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P R E S E N C E  OF PUBLICA TIO N  BIAS 
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When the process of publication favors studies with small p-values, and hence large effect 
estimates, combined estimates from many studies may be biased. This paper describes a model 
for estimation of effect size when there is selection based on one-tailed p-values. The model 
employs the method of maximum likelihood in the context of a mixed (fixed and random) effects 
general linear model for effect sizes. It offers a test for the presence of publication bias, and 
corrected estimates of the parameters of the linear model for effect magnitude. The model is 
illustrated using a well-known data set on the benefits of psychotherapy. 
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Introduction 

There is growing agreement that the problem of  research synthesis--the combining of 
information across replicated research studies--is of fundamental importance in a variety 
of  scientific domains (National Research Council, 1992). Procedures for such synthesis that 
combine quantitative estimates of treatment effects across published studies have become 
known as meta-analysis; a large collection of such techniques has emerged (see, e.g., 
Hedges & Olkin, 1985, Cooper & Hedges, 1994). An assumption underlying most of  those 
techniques is that the estimates of treatment effects available to the meta-analyst constitute 
a representative sample of  such estimates from all research undertaken on an issue. It has 
long been known, however, that this assumption is often highly questionable when effect 
estimates are derived from the published literature. Evidence against the general validity of 
the assumption has taken a number of forms. Researchers have followed studies approved 
by institutional review boards or granting agencies and have found that failure to achieve 
statistical significance is strongly associated with failure to publish results (see, e.g., Dick- 
ersin, Min, & Meinert, 1991; Dickersin, Min & Meinert, 1992; Easterbrook, Berlin, Go- 
palan, & Matthews, 1991). Others have found that statistical significance is often a formal 
(Melton, 1962) or informal (Coursol & Wagner, 1986; Greenwald, 1975) criterion when 
editors and reviewers consider articles for publication. Studies of published literature in the 
social sciences tend to find surprisingly high percentages of  tests rejecting at the a = .05 
level, given typical power levels of such research. (See, e.g., Bozarth & Roberts, 1972; 
Sterling, 1959). Finally, studies that compare effect sizes in published and unpublished 
literature (e.g., Dawes, Landman, & Williams, 1984; Smith, 1980; White, 1982) have found 
that the latter effects tend to be smaller. Thus, there is a considerable body of  literature 
suggesting that this fundamental assumption of meta-analysis is often not strictly met. (See 
Begg, 1994, for an overview of  the problem and a discussion of  the mechanisms by which 
differential selection of studies with highly significant effect estimates leads to bias.) 

Various solutions to this problem have been proposed.  These fall into three broad 
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classes: (a) Methods that eliminate differential selection; (b) techniques that attempt to 
detect the presence of publication bias, so that results may be interpreted with appro- 
priate caution; and (c) approaches that attempt to compensate for publication bias by 
establishing what the combined effect estimates would have been if censorship had not 
occurred. Examples of  the first type include changing editorial policies through educa- 
tion to make editors and reviewers aware of the problem, providing avenues for the 
publication of studies with non-significant or negative outcomes, and developing reg- 
istries of studies that have been undertaken (see, e.g., Begg & Berlin, 1988). Such 
approaches would clearly be most effective, but, given the realities of research in the 
social sciences, they are unlikely to be feasible. 

Techniques for detecting publication bias have tended to be graphical. So-called 
"funnel plots" with the individual studies' estimates of effect magnitude on one axis, 
and sample size on the other were advanced by Light and Pillemer (1984). In the 
absence of selection, such plots should be symmetrical and funnel-shaped. When stud- 
ies with large one-tailed p-values (e.g., nonsignificant studies) tend to be censored, the 
plot becomes skewed (the one-tailed selection pattern). If the actual underlying effect 
is small, and selection is based on two-tailed p-values, the plot may show symmetric 
tails, with a sparseness of studies that have small sample sizes and effects near zero 
(often near the center of the range of effect magnitudes). The funnel plot has also 
inspired a class of statistical tests based on the idea that selection implies an association 
between sample size (or, equivalently, sampling variability) and effect magnitude (see 
Begg, 1994, for examples). Figure 1 shows funnel plots of simulated data generated 
from identical parameters with and without strong one-tailed selection; control lines 
have been added that should include roughly 90 percent of the effect estimates. Al- 
though the first plot shows a sparseness of studies with negative effects (there are only 
two studies below the lower control line), such results can be difficult to detect when 
the pattern of selection is less extreme. 

