
u STABILIZATION OF THERMAL
NEUROCONTROLLERS

GERARDO DÍAZ
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This work deals with the stabilization of neurocontrollers used in thermal applications. The
control system can be reduced to an iterative, nonlinear map in time, and its linearization
enables a stability analysis. For simple neural networks with few neurons, the eigenvalues
can be analytically calculated in terms of the synaptic weights and biases. However, unless
care is taken, usual training methods can drive the network to weights and biases such that
the corresponding control system is unstable. A modified backpropagation training method
is developed here to simultaneously minimize the target error and increase the dynamic stab-
ility of the system. Numerical computations are used to analyze the stability of realistic neural
networks and their corresponding control systems. The techniques developed are used on an
experimental heat-exchanger facility where the stability results are tested and validated.

A complex thermo-hydraulic system can be defined as one which, although
containing subsystems whose behavior can be predicted by mathematical
models, is itself too complicated for that. These systems are difficult to pre-
dict from first principles, using the basic governing equations of mass, mo-
mentum, and energy in differential form. Even though the use of
computational fluid dynamics is commonplace, currently available hardware
and methodologies do not permit solutions in more than in fairly simple geo-
metries and=or for laminar flows. For flows under realistic conditions, such as
in a heat exchanger, one can resort to simplifications like one-dimensionality
and empirically obtained heat transfer coefficients. The net result is that
whatever inaccuracies that are in these assumptions are reflected in the
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results. In addition, the characteristics of a working heat exchanger change
considerably over time due to fouling so that predictions, however good in
the beginning, eventually develop large errors. Artificial neural networks
(ANNs) have been suggested as a way of predicting heat exchanger per-
formance under both steady-state (Dı́az et al. 1999; Sen and Yang 2000;
Pacheco-Vega et al. 2001a; 2001b) and dynamic (Dı́az et al. 2001a) conditions
to overcome these problems. They can model nonlinear behavior and can be
re-trained continuously or as needed.

The control of the temperature of a fluid exiting a heat exchanger is of
importance in many thermal processes for manufacturing, climate control,
and other applications. ANNs have also been used for this purpose by
many authors. Ramaswamy et al. (1995), Bittanti and Piroddi (1997), and
Dasgupta et al. (2001) have directly used trained neural networks for the
temperature control of heat exchangers. Dı́az et al. (2001a; 2001b) demon-
strated the ability of this type of control system to adapt to changing
circumstances. Others who have reported the use of neural network-based
control of heat exchangers include AlDuwaish and Karim (1996), who
combined a feedforward multilayer neural network and an auto-regressive
moving average linear model; Matko et al. (1998) who proposed the use of
a nonlinear autoregressive method; Riverol and Napolitan (2000) who used
it to tune a PID controller; and Quek and Wahab (2000) who addressed
the larger issue of integrated process supervision for the real-time control
of an industrial heat-exchanger process.

The most common neural network configuration for this purpose is that
of a multi-layer, feedforward ANN. Each layer has a number of neurons that
are interconnected by means of synaptic weights, and each neuron has a bias.
An activation function (here a logistics function) relates the output to the
input of a neuron. Backpropagation (Rumelhart et al. 1986) and gradient
descent (Pierre 1986) are among the methods that are commonly used during
training to determine the weights and biases. During this process, the ANN
learns the relationship between a given set of input–output data. For use in
control systems, the steady-state ANN can be extended to predict dynamic
processes in which the variables change with time. Such a thermal neurocon-
troller was experimentally tested in a heat exchanger test facility (Dı́az et al.
2001a; 2001b). Though the controller functioned properly, there was no as-
surance that it always would from the point of view of stability. A control
system has to be stable and, from a practical perspective, this is especially
important for a system that is allowed to change over time, like an adaptive
controller based on ANNs. The digital control system, as will be shown later,
can be represented by a nonlinear map between previous instants in time and
the present. To achieve control, the set point should be a fixed point of the
map that is locally attracting. This is a necessary condition but not sufficient,
since there may be other stable fixed points that are also locally attracting.
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Furthermore, unlike its linear counterpart, the stability characteristics of a
nonlinear control system vary over the operating range of the controller. For
these reasons, it is important that there be some protection against instability
built into the training of the neural network while it works to minimize the
target error.

