2)...
 vector1(3).*vector3(1)-vector1(1).*vector3(3)...
 vector1(1).*vector3(2)-vector1(2).*vector3(1)];
 signCross3=[vector2(2).*vector4(3)-vector2(3).*vector4(2)...
 vector2(3).*vector4(1)-vector2(1).*vector4(3)...
 vector2(1).*vector4(2)-vector2(2).*vector4(1)];
 s=sign([signCross1(3) signCross2(3) signCross3(3)]);

 if s(1)==in

 if s(2)==in && s(3)==in
 IN=~IN;
 elseif s(2)==0 || s(3)==0
 IN=~IN;

 end

 elseif s(1)==out
 if s(2)==out && s(3)==out
 %intN=0;
 elseif s(2)==0 || s(3)==0
 IN=~IN;
 else
 IN=~IN;
 end
 else
 if s(2)==out
 %intN=0;
 elseif s(2)==0 || s(3)==0
 IN=~IN;
 else
 IN=~IN;
 end
 end
end
end

36

function IN = in_fastInPoly(points,node)
% in_fastInPoly Takes a 2-dimensional convex polygon defined by an M x 2
% array of data points and Builds/Returns a Matlab structure
% resembling a tree to be used by the fastInPoly function for
% point-in-polygon determination.
%
% Syntax:
% IN = in_fastInPoly(points,node)
%
% Input:
% points = The query points.
%
% node = The tree returned by the getTree method.
% Output:
% IN = A vector representing if each respective query point is
% inside or outside of the polygon.
%
% History:
% Jared Petker 5/17/2010 (updated)
% E-mail: JPetker@ucmerced.edu

IN=false(size(points,1),1); %#ok
tempSize=size(points,1);

in=node(1,5);
out=-in;
bBox=reshape(node(1,6:13),[2 4])';

for i=1:tempSize;

 point=points(i,:);
 n=1;

 if point(1) > bBox(1,1) && point(1) < bBox(3,1) && point(2) >bBox(3,2)

&& point(2) < bBox(1,2)
 % main loop for basically doing a binary search through the bounding

boxes.
 while ~node(n,14)

 n=node(n,(point(2-node(n,2))>=node(n,1))+3);

 end

 if node(n,5)>=0
 IN(i)=node(n,5);

 else

 if isinf(node(n,10))
 pointsOfInterest=reshape(node(n,6:9),[2 2])';
 vector1=[pointsOfInterest(2,1)-pointsOfInterest(1,1)

pointsOfInterest(2,2)-pointsOfInterest(1,2) 0];

37

 vector2=[point(1)-pointsOfInterest(1,1) point(2)-

pointsOfInterest(1,2) 0];
 signCross=sign([vector1(2).*vector2(3)-

vector1(3).*vector2(2)...
 vector1(3).*vector2(1)-vector1(1).*vector2(3)...
 vector1(1).*vector2(2)-vector1(2).*vector2(1)]);
 if signCross(3)~=out
 IN(i)=~IN(i);
 end

 else
 pointsOfInterest=reshape(node(n,6:11),[2 3])';
 vector1=[pointsOfInterest(2,1)-pointsOfInterest(1,1)

pointsOfInterest(2,2)-pointsOfInterest(1,2) 0];
 vector2=[pointsOfInterest(3,1)-pointsOfInterest(2,1)

pointsOfInterest(3,2)-pointsOfInterest(2,2) 0];
 vector3=[point(1,1)-pointsOfInterest(1,1) point(1,2)-

pointsOfInterest(1,2) 0];
 vector4=[point(1,1)-pointsOfInterest(2,1) point(1,2)-

pointsOfInterest(2,2) 0];

 signCross1= [vector1(2).*vector2(3)-vector1(3).*vector2(2)...
 vector1(3).*vector2(1)-vector1(1).*vector2(3)...
 vector1(1).*vector2(2)-vector1(2).*vector2(1)];
 signCross2=[vector1(2).*vector3(3)-vector1(3).*vector3(2)...
 vector1(3).*vector3(1)-vector1(1).*vector3(3)...
 vector1(1).*vector3(2)-vector1(2).*vector3(1)];
 signCross3=[vector2(2).*vector4(3)-vector2(3).*vector4(2)...
 vector2(3).*vector4(1)-vector2(1).*vector4(3)...
 vector2(1).*vector4(2)-vector2(2).*vector4(1)];
 s=sign([signCross1(3) signCross2(3) signCross3(3)]);

 if s(1)==in

 if s(2)==in && s(3)==in
 IN(i)=~IN(i);
 elseif s(2)==0 || s(3)==0
 IN(i)=~IN(i);

 end

 elseif s(1)==out
 if s(2)==out && s(3)==out
 %intN=0;
 elseif s(2)==0 || s(3)==0
 IN(i)=~IN(i);
 else
 IN(i)=~IN(i);
 end
 else
 if s(2)==out
 %intN=0;
 elseif s(2)==0 || s(3)==0
 IN(i)=~IN(i);

38

 else
 IN(i)=~IN(i);
 end
 end

 end

 end

 end

end
end

