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Turbulent forced convection correlations are documented in the literature for air, gases and vapors
(Pr ∼ 0.7), for common liquids (Pr > 1) and for liquid metals (Pr < 0.03). In spite of this, there is a
small gap in the Pr sub-interval between 0.1 and 1.0, which is occupied by binary gas mixtures. In this
paper, data for turbulent forced convection for the in-tube flow have been gathered and a fully connected
back-propagation Artificial Neural Network (ANN) is used to learn the pattern of Nu as a double-valued
function of Re and Pr. The available data are separated in two subsets to train and test the neural network.
A set with 80% of the data is used to train the ANN and the remaining 20% are used for testing. After
the neural network is trained, we make use of the excellent nonlinear interpolation capabilities of ANNs
to predict Nu for the sought range 0.1 < Pr < 0.7 for Re between 104 and 106. These predictions are
later extended to generate a comprehensive correlation for Re between 104 and 106 that aptly covers the
complete spectrum of Prandtl numbers.

© 2008 Elsevier Masson SAS. All rights reserved.

1. Introduction

The analysis of thermal systems using binary gas mixtures has
been attracting more attention lately because of the improvement
in performance due to the favorable thermodynamic and trans-
port properties inherent to the binary gas mixtures compared to
pure gases. For instance, binary gas mixtures are chemically inert
and many noble gases have higher specific heat ratios and molec-
ular weights compared to air. This characteristic has a definitive
bearing on the improved heat transfer under similar operating con-
ditions. It has been speculated that propulsion systems for space
exploration as well as terrestrial power plants applications show
performance improvements utilizing binary gas mixtures [1,2].

As indicated by Poling et al. [3], the prediction of the ther-
modynamic and transport properties of binary gas mixtures is a
difficult subject because the nonlinear behavior of the thermophys-
ical properties with respect to the mixture composition compli-
cates the analysis. These authors mixed helium (He) as the pri-
mary light gas with seven secondary heavier gases that included
carbon dioxide (CO2), methane (CH4), nitrogen (N2), oxygen (O2),
sulfur hexafluoride (SF6), tetrafluorumethane or carbon tetrafluo-
ride (CF4) and xenon (Xe) and obtained the respective properties
of the mixtures. Shown in Fig. 1 is the family of the seven Prandtl
number curves Prmix varying with the molar gas composition w
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inside the w-domain [0,1]. The Prmix curves show that the left
extreme of the abscissa w = 0 for the light He is associated with
Pr = 0.665, whereas the right extreme w = 1 corresponds to mul-
tiple Pr ∼ 1 representative of each of the heavier secondary gases.
The Prmix are in ascending order: 0.669 for Xe, 0.715 for CH4, 0.716
for O2, 0.721 for N2, 0.762 for CO2, 0.8 for CF4 and 1.511 for SF6.
As the molar mass difference between He (the light primary gas)
and CO2, CH4, CF4, SF6, N2, O2 and Xe (the heavy secondary gases)
increased, the magnitude of Prmix(w) consistently diminished.

It is common to consider that three main sub-groups exist in-
side the Pr spectrum of viscous fluids: metallic liquids with Pr � 1;
air, pure gases and vapors with Pr ∼ 1; water and light liquids
with Pr ∼ 10; and oils and heavy liquids with Pr � 1. However,
despite that the majority of practical applications in heat transfer
engineering utilize air, water and oils having Pr � 0.7 collectively,
certain binary gas mixtures with 0.1 < Pr < 0.7 have attracted in-
creasing attention. For instance, Campo et al. [4] studied five binary
gas mixtures with the purpose of intensifying turbulent free con-
vection from heated vertical plates to cold gases. Also, in recent
years a variety of sophisticated industrial applications have been
proposed and analyzed.

Turbulent heat transfer with fully developed gas flow inside
tubes has been well documented in the literature [5–7]. Available
correlations normally cover most of the Prandtl number spectrum.
However, there is currently no correlation that covers the complete
range of Prandtl numbers that embodies liquid metals, binary gas
mixtures, pure gases, and common liquids including thick oils. In
this paper we intend to generate such a correlation by first utiliz-
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Nomenclature

cP specific heat capacity
D diameter
h mean convective coefficient
k thermal conductivity
L length
Nu mean Nusselt number, hD

k
Pr Prandtl number, μcP

k
Prmix Prandtl number of binary gas mixture, (

μcP
k )mix

Re Reynolds number, ρuD
μ

T temperature
u mean axial velocity

w molar gas composition of binary gas mixture
wopt optimal molar gas composition of binary gas mixture
xhd hydrodynamic entrance length

Greek symbols

μ dynamic viscosity
ρ density

Subscripts

f film
m mean bulk
w wall

Fig. 1. Variation of the Prandtl number with the molar gas composition w for selected Helium-based binary gas mixtures at T = 300 K and p = 1 atm.

ing artificial neural networks to obtain a prediction for the range
of Prandtl number between 0.001 and 1000 united with Reynolds
number between 104 and 106.

