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Multivariate visualization and analysis of photomapped artifact scatters
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Abstract

Simultaneous analysis of relationships between multiple artifact classes is required for characterization of many types of activity areas. This
paper illustrates improved forms of multivariate visualization, spatial analysis and integration of experimental results that are possible with GIS
based photomapping. Techniques are demonstrated through analysis of a hearth associated artifact scatter exposed during excavations of a Late
Archaic pithouse at Jiskairumoko, Peru. A multivariate density raster is created and additive color visualization is used for simultaneous display
of three artifact distributions. Performing unconstrained clustering in a GIS, space is classified by simultaneous relative density relationships
between multiple object types.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Spatial analysis of artifact distributions has been widely used
to define and examine activity areas in both archaeological and
ethnoarchaeological contexts and represents a well developed
intersection of archaeology, ethnography, and quantitative
methods. Nowhere has this intersection been more productively
articulated than the analysis of household and hearth-based
contexts. We build on this foundation by a multivariate analysis
of a hearth-associated scatter exposed inside a pithouse.

Specifically, the case study explores hearth based models
and applies traditional forms of multivariate and spatial anal-
ysis, including correlations, principal components analysis,
and factor rotation, as well as unconstrained clustering using
both Ward’s and k-means classifiers. In doing so we illustrate
some shortcomings of these methods and introduce improve-
ments made by possible by construction of a multivariate
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density mixture raster using geographic information systems
(GIS).

2. Jiskairumoko, an early settled village in the Lake
Titicaca Basin of the southern Peruvian Highlands

Jiskairumoko is a moderately sized, multi-component open
air domestic site located in the upper Rio Ilave, Lake Titicaca
Basin, Peru. The site’s occupation spans the Archaic to Forma-
tive transition. Excavation revealed the presence of a series of
Late and Terminal Archaic pithouses as well as two above
ground Formative prepared floor structures [10]. When evalu-
ated in a larger context, several of the pit structures from Jis-
kairumoko are arranged according to a roughly circular layout
that is typical of many early villages (Fig. 1).

All of Jiskairumoko’s pit houses have well made central
interior hearths. A radiocarbon date from the interior hearth
in Block 9 dated to 4562 � 73 BP (AA-58476; 3385-3078
B.C.E). This is the oldest date obtained from any hearth at Jis-
kairumoko, and currently represents the earliest evidence for
reduced residential mobility in the region. Level XIV revealed
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Fig. 1. Circular arrangement of several pit structures from Jiskairumoko that form a small village. Block 9 is shown in the northern portion of this map, the artifact

scatter that forms the focus of analysis is illustrated in the inset map.
a scatter of ochre, burned and unburned bone, fine lithic debit-
age, and fire altered rock (FAR) that rested on the structure’s
floor that was spatially proximate to the interior hearth. This
assemblage serves as the test case for the methods we present
(Fig. 1 Inset Map).

The Level XIV hearth associated assemblage probably re-
flects activities performed relatively early during the struc-
ture’s occupation. Patterned artifact scatters also occur in the
upper levels of material that accumulated in the Block 9 pit
structure. These appear to be palimpsest surfaces produced
by the structure’s re-use. Some (Levels XIIIeXI) likely reflect
a later occupational use of the structure. Others (Levels XeIV)
probably represent various post-abandonment uses of the pit
for non-occupational purposes, like the performance of waste
producing activities (i.e. butchering and roasting) or secondary
disposal.

3. Middle range models relevant to settlement
and site formation at Jiskairumoko

The definition of habitation activity areas is difficult to dis-
cern because material deposited earlier is often cleaned and
deposited elsewhere as secondary refuse. Large artifacts are
more likely to be redeposited as trash, but even small artifacts
can be disturbed by trampling. In cold environments a wider
range of activities should take place inside structures [6: pp.
180e187]. This complicates the identification of refuse associ-
ated with discrete activity performance. The performance of
more activities in structures leads to more diverse refuse,
more rapid refuse accumulation, and thus more frequent
cleaning.

Fortunately, activity is structured around the built environ-
ment [3: p. 98], cooking hearths, and by the dimensions of
the body. As a result, in situ artifacts exhibit strongly identi-
fiable patterns around hearths. The area defined by the me-
chanics of the arm form an ‘‘elementary yardstick’’ for
interpreting spatial patterns [12: p. 252]. Individuals can
reach an area of approximately 2.5e3 m3. A person’s reach
is about 2.5 m to the front and about 3 m to the rear [11:
p. 113].