In practice, we have found that it is often more informative to plot effect magnitude 
against the conditional sampling variance rather than sample size. Sampling variance is 
roughly proportional to the reciprocal of sample size. This modified style of funnel plot 
has the effect of expanding the axis in the range where studies have small to moderate 
sample sizes. Since those are often the studies most likely to show selection effects, the 
modified plot can provide a clearer picture of publication bias. Figure 2 shows modified 
plots for the same data sets that were shown in Figure 1; again, approximate 90 percent 
control lines help expose the symmetry of the unbiased data set and the skew of the 
biased data. The plot of the unbiased data shows a symmetrical ~-shape, with the 
centered on the mean population effect. The sparseness of small and negative effects in 
the biased data is more apparent now: what showed as a subtle lack of symmetry in the 
conventional funnel plot is much more obvious. 

Methods that compensate for publication bias work by employing some statistical 
model for the observed effect sizes that incorporates the selection process. Such a 
model will comprise two parts: a model for the distribution of effect size estimates 
before selection occurred, and a model for the selection process that describes how that 
process has modified the effect distribution. Iyengar and Greenhouse (1988) proposed 
modeling the selection process by using weighted distributions, in which a weight 
function describes the likelihood of effects in a given range being observed if they 
occur. Hedges (1984) and Lane and Dunlap (1978) studied the effects of observing only 
studies whose mean differences were significant at a = .05 or better. In retrospect, 
these cases might be considered extreme cases of weighted distributions, in which the 
weight is zero for a nonsignificant study, or one otherwise. Recently, attention has 
turned to estimating more sophisticated weight functions. Dear and Begg (1992) esti- 
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FIGURE IA. 
Funnel  plots showing date sets with one-tailed selection. 
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Funnel  plots showing date sets with no selection. 
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Modified funnel plots showing data sets with one-tailed selection. 
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mated a step function, with both the weights and the locations of point discontinuities 
determined by the data. Hedges (1992) presented a similar model, but with the discon- 
tinuities assumed to be located a points where psychologically important p-values 
occur (e.g., .001, .01, .05, etc.), so that only the weights need to be estimated (rather 
than both the weights and the points of discontinuity). In the original formulation of that 
model, two-tailed p-values were employed. Subsequent formulations of the model 
(Hedges & Vevea, 1993; Vevea, Clements & Hedges, 1993) have employed cutpoints 
determined by one-tailed p-values. 

Model and Notation 

The statistical model can be divided into two parts. The effect size model charac- 
terizes the behavior of effect size estimates in the absence of selection. The selection 
model describes the action of selective forces determining which estimates are ob- 
served. 

Effect Size Model 
The present paper extends the Hedges (1992) model by adding linear predictors to 

the model for unsetected effects. One can imagine a situation in which heterogeneity of 
effects could produce a funnel plot that closely resembles the plot of a group of studies 
exhibiting publication bias. If, for example, the data set included a number of studies 
with small sample sizes that, due to some identifiable factor, had legitimately larger 
effect estimates, that group could mimic the skewed upper tail of a biased funnel plot. 
Such a situation is plausible; fully randomized experiments, for example, often have 
smaller sample sizes, and might be expected to yield different results than studies using 
quasi-experimental designs. The addition of a linear regression model for effects would 
distinguish such variability from general heterogeneity, as long as the regression model 
was correctly specified. Moreover, apart from such special cases in which heteroge- 
neity can be confused with selection bias, there may be substantive research questions 
for which a linear model is appropriate; the sample analysis of the efficacy of psycho- 
therapy data presented below is an example of such a case. 

In the absence of selection, one can represent the distribution of sample effects 
using a linear random-effects model. Let Y1, Y2, ---  , Yn be variables representing 
study outcomes (effect size estimates), such that 

r i  ~ N ( t ~ i ,  o .2 ) ,  

where 0 -2 is known, and 6i is an unknown parameter. Let 6i be distributed so that 

t~ i ~ N ( A i ,  0 -2) ,  

where o .2 is an unknown variance component, and A i is a function of linear predictors. 
Specifically, let A i = [30 + [31Xi l  + [32Xi2 + • • • + [3pXip  , o r ,  in matrix form, A = 
XI3, where (i x11 x2 x it X21 X22  X 2 p  

X n ×  p = 

X n l  X n 2  X 



424 PSYCHOMETRIKA 

is a matrix of known predictors, and 13 = (/3o,/31, • . .  ,/3p)', is ap-dimensional vector 
of unknown regression coefficients. Then 

Yi ~ N ( A i ,  0-2 + o. 2). 

The observed statistic Yi  from study i tests the null hypothesis that t~ i = 0 through the 
test statistic Z i = Yi]0-i . The one-tailed p-value associated with that test is Pi  = 1 - 

• ( Z i )  (assuming that the positive tail is the one of interest), where ~(t)  denotes the 
standard normal cumulative distribution function. 