From a historical perspective, the phasing out of halogenated
halocarbons became effective at the end of 1995 by international
agreement. The companion fluids HCFCs are suffering a similar
fate, as they are considered controlled substances with a virtual
phase-out by 2020. Thermoacoustic refrigerators are devices that
convert sound energy into heat energy. As discussed by Herman
and Travnicek [8], these devices pose some advantages over con-
ventional refrigerators because they are environmentally friendly
and simple in operation. Because they use gases such as, helium,
xenon, and air, they do not affect the environment like hydrochlo-
rofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) in conven-
tional refrigerators. It has been demonstrated by Garrett et al. [9]
and Tijani et al. [10] that a decrease in the Prandtl number of the
gas flowing through the device improves the efficiency of thermoa-
coustic refrigerators. Essentially, these authors were referring to a
specific type of gases that possess Pr < 0.7.

The Closed-Brayton-Cycle (CBC) is being considered by NASA as
a candidate thermodynamic cycle for applications related to space
power conversion for lunar and Mars surface missions [1]. The CBC
can be integrated with various heat sources including solar heat
receivers, radioisotope fuel sources, or fission reactors. The work-

ing fluids under consideration are binary gas mixtures. Because
light Helium has the best thermal conductivity but a small molec-
ular weight, mixing Helium (He) with heavier gases like Krypton
(Kr) or Xenon (Xe) is twice beneficial. First, it increases slightly the
heat transfer coefficient beyond that of He and second it decreases
significantly the turbomachinery loading.

It is logical to think that aside from the potential application to
thermoacoustic refrigerators and Combined Brayton Cycles (CBC)
for space missions, binary gas mixtures may soon become candi-
date gases to remove moderate-to-large amounts of heat in appli-
cations of heat transfer engineering.

Artificial neural networks (ANNs) have been used in recent
years to predict the behavior of steady state and dynamical sys-
tems in engineering. Thibault and Grandjean [11] provided an in-
troduction to the use of ANNs in connection to heat transfer. Jam-
bunathan et al. [12] employed ANNs to model one-dimensional
transient heat conduction from measurements using liquid crystal
thermography. Bittanti and Piroddi [13] utilized neural networks
together with a generalized minimum variance control methodol-
ogy for heat exchanger applications. Diaz et al. [14] applied ANNs
to a series of problems of increasing complexity which included
conduction, convection, and the prediction of experimental data of
a cross-flow heat exchanger. The transient analysis of a single-tube
heat exchanger involving a large number of local identical neural
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Fig. 2. Mean Nusselt number varying with the Reynolds and Prandtl numbers for fully developed turbulent flow in smooth tubes.

networks was performed by Lecoeuche et al. [15]. Su et al. [16]
applied ANNs for the estimation of critical heat flux (CHF) in ref-
erence to nuclear fuel rods. They obtained an accuracy of ±10%
in their predictions by training the neural network with local or
CHF point conditions. CHFs were also analyzed by Zhang et al. [17]
for flow boiling of water in mini channels with diameters ranging
between 0.33 and 6.22 mm. Chen et al. [18] calculated heat trans-
fer coefficients of supercritical carbon dioxide in a heat exchanger
implementing modified radial basis function networks. Complex
heat transfer predictions in humid air-water heat exchangers were
performed by Pacheco-Vega et al. [19] via ANNs and suitable cor-
relations.

In this paper we utilized artificial neural networks to com-
pile values of the mean Nusselt number particularized to binary
gas mixtures in the Prandtl number sub-region (0.1,1). Thereafter,
these values are used to generate a heat transfer correlation that is
obtained from using a combination of available data and predicted
values.

2. Turbulent forced convection

Although there is no satisfactory general expression for the en-
try length in turbulent pipe flow xhd, as a first approximation, the
inequality described by Eq. (1)

10 � xhd

D
� 60 (1)

serves as a guidance [5].
In the past, several authors have developed theoretical and ex-

perimental studies to describe the variation of the mean Nusselt
number with respect to Reynolds and Prandtl numbers in fully
developed turbulent flow inside circular tubes. The most represen-
tative work was carried out by Kays and Leung [20] and Leung et
al. [21] and the results are summarized in Fig. 2.