We conducted seated arm length experiments [c.f. 12: p.
252]. We chose a 1.57 m (50200) female because residents
of the Titicaca highlands are known for small stature. The
subject drew where her buttocks made contact with the
ground and transcribed her maximum seated arm length
(Fig. 2).
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Outside hearths are expected to produce drop and toss
zones [5: p. 339]. Drop zones occur from about 0.5e1.5 m
out from around a hearth, while toss zones range out to about
2e3 m from a hearth. A perpendicular refuse pattern created
by a single person habitually sitting at right angles to and
within arms reach of a hearth has also been noted [6: pp.
149e151, Figure 85 Hearth D]. According to this model an
arc of debris forms in the working surface in front of the per-
son, the hearth is located to one side, and there is a void of re-
fuse located where the person habitually sat.

Hearth associated scatters may also arise as the result of
cleaning. This may constitute removal of waste material to
secondary dumping areas outside structures [2: p. 285], or
it may simply involve scooping out some burned hearth
contents and dumping them next to the hearth [13: p.
165, 16].

The context of the Level XIV scatter suggests it could be the
product of four possible behavioral processes: drop zone de-
bris, toss zone accumulation, a perpendicular work station, or
hearth cleaning. Multivariate visualization and analytical pro-
cedures used to identify these processes are described below.

4. Initial observations

The entire excavation of Jiskairumoko was recorded directly
into the GIS during excavation through photomapping [9,10].
The photomapped Block 9 Level XIV hearth and its associated
scatter are shown in Fig. 3. A total of 712 objects were recorded
in this six square meter area (Table 1), and were represented as
polygons. The seated arm length experiment was also photo-
mapped and integrated into the GIS.

Visual interpretation of the Level XIV hearth associated
scatter suggests that two major artifact groups representing ac-
tivity areas are present: Zones A and B (Fig. 3). Zone A is
a dense concentration of small objects composed primarily
of bone, flakes, and ochre. Zone B is composed of the same
objects as Zone A but also includes fire altered rock (FAR).
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Fig. 2. Seated arm length experiment with a 1.57 m (50200) female subject.
The density of artifacts appears to be greater in Zone A than
in Zone B, but Zone B appears to have some larger objects.

The Zone A scatter may have been produced by activities
taking place around the structure’s central hearth or could
have resulted from hearth cleaning. Hearth cleaning seems
likely for several reasons. Bone and ochre fragments in this
concentration show evidence of burning. Furthermore, the
concentration of burned bone, ochre, and chert debitage are
found within a fine grained ashy soil. The Zone B scatter
lies within the expected distance of a drop zone but the area
appears to have a lower artifact density than Zone A. Zone
B probably represents dropped artifacts rather than hearth
cleaning.

While initial observation strongly suggests these two pro-
cesses, it does not answer two important questions: 1) what
is the difference in density and component artifacts making
up Zones A and B; and 2) can the differences in zones be de-
fined through quantitatively rigorous techniques rather than
visual interpretation?

5. Multivariate analytical procedures for defining
activity areas

Like most domestic contexts, artifact scatters from Jiskair-
umoko consist of multiple artifact classes. Therefore, analytical
techniques to define activity areas must permit examination of
relationships in the spatial distribution of multiple artifact
classes. Unconstrained clustering defines spatial categories
based on multivariate vectors of relative densities [22].
Several criteria make unconstrained clustering attractive
for application to analysis of photomapped small artifact
scatters:

� It is based on density mapping, a technique familiar to
most archaeologists and that has been applied in various
forms including isoline mapping [1] and local density
analysis [15,18,19]. Given the ubiquitous application of
density based analysis, results should be easily interpret-
able by a broad audience.
� Both density mapping, and the map algebra required to

create relative densities are easily performed in GIS.
� The technique is based on simultaneous density associa-

tions between the spatial distributions of an unlimited
number of artifact classes, making it potentially useful
for a wide range of other circumstances.
� There is no assumption of a global process conditioning

patterning. This is important because a single surface may
contain artifacts deposited by performance of multiple
activities, and discriminating these differences is often
a central cause for analysis.

