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Why Do Categories Affect Stimulus Judgment?

Janellen Huttenlocher, Larry V. Hedges, and Jack L. Vevea
University of Chicago

The authors tested a model of category effects on stimulus judgment. The model holds that the
goal of stimulus judgment is to achieve high accuracy. For this reason, people place inexactly
represented stimuli in the context of prior information, captured in categories, combining
inexact fine-grain stimulus values with prior (category} information. This process can be
likened to a Bayesian statistical procedure designed to maximize the average accuracy of
estimation. If people follow the proposed procedure to maximize accuracy, their estimates
should be affected by the distribution of instances in a category. In the present experiments,
participants reproduced one-dimensional stimuli. Different prior distributions were presented.
The experiments verified that people’s stimulus estimates are affected by variations in a prior
distribution in such a manner as to increase the accuracy of their stimulus reproductions.

It is well known that categorization affects stimulus
judgment. Two stimuli that are actually equidistant may be
judged as more similar or may be harder to discriminate if
they are from a common category than if they are from
different categories, and an individual stimulus from a
particular category may be judged closer to the center of that
category than it actually is. There is an extensive literature
starting early in the century, and continuing to the present,
showing bias due to categories in many domains. For
example, the social categories that people use may affect
their judgment of individuals, the set (category) of experimen-
tal stimuli presented to people may affect their judgment of
particular stimuli, and so forth {e.g., Bartlett, 1932; Brewer
& Nakamura, 1984; Hollingworth, 1910; Poulton, 1989;
Tajfel, 1959).

In the present article, we test a model that holds that
category effects on stimulus judgments arise in pursuit of an
adaptive goal—to maximize accuracy. Anderson (1990,
1991) has suggested that establishing what goals an organ-
ism is pursuing should be the first step in cognitive
modeling. Models of goals should precede detailed models
of cognitive processing, he argues, because goals constrain
processes, We propose a Bayesian model of stimulus
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Jjudgment in which people use prior information, in the form
of categories, to adjust inexactly represented stimuli; this
gives rise to bias but improves accuracy by reducing the
variability of estimates. Indeed, if the goal of stimulus
judgment is to maximize average accuracy, it would be
irrational for the cognitive system notf to produce biased
estimates,

Recently, a variety of findings, originally interpreted as
showing bias and flawed reasoning, have been reexamined
to determine whether people might actually be using rational
processes, appropriate to their goals. Oaksford and Chater
(1996) have reinterpreted apparent errors on deductive
reasoning tasks (e.g., Wason 1968), showing that people
actually may treat the tasks as inductive problems where “a
Bayesian approach to optimal data selection” is used to
maximize ‘“‘expected information gain” (p. 382). Earlier,
Kahneman and Tversky {1972) investigated whether people
use Bayesian procedures to improve the accuracy of their
judgments under uncertainty. In categorization tasks, where
it is uncertain what category a stimulus belongs to, differ-
ences in the likelihood of the alternatives should be taken
account of in decision making. Kahneman and Tversky
found that the relative frequencies of alternatives were often
ignored (base rate neglect), seemingly indicating that hu-
mans are not rational operators. However, in an extensive
review of the literature, Koehler (1996) found that base rate
neglect is not the rule; in many tasks, people do use base
rates in making decisions. Kruschke (1996) presented evi-
dence that even in cases of apparent base rate neglect, it can
be shown that people actually are sensitive to base rates in
category decisions. Nosofsky (1998) has shown that his
exemplar model of how people decide what category a
stimulus belongs to actually constitutes an explicit Bayesian
model, even though the model arose from other
considerations.

Although the use of relative frequencies across categories
to improve the accuracy of category membership judgments
has been explored, the possibility that relative frequencies
within a category are used in a parallel fashion in judgments
of individual stimulus values has not been systematically
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explored. Yet it is widely accepted that, at least in certain
ways, prior information about relative frequency within
categories is used adaptively; notably, correlational structure
is used to infer the unobservable features of stimuli (Rosch,
1975, e.g., the more green a liquid is, the more likely it is to
be poisonous). In general, relative frequency is potentially
functional information. Consistent with this view, Murphy
and Ross (1994) found that people even preserve relative
frequency for nondefining attributes of categories. Here we
examine whether within-category relative frequencies are
used to increase accuracy in the judgment of inexactly
represented stimuli from those categories.

Our model is a precisely specified Bayesian model. It
holds that in pursning the goal of maximizing accuracy,
people use prior information in estimating stimulus values
that are represented inexactly. Prior information is incorpo-
rated into decision making in the form of an explicit prior
distribution, and the inexactness of the fine-grained informa-
ton is incorporated as a sampling distribution. Given a
category (an explicit prior distribution) and an inexact
stimulus value (a sampling distribution describing the uncer-
tainty of current data), Bayes’s theorem provides a method
for combining the information to provide estimates with
certain optimal properties. A posterior distribution summa-
rizes uncertainty after combining the uncertain data and the
prior information. The mean of this posterior distribution is
called the Bayesian estimate; it has the property of being the
“most accurate™ estimate in the sense that it minimizes
average error.

In our model, category effects arise at estimation when
people combine fine-grain and category information to
achieve high accuracy of judgment. Other recent approaches
posit that category effects arise at encoding. Category
learning, it is argued, alters the way stimulus dimensions are
represented in memory. For example, Nosofsky (1986)
proposed that category learning leads to the “stretching™ of
a category’s dimensions relative to other dimensions. Gold-
stone (1994) proposed that, in addition, category learning
stretches selected regions of a single dimension when that
dimension is divided into more than one category. The
notion of stretching at category boundaries has its roots in
earlier work explaining why phonemes are easier to discrimi-
nate when they are from different categories than from the
same category, a phenomenon described as categorical
perception (e.g., Liberman, Cooper, Shankweiler, & Studdert-
Kennedy, 1967). Goldstone obtained parallel effects on
discrimination after teaching people categories, and he too
described the effect as occurring at perception or encoding.
If category leaming alters encoding because it changes the
psychological distances among physically equidistant stimuli,
estimates of stimuli also should be affected by such learning.
The question of whether observed biases in estimation can
be explained in terms of effects of stretching at boundaries
on encoding is discussed at the end of the article.

The Category Adjustment Model

This article concerns inductive categories—that is, catego-
ries formed from observed sets of stimuli. The model deals

with statistical aspects of the representation of stimuli and
categories. We treat a stimulus as a point on a set of
dimensions, and a category as a distribution of stimuli.
Although inductive categories are treated as statistical
distributions in our model, we recognize that this is an
incomplete characterization of such categories. Inductive
categories tend to capture statistical regularities that matter
for human purposes, and they are often embedded in general
theories (e.g., Goodman, 1972; Murphy & Medin, 1985).
Hence in modeling categories as distributions of observed
sets of stimuli, one should remember that some categories
also incorporate expectations (general principles, theories)
about what the new distribution should be like (e.g., where
boundaries are located, distribution shape, etc.). For ex-
ample, a person might set an upper boundary for the width of
trucks as some proportion of the presumed width of highway
lanes.}

In this article we have chosen categories that, it scems,
would incorporate only distributional information, allowing
us to evaluate a critical prediction of our Bayesian model: If
people use prior distributions to increase the accuracy of
their judgments of stimuli, then the characteristics of those
distributions should affect estimation in the ways we de-
scribe in this article. We test the predictions using a simple
task, We present, one at a time, unidimensional stimuli that
vary over a bounded range. After each stimulus is removed,
pecple reproduce it, providing us with information about the
bias and variability of their estimates. By varying the
distribution in which exactly the same stimuli are embedded,
we can examine whether estimates of those stimuli vary as
they should if people follow procedures to maximize the
average accuracy of estimates.

We first provide the background for the predictions tested
in this article by summarizing our earlier work, laying out
the model’s assumptions about how fine-grain stimuli and
categories are represented and how information at these two
levels is combined in processing (Huttenlocher & Hedges,
1994; Huttenlocher, Hedges, & Duncan, 1991; Huttenlocher,
Hedges, & Prohaska, 1988). (Note that the assumptions
about representation and processing are skeletal, serving
only to characterize the logic of people’s strategy sufficiently
to allow us to test our model of the hypothesized goals of
stimulus judgment) Then we test an important set of
predictions of the model; these concern the ways variations
in the nature of a prior distribution should affect stimulus
estimation. We test these predictions in three studies.

Assumptions of the Model
Representation

Fine-grain stimulus values. A stimulus in the model
consists of a value on a set of dimensions—for inanimate

! In fact, some categories are not induced from sets of instances
at all. For example, spatial categories may be formed by treating
the axes of symmetry of a figure as boundaries (Huottenlocher et al,,
1991), or temporal categories may be formed by treating the start
and end dates of academic terims as boundaries (Huttenlocher et al.,
1988).
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objects, their physical characteristics (height, etc.), or for
animates, their personal characteristics (intelligence, etc.)—
but the mental representation of a stimulus generally is
imprecise. Hence we treat stimulus representation as an area
of inexactness around a stimulus value. In cases where
people’s judgments of stimuli fail to correspond to physi-
cally measured values (i.e., where judgment is hiased), many
investigators represent the stimuli using nonveridical psycho-
logical scales. In our model, we instead derive nonveridical-
ity of stimulus judgment from physically measured stimulus
values, explaining the nonveridicality associated with catego-
ries by positing that people combine representations at two
levels of detail. We also use physically measured values to
express the nonveridicality associated with dimensions that
increase in magnitude (¢.g., length and loudness). For such
dimensions, the discriminability of pairs that are equidistant
in physical units decreases as magnitude increases. The
traditional use of a psychological scale (log scale) equalizes
discriminability; however, we use an equivalent representa-
tion that preserves physically measured values, while recog-
nizing that variability increases with stimulus magnitude
(Huttenlocher, Hedges, & Bradburn, 1990).