Different correlations that cover specific ranges of Reynolds and
Prandtl numbers have been reported in the literature [5–7]. For
liquid metals with Pr < 0.1 the following correlation has been rec-
ommended for constant heat flux on the wall [7]:

NuD,m = 6.3 + 0.0167 Re0.85
D, f Pr0.93

w (2)

where m, f , and w denote the mixing-cup, film, and wall tem-
peratures, respectively. This correlation gives results within 10%

of measurements. For the range of Prandtl number between 0.5
and 1.0

Nu = 0.022 Re0.8 Pr0.6 (3)

has been suggested in [5]. For Reynolds number in the range be-
tween 104 and 1.2 × 105 and Prandtl between 0.6 and 120, the
well-known correlation by Dittus–Boelter [22] is commonly used
for liquids and gases:

Nu = 0.023 Re0.8
D Prn (4)

where n = 0.4 for heating and n = 0.3 for cooling. Eq. (4) gives re-
sults that can be 20% high for gases and 40% low for water at high
Reynolds numbers [7]. The more recent Gnielinski [23] equation

Nu = 0.0214(Re0.8 − 100)Pr0.4 (5)

for 0.5 < Pr < 1.5 and 104 < Re < 106, is being used extensively for
minichannels and has uncertainties of 6%. This equation is applica-
ble for binary gas mixtures with Pr > 0.5 only.

3. Binary gas mixtures

Existing theoretical and experimental data from [5,24] were
used by Kirov and Kozhelupenko [25] to obtain a correlation that
approximates the mean Nusselt number in the range of Prandtl be-
tween 0.3 and 1.0 with the Reynolds number varying from 105 to
107. They proposed a correlation with the exponent of the Pr num-
ber being a function of the Prandtl number as shown by Eq. (6).

Nu = 0.022 Re0.8 Prk (6)

where k = 0.595 Pr−0.126. This expression agrees within 1% with
the solution obtained by using Lyon’s integral [24,26]. The same
authors proposed a simplified expression that embodies a 5% of er-
ror with a constant exponent for the Prandtl number, as described
by Eq. (7) [25].

Nu = 0.022 Re0.8 Pr0.68 (7)

This is very similar to the correlation recommended in [5]

Nu = 0.022 Re0.8 Pr0.6 (8)

The correlation by Sleicher and Rouse [27] given by Eq. (9) is also
recommended for a range of Prandtl number between 0.1 and 105

together with Reynolds numbers in the range 104 < Re < 106.
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Fig. 3. Schematic representation of an artificial neural network involving Nu, Re and
Pr.

Nu = 5 + 0.015 Rea Prb (9)

where a = 0.88 − 0.24
4+Pr and b = 1

3 + 0.5 exp(−0.6 Pr). This correla-
tion provides a level of accuracy within 10% [7].

Currently there is no comprehensive correlation for the mean
Nusselt number that covers the entire range of Reynolds and
Prandtl numbers shown in Fig. 2. The central objective of this pa-
per is to develop such a correlation by means of using artificial
neural networks.

4. Artificial neural network model

A fully-connected sigmoid-activation-function artificial neural
network is sketched in Fig. 3 having an input layer with two nodes,
a hidden layer of nodes, and an output layer with one node. The
neural network was implemented to perform a nonlinear interpo-
lation of available data representative of the mean Nusselt number,
Nu, as a double-valued function of the Reynolds number, Re, and
Prandtl number, Pr. Data were obtained from [5,20,25] and from
more recent results by Heng et al. [28] and Yu et al. [29]. The
heat transfer data obtained from these references came from var-
ious sources: (1) asymptotic solutions based on empirical values

of velocity and eddy diffusivity [5,20], (2) the exact solution us-
ing Lyon’s integral [25,26], (3) numerical solutions that utilize a
theoretically based algebraic correlation for the time-averaged tur-
bulent shear stress and a purely empirical correlation for the heat
flux density [28,29]. The Reynolds number for fully turbulent flow
varied between 104 and 106. The data provided to the ANN cov-
ered Nu–Re pairs of discontinuous values of Prandtl number that
extend from 0.001 to 1000. Thereafter, the data collection was di-
vided into two subsets; one that contains 80% of the original data
that was used for training the ANN. The other subset with the re-
maining 20% of the data was employed for testing and validation
of the predicted values of Nu. A backpropagation training algorithm
served as the vehicle in the analysis due primarily to its excellent
generalization properties [30].