Unconstrained clustering was initially developed and tested
unconstrained clustering through analysis of the Mask Site
[5,22], and successfully discriminated drop and toss zones.
The technique has subsequently been applied to topics ranging
from the spatial distribution of San ceramic motifs [21] to de-
termining the presence of domestic structures in the absence of
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Fig. 3. Upper panel shows high resolution georeferenced photomap with 25 cm buffer around the hearth. Lower panel shows photomapped artifact distribution with

25 cm buffer around hearth.
conventional house remains [17]. Although these applications
of unconstrained clustering were performed outside of a GIS,
we recognize at least two benefits to be gained by porting this
form of spatial analysis to it. First, photomapping facilitates
very rapid, high resolution data recording directly into a GIS
[9]. Therefore, it would be advantageous to perform analysis
in the same system that data is recorded into. Second, an easily
applicable technique would facilitate systematic comparisons
of different contexts, making photomapped artifact scatters an-
alytically more useful.

Through this approach, we have developed two improve-
ments to unconstrained clustering: the use of multivariate den-
sity mixture rasters and a raster approach to clustering, which
classifies space rather than artifacts.
Table 1

Number, nearest neighbor statistic, maximum nearest feature (NF) for ob-

served and expected distributions for each artifact class

Object N R Max

NO (m)

Max

NE (m)

All other than

Clay stain/nodule

302 0.78 e e

Bone 63 0.3 0.438 0.461

Clay stain/nodule 410 0.769 0.233 0.218

Core 1 NA

FAR 101 0.85 0.411 0.425

Flake 14 0.26 0.181 1.098

Ochre 20 0.55 1.134 0.308

Rock 101 0.51 0.439 0.318

All 712 0.880 e e
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5.1. Multivariate density mixture rasters

Visualization is an important first step to understanding the
structure of a spatial distribution [7,22]. Unfortunately, isopleth
mapping only permits effective representation of a single rela-
tive density distribution at a time. This makes visual interpre-
tation of relationships between multiple classes problematic.

The generation of relative density rasters in a GIS permits
simultaneous representation of three artifact class distributions
as red, green and blue multi-band additive false-color compos-
ites. Additive false-color composite image display is widely
used in multispectral remotely sensed image interpretation to
show relationships between different bands of reflected light
[14]. Additive color mixture imagery holds great promise for
simultaneous representation of up to three artifact class distri-
butions. When these techniques are applied to artifact relative
densities we describe them as relative density mixture images
because the technique illustrates both distributions and rela-
tionships between distributions.

Additive color synthesis is a method of creating color
though the mixing of proportions of two, or more commonly
three, unique primary stimulus colors. These are nearly always
red, green, and blue. For example, images displayed by color
televisions are made up of red, green, and blue dots. When ob-
served from a distance, the human eye does not distinguish the
dots, and the blending of red, green, and blue dots produces
a composite color effect. With additive color raster imagery,
three bit-planes representing red, green, and blue exist at every
pixel address. Changes in the intensity of illumination on these
three bit-planes produce the mixing that leads to the additive
color effect [4] (Fig. 4). These principles can be used to inter-
pret variation in density of three rasters simultaneously.

5.2. Classification of activity areas

The final step of unconstrained clustering [22] involves as-
signing artifacts to clusters that should represent distinct activity
areas. Ideally, various clustering algorithms should produce
congruent results. At Jiskairumoko, we found that assigning ar-
tifacts to categories and attempting to define activity areas from
these generated results that were somewhat ambiguous. When
using unconstrained clustering in GIS, it is possible to apply
clustering algorithms to the multivariate relative density rasters
themselves in the same way one would classify a multi-spectral
satellite image. Clustering the relative density raster more di-
rectly classifies space rather than assigning artifacts to groups
and defining spaces based on them. Unconstrained clustering
is clearly a powerful method for varied spatial classification
applications, and we believe many will find our additions an im-
provement. For clarity Fig. 5 represents a flowchart of proce-
dures. Steps numbered in the figure correspond to numbers
provided in the following narrative description of the methods.

(1) When performing unconstrained clustering in a GIS one
can begin by computing a density surface for each class of ar-
tifact. We used the maximum nearest feature for the search
radius because this permits the creation of the most spatially
fine densities possible while simultaneously ensuring that
there are no densities composed of single objects.

(2) Once density rasters have been computed, use the GIS
to identify the sum of values for each individual artifact den-
sity raster. We used ESRI ArcMap 9.1 and the Spatial Analyst
extension to perform density analysis and map algebra. Whal-
lon’s formula for computing relative density expressed in map
algebra is as follows:

ðð½artifact class�=sum of ½artifact class�Þ � 100Þ

The resulting output is the percent total or relative density
raster.