Categories. A category is treated as a structure consist-
ing of a bounded range of values along a set of relevant
stimulus dimensions. The classic notion of categories is that
boundaries are exact and that all stimuli within the bound-
aries are equivalently good members. However, this clearly
is not true for categories induced from a set of stimuli. Such
categories capture the distribution of stimuli in a set and can
be described in terms of summary statistics (Anderson,
1991; Ashby & Lee, 1991; Fried & Holyoak, 1984; Homa,
1984). Such inductive categories have been described as
having a “graded” structure, with instances that vary from
good (near a central value, which is sometimes described as
a “prototype™) to poor, and boundaries that are uncertain
(“fuzzy”; e.g., Kay & McDaniel, 1978; Rosch, 1975).
Although the boundaries of inductive categories are uncer-
tain, they fill an essential function of categories; that is, they

are “‘projectible” (Quinten, 1957), supporting decisions as
to whether anew stimulus is a member.

The categories used in experimental studles are like
transient naturally occurring categories that capture regulari-
ties in particular contexts. For example, a person who is
assembling a desk may form a transient category of the sizes
of the screws in the kit. Such categories do not consist of sets
of unrelated items that serve temporary goals like ad hoc
categories such as “things to take out of the house in a fire”
(Barsalou, 1983). Rather, they are based on stimulus charac-
teristics that allow decisions about the membership of new
stimuli (despite uncertainty near boundaries).

In category learning experiments, a paradigmatic design
is to present two adjoining categories, X and Y; the test of
acquisition is the ability to identify those stimuli as Xs or Ys,
that is, to make a category judgment. The learning task
involves establishing what differentiates Xs from Ys. For
this task, models have varied in their assumptions about
whal is learned. Some models posit deterministic boundaries
between categories, with errors arising because of inexact-
ness of stimulus perception (Ashby & Lee, 1992; Maddox &

Ashby, 1993). Other models posit that categorization of a
new stimulus depends on an assessment of similarity to
members of one category or another. In this formulation, the
boundary between categories must be treated as uncertain
(Kalish & Kruschke, 1997; Nosofsky, 1986).

In natural contexts, people may form a single category, Z,
from a stimulus set. In this case, the test of category
acquisition is the ability to identify those stimuli as Zs or non
Zs. Holyoak (Flanagan, Fried, & Holyoak, 1986; Fried &
Holyoak, 1984) found that, after a set of category members
was presented, people could make judgments as to category
membership of stimuli. If a category is induced from a
sample of stimuli drawn from a particular distribution it will
have a graded structure; that is, there will be better and
worse instances reflecting the decrease in the probability of
membership at more extreme values. For certain observed
values, only 10%, 5%, or 1% of category instances would be
more extreme. Thus, category membership will be uncertain
for extreme values within the presented distribution, and
also, of course, for values slightly more exireme than those
presented. Note that the uncertainty of category membership
for extreme values in distributions of equal range will vary
with the shape of the distribution.

In acquiring an inductive category, the smallest number of
instances people can use to support inferences about the
characteristics of the distribution is two. Even this limited
information can be used to adjust stimulus values in
estimation and 1o crudely infer boundaries. Because the
standard error of the mean, the standard deviation, and any
percentile of the distribution of inmstances is inversely
proporticnal to the square root of the number of instances,
the standard error of these summary statistics is cut in half
after 8 instances and halved again afier 32 instances. In fact,
the mean and variance are fairly stable after incorporation of
information from 8 1o 32 instances. Thus, a person need not
experience many instances of a category to have a good
sense of its shape.

There are differing views as to how information about a
stimulus distribution is preserved in memory—as summary
statistics (mean, median, variance, boundaries) or as a set of
exemplars from which summary statistics are computed
when a category is used in processing. Our model makes
only minimal assumptions about representation, and for our
purposes, this distinction is not important. We simply
assume that summary statistics are available at the time of
stimulus estimation. (For a discussion of the indistinguish-
ability of these forms of representation in many cases see
Estes, 1986, and Barsalou, 1990.) For the tasks we examine,
it seemns likely that category information will be preserved in
memory as summary statistics rather than as individual
exemplars. Stimuli take many values along a dimension
(e.g., size, shade of gray). In fact, because the dimensions
are continuous the potential number of exemplars is infinite.

Processing

In our model, stimulus estimates are constructed by
combining fine-grain and category information. The fine-
grain value used in estimation is retrieved from the area of
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inexactness around the stimulus, based on a process analo-
gous to random sampling (as indicated under I in the
Appendix). Establishing the inexactness of that value in-
volves retrieving one or more additional values, again based
on a process analogous to random sampling. Here we
consider the estimation of stimuli that are treated as mem-
bers of a particular category (predictions for stimuli at
values where membership is uncertain are presented below).
A fine-grain stimulus value from the category is adjusted by
a weighted mixture with the central category value.? The
adjustment reduces the variability of estimates although it
causes estimates to be biased toward the category center.
The bias of the estimate of a particular stimulus is the
difference between the actual value of the stimulus and its
estimated value (as indicated under II in the Appendix).

The more inexact a stimulus representation, the greater
will be the bias of estimates of that stimulus. Consider why.
At one extreme, if representation is exact, there is no bias
because people give the correct value. At the other extreme,
if only the category, not the particular stimulus, is remem-
bered, bias is maximal because all estimates are at the
category center. Between these extremes, the more exact the
stimulus representation, the less the weight that should be
given to the central value (as indicated under IILA in the
Appendix). Although the bias of estimates should increase
monotonically with stimulus inexactness, the variability of
estimates shoutd not. When representation is exact, there
will be no variahility because each estimate will be correct;
when only the category is remembered, there also will be no
variability because each estimate will be at the central value.
Hence variability should first increase and then decrease as
stimulus inexactness increases (as indicated under IILB in
the Appendix).

Bayesian procedures can always reduce variance enough
to more than compensate for the bias introduced, thus
increasing accuracy by decreasing the distance (mean-
squared error) of an estimate from the true value. Bayes’s
theorem describes a procedure for computing optimal esti-
mates by trading off bias against variance (as indicated
under IV in the Appendix). The mathematical relation of
inexactness of stimulus representation to the bias and
variability for optimal (Bayesian) stimulus adjustment is
shown in Figure 1.

Figure 2A shows a schematic plot of bias for stimuli at
different locations across a category. True values are on the
horizontal axis, and bias is on the vertical axis. The bias
curve shows a downward slope, where estimates for small
stimuli are larger than true values and estimates for large
stimuii are smaller than true values. The exact shape and
slope of the bias curve for a category depends on the extent
of inexactness of stimulus representations. Stimulus inexact-
ness is affected by the experimental situation—exposure
conditions, interference tasks, and so forth. The more
inexact the stimulus representations, the steeper the bias
slope should be {as indicated under V in the Appendix).
Huttenlocher et al. (1991) showed a steeper bias slope when
an interference task was given.

The characteristics of stimuli themselves also affect the
inexactness of their representation, For dimensions that

A

O

Bias(R)

V(R

al‘ll
Figure 1. Effects of adjustment using optimal weighting for
varying memory inexactness {d,) on (A) bias and (B) variability.
R = response; V = variability.

increase in magnitude (i.e., where psychophysical scaling is
traditionally used), larger values are represented less exactly
than smaller values. Therefore, in physical units the bias
curve will become steeper where fine-grain values across a
category become less exact because the prototype will be
more heavily weighted for larger values, as shown in
Figure 2B.

Effects of Differences in Prior Distributions
on Estimation

This article tests the model’s predictions as to how
variations in prior (category) information should affect

2 This is true for an inductive category, consisting of a statistical
distribution. In contrast, some categories have exact boundaries
{e.g., temporal categories such as academic semesters) such that an
inexact stimulus value may be retrieved that lies outside the
boundary. In this case, the value may be rejected and another value
may be sampled, truncating the distribution of sampled fine-grain
values and resulting in large bias near the boundary (see Hutten-
locher et al., 1988).
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Actual Stimulus Value

Actual Stimulus Value

Figure 2. Bias due to adjustment using optimal weighting when
memory inexactness of different stimuli is (A) equal and (B)
increases with stimulus magnitude.

stimulus estimation. To test the predictions, we contrast
judgments for the same stimuli when these are embedded in
different distributions. The first prediction is that for distribu-
tions with the same range of values, the weight given to
category information away from the center should be
affected by relative density. At fixed locations toward the
ends of the range of values, the probability of membership is

higher for uniform than for normal distributions; this should '

affect the weight given to category information, in turn
affecting the bias of estimates for those stimuli. The second
prediction is that the concentration of instances in the
category should affect the variability of stimulus estimates,
In particular, the variability of estimates of all categorized
stimuli should be less when the prior distribution (category)
is more tightly clustered; this prediction, which follows from
our Bayesian model, is not easily derived from other sets of
assumptions.

Uncertainty in Categorization

To the extent that an inexactly represented stimulus is
judged to be a category member, it should be adjusted
toward the center of the category, leading to bias in
estimation. To the extent that it is judged not to be a member,
it should not be adjusted and hence should be unbiased.

HUTTENLOCHER, HEDGES, AND VEVEA

Adjustment toward the center of the category increases
accuracy for a category member and decreases accuracy
otherwise. It seems intuitively reasonable to use an adjust-
ment of stimuli proportional to the judged probability of
category membership (as indicated under VI.A in the
Appendix). In fact, proportional adjustment, precisely stated,
can be shown to be a Bayesian estimate and therefore
optimal (as indicated under VI.B in the Appendix).

The exact weight given to the category in adjusting
extreme stimulus values depends, as we noted above, on the
shape of the distribution; it also depends on the conse-
quences of error (e.g., given the consequences of wrongly
considering a poisonous mushroom to be edible, people may
be expected to be more inclusive in what they treat as
poisonous than in what they treat as edible). The issue of the
consequences of error raises a broad set of issues that is
beyond the scope of the present model (although the issue is
discussed briefly at the end of this article). The prediction we
make here is that if the consequences of error are equal for
two categories of the same range, the category weights at
particular locations should be affected by the shape of the
distribution (i.e., the relative density of extreme values). The
relative density of instances at locations away from the
center of the category is lower for a normal distribution than
for a uniform distribution. Thus, when the consequences of
error are equal, the weight given to the category should
decrease more rapidly at extreme locations for a normal than
for a uniform distribution. Hence the bias function should
show higher curvature for the normal, flattening out and then
decreasing toward zero as the probability that a stimuius is a
category member falls to zero.