Some stability analyses of neurocontrollers have been performed by
previous authors. Jin at al. (1993) studied the training problem in discrete-
time dynamic neural networks, following the dynamic backpropagation
algorithm of Pineda (1987) by modification of the learning rate. Hrycej
(1995) looked at the existence of fixed points in neurocontrollers representing
nonlinear differential systems and analyzed the effect of feedback and feed-
forward on the control system. Delgado (1998) used a describing function
technique to present the stability analysis of closed-loops systems with a
linear plant and a neurocontroller. Taking a different perspective on the
problem, we will consider the control system as an iterated map. To under-
stand the relation between the behavior of the system and its characteristics,
we will study some simple networks first. A training technique that incorpo-
rates stabilization along with error minimization will be developed, and the
method will be tested on the control of the air temperature coming out of a
heat exchanger.

NEUROCONTROLLER AS ITERATED MAP

For a system in a steady-state, the input and output variables are time-
invariant. In a digitally controlled time-dependent system, however, the vari-
ables are functions of time which are sampled periodically at a constant time
interval Dt. Here we are interested in a control methodology that brings the
single-input-single-output thermal system to a given steady state. We are thus
interested in a single variable to be controlled, yðtÞ, and a single control
variable, xðtÞ, where t is time. A trained ANN can be used to predict
yiþ1 ¼ yðði þ 1ÞDtÞ knowing yi ¼ yðiDtÞ if the system satisfies an unknown
differential equation of first order. If the equation is of higher order, one
can, in principle, include sufficient time-derivatives of a vector version of
yðtÞ to reduce all scalar equations in its components to first order. In practice
this is difficult since analog signals corresponding to derivatives may not be
readily available. However, a finite difference approximation of the deriva-
tives shows that, provided Dt is small enough, this is equivalent to adding
information about y at previous instants in time, i.e., yi�1; yi�2, etc., as many
as needed. Previous values of xi ¼ xðtÞ may also be needed for systems of
higher order. A memory unit, which is part of the computerized control sys-
tem, stores yi and xi to provide information on previous instants to the ANN.

A regular input�output model is shown in Figure 1(a). It shows an open-
loop control system for which the control variable xi is known. This is the
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FIGURE 1. Neurocontrollers: (a) open loop and (b) closed loop. For clarity, the plant to be controlled is

not shown.
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variable that is manipulated to obtain the desired behavior from the plant to
be controlled. For clarity, only the controller is shown in the figure, but not
the plant. The number of inputs and outputs of the ANN are not the same.
Though this is not a problem for a neural network, it is awkward for stability
analysis. For this purpose, a vector u of dimension n will be defined such that
on the input side of the ANN

ui ¼ ðyi�nþ1; yi�nþ2; . . . ; yi�1; yiÞ; ð1Þ
and on the output side

uiþ1 ¼ ðyi�nþ2; yi�nþ3; . . . ; yi; yiþ1Þ: ð2Þ
The overall effect of the control system is that of a nonlinear map

uiþ1 ¼ FðuiÞ: ð3Þ
The variables corresponding to these that will be actually used are defined in
‘‘Experimental Verification.’’

For closed-loop operation, a controller generates the control variable
xðtÞ, as shown in Figure 1(b). The controller is modeled by

xi ¼ gðyi; yi�1; . . . ;xi�1;xi�2; . . . ; y�Þ; ð4Þ
and the ANN by

yiþ1 ¼ f ðyi; yi�1; . . . ;xi; xi�1; xi�2; . . .Þ; ð5Þ
where y� is a reference value of the controlled variable. Once again the map
represented by Eq. (3) applies where

ui ¼ ðyi�nþ1; yi�nþ2; . . . ; yi�1; yi; xi�mþ1;xi�mþ2; . . . ; xi�1; xiÞ: ð6Þ

Consider the nonlinear map (3) for open-loop control, or a similar map
obtained by using Eqs. (4) and (5) in closed-loop control. The fixed points u
map to themselves and are hence solutions of u ¼ FðuÞ. A nonlinear map can
have more than one fixed point with different stability characteristics. To
study the stability of a given fixed point, the map is linearized around it to get

uiþ1 � u ¼ Jðui � uÞ; ð7Þ
where J is the Jacobian of F evaluated at the fixed point. The spectral radius
of J, denoted by r, is the largest of the absolute values of its eigenvalues. If
r < 1, the images of the map converge to the fixed point and it is stable;
otherwise, it is unstable (Hale and Kocak 1991).