(3) To classify artifacts according to traditional unconstrained
clustering procedures, use the Summarize Zones feature in the
Spatial Analyst extension to query either photomapped poly-
gons or polygon centroids against each relative density rasters.
If using polygons, join the mean of relative densities inside the
polygon; if using points join the cell value of the pixel where
each point resides on each relative density raster.
1. No input from any bit-plane produces black.
2. Any pixel’s brightness is a function of
    stimulus input intensity.
3. Equal and complete stimulus input from each
    bit-plane produces a white pixel. 
4. Equal and partial stimulus input for each bit-
    plane results in a gray pixel.
5. A mixture of equal parts red and blue
    produces a magenta pixel. 
6. A mixture of equal parts blue and green
    produces a cyan pixel. 
7. Mixing equal parts of green and red produces
    a yellow pixel. 
8. Two parts red to one part green produces an
     orange pixel.
9. Two parts green and one part red produces a
    lime pixel.  

Fig. 4. Fundamentals of additive color theory.
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Fig. 5. Multivariate analysis flowchart. Numbers in figure correspond to numbers in narrative description of the method.
(4) Once relative density values are joined to artifacts export
the attribute table and use a statistical package to produce
clusters. We used polygon representations of artifacts and
compared Ward’s and K-means algorithms. The JMP 5.1 soft-
ware package was used for statistical analysis. After clusters
were assigned the group assignments were joined in the GIS
and the various distributions were displayed to evaluate differ-
ences in the cluster solutions.

(5) To follow our modification of unconstrained clustering,
assemble all of the relative density rasters into a single multi-
channel image using the Stack Image function in the Image
Analysis extension for ArcView3.X.

(6) The resulting multi-channel raster is a relative density
mixture image that can be used for simultaneous display of
up to three artifact classes using additive color theory.

Based upon this image, it is possible to calculate correla-
tions between density rasters (7), compute principal compo-
nents (8) and perform factor analysis (9), and produce
a spatial classification using the iterative self-organizing
clustering (ISOCLUSTER) classification algorithm [20]. ISO-
CLUSTER (10) is commonly used for unsupervised classifica-
tion of multispectral satellite data, though it is simply another
kind of clustering algorithm that is broadly similar to k-means.
The number of clusters is established beforehand and the ISO-
CLUSTER algorithm makes iterations through the raster data
array until the number of pixels that change groups during an
iteration is less than the given threshold.

6. Results and discussion

Artifact counts, nearest neighbor values, and maximum dis-
tance to the nearest like artifact for observed (Max NO) and
expected (Max NE) distributions of each artifact class are re-
ported in Table 1. Considered as a whole, the distribution is
aggregated. Flakes and bone are the most aggregated classes,
ochre fragments and rocks are somewhat less aggregated,
while clay nodules and FAR are the least aggregated. Since
clay nodules are ubiquitous and lack clear spatial patterning,
they were excluded from further analysis. FAR was not ex-
cluded because this class forms the hearth.

Artifact aggregations break the assumption of a normal dis-
tribution, resulting in correlation matrices and principal com-
ponents of limited value. Regardless, these techniques remain
useful for understanding multivariate patterning, and have
been used successfully with aggregated data provided caution
is exercised. Correlations in the relative density values be-
tween artifact classes are reported in Table 1. Principal compo-
nents and varimax rotated factors produced from these
correlations are provided in Tables 2 and 3.

Table 3 shows strong positive correlations between bone,
flake, ochre, and rock. There is also a very weak trend toward
negative association between these artifacts and FAR. Table 3
indicates a low eigenvalue for PC1 confirming suspicions that
there is no global process conditioning patterning. PC1 de-
scribes slightly more than half the variability present in the rel-
ative density vectors. Consistent with the correlation matrix,
the eigenvalues reveal positive associations in relative densi-
ties of rocks, bone, ochre, and flakes. PC2 only explains about
20% of the variability and is essentially loaded by a single ei-
genvalue for FAR. Very low eigenvalues for PC3 suggest little
valuable information is expressed by this vector.