Finally, note that the likelihood that a stimulus in a fixed
position in a given distribution will be judged to be a
category member should be affected by the inexactness of its
representation. The less exact a stimulus representation is,
the greater is the range of values that may be retrieved for
that stimulus. For scales of increasing magnitude where
stimulus inexactness increases with magnitude, there are
two opposing effects, First, as we saw above, in regions
where category certainty is high, the bias slope will increase
as magnitude increases because the prototype is weighted
more heavily for more inexact values. Second, at a fixed
value that has a2 very low probability of membership, far
from the category center, bias will be less when the stimulus
is less exactly represented because-the area of stimulus
inexactness extends farther from the category center.

Variability of Instances

A stimulus that is judged to be a category member will be
adjusted toward the center. There are two consequences of
stimulus adjustrment: It reduces the variability of estimates
and it introduces bias. A Bayesian model predicts that the
variability of estimates of stimuli, at all locations in that
category, will be affected by the distribution. In particular,
estimates of a categorized stimulus from a category where
instances are more concentrated toward the center should be
less variable than estimates for the same stimuli embedded
in a category where instances are more dispersed. Consider
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why. At one extreme, if a category has just one stimulus
value, the variability of estimates of that stimulus will be
zero. At the other extreme, if instances are very dispersed,
the variability of estimates will be maximal because the
central category value provides minimal information about a
particular stimulus, and hence retrieved values will be
adjusted negligibly. Between these extremes, the greater the
concentration of instances is, the smaller is the variability of
estimates (see VILA in the Appendix). Hence, variability of
the estimates of categorized stimuli should be less for a
normal than a uniform distribution, and variation should be
less for distributions of the same shape when the range of
values is narrower.

Note that there is not a monotonic relation between the
concentration of instances in the category and the bias of
estimates. At one extreme, if a category has only one value,
bias is mecessarily zero. At the other extreme, if the
concentration of instances is very low, adjustment will
contribute minimally to accuracy, so again there should be
littie bias. Between these extremes of concentration, bias
should first increase and then decrease (see VILB in the
Appendix). The relation of concentration of instances to
variability and bias for optimally weighted combinations of
fine-grain and prototype information is shown in Figure 3,

The Experiments

In each of the three experiments in this article, we taught
people a category by presenting a set of stimuli that varied
along a single dimension, forming one cluster over a range
of values. Stimuli were presented one at a time on a
computer screen. Participants reproduced each stimulus
after it had been removed from the screen. We measured the
bias of the estimates for each stimulus; we expected to find a
single bias curve, providing evidence that people form a
single category. We did pilot work preparatory for the study
in which people first saw a series of stimuli (fish that varied
in fatness) and then judged category membership for a new
series of stimuli where the range of values was extended to
include stimuli outside the range of the initial set. People
were very accurate over the center range of values and, even
near extremes, were more likely to judge stimuli from the set
previously seen to be members than stimuli from outside
that range. The probability of judging extreme values to be
members fell off more rapidly for normat than uniform
distributions of the same range,

In each of our experiments we manipulated the distribu-
tion of stimuli; different groups of participants were pre-
sented with different distributions. One group was given a
uniform distribution, another group was given a normal
distribution of the same range of presented stimuli as in the
uniform condition, and two ather groups were given nar-
rower uniform distributions, comprising either the lower or
upper half of the stimulus values.’ The distributions are
shown in Figure 4. We examined reproductions as a function
of actual stimulus size for normal and uniform distributions.
Our model predicted that the pattern of bias across the
category would be nonlinear for the normal condition
because the uncertainty as to membership decreases the
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Figure 3. Effects of adjustment uwsing optimal weighting for
varying category concentration (op) on (A) variability and (B) bias.
R = response; V = variability.

extent of adjustment toward extreme values. We also
evaluated the effects of the dispersion of instances, compar-
ing the variability of stimulus estimates for the wide uniform
distribution with the two narrow uniform distributions and
the normal distribution. Our model predicted that the
standard deviation of estimates of stimuli would be greatest
far the wide uniform distribution.

We used three different dimensions in our three experi-
ments. For each of the dimensions, distances along the

3 Note that the distribution of stimuli presented in the “normal”
condition of our experiments is not precisely a normal distribution.
Rather, it is something of a hybrid between a normal and a
triangular distribution. For our purposes, the essential characteris-
tics of the distribution are that it is peaked in the center and sparse
in the tails and that it contains the same range of stimulus values
that are presented in the uniform stimulus condition. We continue
to refer to the distribution as “normal” only to avoid the necessity
of repeating a phrase such as “the distribution that embodies the
characteristics of a normal distribution that are important in our
model.”
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Figure 4. The distributions of stimuli presented in the experiments: (A) uniform distribution, (B)
normal distribution, (C) narrow uniform distributions (small}, and (D) narrow uniform distribution

(large).
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dimension could be measured in equal size physical units—
fatness of fish, grayness of squares, and lengths of lines.
However, the dimensions could be processed differently, and
we used the three to test whether the model holds fairly
generally, The dimension of fatness had zero as an absolute
boundary at the slender end; general principles could be
used to impose an uppet bound (e.g., that a fish isn’t fatter
than it is long). Shade of gray was bounded at both
ends—black at one extreme and white at the other; it was
unclear whether shade would be treated as a scale that
increases in magnitude. The dimension of length clearly
increased in magnitude, and it is one where psycholagical
scaling generally is used. For length, then, the inexactness of
representation should have increased with the magnitude of
the stimuli. This should have had two consequences. First,
the bias slope should have accelerated because the central
value was given increasing weight as stimulus inexactness
increased. Second, the bias slope should have leveled off and
begun to decrease sooner because when stimuli are less
exactly represented particular instances retrieved from mem-
ory will be more likely to fall far from the category center.

Experiment 1: Fish

In this study, participants were shown fish that varied in
fatness. After each fish was presented and removed, partici-
pants reproduced its size. We examined the estimation of
stimulus values in four different groups of participants who
“were presented with one of the four stimulus distributions
shown in Figure 4, We assessed the prediction that bias
would fall off nearer the category center for a normal
distribution than for a uniform distribution of the same
range. We also assessed the prediction that variability of
estimates would be less for narrower categories and for the
normal distribution in the region where certainty of member-
ship is high.

Method

Participants. ' The participants were undergraduate and gradu-
ate students at the University of Chicago drawn from a list of
people interested in participating in psychology experiments, There
were 10 participants in each of the four conditions. They were paid
$5 for a session lasting 30 min. .

Materials. The presentation of stimuli and the collection of
responses were controlled by a program that ran on a Macintosh
computer connected to a large (38§ cm wide X 29 cm tall)
monochrome monitor with a resolution of 30 pixels per cm. (Pixels
are used to describe the stimulus and response values because they
are the incremental unit used to adjust the images.) The stimuli
were figures representing fish, consisting of an elliptical body, a
fan-shaped tail, and a round eye. They varied only in fatness (the
vertical dimension). The other dimensions of the fish were con-
stant: The body was 400 pixels long (13.33 cm), the eye was 30
pixels in diameter (1 cm), the tail was 240 pixels (8 cm) long, and
the back of the tail swept in 120 pixels (4 cm). The height of the tail
was proportional to the height of the body but 10% smaller. The
body and tail of the fish were light gray, and the eye was black. The
fish were presented in the center of the computer monitor (see
Figure 5 for a scaled-down depiction of a typical fish within the
boundaries of the monitor}).

Figure 5. Tlustration of the schematic fish stimuli used in
Experiment 1.

In both the uniform and normal conditions there were 24 distinct
stimuli varying in body height from 160 pixels (5.33 cm) to 344
pixels (11.47 cm) in increments of § pixels (0.27 cm). In the
uniform condition, each stimulus was presented once within each
of eight blocks for a total of 192 trials. In the normal conditien,
stimuli neat the mean of the distribution were presented more
frequently than stimuli near the endpoints of the range. Within a
block, the distribution of stimuli was as follows: The two most
extreme stimuli (160 and 344 pixels) were shown once; the next
two stimuli from the tails of the distcibution (168, 176, 328, and
336 pixels) were shown twice; stimuli with a fatness of 184, 192,
312, and 320 pixels were shown three times; stimuli with a fatness
of 200, 208, 296, and 304 pixels were shown four times; stimuli
with a fatness of 216, 224, 280, and 288 pixels were shown five
times; stimuli with a fatness of 232, 240, 264, and 272 pixels were
shown six times; and the most central stimuli (248 and 256 pixels)
were shown seven times. There were 96 trials in each of two blocks
for a total of 192 trials. In the two narrow conditions, a smaller
range of stimulus values was presented. In the slender half, the
fatness of the fish varied from 160 to 248 pixels. In the fat half, the
fatness varied from 256 to 344 pixels. In these two conditions, there
were 12 stimuli presented once in each of 16 blocks. There were
192 trials in all four conditions.

Procedure. On every trial of the experiment, a fish was shown
in the center of the monitor for 2 s. Then, the screen went black for
200 ms, and after a delay of 1 s, the participants adjusted the size of
aresponse fish, attempting to match the size of the fish they had just
seen. The response fish had an initial height of 100 pixels (13.33
cm). To prevent participants from using landmarks to estimate the
height of the fish, we placed the response fish 65 pixels (2.16 cm)
lower than the stimulus fish and 104 pixels (3.46 cm) to the right.
The participants adjusted the height of the response fish by pressing
the “L” key on the keypad to make the fish larger and pressing the
“S"” key to make the fish smaller. When the participants were
satisfied with their estimate, they pressed the spacebar. Finally, the
participants heard a beep, which signaled them to prepare for the
next trial.