S e l e c t i o n  M o d e l  

The model for selection, following Hedges (1992), describes the probability that an 
estimate with a particular p-value is observed. The probability is described by a step 
function over several intervals, with the boundaries of the intervals determined a priori. 
Boundaries are set at p-values that are important in the mind of the typical researcher. 
(The literature has shown that psychological researchers tend to consider a result to be 
much more conclusive if its p-value is just below one of the conventional levels of 
significance; see, e.g., Rosenthal & Gaito, 1963, 1964; Nelson, Rosenthal, & Rosnow, 
1986). Cutpoints at other locations (e.g., p = .20, p = .30) are added to allow the step 
function to approximate a putative continuous weight function as closely as possible 
over the region of probabilities where step discontinuities are not expected. A boundary 
at .50 is included, to represent the point at which effect estimates become negative. One 
departure from Hedges' original formulation of the model is that p-values here are 
one-tailed. Empirical work with these models has suggested that in some domains such 
as validity generalization studies, funnel plots are more consistent with a one-tailed 
than a two-tailed pattern of selection (Vevea, Clements & Hedges, 1993). Moreover, as 
the population effect grows larger, the contribution of the negative tail to the total 
distribution becomes negligible, so that in many cases, one-tailed and two-tailed selec- 
tion models yield essentially equivalent results. 

The likelihood that an effect from a study with a one-tailed p-value of P i is ob- 
served is represented by a weight function, w(pi). Consider a weight function with k 
intervals of constancy. Denote the left and right endpoints of the j-th such interval by 
a j _  1 and a j ,  respectively. Let a 0 = 0 and a k = I. If a study has a one-tailed p-value 
that falls within thej- th such interval, denote its weight by toj. If we assume that the 
weight functions, as functions of p, will be the same for all studies, then 

tol i f  O < p i  <- a j  ; 

w ( p i )  ----- toj if  a j - I  <S Pi ~ a~ ; 

o~k if  ak-1 <~ Pi <-- 1. 

The weight function may be defined equivalently as a function of the individual study's 
effect size, Yi ,  and its conditional variance, 0-2: 

to1 if - - 0 - i q b - l ( a l )  < Yi -- ~; 

w ( Y i ,  0 "2) = toj if - 0 . i ~ p - I ( a j )  < Yi ~ - 0 . i d p - l ( a j - 1 ) ;  

tok if - ~  < Yi <- - 0 . i ~ - l ( a k - l ) ,  

where ~ - 1  (p) is the inverse normal cumulative distribution function evaluated at p. 
The number of studies that were present prior to censorship is unknown; hence, the 
weights are relative, not absolute. This indeterminacy is overcome by constraining the 
weight for the first p-value interval to be 1.0. A weight for another interval of 0.5, for 
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example, would therefore indicate that studies with p-values in that interval were only 
half as likely to be observed as studies in the first interval. Similarly, an estimated 
weight of 2.0 for another interval would indicate that studies from the new interval were 
twice as likely to survive the censorship process as were studies from the first interval. 

The weighted probability density function of Yi given the weight function w(Yi, 
0-2) and the parameters 13, o-2, and m = (to 1 , . . .  , tOk)' is 

f(Y/113, 0-2, ~ ) =  
~iAi(Ai, rl~, to) 

where 

Ai(Ai, "O 2, to)=--~,lilf~_~ w(Yi' ° '2i)49(Yi-Ai) d Y i ' r l i  

Ai : Xi13, ~(Z) is the standard normal density function evaluated at z, and 7 2 = 
0-2 + 0-2. The integral A i may be expressed as the sum of the integrals over the regions 
where the weight function is constant: 

k 

A,(A,, 7 2, o~)= Y'..,jB0(A,, 0-2), 
J = l  

where Bij(Ai, o -2) is the probability that a normally distributed random variable with 
mean A, and variance 77 2 will be assigned a weight of toj. That is, 

p , -  

1 - ~  if j =  I; 
rl, 

B q =  " q~ . . . .  q~ i f l < j < k ;  

. (b i ,k-1--  Ai) if j = k, 

where b ij denotes the left endpoint of the interval of Yi values assigned weight toj in the 
i-th study; that is, bij = --0-idp-l(aj). 