Table 4 provides a factor rotation of the first two principal
components. Rotation greatly increased eigenvector loadings

Table 2

Correlation coefficients for values obtained from querying each artifact class

against each of the relative density rasters

Bone FAR Flake Ochre Rock

Bone 1.000

FAR �0.031 1.000

Flake 0.634 0.198 1.000

Ochre 0.758 0.149 0.642 1.000

Rock 0.840 0.173 0.780 0.744 1.000
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again showing rocks, bone, ochre, and flakes occur together in
Factor 1. This factor does not explain relative density variabil-
ity in FAR. Factor 2 explains relative density variability in
FAR, but not the other artifact classes.

The application of various hierarchical clustering algori-
thims produced aggregation distances that suggested a major
threshold at a 3 to 4 cluster solution. This result is generally
consistent with our visual interpretation of the scatter. Fig. 6
illustrates results from a traditional approach to unconstrained
clustering providing both a 3 and 4 cluster solution comparing
Ward’s and k-means algorithms. Evaluation of artifact cluster
assignments in relation to direct observations from the photo-
mosaic in Fig. 3 are not promising. Two troublesome areas la-
beled Areas 1 and 2 have been identified in Fig. 6 and are
annotated by a dashed line.

Area 1: Artifacts within Area 1 were assigned to three
groups in each of the potential solutions provided in Fig. 6.
All of the objects within Area 1 are probably either part the
hearth’s drop zone, the hearth itself, or reflect hearth cleaning
activities. The latter two are the most likely and are easily dis-
tinguishable based on size. The large fragments of FAR clearly
make up the hearth while the smaller artifacts were either ma-
terial cleaned from the hearth or are part of its drop zone. Tra-
ditional unconstrained clustering does not appear to be
classifying artifacts in a particularly helpful way. An addi-
tional complication is the fact that the small alignment of
rocks to the south of Area 1 is assigned to different groups
in each case, making it difficult to determine how these objects
relate to expected activity areas.

Area 2: Fire altered rocks within Area 2 are assigned to
three different groups in all versions except for a Ward’s three
cluster solution. Our interpretation of the photomosaic sug-
gests this rock concentration is part of Zone B. The fact that
these objects are assigned to three different groups that are dis-
persed throughout the analytical space complicates, rather than
elucidates, interpretation.

Fig. 7 presents our analysis of the additive false-color com-
posites produced from the relative density mixture image

Table 4

Varimax rotated factors produced from principal components analysis

Bone 0.920 �0.139

FAR 0.067 0.990

Flake 0.836 0.200

Ochre 0.874 0.084

Rock 0.937 0.112

Table 3

Principal components analysis produced from correlations of relative densities

Eigenvalues 3.229 1.020 0.3823 0.2576 0.111

Percent 64.584 20.396 7.645 5.1526 2.222

Cum Percent 64.584 84.981 92.626 97.779 100.000

Eigenvectors

Bone 0.497 �0.255 0.294 0.488 0.603

FAR 0.000 0.962 0.165 0.140 0.123

Flake 0.476 0.089 �0.776 �0.303 0.269

Ochre 0.489 �0.030 0.525 �0.687 �0.116

Rock 0.525 �0.011 �0.098 0.423 �0.732
created during our GIS modification of unconstrained cluster-
ing. In Fig. 7a, note that ochre, represented as red, is distrib-
uted in a circular pattern around the hearth. There is another
concentration of ochre just to the west of the hearth and to
the north of Area 1. Flakes, represented as green, are only
present around the hearth, just to the north and to the east of
Area 1. Bone fragments, represented as blue, are distributed
in an arc-like pattern from around the western edge of the
hearth continuing southward.

Fig. 7b shows FAR represented as red, and illustrates loca-
tions to the east of the hearth where FAR is located in areas
having low relative densities of either bone or rock. Other lo-
cations away from the hearth are also visible as red patches.
Bone, represented as green, can be seen mixing with both
FAR and rock to the west of the hearth and north of Area 1
producing a white patch. Bone is also mixing in other areas
represented as white or magenta.

Fig. 7c shows there are a number of places where FAR is
located in low density areas of clay nodules as well. However,
there is some mixing with the other two artifact categories
around the hearth to the south of Area 1 and around Area 2.
Clay, represented as green, is distributed in a number of loca-
tions where either FAR or rocks are absent, though there is
some mixture between clay and FAR in the two regions al-
ready mentioned. Clay and rock have overlapping relative den-
sities in the south-western portion of the image directly west
of the figure label. This area is a mixture of clay and rock ex-
pressed as magenta.