STABILITY ANALYSIS

In this section, the behavior of neural networks is analyzed, going
progressively from simple to more complex configurations. The simple ones
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are addressed analytically, while the more complex are numerically com-
puted. In the latter case, the Jacobians were calculated using second-order
accurate numerical derivatives, and the spectral radii were found using the
implicit double-shifted QR algorithm of the EVCRG routine in the IMSL1

library. For validation, the results of the numerical code for the 2-1-1 net-
work were compared with the analytical solution, and the spectral radii from
both methods were found to be identical.

Open-Loop Control with Single Neuron

As ANNs are composed of a system of neurons connected together to
build a network, the stability of one of these is first analyzed. Consider
two inputs to a single neuron, yi and x, where x is a control parameter that
is kept constant, and an output, yiþ1. There are two synaptic weights, w21

11 and
w21
12, and only one bias, h21. Defining ui ¼ ðyi; yiþ1Þ, we get the map

uiþ1
1 ¼ ui2; ð8Þ

uiþ1
2 ¼ f ðui2Þ; ð9Þ

where

f ðui2Þ ¼ ½1þ expf�h21 � w21
11u

i
2 � w21

12xg�
�1: ð10Þ

The fixed point of this map is ðu1 ¼ u2Þ where u1 ¼ u2 and u2 ¼ f ðu2Þ.
Depending on the weights, there may be more than one fixed point. The
Jacobian at the fixed point is

J ¼ 0 1
0 k2

� �
; ð11Þ

where kk ¼ @f =@uik; the overbar indicates that the derivative is evaluated at
the fixed point. In this simple case, k2 is the slope of the curve represented
by Eq. (9). We have k2 ¼ w21

11e
�bð1þ e�bÞ�2, where b ¼ h21 þ w21

11�uu1 þ w21
12x.

The eigenvalues of J are 0 and k2 so that the spectral radius is r ¼ jk2j.
The fixed point is stable if r < 1. The key to stability is Eq. (9), which can

be linearized to uiþ1
2 � �uu2 ¼ k2ðui2 � �uu2Þ. Thus, for 0 < k2 < 1, each u2 will be

successively close to �uu2 and on the same side of it. If, however, �1 < k2 < 0,
then u2 will oscillate around �uu2 as it approaches. The sign of k2 is determined
by the sign of w21

11. There are two possible dynamic behaviors that can be
found if the fixed point is unstable: The system may oscillate around the fixed
point, or it may drift to another fixed point that is stable but undesirable.

Figures 2, 3, and 4 show different behaviors depending on w21
11. w21

12

and h21 have been kept constant. In each figure, the upper graph shows
yiþ1
2 vs. i1, the center one yiþ1

2 vs. yi2, and the lowest r vs. i. In Figures 2
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and 3, the spectral radius is less than unity and the fixed point is stable. In
Figure 2, w21

12 is positive and less than unity so that there is monotonic con-
vergence, while it is negative in Figure 3, leading to oscillations. For Figure 4,
r > 1 so that the fixed point is not stable. Since w21

12 < 0, an initial condition
near it wanders away in an oscillatory fashion, ending eventually in constant
amplitude oscillations. Thus, the stability of a map of the type of Eqs. (8) and
(9) and the nature of its behavior around a fixed point depend on the value
and sign of k2, which is a function of the synaptic weights and biases.

Open-Loop Control with 2-1-1 Neural Network

The purpose of this example is to show that even though the steady-state
prediction of two ANNs trained with the same data but with different initial
weights and biases might be identical, their dynamic response can differ sig-
nificantly. Training of a simple ANN with an equally simple analytical func-
tion allows us to explain the concepts without excessive and unnecessary
algebra. One of the simplest ANN is that with two input neurons, one hidden
layer with one neuron, and a single output neuron, i.e., a 2-1-1 structure. The
simplest set of data, a single point on y ¼ x2 with x ¼ 0:7, was provided to
the ANN. It was trained using a gradient method (Pierre 1986), which

FIGURE 2. Single neuron, stable behavior without oscillations, h21 ¼ 0:1;w21
12 ¼ 0:1;w21

11 ¼ 0:5.
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minimizes the error e ¼ 1
2 ðy� � yÞ2, where y� is the target value and y is the

prediction of the ANN.
Writing ui ¼ ðyi; yiþ1Þ again, the map is represented by Eqs. (8) and (9),

where

f ðui2Þ ¼ 1þ exp �h31 �
w31
21

1þ e�b

� �� ��1

ð12Þ

and b ¼ h21 þ w21
11u

i
1 þ w21

12x. The spectral radius is r ¼ jk2j, where k2 ¼
w31
21w

21
11e

�be�að1þ e�aÞ�2ð1þ e�bÞ�2 and a ¼ h31 þ w31
21=ð1þ e�bÞ.