Assuming that the studies are independent, the joint likelihood for the data Y = 
(Y1 . . . .  , Yn)' is the product of the individual likelihoods: 

( -- A/) 
° w(Y,, 0-5 

e(13, 0 "2, ~ ) =  1~ 
,=1 r l ,&(A, ,  rl/~, ~) 

and the log-likelihood is proportional to 

n 1 /~I - ~ log "Oi - -  £ log tojBij(Ai, 0 "2)  . L = ~'. log w(Yi, o "2) - "~ ~li =1 
i=1 '=  i=1 i=1 
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Estimation and Large Sample Standard Errors 

Estimates of the model 's parameters may be obtained by simultaneously solving 
their likelihood equations. The likelihood equations for the unconstrained weights 
(o~2, . . .  , ¢Ok)' are 

OL c(j) n n i  j 

oo, j o,j Z £k 
i=1 ¢.omBim 

m = l  

= 0 ,  

where c(j) is the count of studies assigned the weight oJj. The equations for the linear 
predictors are 

OBim 
k tom _ _  OL n n m = l  

= Z Xij - £ ~'~k 
O/3j i=i i=1 Z, ¢°mBim 

m = l  

= 0 ,  

where 

"Xij [bil - Ai ) 

The equation for the variance component is 

i f m  = 1; 

i f l < m < k ,  

i f m  = k. 

~ k  tom OBim 
OL n (Yi - A i )  2 n 1 n m = l  0IT 2 

O~r------7= £ 2,,4 i=lZ 2,,2 £ z k  
i=1 i=1 o)mBim 

m = l  

= 0 ,  

where 

2,,3 ~b\ ,,-7 if m = 1; 

OBim J bim - Ai bim Ai , 
Oo.-------T= 2,,3 ~b ~ / 5  4>/ ' ~i if l < m  < k ;  

b i ' k - l - m i  ( bi'k-1-''Ai ) i f  m - k .  

2 ,, ~ 6 \  ,, i 

The likelihood equations are solved using the Newton-Raphson algorithm. Successive 
approximations to the maximum likelihood estimate of the parameter vector ~ = 
( f lO,  " ' ' ,  ~ p ,  0"2, 0)2,  " ' ' ,  Wk)' are given by 
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where the postmultiplier is the vector obtained by stacking the first derivatives given 
above, and the premultiplier is the inverse Hessian matrix (i.e., the inverse of the 
matrix of partial second derivatives and cross derivatives of the log-likelihood with 
respect to the parameter vector); both are evaluated at the current value of 6- The 
algorithm is allowed to iterate until subsequent changes in parameter values are small 
and first derivatives are near zero. 

Asymptotic sampling variances of the estimates are available from the diagonal of 
the inverse Hessian matrix after estimation has converged. The partial second deriva- 
tives that make up the Hessian matrix are given in the appendix. 

Application to Correlation Coefficients and Standardized Mean Differences 

The likelihood equations and other derivatives require that the conditional sam- 
pling variances (tr 2) of the estimates from individual studies be known. The form these 
variances take depends upon what type of effects the studies estimate. When the effects 
are correlation coefficients, as is the case in validity generalization studies, it may be 
desirable to transform them by Fisher's Z-transformation so that the individual vari- 
ances are then 1 / (n i -3 ) ,  where n i is the sample size of the i-th study. Note that these 
variances do not depend on the correlation parameter. 

When the effects represent standardized differences between means, and the ratio 
of the control group's sample size to the experimental group's sample size is constant 
across studies, a variance stabilizing transformation of the effect is known (see Hedges 
& Olkin, 1985). However, the need for equal ratios of sample sizes is unlikely to be met 
in any data set large enough to support adequate estimation of the weight function 
employed in the present model, and the behavior of the transformation when sample 
size ratios are unequal has not been studied. An alternative is to approximate the 
conditional sampling variances by 

where n i is the square mean root of the two sample sizes. Although these variances do 
depend on the estimated effect magnitude, when that effect is small (as it typically is in 
social science research), its contribution to the sampling variance is negligible; thus the 
variances produced by this formula may be treated as essentially known. 

Likelihood Ratio Tests of Nested Models 

In addition to providing adjusted estimates of the linear predictors and the variance 
component, the model allows the construction of likelihood ratio tests for differences in 
fit among different specifications with different constrained parameters. 

Testing the Effect Size Model 

One application of such tests is the comparison of different linear effect size mod- 
els. For example, one might wish to compare a model that assumes a common popu- 
lation effect across all studies (Ai = /30) with a model that adds an effect for some study 
characteristic (Ai = /30 + /31Xil ). One may view the first model as a special case of 
the second with/31 constrained to be zero. Then minus two times the difference be- 
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tween the maximum of log-likelihoods under the respective models has approximately 
a chi-square distribution with degrees of freedom equal to the number of constrained 
parameters in the simpler model--here, one (see, e.g., Kendall & Stuart, 1979). In this 
example, the test is asymptotically equivalent to a test of the null hypothesis that/31 = 
0 based on the Z-statistic obtained by dividing the estimate of/31 by its standard error. 
However,  one could compare the first model (A i = /30) with a more complex model 
(e.g., A i = 30 + fllXil + /32Xi2 + /33XilSi2); now the likelihood ratio chi-square 
statistic has three degrees of freedom, and constitutes a test of the significance of the 
entire linear model. 