Fig. 7d illustrates the application of an ISOCLUSTER five
class solution to the relative density mixture image, displays
the assignment of artifacts to five clusters based on the relative
densities of other artifact classes, and shows one possible
placement of our seated arm length experiment. Like k-means,
ISOCLUSTER requires the analyst assign the number of clus-
ters a priori. Unfortunately, neither Erdas IMAGINE nor Arc-
Map GIS reports cluster distances for solutions with different
numbers of groups. Regardless of this shortcoming, comparing
the application of several hierarchical clustering methods to
relative density values attached to the artifact tables indicated
a clear break in cluster distances of three or four groups.

A five cluster solution with the ISOCLUSTER method pro-
duced results that closely replicated our visual interpretation.
The five cluster solution was chosen because ISOCLUSTER as-
signs every pixel to a group, and therefore Cluster 1 represents
the ‘‘background’’ cluster. As a result, an ISOCLUSTER five
cluster solution is similar to a k-means four cluster solution.

Fig. 8 illustrates the area and artifact density (count/area)
within each ISOCLUSTER cluster. Cluster 5 closely approxi-
mates Zone A and holds by far the greatest density of all arti-
facts except FAR. Clusters 3 and 4, which are largely situated
on the margins of Cluster 5, are areas of decreasing artifact
density. A single patch of Cluster 3 is located to the southwest
in Cluster 2. Cluster 2 coincides closely with Zone B and is an
area of greater density than Clusters 1e3 but occupies a much
larger area than these clusters. Cluster 1 is the lowest
density space but covers the greatest area because it is the
‘‘background’’.
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Figure 6a
Unconstrained relative
clusters using Ward’s
method with a 4
cluster solution

Figure 6b
Unconstrained relative
clusters using Ward’s
method with a 3
cluster solution

Figure 6c
Unconstrained relative
clusters using the
K-Means method
with a 4 cluster
solution

Figure 6d
Unconstrained relative
clusters using the
K-Means method
with a 3 cluster
solution
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Fig. 6. aed. Two areas of interest are annotated as 1 and 2 on each cluster solution map. Rocks are assigned to three different clusters in Area 1. In Area 1 one can

also see that in each cluster solution map the small alignment of rocks has been assigned to different clusters. Area 2 of each cluster solution is divided into at least

two but usually three clusters.
Artifacts in Area 1 have again been assigned to multiple
clusters (Clusters 2e5). The spatial pattern of these groups,
and their density composition, is markedly easier to interpret
than those created by clustering artifacts. The spatial arrange-
ment of clusters created using the ISOCLUSTER classifier are
arranged in varying density among spatially correlated arti-
facts giving them a logical order. The three highest density
groups (Clusters 3e5) are arranged concentrically reflecting
regions of increasing relative densities among bone, rocks,
flakes, and ochre. Therefore the assignment of artifacts in
Area 1 to multiple groups illustrates their position with regard
to decaying artifact density on the margins of the activity area.

Examining Area 2, one can see that all objects are assigned
to Cluster 2 or sit on the edge of Cluster 2. This cluster corre-
sponds closely to Zone B. Objects in Area 2 that are on the
edge of Cluster 2 or are located in Cluster 1 are on the margin
of this activity area where artifact density is declining. Visu-
ally it is easy to recognize that objects on the boundary of
the Cluster 2 are probably members of this activity area.

Fig. 7d also shows one possible placement of our seated
arm length experiment in a coordinated pattern with the un-
constrained ISOCLUSTER results. It illustrates how the per-
pendicular habitual individual worker model can form
a parsimonious explanation of the data. Zone B forms the per-
pendicular arc that composes the work surface, and Zone A is
a specific hearth cleaning/sifting deposit that is probably re-
lated to ochre heat treatment.

7. Conclusion and relevance

Quantitative spatial analysis does not yield a direct defini-
tive answer regarding the activities that produced the artifact
distributions corresponding to Zones A and B. Contextual in-
formation is clearly critical for robust interpretation. Knowing
that the Zone A distribution sits upon a lens of fine ashy sed-
iment is an important clue that it represents hearth cleaning
rather than a drop zone. Raster based unconstrained clustering
procedures helped to classify and segregate ISOCLUSTER
Cluster 5 by defining its compositional constituents using
quantitative, rather than purely judgmental, criteria. ISO-
CLUSTER Cluster 2 conforms remarkably well to Zone B
and reflects the general spatial and artifact density expecta-
tions of a perpendicular workspace. Observations during exca-
vation and display of the photomapped data hinted that such
a pattern existed. Application of unconstrained clustering of
density rasters in a GIS context again provided a simple and
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Figure 7a
Red: Ochre
Green: Flake
Blue: Bone