Scoring. On some trials, the participants did not make a
response. Instead of pressing the “S” and “L” keys to adjust the
fatness of the initial fish, they pressed the spacebar by mistake. To
prevent these cases from affecting the mean error, we deleted
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responses that exactly equaled the initial fatness of the fish.
Nonresponses occurred on only 0.99% of the trials in the uniform
condition, 1.21% in the normal, 0.94% in the slender half, and
0.89% in the fat half. We determined bias in estimation by
subtracting the actual fatness of the fish from the fatness of the
participant’s response. Some of the biases were so large that it
seemed the participant must have accidentally entered an arbitrary
response, perhaps because of striking the spacebar prematurely or
momentarily failing to attend to the task. To detect these cases, we
calculated quartiles of the distribution of responses for each
stimulus value, and we deleted responses deviating from the
median by more than three interquartile ranges (IQRs). The number
of responses deleted was relatively small. Both culling procedures
removed a total of 1.51% in the uniform condition, 1.56% of
responses in the normal condition, 1.09% in the slender half, and
1.25% in the fat half.

Results

Pattern of bias. For each of the four conditions in
Experiment 1, the mean bias is plotted as a function of the
actual fatness of the stimulus {see Figure 6). Under all
conditions, the bias ranges from positive for slender fish to
negative for fat fish and crosses zero near the center of the
distribution of stimuli. Such a pattern of bias supports the
prediction that estimates are shrunken toward a central
value. That is, participants tend to overestimate the fatness
of more slender fish in the presented distribution and
underestimate the fatness of fish that are fat relative to the
distribution. Thus, in the normal and uniform conditions, the
bias is zero in the vicinity of 252 pixels; for the slender
condition, the bias is zero near 204 pixels; and for the fat
condition, the bias is zero near 300 pixels.

Bias shape. The model predicts that for categories that
are equal in range the shape of the bias function is affected
by whether the distribution of presented stimuli is normal or
uniform. In the normal condition there should be less bias
near the boundaries because extreme stimulus values are less
likely to be considered category members than in the
uniform conditicn. As can be seen in Figure 6, the prediction
appears 10 be correct. The difference between the curves for
the distributions is substantial. At the slender end of the
distribution the bias for the normal condition is flat, whereas

the bias for the uniform condition is linear. Similarly, at the’

fat end the bias curve for the normal condition flattens out,
whereas the curve for the uniform condition continues its
linear pattern. This again is consistent with the prediction
that boundary uncertainty is greater in the normal condition.

In order to determine whether the shape of the bias curve
in the normal and uriform conditions is different, it is
desirable to compare a numerical index of bias shape.
Because decreased bias at the ends of the range results in a
less linear bias function, we examined the degree to which
bias departed from linearity. One such index of linearity js
obtained by considering the problem as a special case of
repeated measures and using orthogonal polynomial con-
trasts. For the uniform and normal conditions, we performed
an analysis of variance using each participant’s mean
response to each stimulus value and treating the stimuli as
different levels of a factor repeated within participants, A
sum of squares was calculated for each orthogonal polyno-
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Figure 6. Mean response bias in reported fish size, plotted as a
function of actual fish size under (A) the uniform condition, (B) the
normal condition, and (C) the slender and fat conditions.
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mial component; the degree to which the linear component
accounts for total variability was estimated by w2, the ratio
of the linear component’s sum of squares to the total of the
linear and nonlinear components’ sums of squares.

Values of n* approaching 1.0 indicate that the bias pattern
is primarily linear, whereas lower values indicate departures
from linearity. In the present experiment, we expect a high
value for the uniform condition and a lower value for the
normal condition. The values actually obtained were .953
for the uniform condition and .827 for the normal condition.
That is, the linear trend accounts for about 95% of total
explained variability under the uniform condition compared
with only about 83% for the normal condition. The differ-
ence may be attributed to the flattening of the bias curve at
the slender end and the hook toward zero at the fat end under
the normal condition.

A test for the difference between the two values of m? is
not available, so we developed an ad hoc procedure that is
equivalent to such a test in the critical respects. We
combined the normal and uniform data, incorporating condi-
tion (uniform vs. normal) as a between-groups factor. We
also included in the model the orthogonal polynomial
contrasts on stimulus magnitude, as well as terms represent-
ing the interaction between contrast components and stimu-
lus condition. We weighted the analysis to compensate for
heteroscedasticity resulting from analyzing means based on
different sample sizes. We then conducted a nested F test on
the collective sum of squares of the condition-by-contrast
interaction for the quadratic and cubic terms. (For practical
purposes, the linear and quadratic components account for
the bulk of the observed curvature,) That is, we observed the
change in the model sum of squares when those two
interactions were dropped from the model, transformed the
sum of squares for change into a mean square based on two
degrees of freedom, and divided by the error term for
repeated measures effects. The resulting F(2, 414) was
4.597, p = .011. The implication is that the greater curvature
associated with the lower value of 12 in the normal condition
is statistically reliable.

Standard deviation of bias. The model predicts that the
standard deviations of stimulus estimates should vary for
different stimulus distributions. First, responses for the
normal condition should be less variable than responses for
the uniform condition. Second, responses for a uniform
distribution should be less variable when the range of stimuli
is smaller (as when the narrow slender and fat uniform
conditions are compared with the wide uniform condition).

First, let us compare the standard deviations for the
normal and uniform distributions. We should restrict our-
selves to a region within the categories where the certainty
of membership is equal. Because the certainty that a
stimulus is in the category decreases more markedly near the
boundaries for a normal distribution than for a uniform
distribution, we elected to compare standard deviations over
a central region where participants were quite certain of the
category for both distributions. Hence, we focused our
attention on the 10 most central stimuli. For each of those
stimuli, we calculated the standard deviation of raw re-
sponses. Then, we calculated the natural logarithm of those

standard deviations and compared the mean log standard
deviation for the uniform and the normal conditions using
the two-sample independent groups ¢ test. (The log transfor-
mation is the appropriate variance stabilizing transforma-
tions; see Bartlett & Kendall, 1946. Resuits did not differ
appreciably for untransformed data.) The mean log standard
deviation for the normal condition was 3.003; for the
uniform condition, the value was 3.177. The difference is
highly significant, #(18) = 4.875, p < .0002. (See Table 1 for
a summary of the standard deviation comparisons for both
logged and untransformed values.)

Next, let us compare the standard deviations for uniform
distributions that vary in width. Because the shapes of the
distributions were the sarne, the issue of category uncer-
tainty seen in the comparison of normal and uniform
distributions was not a concern. Thus, we compared the
logged standard deviations for all values in the slender and
fat half distributions with the comparable values in the wide
uniform distribution. The average transformed standard
deviation in the slender half distribution was 2.808, and the
average for the slender half of the wide distribution was
3.116. The difference was highly significant, £(22) = 8.057,
p < .00001. Note that participants in the slender half
condition saw twice as many examples of each stimulus as
did participants in the wide uniform condition; that could
provide an alternate explanation for observed differences in
standard deviations. Accordingly, we repeated the test using
only the first half of the slender condition trials. The results
were virtually identical: The average logged standard devia-
tion was 2.814, and the test for the difference between that
value and the average for the narrow half of the wide
uniform condition remained highly significant, #(22) =
8.545, p < .00001. We also compared average logged
standard deviations from the fat half condition with the
corresponding standard deviations in the wide uniform
condition. The mean transformed value for the fat half trials
was 2.977 (or 2.964 when only the first half of the trials was
considered). The mean logged standard deviation for the fat
half of the wide uniform condition was 3.285. The difference
was highly significant, #(22) = 7.981, p < .00001; #(22) =
7.826, p < .00001, when only the first half of the fat irials
was considered. The variability of responses, then, was
lower for every condition in which information about the
category was more precise.

Table 1
Variability in Experiment 1
SD

Condition  (in pixels) Log SD t df P
Normal 19.950 3.003
Uniform 24.033 3.177

Difference 4.083 0.174 4875 18 00012
Uniform 22.611 3.116
Skinny half 16.678 2.808 ‘

Difference 5.933 0308 8.057 18 5246 X 1078
Uniform 26.870 3.285
Fat half 19.673 2977

Difference 7.197 0308 7981 22 6.141 X 10°®
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Discussion

This experiment shows that categories were used in
estimating stimulus values, with responses biased toward a
central value (prototype) cortesponding to the mean or
median of the presented stimuli in all four conditions. The
prototype was focated at the same value for the uniform and
nommal conditions, where the range of presented stimuli was
the same, and at a different value in the siender and fat half
conditions where the range differed. The findings supported
the predictions of the model.

First, the shape of the bias function was affected by the
shape of the distribution for distributions of the same width.
According to the model, the extent of the bias is affected by
the probability that stimuli will be included in the category.
When instances are normally distributed, there are fewer
stimulus values near the tails of the distribution, which
should affect the subjective certainty of category member-
ship and hence prototype weighting, leading to less bias for
these stimuli. As predicted, these extreme stimulus values
showed less bias in the normal condition than in the uniform
condition.

Second, the variability of responses was less when the
concentration of instances was greater. According to the
model, variability of estimates should be less when a
category prototype is more precise. The precision of the
prototype was increased by reducing the dispersion of
instances about a central value in the normal versus the
uniform condition and by decreasing the range of presented
instances in the split half condition. In both of these cases,
the variability of responses was less than that in the wide
uniform condition.

Experiment 2: Shades of Gray

To test our model of the processes involved in estimating
stimuli from memory, it is important for us to show that the
same pattern of results holds for different stimulus dimen-
sions when the type of prior distribution is varied. Hence, we
examine a very different sort of dimension, shade of gray, to
determine whether people form categories and whether the
categories formed include information as to the dispersion of
instances.

Method

Participants. The participants, undergraduate and graduate
students at the University of Chicago, were drawn from a list of
people interested in participating in psychology experiments. There
were 10 participants in each of the four conditions. They were paid
$5 for a session lasting 30 min.