As noted by Lee and Lam [31], the structure of the neural net-
work is obtained by using an algorithm that minimizes the max-
imum error in the prediction of the test data by changing the
number of nodes in the single hidden layer. Plotted in Fig. 4 is
the normalized error of the test data varying with respect to the
number of nodes in the hidden layer. It is clearly observed that no
improvement is manifested in the prediction by having more than
seven nodes in the hidden layer.

After the training process was completed the ANN was used
to predict the values of Nu for the entire region of Reynolds and
Prandtl numbers, i.e. 104 � Re � 106 and 10−3 � Pr � 103. Fig. 5
shows the results of the prediction, NuANN, plotted with respect
to the available data, Nudata. The complete set of predicted values
remained within ±15% of the available data.

It can be observed that the ANN captures the trend of the
data satisfactorily. In addition, it is seen that the ANN is capa-
ble of predicting the mean Nusselt number of turbulent flow in a
smooth pipe for the complete range of Reynolds and Prandtl num-
bers shown in Fig. 2. The ANN was then used to predict values of
the mean Nusselt number at a number of points inside the range
0.1 � Pr � 0.7 for turbulent Reynolds numbers between 104 and
106. Fig. 6 is presented as a supplementary summary of the com-
bined data taken from Fig. 2 (solid lines) and the new predicted
Nu values furnished by ANN for 0.1 < Pr < 0.7 (dashed lines).

5. Development of a correlation

Although computer simulations of thermal systems are quite
common nowadays, the utilization of artificial neural networks for

Fig. 4. Decay of the normalized error with the number of nodes.
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Fig. 5. Nusselt number predicted by ANN versus Nu from the available data for Pr between 10−3 and 103 and Re between 104 and 106.

Fig. 6. Mean Nusselt number as a function of Reynolds and Prandtl numbers including the prediction with ANN for 0.1 < Pr < 0.7.

Fig. 7. Nusselt predicted by correlation versus Nu from the available data for Pr between 10−3 and 103 and Re between 104 and 106.
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the prediction of Nusselt numbers or heat transfer rates contin-
ues to be less widespread than the use of analytical expressions in
the form of correlations that predict the behavior of Nu as a func-
tion of the Reynolds and Prandtl numbers. For this purpose, the
predicted values obtained with the ANN for the range of Prandtl
number between 0.1 and 0.7 were merged with the rest of the
available data used for training and testing the ANN with the in-
tention of obtaining an expression that will predict Nu covering
the complete range of Re and Pr analyzed in this study.

The collection of results, shown in Fig. 2, shows that the slopes
of the upper sub-family of curves for Pr � 1 are nearly equal
regardless the value of Re. This behavior justifies the functional
relation Nu = F (Re,Pr) = F1(Re) × F2(Pr) that leads to the con-
ventional power-law correlation of the form C Ren Prm . Conversely,
for the lower sub-family of curves with Pr � 1, the slopes change
significantly with increments in Re and Pr, strongly suggesting a
more involved correlation of the form C1 + C2 Ren Prm . Also, for the
range of Prandtl numbers between 0.1 and 0.7, it has been sug-
gested that the exponent of Pr should be a function of the Prandlt
number [25]. Following the structure of the correlation proposed in
[27] we utilize an unconstrained nonlinear optimization algorithm
to obtain the coefficients of the new correlation. The resulting ex-
pression is given by Eq. (10):

Nu = 5.0742 + 0.0153 Re0.8470 Pra (10)

where the exponent a = 0.3556 + 0.5257 exp(−0.5868 Pr).
Fig. 7 shows the prediction of Nu based on the new correlation

with respect to the original Nu data. It is verified that the correla-
tion predicted 92% of the data within a±25% margin. Although the
correlation shows a larger uncertainty with respect to the predic-
tion obtained with the ANN, the simplicity of the expression and
its easy implementation favors the correlation.

6. Conclusions

Data for turbulent forced convection for the in-tube flow have
been gathered, analyzed and modeled by means of powerful ar-
tificial neural networks. The ANN is used to predict the in-tube
turbulent forced convection in the specific range of Prandtl number
corresponding to binary gas mixtures (0.1 < Pr < 0.7). The com-
plete set of data is utilized afterwards to generate a comprehensive
correlation that covers the vast range of Reynolds number between
104 and 106 in conjunction with a large Pr number spectrum con-
tained in 0.001 < Pr < 1000. The correlation predicts the entire set
of data with an accuracy of ±25%.
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