The stability of the map depends on the trained weights and biases, which
in turn depend on the initial values used during training. In Table 1, runs A
and B show the initial and final weights and biases of the network and the
final spectral radii of the Jacobian of the maps that result from training with
two different sets of initial weights and biases. Though the error in each case
is zero, it can be seen that different initial weights and biases may lead to
different values after training.

Figure 5 shows the time-dependent behavior of the network for case A.
The system is stable at the prescribed fixed point and yi!�yy as i ! 1. Once

FIGURE 3. Single neuron, stable behavior with oscillations, h21 ¼ 0:1;w21
12 ¼ 0:1;w21

11 ¼ �5:0.
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the fixed point is predicted correctly, the spectral radius takes the value
obtained in the training process. On the other hand, Figure 6 shows the output
of the same ANN configuration but now using the weights for case B. The
fixed point is not stable, and the long-time behavior of the map is seen to be
oscillatory around it with constant amplitude. Though both A and B are
able to make good steady-state predictions, one control system is stable
and the other is not.

FIGURE 4. Single neuron, unstable behavior, h21 ¼ 0:1;w21
12 ¼ 0:1;w21

11 ¼ �10:0.

TABLE 1 2-1-1 Neural Network, Initial, and Final Weights and Biases and Final Spectral Radii. Cases A

and B are without and C is with stabilization.

w21
11 w21

12 w31
21 h21 h31 r

A Initial 0.5 � 0.7 0.3 � 0.1 � 0.1 —

Final 0.4981 � 0.7026 0.2774 � 0.1038 � 0.1545 0.0084

B Initial 9.0 � 9.0 � 9.0 � 0.1 � 0.1 —

Final 8.781 � 9.311 � 8.945 � 0.5450 0.4925 1.0991

C Initial 9.0 � 9.0 � 9.0 � 0.1 � 0.1 —

Final 1.261 � 6.281 � 8.936 3.783 8.862 0.1068
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Open-Loop Control with 2-5-1 Neural Network

The purpose of this section is to show the relation between the dynamic
behavior of an ANN and the value of the spectral radius of the linearized
iterative map. This is trained using a gradient method by providing only
one set of data to the network, i.e., y ¼ x2 with x ¼ 0:7. The inputs to the
ANN are y and x and the output is y. The network is trained starting from
two different initial weights and biases. In both cases, call them D and E, the
error is reduced by training to zero, but the spectral radii converge to 0.0915
and 1.069, respectively. The ANN is now used as an open-loop controller as
in Figure 1(a). Figure 7 shows yiþ1 ¼ f ðyiÞ for both sets of weights where the
fixed points are determined by the intersection of the curve with the yiþ1 ¼ yi

line. For case D, there is only one fixed point. It is stable since the absolute
value of its slope at the fixed point is less than unity as indicated by its inter-
section with the yiþ1 ¼ yi line. On the other hand, for case E, there are three
fixed points: two stable and one unstable. The network is trained to the
unstable fixed point and the behavior of the open-loop control system is indi-
cated in Figure 8. The system goes to the unstable fixed point, yiþ1 ¼ 0:49, and
then moves away to a stable one, yiþ1 ¼ 0:72. The spectral radius at the

FIGURE 5. 2-1-1 network, case A.
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second fixed point is r ¼ 0:847. Though it is stable, the prediction of the ANN
is incorrect since the fixed point is not the one that it was trained for.

TRAINING WITH STABILIZATION

It is seen that training may produce an ANN with good steady-state
prediction but which is unstable in dynamic operation as a control system. To
avoid this, we propose a trainingmethod to drive the ANN toweights and biases
that also guarantee the stability of the desired fixed point. In this method, the
usual error minimization is made to alternate with a stabilization procedure.

The stabilization is switched on if the system is in danger of becoming
unstable, i.e., when it is found that the spectral radius r is greater than unity
during the error minimization process. The objective of the stabilization is to
reduce r, which can be done using a simple gradient procedure. The effect of
each one of the weights wkl

ij on r is determined by the derivative @r=@wkl
ij .