Marerials. The stimuli were squares that varied in shade of
gray. The squares were 200 pixels (6.67 cm) in size and presented
in the center of a 33-cm computer monitor. The room was dimly lit
by a single tungsten bulb. The shades of gray are described in terms
of the number of photometer units emitted by the computer
monitor. In the vniform and normal condition, there were 24 stimuli
varying in shade of gray from 700 (light) to 4,150 (dark) photo
units in increments of 150. (The units represent a linear transforma-
tion of photometer readings taken directly from the computer
screen, resulting in a scale of darkness.) The stimuli in the uniform

condition were presented once in each of 8 blocks for a total of 192
trials. In the normal condition, stimuli near the mean of the
distribution were presented more frequently than stimuli near the
endpoints of the range. Within each block, the distribution of
stimuli was as follows: once at 700 and 4,150; twice at 830 and
4,000; three times at 1,000, 1,150, 3,700, and 3,850; four times at
1,300, 1,450, 3,400, and 3,550; five tmes at 1,600, 1,750, 3,100,
and 3,250; six times at 1,900, 2,050, 2,800, and 2,950, and seven
times at 2,200, 2,350, 2,500, and 2,650. There were 96 trials in each
of 2 blocks for a total of 192 trials. In the light half condition, the
shade of gray varied from 700 to 2,350. In the dark half condition,
the shade varied from 2,500 to 4,150. In these two conditions, there
were 12 stimuli presented once in each of 16 blocks.

Procedure. On every trial, a gray square was shown in the
center of the monitor for 2 s. Then, the screen went black for 200
ms. After a 1-s delay, the participants adjusted the shade of a
response square to match the shade of gray they had just seen. The
response square had an initial shade that was lighter than any
stimulus. The participants adjusted the shade of gray by pressing
the “L” key on the keypad to make the square lighter and the “D”
key to make the square darker. When the participants were satisfied
with their estimate, they pressed the spacebar. Then, the partici-
pants heard a beep, which signaled them to prepare for the next
trial.

Scoring.  On some of the trials, the participants pressed the
spacebar by mistake instead of pressing the “L” and “D” keys to
adjust the shade of the initial gray square. These nonresponses
occurred on only 0.05% of the trials in the uniform condition,
0.16% in the normal, 0.36% in the dark half, and 0.16% in the light
half, and they were deleted. Error in estimating the shade of gray
was determined by subtracting the actual shade of gray from the
shade of the participant’s response. To detect cases where the
participant seemed to have responded arbitrarily, we deleted
responses that deviated from the median by more than three IQRs.
The culls removed a small portion of the trials, 0.31% in the
uniform condition, 0.21% in the normal, 0.63% in the dark half,
and 1.46% in the light half. Finally, the mean error for each shade
of gray was calculated from the remaining responses.

Results

Pattern of bias. In Figure 7, the bias is plotted against
stimulus magnitude for the uniform, normal, dark, and light
gray conditions. Once again, the bias patterns are consistent
with the prediction that responses are shrunken toward a
prototype. The bias ranges from positive for light grays to
negative for dark grays and is zero near the center of
distribution of presented shades. There is some suggestion of
a hook toward zero bias in each of the four conditions; the
hook appears for stimulus values at the dark end of the range
and is more pronounced in the normal than in the uniform
condition of the same range. The hooks are less pronounced
for the grays than for the fish, perhaps because the gray
stimuli covered such a large portion of the possible values
that there is no possibility that other categories of gray might
lie past the range encompassed by the shades presented.
Hence, the flattening of the bias curve is probably partly
attributable to increasing scale magnitude as stimuli ap-
proach the dark end of the continuum.

Bias shape. Again, the mode] predicts that the uniform
condition should exhibit a more linear bias pattern than the
normal condition. The index m? supports that prediction. For
the uniform condition, n? is equal to ,904. For the normal
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Figure 7. Mean response bias in reported shade of gray, plotted as
a function of actual shade under (A) the uniform condition, (B) the
normal condition, and (C) the dark and light conditions.

condition, it is .824. That is, about 90% of the explained
variability in the uniform condition is accounted for by the
linear trend, compared with only 82% for the normal
condition. We ceonducted the same nested F test for the
difference in curvature that we described in Experiment 1.
The resulting F(2, 414) had the value 0.015, p = 985, ns.
Thus, although the indices of curvature are consistent with
the proposition that the normal condition has a more
curvilinear bias pattern, any difference between the normal
and uniform conditions is shrouded in such a high degree of
noise that it is statistically trivial. This is not unexpected,
because the very nature of the gray stimuli is such that there
are ultimate bounds (black and white} beyond which stimuli
cannot exist. Hence, there is a natural limit to any curvature
effects associated with a tendency for extreme stimuli in the
normal condition to be perceived as outside the category.

Standard deviation of bias. The model’s prediction is
that the standard deviations of stimulus estimates should
vary for different stimulus distributions. Responses for the
normal condition should be less variable than responses for
the uniform condition, and responses for the dark and light
half uniform distributions of stimuli should be less variable
than responses for the wide uniform condition. Those
predictions were tested in the same manner as in Experiment
1. That is, logs of the standard deviations in the normal and
uniform conditions were compared for the central 10
stimuli, The average logged standard deviation for the
normal distribution was 6.801; the average for the uniform
condition was 6.866. The difference, while in the predicted
direction, was nonsignificant, t(18) = 1.509, p < .15. The
standard deviations for the light and dark half distributions
were compared with those of the comresponding stimuli in
the wide uniform distribution. The average logged standard
deviation in the light half distribution was 6.584, and the
value for the corresponding stimuli in the wide uniform
condition was 6.870. The difference was highly significant,
122y = 7.369, p < 00001, and the result was not
appreciably different when only the first half of the light
presentations was considered, mean logged SD = 6.568,
1(22) = 6.678, p < .00001. The average log-transformed
standard deviation in the dark distribution was 6.568, and
the average for the corresponding stimuli in the wide
uniform condition was 6.839. The difference was highly
significant, 1(22) = 5.960, p < .00001. The difference
remained significant when only the first half of the dark
presentations was considered; in that case, the mean logged
standard deviation for the dark distribution was 6.536,
1(22) = 5.440, p < .00002. Thus the variability of responses
was lower for each condition in which information about the
category was more precise, although the difference failed to
reach significance in the comparison of the uniform and the
normal distributions. The differences are summarized in
Table 2.

Discussion

As in the previous experiment, bias toward a prototype
located at the mean of the presented stimuli occurred in all
conditions. There was not a significant effect of the distribu-
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Table 2
Variability in Experiment 2
Condition 8D in Pixels Log 5D H ar p
Normal 902.452 6.801
Uniform 963.326 6.866
Difference 60.874 0.065 1.509 18 .1487
Uniform 966.081 6.870
Light hatf 726.700 6.584
Difference 239.381 0.286 7.369 18 2.246 X 1077
Uniform 937.494 6.839
Dark half 716.580 6.568
Difference 220914 0.271 5.960 22 5.350 x 1078

tion of stimuli within a category on the shape of the bias
curve. This may be because the grays presented in the
uniform and normal conditions ranged from nearly white to
nearly black. Thus, participants may have been more likely
to include all of the presented stimuli in the category because
other categories of gray were not possible. Also, the
variability of responses was affected by the distribution of
presented stimuli. There was less variability of responses
when the dispersion of instances about a central value was
less. Parallel to Experiment 1, variability of responses was
substantially greater for the wide uniform than for the half
uniform distributions. The difference in variability for
normal versus uniform distributions was in the predicted
direction, although it was not significant.

Experiment 3: Line Length

To test our model of the processes involved in estimating
stimuli from memory, we extend the set of dimensions for
which we examine category concentration to lines that vary
in length.

Method

Participants. The participants, undergraduate and graduate
students at the University of Chicago, were drawn from a list of
people interested in participating in psychology experiments. There
were 10 participants in each of the four conditions. They were paid
$5 for a session lasting 30 min.

Procedure. The participants’ task was to reproduce the length
of the horizontal line segment they saw. On every trial, a line was
presented in the center of the monitor for 2 s. Then, the screen went
black for 200 ms and, after a 1-s delay, the participants adjusted a
response line to match the line that had just been presented. The
response line had an initial length of 2 pixels. The participants
pressed the “S” key to make the line shorter and the “L” key to
make the line longer. When the participants were satisfied with
their estimate, they pressed the spacebar. The screen was cleared,
there was a brief delay, and the next {rial was presented.

Scoring. As in the previous experiments, there were some
nonresponses where the participants pressed the spacebar by
mistake. Thus, responses were deleted whenever they exactly
equaled the initial length of the line. Nonresponses occurred on
only 0.52% in the uniform condition, 0.36% in the normal, 0.28%
in the short half, and 0.21% in the long half. Error in estimation was
determined by subtracting the actual length of the line from the
length of the participant’s response. We deleted responses that fell
more than three IQRs from the median of each stimulus; as in the
previous experiments, it seemed that such responses must be the
result of participants’ momentary failure to attend to the task. The
culls removed a small portion of the trials, 0.63% in the uniform
condition, 0.36% in the normal, 0.63% in the short half, and 0.34%
in the long half. Finally, the mean error for each stimulus length
was calculated from the remaining responses.

Results

Pattern of bias. In Figure 8, the mean bias is plotied
against stimulus magnitude for each condition. For all
conditions, responses are shrunken toward a central value.