Testing the Selection Model 

Another useful application of such tests is to compare the model that estimates a 
set of weights representing the selection function to the model that constrains those 
weights to be one. Since the first of the k weights is always constrained to be one, the 
likelihood ratio statistic will have k - 1 degrees of freedom, and will test the improve- 
ment in fit obtained by adding the selection model to the linear random-effects model. 
When the pattern of estimated weights appears to reflect a reasonable process of dif- 
ferential selection, the statistic may be taken to be a test for the presence of  publication 
bias. In principle, the test will detect any deviation from uniformity in the weights. The 
interpretation of that non-uniformity must be made in light of the pattern of the weights. 
For example, the classic "bias toward significant results" pattern would have larger 
weights for smaller p-values. Another plausible pattern might be "bias toward positive 
results", which would be exhibited if weights were relatively constant for p-values 
below .5 and smaller for p-values above .5. Other patterns of weights that could be 
interpreted substantively are also possible. 

The weight function we have proposed depends only on the one-tailed p-value 
associated with the effect size estimate, and is the same for all studies. It is possible to 
conceive that the selection model (and hence the weight function) also depends on 
qualitative characteristics of the studies. For example, one might imagine that the 
selection model is different for randomized experiments than for quasi-experiments 
(i.e., because they are presumed to be more valid, randomized experiments are more 
likely to be published than quasi-experiments yielding the same p-value). Such a case 
might be handled by estimating a different weight function for each of the two groups 
of studies. More generally, one might posit that the weights depend on a linear model 
of study characteristics in addition to p-values. Such a selection model might be esti- 
mated with a suitable modification of the techniques presented in this paper. 

An Application of the Linear Model for Effects 

One of the best-known series of meta-analytic studies is the analysis performed by 
Smith, Glass and Miller (1980) on the efficacy of psychotherapy. Although techniques 
for meta-analysis have improved since the publication of their results, and the data set 
they analyzed may have been flawed (e.g., there were effects that would probably be 
considered impossibly large by most analysts), the study remains an important one, and 
the conclusions continue to be of interest. A large number of the studies that the 
psychotherapy analysis included consisted of either behavioral therapies or systematic 
desensitization treatments of phobias. Phobics were subdivided into " t rue"  or "com- 
plex" phobics, who exhibited multiple phobias, and "simple" or monosymptomatic 
phobics. The analysis presented here is limited to those studies, and considers only 
effect estimates that are equivalent to standardized mean differences. Because of the 
outlying effects in the original data set (one study with an effect of 25.33 was present), 
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Modified funnel plot of psychotherapy effects. 

studies with effects higher than 4.0 were deleted; only five data points were lost in that 
step. After those criteria had been applied, 489 studies remained, of which 216 em- 
ployed behavioral treatments, and 273 were studies of desensitization therapies. Of the 
216 behavioral studies, 130 involved true phobics, and 86 involved simple phobics. The 
desensitization studies included 59 with true phobics, and 214 with simple phobics. 
Figure 3 presents the modified funnel plot of these studies; the plot clearly shows the 
typical asymmetry associated with one-tailed selection. Since the ratio of the control 
group's sample size to the treatment group's sample size is not constant across the 
studies in the data set, and the estimates of effect size tend not to be large, we approx- 
imate the conditional sampling variances without employing the stabilizing transforma- 
tion mentioned above. The conventional random-effects model estimates the variance 
component to be 0.456, and the common effect to be 0.800. 

Two linear models were considered. The more complex model proposed is a full 
factorial analysis of variance (ANOVA) with interaction: 

where 

and 

A i = [3 0 + [31Xli + [32X2i -Jr [33Xl iX2i ,  

I01 if treatment is behavioral; 

X l i  ~- if treatment is desensitization, 

( ~  if phobia is complex; 

X2; = if phobia is simple. 
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TABLE 1 