Figure 7b
Red: FAR
Green:Bone 
Blue: Rock

Figure 7d
Unconstrained
relative clusters
using the
ISOCLUSTER
method
with a 4 class
solution

Figure 7c
Red: FAR
Green: Clay
Blue: Rock

Block 9 XIV Hearth Associated Assemblage Relative Density

Additive Color Visualization and Classification  
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Fig. 7. aec. Are false color composite images each visualizing the relative densities of three distinct artifact categories as red, green, and blue. Color ranges rep-

resent regions of relative density mixture or overlap between the different classes represented in an image. Patterns of color mixture follow additive color theory.

For example, purple is a mixture of red and blue. Yellow is a mixture of red and green, and white regions are an equal mixture of red, green, and blue. Fig. 7d

illustrates unconstrained relative clusters applied to the relative density surfaces using the ISOCLUSTER method with a four class solution along with 25 cm con-

tour intervals from the hearth.
powerful means to classify and define the constituents of this
space on a quantitative basis.

As an initial step in performing unconstrained clustering in
a GIS, relative density mixture images can be easily produced,
and are extremely useful for visualization during early stages
of the analytical process because multi-channel additive color
display allows the interpreter to see relationships between dis-
tributions of interest. Visualization of complex data sets
Fig. 8. Graph showing the area and artifact density within each of the ISOCLUSTER clusters.
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generated through photomapping can readily be constructed
through raster based density analysis. Principal components
and factor analysis are also easily performed on relative den-
sity mixture images in GIS. At both survey and site scales
of analysis, humans produce aggregated residues that are often
not conditioned by a single global process. In this case two
processes, habitual perpendicular cooking/heating and hearth
cleaning, probably structure data patterning. Nonetheless, cor-
relation and principal components analysis yield analytically
useful exploratory results.

Clustering space based on raster relative densities is a dis-
tinctly different approach than traditional forms of uncon-
strained clustering. Instead of assigning artifacts to groups
and then defining areas based on those groups, areas are de-
fined spatially pixel by pixel based on the density of objects.
This is a powerful addition to a well established technique.
Since every relative density pixel is included in the clustering
process, groups are constructed on a complete sample of space
interpolated from observed artifact locations. Segregating
space based on the clustering of artifacts relies on a much
smaller sample than what can be achieved with purely raster
solutions. In this case, clustering based on photomapped ob-
jects yields a sample of only 712 entity vectors for classifica-
tion purposes. In the raster example each relative density raster
has an extent of 263 � 381 pixels meaning 100,203 entity vec-
tors were assigned to clusters providing a far finer resolution
classification of space.

Fourier transforms, spatial filters, and spectral analysis have
all been prescribed for decomposing complex palimpsest depo-
sitional sets [8]. These techniques are common multi-spectral
analysis techniques and should be easily performed in remote
sensing software. Application of these transformations to mul-
tivariate artifact density distributions represents an important
avenue for future consideration.

GIS based photomapping is a useful and flexible set of tools
for integrating experimental data into the interpretation pro-
cess. Behavioral models can have tremendous heuristic power
when used in conjunction with quantitative techniques. In this
case they helped recognize and define a Late Archaic domestic
hearth side habitual workstation. Meat and bone was processed
here, and ochre was heat treated. Since ochre is used exclu-
sively in symbolic contexts at Jiskairumoko [10: pp. 688e
693], results presented here indicate that preparation for ritual
activity was embedded in domestic tasks.

As various strands of archaeological theory increasingly
emphasize the importance of recognizing the actions of indi-
viduals or small groups, we conclude that the scale of expo-
sure and resolution of recording will both likewise need to
increase. Use of GIS for site level excavation recording
through photomapping represents an important new strategy
for rapidly achieving this kind of exceptionally high resolu-
tion data recording. In this article we have illustrated some
multivariate visualization and analytical methodologies for
working with complicated piece plotted assemblages gener-
ated by this new GIS based documentary approach. We
hope others can benefit from the documentary power of pho-
tomapping, apply additive color multivariate visualization,
take advantage of expanded multivariate raster transforma-
tions available in GIS, and continue with the process of seek-
ing evidence of individuals in the archaeological record.
Hopefully what we present here stimulates others to apply
similar techniques to documentation and analysis of excava-
tions and experiments.
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