Materials. The experiment was conducted on a Macintosh . M . X
computer connected to a small color monitor 650 pixels by 500  Lhere is overestimation of short line lengths and underesti-
pixels (21.67 cm X 16.67 cm). For uniform and normal conditions, ~ Mmation of long lengths. . i
the stimuli were 24 black lines varying in length from 45 pixels (1.5 Bias shape. The prediction that the pattern of bias

cm) to 390 pixels (13 cm) in 15 pixel (0.5 cm) increments. In the
uniform condition, the lines were presented once in each of 8
blocks for a total of 192 trials. In the normal conditions, the
distribution of stimuli within each block was as follows: once at 45
and 390; twice at 60 and 375; three times at 75, 90, 345, and 360;
four times at 105, 120, 315, and 330; five times at 135, 150, 285,
and 300; six times at 165, 180, 255, and 270; and seven times at
195, 210, 225, and 240. There were 96 trials in each of 2 blocks for
a total of 192 trials. For the short half distribution, the lines varied
from 45 to 210 pixels. For the long half distribution, the lines varied
from 225 to 390. For both of these half distributions, the 12 lines
were presented once in each of 12 blocks for a total of 144 trials.
The height of the line was always at 7 pixels (0.23 cm).

should be less linear for the normal condition than for the
uniform was supported. For the normal condition, n? is
equal to .724; for the uniform condition, the value is .894.
That is, 89% of the explained variability in the uniform
condition is accounted for by the linear trend, compared with
only 72% for the normal condition. Comparing the normal
and wide uniform conditions, we note that there is a more
pronounced hook toward zero bias for the largest stimuli in
the normal condition. It should be noted that, contrary to
fatness of fish, the bias curve at the narrow ¢nd flattens even
for a uniform distribution. Moreover, the bias curve shows
curvilinearity consistent with the increasing stimulus magni-
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Figure 8. Mean response bias in reported length of line, plotted as
a function of actual line length under (A) the uniform condition, (B)
the normal condition, and (C} the short and long conditions.
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tude. That is, short line lengths appear to have more exact
fine-grain representation, as predicted. For differences in
curvature between the two conditions, F(2, 414) = 12.95,
p <.001,

Standard deviation of bias. Recall that responses for the
normal condition should be less variable than responses for
the uniform condition, and responses for the narrow half
uniform distributions of stimuli should be less variable than
responses for the wide uniform condition. These predictions
were tested in the same manner as in Experiments 1 and 2.
The logs of the standard deviations in the normal and
uniform conditions were compared for the 10 most central
stimuli. The average log-transformed standard deviation in
the normal condition was 3.926, and in the uniform condi-
tion it was 4.083. The difference is significant, #(18) =
2.306, p < .05. The logged standard deviations for the short
and long half distributions were compared with standard
deviations for comparable stimuli in the wide uniform
condition. The average logged standard deviation in the
short half distribution was 3.624, and for the corresponding
portion of the wide uniform distribution it was 3.618. The
difference was nonsignificant, 1(22} = —0.051, p > .95; the
result was similar when only the early trials of the short
distribution were considered, mean logged standard devia-
tion = 3.552, 1(22) = —0.446, p > .65. The average
transformed standard deviation in the long balf distribution
was 3.948, and the average for the corresponding stimuli in
the wide uniform condition was 4.345. The difference was
highly significant, 1(22) = 7.194, p < .00001. The result was
similar when only the early dark trials were considered: The '
mean for the dark half was 3.918, and the difference was
highly significant, 1(22) = 7.807, p < .00001. Thus, the
variability of responses was lower for two out of three
conditions in which information about the category was
more precise. Table 3 summarizes the results.

Discussion

As in the previous experiments, responses were biased
toward the center of the distribution, and increasing the
precision of the central value by concentrating instances in
the category led to less response variability. The dispersion
of instances within a category affected the shape of the bias
pattern. There was less bias for extreme stimulus values in

" the normal condition than in the uniform condition, Note,

moreover, that the pattern of bias is consistent with the idea
that length is a dimension with increasing magnitude, which
would traditionally be represented using a log scale. As we
discussed earlier, when stimulus uncertainty increases with
stimulus magnitude, bias should take the form of an
accelerating curve, as in Figures 8A and 8B. The downward
concavity in 8A, and in 8B up to the point of the hook that
begins at 315 pixels, seems more pronounced than in the
previous experiments. Our predictions about the effect of
stimulus condition on response variability were only par-
tially supported in this experiment. Decreasing the range of
presented instances (in the short half and long half condi-
tions) resulted in the predicted reduction in variability only
for the long half.
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Table 3
Variability in Experiment 3
Condition SD in Pixels Log SD ¢ df r
Normal 50.915 3.926
Uniform 60.270 4,083
Difference 9.355 0.157 2.306 18 0332
Uniform 39.224 3.618
Short half 38.699 3.624
Difference 0.525 —0.006 —0.051 18 9598
Uniform 77.664 4.345
Long half 52.309 3.948
Difference 25.355 0.397 7.194 22 3.283 X 1077

General Discussion

In this article we have evaluated a model that posits that
category effects on stimufus judgment arise in pursuit of an
adaptive goal—to maximize accuracy. According to the
model, stimuli are encoded hierarchically, at fine-grain and
category levels, and information at these two levels is
combined in estimation. The notion that stimulus encoding
is hierarchical and that people use prior information in
interpreting situations is familiar, It is widely recognized
that categories provide information about stimulus features
that are not observed in particular situations. However, the
use of category information to improve accuracy in estimat-
ing categorized stimuli has not been explored. Qur model
posits that because fine-grain stimulus representation gener-
ally is inexact, prior (category) information can be used to
reduce the variability of estimates enough that accuracy is
increased, even though some bias is introduced. People are
unaware of adjusting stimulus values in forming estimates;
the use of distributional information is automatic and
ubiquitous.

Our earlier studies tested one prediction of the model—
that the weight given to category information depends on the
inexactness of stimulus representation. If representation is
exact at the time of estimation, category information will not
be used; if it is very inexact, category information will be
important. This article verified another prediction of the
model—that the effect of inductive categories on estimation
depends on the nature of the observed distribution on which
they are based. First, when the relative density of instances
near category boundaries is low, as in a normal distribution,
the probability of membership drops off more away from the
category center than for a uniform distribution; hence the
bias curve should be less linear, leveling off or decreasing at
particular extreme locations. Second, when the concentra-
tion of instances in a category is greater, estimates of
stimulus values should be less variable. The present results,
together with our earlier results, strongly support the claim
that the processes used in estimating inexactly represented
stimuli are adaptive in that they achieve high average
accuracy.

This article used single dimensional stimuli to test the
model’s predictions. Clearty, it is important to know whether
this prediction about instance dispersion also holds for
multidimensional stimuli. In a recent study, we used two-

dimensional stimuli to test whether the concentration of
instances in a category affects the variability of estimates
(Crawford, Huttenlocher & Hedges, 2000). The study was
based on earlier work by Huttenlocher and Hedges (1994)
concerning the shapes of two-dimensional categories based
on observed densities of stimulus values. Category shape,
they noted, should reflect both the distribution of values on
each of the dimensions and the correlation between the
dimensions. When the dimensions are correlated, the cat-
egory should be elliptically shaped, with axes that vary in
width, as in Figure 9. In our study, stimuli varied along two
dimensions (shade of gray and fatness of fish) that were
correlated at .7. As predicted, an elliptically shaped category
was formed that reflected the correlated distribution that had
been presented; the variability of estimates measured along
the minor axis of the ellipse was smaller than the variability
measured zlong the major axis. This finding provides
powerful additional evidence for the medel’s prediction that

Dimension Two
4]
L

Dimension One

Figure 9. Schematic representation of a two-dimensional cat-
egory formed from correlated dimensions.
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the variability of estimates should be less when the concen-
tration of instances is greater.

Alternative Methods for Studying Stimulus Judgment

The judgment of stimulus magnitudes has long been a
focus of study by psychophysicists. The method of stimulus
reproduction, used in our studies, has been used only rarely
in psychophysical studies (excepting duration judgments).
Because these studies, like ours, attempt to relate “sensa-
tion” (i.e., the mental impression of a stimutus) to physical
stimulus values, it is important that the different methods
yield consistent results. Stimulus reproduction provides a
straightforward measure of stimulus judgment. The reason it
has not commonly been used may be that the stimuli
traditionally studied by psychophysicists cannot easily be
reproduced (e.g., the weights of objects). Even for the visual
stimuli we used, reproduction involved computers {e.g.,
reproducing shades of gray), but many psychophysical
studies were done before computers were used in experimen-
tal work.

Numerical Scales

The most common psychophysical tasks involve the use
of numerical scales. For example, people may be asked to
use the numbers 1 through 5, 1 through 9, and so forth, to
indicate line length from very short to very long. In some
experiments each stimulus is associated with a different and
unique number (called absolute identification), and in some
cases there are fewer numbers than distinct stimuli (called
category rating). The process of mapping mental impres-
sions of stimuli onto numerical responses may introduce
complexity beyond that involved in stimulus reproduction,
so these tasks may provide a less straightforward measure of
people’s impression of a stimulus. Nevertheless, many of the
effects found in psychophysics parallel our effects. Holling-
worth (1910) proposed a “central tendency of judgment”
that parallels the well-known schema or assimilation effect
we are concerned with. Many psychophysical studies focus
on contrast, which is generally found when stimuli in a set
are judged relative to an anchor stimulus falling outside that
set. The findings are consistent with our model; the stimuli
within the set are adjusted toward the center of that set,
whereas the anchor stimulus from outside the set is not
adjusted. Therefore, anchor stimuli are judged as more
different from members of the set than they truly are.

Not all findings of psychophysical studies are easily
reconciled with our model. One such effect, explored by
Parducci (19635), arises in tasks involving category rating.
Judgment is affected by the response categories available.
Parducci proposed a “range frequency principle” according
to which people tend to equalize the use of available
responses. Equalization of responses over an appropriate
range does not predict bias for a uniform distribution and,
for a normal distribution, response equalization would resuit
in adjustment outwards, away from the center of the
category, not inwards toward the center of the category, as
we found. As Poulton (1989) suggested, this principle may

apply only in experiments where rating scales are used and
thus would not be expected in cur reproduction task.

Discrimination

As we have seen, another method for evaluating category
effects is to compare the discriminability of stimulus pairs
that are equidistant in physical units when they are from a
single category versus two adjoining categories. In our
model, discrimination should be better for pairs that are from
different categories rather than from the same category
because comparisons are based on adjusted values. When
stimuli are drawn from two categories along the common
dimension, one may find two bias curves, one for each
category, as shown in the schematic plot in Figure 10.
Because the adjustment of stimuli in different categories is
made toward different prototypes, a discontinuity (contrast)
will be found across the category boundary. There will be
underestimation on one side of the boundary and overestima-
tion on the other side of the boundary, as we have
demonstrated on stimulus reproduction tasks {e.g., Hutten-
locher et al., 1991). Discriminability will be greater across a
category boundary, because adjusted stimulus values are
closer to category centers and farther from boundaries (and
each other) than physical values. Engebretson (1995) showed
this effect on a discrimination task using the same stimuli we
used earlier on a reproduction task.