Psychotherapy Outcomes, Not Adjusted for Publication Bias 

Therapy Type Condit ion Treated 
Predicted Standard  Error 

Mean of Predict ion 

Complex Phobia 0.628 0.058 
Behavioral 

Simple Phobia 0.900 0.079 

Complex Phobia 0.704 0.092 
Desensitization 

Simple Phobia 0.857 0.049 

The factorial ANOVA model results in a variance component estimate of 0.280 (s.e. = 
0.032) when selection is not included in the model, and 0.375 (s.e. = 0.069) when 
selection is accounted for. Note that these estimates are considerably lower than the 
single-common-effect model's estimate; one may think of the additional linear model as 
accounting for some of variability that is incorporated into the original variance com- 
ponent. (When selection is not accounted for, the reduction associated with the added 
linear model is 0.456 - 0.280 = 0.176, or 39 percent of the total variance component.) 
Estimates of the predictors in the factorial model without accounting for selection are 
/3 o = 0.628 (s.e. = 0.058);/31 = 0.076 (s.e. = 0.108);/32 = 0.272 (s.e. = 0.097); and 
/33 = -0.119 (s.e. = 0.142). 

Estimated means for the four possible conditions are given in Table I. Standard 
errors for the means were constructed from the parameter covariance matrix, and are 
included in the table. The likelihood ratio test statistic for the added linear model was 
28.94 on 3 degrees of freedom, p < .0001, indicating that the factorial ANOVA model 
clearly fits better than the single-common-effect model. When the selection component 
of the model was added, p-value intervals were set to .000-.001, .001-.005, .005-.010, 
.010-.020, .020-.050, .050-.100, .100-.200, .200-.300, .300-.500, and .500-1.000. The 
weight for the first interval was, as usual, constrained to 1.0; estimated weights for the 

~remaining intervals were 1.487 (s.e. = 0.308), 1.253 (s.e. = 0.332), 1.685 (s.e. = 0.425), 
1.169 (s.e. = 0.313), 1.152 (s.e. = 0.340), 0.894 (s.e. = 0.291), 0.834 (s.e. = 0.310), 0.739 
(s.e. = 0.291), and 0.572 (s.e. = 0.292). The weights for nonsignificant (i.e. p > .05) 
intervals decrease monotonically as the'p-value increases. The weights that were 
greater than 1.0 indicate that studies in those intervals were more likely to be included 
than were studies in the first (most significan0 interval; that can occur only if there are 
fewer studies than expected in the first interval. Thus, while a reasonable p-value- 
related selection process appears to have occurred, it seems that studies with extremely 
large effect estimates may also have been censored to a greater degree than could be 
accounted for by our culling of effects greater than 4.0. The likelihood ratio test for the 
addition of the weights to the model was 22.066 on 9 degrees of freedom, p = .0087, 
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Therapy Type  Condition Treated 
Predicted Standard  Error 

Mean of Predict ion 

Complex Phobia 0.482 0.133 
Behavioral 

Simple Phobia 0.767 0.151 

Complex Phobia 0.531 0.173 
Desensitization 

Simple Phobia  0.727 0.147 

indicating that the weight function substantially improved the fit of the model. Adjusted 
estimates of the linear model's predictors are/30 = 0.482 (s.e. = 0.140);/31 = 0.049 
(s.e. = 0.130);/32 = 0.285 (s.e. = 0.119); and/33 = -0.089 (s.e. = 0.172). Adjusted 
means for the four possible treatment/phobia conditions are given in Table 2. Those 
adjustments represent reductions of 15 percent for either treatment of simple phobias, 
and 23 or 25 percent for behavioral or desensitization treatment of complex phobias. 
Note, however, that the standard errors of the predicted means are two to three times 
as large as they were before the weight function was estimated. 

The standard errors of the coefficients of the factorial ANOVA model suggest that 
little would be lost by dropping the main effect of treatment type and the interaction, 
leaving the model A i = /30 + /31X2, where X 2 is defined as before---zero if the phobia 
is complex, or one if it is simple. Likelihood ratio tests both with and without the 
selection model confirm that suggestion. Without the selection model, the test statistic 
for the effect of dropping the parameters is 0.710 on two degrees of freedom, p = 
.7012; with the selection model, the statistic is 0.439 on two degrees of freedom, p -- 
.8029. The coefficient estimates for this simpler model are/3o = 0.650 (s.e. = 0.049), 
131 = 0.219 (s.e. = 0.064) before the selection model is applied, and/30 = 0.496 (s.e. = 
0.136),/31 = 0.242 (s.e. = 0.078) when the weight function is added. (The estimated 
weights are virtually identical to those of the factorial model.) The effect estimate for 
either treatment of simple phobias, then, moves from 0.869 to 0.738, a 15 percent 
reduction; the estimate for complex phobias is reduced by 25 percent, from 0.650 to 
0.496. 