Alternative Explanations of Category Effects on
Stimulus Estimation

Psychophysical studies generally have been concerned
with showing mathematical relations of stimuli to judgment
in various contexts, not with explanatory models. However,
there are alternatives to our model of the sources of category
effects. Let us consider two such alternative explanations
and contrast them with our model.

Regression to the Mean

A statistical model has been proposed for category effects
that, contrary to our model, holds that these effects can be

Actual Stimulus Value

Figure 10. Schematic representation of bias due to prototype
weighting for two adjacent categories.
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explained mathematically rather than requiring a psychologi-
cal explanation at all. In this view, spelled out by Johnson
and Mullally (1969), it is argued that the central tendency of
judgment is due to regression to the mean, as described by
Galton (1889). In Galton’s formulation, regression to the
mean arises because of measurement error, that is, because
uncertain values for one measure on a scale (e.g., an
individual’s test score) are used to predict uncertain values
for a second measure on that scale (e.g., a second score on
that test). The statistical argument is that an extreme value
on the first measure may be extreme not only because the
true value is ¢xtreme but also because measurement error
happens to fall in the same direction. Because an extreme
measurement error is unlikely to repeat, the value on the
second measure (the second test score) can be expected to be
less extreme than that on the first.

Galton's principle does not apply to all cases of bias
toward the mean. If the true stimulus value is the first
measure (e.g., the actual toudness of a tone or size of a
square, etc.) then it has no error. Therefore, error in this
measure cannot be invoked to explain why values on the
second measure are less extreme than those on the first4
Because this is the case in our experiments, another explana-
tion of bias toward the mean is required. That is, the term
regression to the mean can describe but does not explain the
central tendency of judgment unless there is measurement
error on both measures.

How Regression to the Mean Differs From Our Model

In our model too, statistical principles are invoked to
explain the central tendency of judgment. However, the
basis is different. Ours is a psychological explanation in
which people use category information to maximize the
accuracy of their estimates of inexactly represented stimuli.
‘We examine whether people behave as Bayesians by deter-
mining whether their estimates are affected by the nature of
the distributions in which stimuli are embedded. Qur moedel,
described mathematically in the Appendix, predicts the
general form the data should take. In this way, our model
also contrasts with many mathematical models in cognitive
psychology, generally information processing models, where
experimental data are used to estimate parameters necessary
for more refined predictions about those data.

Learned Distinctiveness

Another proposed explanation of category effects, as we
have noted, is that they are due to long-term changes in the
representation of stimulus dimensions caused by leaming a
category. Most directly relevant here is Goldstone’s (1994)
argument that category learning leads to stretching of
selected regions of a single dimension if that dimension is
divided into more than one category. Following earlier work
on phoneme discrimination, described as “‘categorical per-
ception” of phonemes (e.g., Liberman et al., 1967), Gold-
stone obtained parallel effects for discrimination after teach-
ing people categories, and he too interpreted the effects as
perceptual.

Although Goldstone focuses on discrimination tasks, the
notion that perception (encoding) is altered by category
learning implies that only altered values are available to the
cognitive system after learning. Although he does not
consider estimation of the values of categorized stimuli, bias
should be expected by his account because stimuli that were
equidistant before learning become “stretched” in the
learning process. A weakness of his proposal in explaining
the results of tasks involving stimulus reconstruction is that
it does not provide a mechanism by which variations in
experimental conditions should affect stimulus judgment,
Yet category effects on stimulus reconstruction increase
when stimulus representation is less exact—when encoding
conditions are degraded (Biederman, 1981), when stimuli
are in memory longer (cf. Bartlett, 1932; Brewer & Naka-
mura, 1984), or when interference tasks are given (cf.
Huttenlocher et al., 1991).

How Learned Distinctiveness Differs From
Our Model

In our model, as in Goldstone’s proposal, stimulus
judgment is affected by category learning. However, the
effect arises in making estimates rather than in the process of
encoding. A category is a structure in memory; category
information is used to improve the accuracy of judgment
when fine-grain encoding is inexact. Because fine-grain and
category information are both encoded, the category can be
used immediately in estimation if the fine-grain value is
inexact at that time. In addition, contrary to Goldstone’s
proposal, if estimates are made later, after a stimulus has
been in memory for some time, they are likely to be more
biased, because stimulus representation will have become
less exact. In short, it is a tenet of our model that
experimental conditions will affect the use of category
information; the weight given to the category reflects
stimulus inexactness at the time of estimation.

The present studies do not rule out the possibility that bias
arises entirely during encoding. However, our earlier work
provided evidence that stimulus adjustments are made at
estimation; that is, bias increased when an interference task
was introduced after the stimulus was presented and before
it was reproduced (Huttenlocher et al., 1991). The categories
in that study were not inductive categories. Howevet, in
recent work (Crawford, Engebretson, & Huttenlocher, 2000) .
we used stimuli that varied in length in a task where we
expected to find two sorts of bias—one occurring at
encoding and one at estimation. Lines of different lengths

4 Galton introduced the concept of regression to the mean in
connection with predictions of sons’ heights from those of their
fathers. He found that the sons’ heights tended to be less extreme
than their fathers’ heights. The physical measurement of heights
involves little error. Hence this might seem like our case, where
statistical regression would not be expected. However, the underly-
ing variable mediating the relation between fathers’ and sons’
heights is the genotype, whereas the measure is the phenotype; both
variables are “‘measured with error” with respect to the genotype. It
is error of measurement of the fathers’ genotype (the first measure)
that is the source of regression to the mean in Galton’s example.
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were embedded in the two contexts of the Muller-Lyer
illusion and in a neutral context. One group had lines that
had arrows pointing in, another group had lines that had
arrows pointing out, and a third group had no arrows. For
each context, there were two different conditions—one
where the line that was reproduced was present, and one
where the line reproduced had been removed from view, In
the line-present condition, bias due to Muller-Lyer arrows
occurred for lines of all lengths, but there was no bias toward
the mean length. In the line-absent condition, bias due to
arrows was similar to that in the line-present condition, and
there was bias toward the mean length in all three presenta-
tion contexts. Thus, in this experiment, bias toward a
prototype did not arise at encoding like the Muller-Lyer
effect, but only later.

Category Judgments

Our model concerns the use of relative frequency within a
category. As we have noted, earlier investigators examined
the use of relative frequency across categories in judgments
of category membership. Our model, which posits that
relative frequency information is preserved and uvsed to
improve accuracy, should affect both across-category judg-
ments and within-category judgments. The existing litera-
ture suggests that use of across-category frequencies may be
less ubiquitous than use of within-category frequencies,
Note that our Bayesian model would predict just this,
because rational category decisions are driven by their
consequences, and these may differ across categories. In-
deed, differences in consequences is a major reason for
partitioning objects into different categories (i.e., people
may form distinct categories of poisonous mushrooms and
edible mushrooms).

When category errors have unequal costs, accuracy may
not be the most important principle. Given the high cost of
wrongly classifying poisonous mushrooms as edible, mush-
rooms may be treated as poisonous if there is any possibility
that they belong in that category, or, as in the example in
Koehler’s (1996) article, people may be wreated for a rare
serious disease, even though benign conditions are more
frequent, becanse the consequences of misdiagnosis are dire,
Only when the consequences of mistakes are equally
disadvantageous is relative frequency the critical principle in
category decisions. Because within a category there is
generally a commonality of consequences, accuracy is the
important principle in stimulus estimation; relative fre-
quency contributes to average accuracy so adjustment of
stimuli is generally rational.

Further, cross-category frequencies are relevant to cat-
egory decisions only when category membership is uncer-
tain. When objects fall clearly within a particular category,
as Koehler has noted, cross-category differences in fre-
quency do not affect categorization. That is, even for
infrequent categories, such as rare diseases like hemophilia
or rare animals like aardvarks, unambiguous stimuli will be
reliably categorized. In contrast, within-category frequen-
cies can be used to improve the accuracy of estimation for all
the stimuli. This is especially true when a stimulus is clearly

within a category, but it is even true when there is
uncertainty regarding category membership.

Conclusions

Our model, which posits that bias results from an adaptive
mechanism that serves to increase the accuracy of judgment,
led us to do a set of studies where people reproduce a series
of stimuli. The model holds that people use prior (category)
information to improve the accuracy of their estimates of
inexactly represented stimuli. It makes predictions as to how
variation in the distribution of stimuli in an inductive
category should affect stimulus estimation. We verified these
predictions in this article. Our model makes only skeletal
assumptions about representation and processing because
our first step has been to find evidence for the claim that the
cognitive system operates so as to increase the average
accuracy of estimates of categorized stimuli. Having found
such evidence, our next step will be to develop more detailed
information-processing models to further specify the mecha-
nisms by which these adaptive ends are achieved.
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Appendix

Mathematical Model Created by Larry V. Hedges and Jack L. Vevea

First we present the notion of an inexactly represented fine-grain
stimulus value. Then we present the uses of prior information as
posited in the model. We start with the case where the area of
inexactness of a fine-grain value falls entirely within the bound-
aries of a category, We show how combining an inexact memory
with the central value of a category (a prototype) affects the bias
and standard deviation of responses, potentially increasing accu-
racy. Then we consider the predictions tested in this article. We also
show how variation in a prior distribution should affect estimation.
We show how variation in the concentration of instances in a
category affects the bias and standard deviation of responses. We
consider variation in dispersion and how the adjustment due to
category effects is affected when the boundaries of a category are
uncertain. .

L. Inexacmess of Fine-Grained Memories

Our model distinguishes responses (Rs) from the fine-grained
memory (M). The idea of inexactness in M is operationalized by
treating it as a random variable with standard deviation oy. We
posit that M has a normal distribution with mean p, which for
representations of a particular stimulus is equal to the true value for
that stimulus. An alternative description is that the representation
for a particular stimulus is M = p + € where € is a random
deviation with variance oZ,.

IL. Effects of Adjustment Toward Central Values of a
Category

Our model posits that the R is a linear combination of the
uncertain M (as in Section I) and the central value of the category
(p). The inexactness of the central value is operationalized as the
standard deviation of a random variable that reflects the dispersion
of values in the category. Note however that this inexactness
(denoted op) of the central value is not the uncertainty of the value
p, which may be known with great precision, but the inexactness of
p as an estimate of an arbitrarily chosen category value. In
Bayesian terms, op reflects the standard deviation of the prior
distribution, net the standard errer of the prior mean.

The weight (\) given to M is a smooth (differentiable) monotonic
function g of the ratio of memory uncertainty (o)) to category
concentration (og). Thus, the response is

R=AM+(1—-2\p,

where A = g(op/op) is a monotonic decreasing function whose
range is from 0 to 1. We assume that when the memory uncertainty
is zero, A = 1, so that the response is entirely determined by M.
Similarly, we assume that when the relative uncertainty of memory
is sufficiently large, the response is determined entirely by the
central category value. Thus g(0) = 1 and there exists a (large)
value ¢, such that g(¢) = Q. These considerations are sufficient to
demonstrate the properties of the bias and standard deviatior of R
that are used in this paper.

The bias of R is simply the expected value of R minus the actual
stimulus value, or

BR)=ER) —p= — 1)}u—p),

where p is the actual stimulus value. Thus, although M is unbiased,
R is biased toward the central valve of the category. The standard
deviation of R is simply

S(R) = Aoy,

which implies that S(R) = oy and adjustment reduces variability
because A < 1. Below we show that R may be more accurate than
M as an estimate of 1, and we derive the properties of the variance
and bias of R as op is held fixed and o, is varied and (in Section VI)
as o is held fixed and op is varied.

1. Category Effects When Memory Inexacmess (o)
Is Varied

In Sectien I we showed that using a weighted combination of
fine-grain and category information could increase accuracy. In this
section we determine the effects on the components of accuracy
(bias and variance) of varying memory uncertainty.

A. Effects on bias. To obtain the properties of the bias, we
compute the partial derivative of B(R) with respect to o, which
yields

B'(R) = g'(gylop)( — p).

Because g(x) is a strictly decreasing function, g'(x) < 0 and
therefore B'(R) is positive when p << p and negative when p > p.
Thus B(R) is strictly increasing whenever p << p (where bias is
positive) and strictly decreasing whenever p > p (where bias is
negative), so that increasing oy always increases the absolute
magnitude of the bias. Figure 1A shows the effect on the bias of
responses (for a fixed stimulus below the category center) of
changing o) from O to a very large value with op fixed. As
expected, the bias increases monotonically from O for small values
of oy to p — p for large values of ay.

B. Effects on variability. To obtain the properties of the
standard deviation of the response, we note that the partial
derivative of S(R) with respect to 0y,

S'(R) =\ + g'(oylop)oy,

need not be positive, so that S(R) need not be monotonic. In fact,
S(R) is never monotonic as a function of oy becanse S(R) always
has a maximum. Recall that g(0) = 0, so S(R) = 0 when oy = 0.
Recall also that there is a large value ¢ such that for (oaxfop) = ¢,
g(c) = 0, which implies S(R) = 0 for oy = cop. The intermed-
iate value theorem implies that there exists a point x between 0
and cop such that g’ (x) = 0. Thus there is a point x where S(R)

(Appendix continues)
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has a maximum, so S(R) cannot be monotonic as a function
of [+ 572

Figure 1B shows the effect on the standard deviation of
responses when optimal weighting is used. The standard deviation
of R exhibits the expected pattern of first increasing to a maximum
and then declining for larger values of oy,.

IV. Improving Accuracy

The accuracy of an estimate is the average or expected value of
the squared difference between the estimate and the true value. The
accuracy of an estimate can be shown to be the sum of the square of
the bias and the variance. The results of Section II can be combined
to give an expression for the accuracy (mean square error) of R in
terms of A, , p, and o5

MSER) = (\ — 1(n — p)* + Mo,

Therefore, solving for the values of M\ that give MSE(R) <
o2, gives the values of A for which the adjusted value R is
more accurate than the unadjusted inexact value from memory.
The expression for MSE(R) implies that MSE(R) < of, is
equivalent to

O — P — pP + A — Doy < 0.

Collecting terms and using the quadratic formula to solve the
carresponding equation for A yields that MSE(R) < &3, whenever

[(n=—pF —oylfi(n—pP + ol <A<

Thus, there is always a range of adjustment weights A (including
the optimal adjustment) that produce an adjusted estimate that is
more accurate than the unadjusted, but unbiased, inexact value
from memory. The optimal adjustment can be derived from Bayes’s
theorem. When the distribution of instances is normal {or uniform),
the optimal adjustment weight for the uncertain memory is
proportional to the reciprocal of the memory uncertainty or

A = o2lod + o).

V. Pattern of Bias Across the Category
In Section I we showed that the bias is

BR) =\ — D+ (1 - Np,

_ and argued that A was a monotonic decreasing function of the ratio
of memory uncertainty o,, to concentration op. If o), is constant
across the category, A will therefore be constant across the category
and bias will be a linear function of stimulus location . Because
A <1, X — 1is negative, and the bias as a function of p will have
negative slope as illustrated in Figure 2A. Alternatively, if memory
uncertainty increases with stimulus size, then A will decrease with
stimulus size and bias will decrease at a rate that increases as p
increases, as illustrated in Figure 2B. Note that any changes that
affect the category as a whole (such as changes in experimental
conditions) may change the slope or rate of change of the bias, but
they will not affect the general shape (e.g., linear or not) of the bias
as a function of stimulus size.

VI. Category Effects When Membership Is Uncertain

A. Response bias. Uncertainty about category membership
affects shrinkage toward the central value of the category for
stimuli that are sufficiently far from the center of the category. To
make explicit the effects of uncertain category membership, we
must first describe the model that applies when category member-
ship (or not) is certain.

Our model posits that when it is certain that a stimulus is a
member of a category, a response is generated by the process of
mixing fine-grain memory with category information, as we
described. When it is certain that a stimulus is #or a member of the
category, the response is based entirely on the fine-grain memory.
Thus, the bias of a response is simply

BR)=(A-Du—p

if the stimulus is a category memory, or { if not.
The standard deviation of responses is

S(R) = Aoy,

if the stimulus is a category member, or oy if not.

‘When it is uncertain whether a stimulus is a category member,
there exists some probability w (a function of p) that the stimulus
with true value p is considered to be a category member. As before,
to the extent that a stimulus is a member of the category, the
fine-grain memory will be adjusted using category information; to
the extent that the stimulus is considered a nonmember of the
category, the response will be the fine-grain memory. Therefore, if
category membership is uncertain, the response is

R=(1—mM+ w[AM + (1 — A)p]
and the bias of the responses then bacomes
B(R) = (1 — A)(p — W),
and the standard deviation of the responses is
SR) =1 — =l — Moy,

B. Improving accuracy when category membership is uncer-
tain. To show that this adjustment is rational consider the mean
squared error of R conditionally (on the decision about category
membership) where the randem variable C = 1 if a response is
derived from an inexact value (M) classified as certainly being in
the category and C = 0 if not. Thus the mean squared error of R is

MSE(R) = MSE(R|C = 1)P(C = 1) + MSE(R|C = O)P(C = 0),
and the mean square error of M is
MSE(M) = MSE(M|C = 1)P(C = 1) + MSE(M|C = O)P(C = 0),

where the notation P(A) is the probability of event A, and
MSE(R|A) is the conditional mean squared error given A. Because
the second terms of the righthand sides of the expression are
identical, but MSE(R|C = 1) < MSE(M), as shown in Section IV,
MSE(R) < MSE(M), this adjustment is more accurate than use of
the unadjusted inexact memories. Considering the probability  as
a prior distribution of category membership and applying Bayes’s
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theorem leads to the conclusion that if X is the optimal shrinkage
factor given in Section IV, then R is a Bayes estimate and therefore
optimal. Because the probability of category membership de-
creases with stimulus inexactness for stimuli away from the center
of the category, the expression for the bias given in this section
implies that inexactness will decrease bias by decreasing , the
probability of membership.

VII. Effects of Category Adjustment When the Dispersion of
Instances (ap) Is Varied

In Section IV we showed that a weighted combination of
fine-grain memory and the central value of a category could
increase accuracy. In this section, we determine the effects on the
components of accuracy (bias and variance) of varying the
distribution of instances in the category (op).

A. Effects on variability. To obtain the properties of S(R), we
compute the partial derivative of S(R) with respect to op

S$'(R) = —(0/0})8' (Tul0p).

Because g(x) is a strictly decreasing function, g’ < 0 and therefore
S'(R) is always positive; hence increasing op always increases
S(R).

Figure 3A shows the effect on standard deviation of R of
changing op from O to a very large value (with oy fixed). One
complication in producing plots where op is varied is that one

cannot fix the absolute position of the stimulus as op tends to zero.
The reason is that if op is sufficiently small any fixed stimulus
value will be too far from the prototype to be possible given the
small size of op. Consequently, the standard deviations of re-
sponses are plotted for a stimulus at the same relative position in
the category (one standard deviation below the category prototype)
as op increases. The standard deviation of R increases monotoni-
cally, approaching the value o, as op becomes very large.

B. Effects on bias. Because up depends on p, the partial
derivative of B(R) with respect to op is difficult to compute.
However, B(R) is never monotonic as ¢p is varied because B(R)
always has a maximum. Note that when op = 0, the category has
collapsed to a single value and hence p = p, so B(R) = 0 when
op = 0. Recall that when there is a large value ¢ such that for
(om/ap) = ¢, A = g(c) = 0, which implies that B(R) = 0 for op =
oy/c. The intermediate value theorem implies that there exists a
point x between 0 and oyfc such that g’'(x) = 0. Thus there is a
point where B(R) has a maximum so that B(R) cannot be
monotonic as a function of op. Figure 3B depicts the relation when
optimal weighting is used: The bias of R first increases for small
values of op (plotted as the one-fourth power of op to better
illustrate the pattern), reaches a maximum, and then decreases for
larger values of op.
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