One note of caution is in order. It would be wrong to conclude that the lack of need 
for an interaction term or therapy-type main effect in the model implies that behavioral 
therapies and desensitization therapies are equally effective against either simple or 
complex phobias. Recall that the proportion of each type of therapy that was applied to 
simple or complex phobias differed. Of the studies employing behavioral therapies, 60 
percent treated complex phobias, whereas 78 percent of the desensitization studies 
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treated simple phobias. Thus the situation is similar to an unbalanced ANOVA: the two 
main effects are confounded. 

Conclusions 

The model described and illustrated above shows one way to approach the problem 
of publication bias. Any model requires that assumptions be made about the nature of 
the problem. The assumptions of this particular model may be unusually strong, in that 
they include definite statements about the form of the distribution of the random effects 
(normality) and somewhat weaker statements about the form of the weight function. 
Those statements, however, appear to be plausible, and the model has performed well 
in simulations, even under rather extreme violations of distributional assumptions 
(Hedges & Vevea, 1993). In particular, the model's ability to reduce the bias of effect 
estimates when censorship has occurred appears to be quite robust to violations in the 
form of the distribution of random effects so long as the between-studies variance 
component o -2 is not large compared with the conditional variances o .2 . . . . .  o -2 . 
Indeed, the procedure described here should be more robust than those studied by 
Hedges and Vevea (1993) because it models some of the between-study variation as due 
to study characteristics, and so reduces the magnitude of between-study variation. 
Nevertheless, the results should be treated with caution. Note, for example, that 95 
percent confidence intervals for the predicted means after estimation of the weight 
function (Table 2) would in all cases include the predicted means estimated without the 
selection model (Table 1). It might be more appropriate, then, to interpret the psycho- 
therapy results as indicating that bias is probably present and may be substantial, so 
that the conventional effect estimates should be regarded with skepticism, rather than 
placing great confidence in the exact values of model-adjusted effects. 

Appendix 

The requisite derivatives for the diagonal of the Hessian matrix are 

O0)'~J 2" : i=l ~ (Ekm I= O.~mBirn) 2} 0.)2 , 

J k OBirnX2 E k 02Bim 

i=I ~2i ' 

and 

02L n I 

0(o'2) 2 .= 2n¢  

n 

i~l 'r~ . . . .  E 

~ 2B im 
E k  OJm 

m=l ~(O-2)2 

to m B irn 

2 

+E 
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where the first partial derivatives of Bim are the same as before, and the second partial 
derivatives are 

f 2 bil -- Ai Iba - Ai\ IX~-~-73~-~7-i) i f m  = 1; 

O---'~)2"='~[X~( -~i (~ g ') ~f  ~ ~i II if l < m  < k ;  

, l} 4) if m = k,  

and 

(bil -- mi) 3 3(b i l  - Ai) [bil -- Ai\ 
~ b ~ - - ~ . . - - }  if  m = 1; - - 4 g / r - -  \ " '  / 

[(bim - Ai) 3 3(bim - Ai)~ [bi m-1 - Ai\ 

= [(bi,~-i - Ai)  3 3(b/--~m-1 - A i ) \  [bi,m-1 - Ai \  

--('(bi'k--~Tmi) - 3 ( b i ' k ¢ (  m'> I ~)(bi'k-1-----Ai I i f m = k .  
\ t4'l~i of.oi ] \ "t']i ] 

The off-diagonal elements of the matrix are 
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0 4  
0~j00.2-- E 

i=l 

( E k =  I OBim\[ k OBim I 
¢°rn 0 - ~ j  ) I E m = t  COn 190.21 

( E k = l  cornBim) 2 

n 

- E  
i=1 

02Oim 
Ek  tom 

m=l Oj~j00- 2 

Ek  comBim 
m=l 

n 

Xi j  - -  
i=1 

Y/ - A i 
4 

r/i 

where 

02nim 

o~jo& 

and 

,7- \ I 

XijXi.[bim_q Ai ~)(bim_7~ Ai) 

L \ m 

bi,k-1 7 ai gbIbi,k - 1 -  Ai) 
~- -giJ'gie 7] 3 \ ~i 

i f m  = 1; 

i f l  < m  < k ;  

if m = k, 

f Xij [bil - Ai\rlbil  - A i\2 ] 
t ,7, ) - l j  

] X i j  [birn - A i \ [ [ b i m  - A i \ 2  ] 

O~jOrr 2 = l x i j  [bi,rn-1 - Ai \[  [b i ,m- I  - Ai \ 2 1 ] 

J 
| - X q  [bi ,k -1  - A i \ [ [ b i , ~ - t  - A i \  2 

i f  m =  1; 

i f l < m < k ;  

i f m  = k .  

References 

Begg, C. B. (1994). Publication bias. In H. Cooper & L. V. Hedges, The handbook of research synthesis (pp. 
399-409). New York: Russell Sage Foundation. 

Begg, C. B., & Berlin, J. A. (1988). Publication bias: A problem in interpreting medical data (with discussion). 
Journal of the Royal Statistical Society, Series A, 151,419-463. 

Bozarth, J. D., & Roberts, R. R. (1972). Signifying significant significance. American Psychologist, 27, 
774-775. 

Cooper, H., & Hedges, L. V. (1994). The handbook of research synthesis. New York: Russell Sage Foun- 
dation. 

Coursol, A., & Wagner, E. E. (1986). Effect of positive findings on submission and acceptance rates: A note 
on meta-analysis bias. Professional Psychology, 17, 136-137. 

Dawes, R. M., Landman, J., & Williams, M. (1984). Discussion on meta-analysis and selective publication 
bias. American Psychologist, 39, 75-78. 

Dear, K. B. G., & Begg, C. B. (1992). An approach for assessing publication bias prior to performing a 
meta-analysis. Statistical Science, 7, 237-245. 



JACK L. VEVEA AND LARRY V. HEDGES 435 

Dickersin, K., Min, Y-I, & Meinert, C. L. (1991). The fate of controlled trials funded by the NIH in 1979. 
Controlled Clinical Trials, 12, 634. 

Dickersin, K., Min, Y-l, & Meinert, C. L. (1992). Factors influencing the publication of research results: 
Followup of applications submitted to two institutional review boards. Journal of the American Medical 
Association, 267, 374-378. 

Easterbrook, P. J., Berlin, J. A., Gopalan, R., & Matthews, D. R. (1991). Publication bias in clinical research. 
Lancet, 337, 867-872. 

Greenwald, A. G. (1975). Consequences of prejudice against the null hypothesis. Psychological Bulletin, 82, 
1-20. 

Hedges, L. V. (1984). Estimation of effect size under nonrandom sampling: The effects of censoring studies 
yielding statistically insignificant mean differences. Journal of  Educational Statistics, 9, 61-85. 

Hedges, L. V. (1992). Modeling publication selection effects in meta-analysis. Statistical Science, 7, 246-255. 
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. New York: Academic Press. 
Hedges, L. V., & Vevea, J. L. (1993). Estimating effect size under publication bias: Small sample properties 

and robustness of a selection model. Manuscript submitted for publication. 
Iyengar, S., & Greenhouse, J. B. (1988). Selection models and the file drawer problem. Statistical Science, 

3, 109-135. 
Kendall, M., & Stuart, A. (1979). The advanced theory of statistics. Volume 2, Inference and relationship 

(4th ed.). London and High Wycombe: Charles Griffin and Company. 
Lane, D. M., & Dunlap, W. P. (1978). Estimating effect size: Bias resulting from the significance criterion in 

editorial decisions. British Journal of Mathematical and Statistical Psychology, 31, 107-112. 
Light, R. J., & Pillemer, D. B. (1984). Summing up: The science of reviewing research. Cambridge, MA: 

Harvard University Press. 
Melton, A. W. (1962). Editorial. Journal of Experimental Psychology, 64, 553-557. 
National Research Council (1992). Combining information: Statistical issues and research opportunities. 

Washington, DC: National Academy Press. 
Nelson, N., Rosenthal, R., & Rosnow, R. L. (1986). Interpretation of significance levels by psychological 

researchers. American Psychologist, 41, 1299-1301. 
Rosenthal, R., & Gaito, J. (1963). The interpretation of levels of significance by psychological researchers. 

Journal of  Psychology, 55, 33-38. 
Rosenthal, R., & Gaito, J. (1964). Further evidence for the cliff effect in the interpretation of levels of 

significance. Psychological Reports, 4, 570. 
Smith, M. L. (1980). Publication bias in meta-analysis. Evaluation in Education, 4, 22-24. 
Smith, M. L., Glass, G. V., & Miller, T. I. (1980). The benefits of  psychotherapy. Baltimore: The Johns 

Hopkins University Press. 
Sterling, T. C. (1959). Publication decisions and their possible effects on inferences drawn from tests of 

significance or vice versa. Journal of the American Statistical Association, 54, 30-34. 
Vevea, J. L., Clements, N. C., & Hedges, L. V. (1993). Assessing the effects of selection bias on validity data 

for the general aptitude test battery. Journal of  Applied Psychology, 78, 981-987. 
White, K. R. (1982). The relation between socioeconomic status and achievement. Psychological Bulletin, 

31,461-481. 

Manuscript received 5/13/94 
Final version recefi~ed 8/29/94 