These are calculated and the weights are then changed according to

Dwkl
ij ¼ �g

@r

@wkl
ij

; ð13Þ

FIGURE 6. 2-1-1 network, case B.
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where Dwkl
ij is the correction to the weight wkl

ij , and g is a relaxation parameter
(taken here to be 0.1). This is a first-order gradient formula for reduction of r.
A tolerance criterion, r < 0:5 say, can be set with which we are comfortable
about the stability of the controller. Once this condition is met, we can
resume minimization of the error.

This procedure is tested with the simple 2-1-1 network discussed before
with open-loop control. The errors during training can be calculated as func-
tions of the three weights, w21

11;w
21
12, and w31

21, and two biases, h21 and h31. To
show in graphical form, one weight and two of the biases are fixed so that the
error, e, and spectral radius, r, can be shown as functions of weights w21

11 and
w31
21. Figures 9 and 10 show the contours of eðw21

11;w
31
21Þ and rðw21

11;w
31
21Þ. The

thick line in both figures corresponds to e ¼ 0, which is the goal of the train-
ing. There are infinitely many rs, some greater than and some smaller than
unity, that have e ¼ 0. A stable, trained network can be obtained by moving
towards the e ¼ 0 line, alternating with reduction in r. We begin with initial
weights, corresponding to point a in both figures. The lines abc indicate the
path that would be taken by a gradient error minimization procedure alone.

FIGURE 7. 2-5-1 network, yiþ1 vs. yi for stable (D) and unstable (E) maps; yiþ1 ¼ yi line is shown for

reference.
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At the end, we would have e ¼ 0 and r ¼ 1:39. Compare this with the
inclusion of the stabilization procedure which, as an example, is made to turn
on whenever r < 0:5. The path from a to b, where r ¼ 0:5, is the same as
before. However, after that, the weights and biases are taken from b to d
through a zigzag path around r ¼ 0:5. The final values at d are e ¼ 0 and
r ¼ 0:43, indicating a stable open-loop control system.

The results of training the ANN, using the same initial values as in
case B, but with stabilization, is shown as row C in Table 1. With this set
of weights and biases, the open-loop control system is now stable and the
desired fixed point is reached. Figure 11 shows the behavior of the system
that has been stabilized and can be compared to Figure 6, which was not.

EXPERIMENTAL VERIFICATION

The experiments were carried out in the Hydronics Laboratory of the
Department of Aerospace and Mechanical Engineering of the University of
Notre Dame. Several years ago, a specially designed heat-exchanger test
facility, shown in Figure 12, was built for thermal control experiments (Zhao
1995). This facility consists of an in-draft wind tunnel facility in which

FIGURE 8. 2-5-1 network, unstable open-loop control system.
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water-to-air heat exchangers can be placed. The motion of the air is due to a
fan that is controlled by a variable speed drive; for safety, there is an upper
bound to the allowable air speed, Umax. A PID-controlled electrical resistance
heater provides hot water. Thermocouples are used to sense the air tempera-
ture downstream of the heat exchanger, Tair

out. A Pitot tube located upstream
of the heat exchanger is connected to a differential pressure transducer to
give the air flow rate, U . The data are fed to a PC running on LabVIEW,
which are then processed by a controller which manipulates the air-flow rate.
For the present experiments, a nominal, 18 in.� 24 in. water coil water-to-air
fin-tube compact heat exchanger2 was used.

Previous publications have used this facility in a series of experiments for
neural network simulation and control purposes. The steady-state behavior
of heat exchangers was modeled by Dı́az et al. (1999). In these experiments,
the system was allowed to reach thermal equilibrium before measurements
were made, and the objective was to obtain input-output pairs for training
of an ANN. Different network configurations were studied in order to select
the best. The unsteady behavior of heat exchangers was also modeled using
ANNs and described by Dı́az et al. (2001a; 2001b). Once the dynamics can be
reliably predicted, internal model control methods can be used to manipulate
the flow rates to obtain a desired set point temperature of the outlet air. The

FIGURE 9. 2-1-1 network error contours; thick line is e ¼ 0; abc error minimization alone; abd error

minimization with stabilization; inset shows zig-zag path.
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performance of the controller was compared to standard techniques such
as PID.

In a parallel publication (Dı́az et al. 2002), the details of the stabilization
techniques that have been developed here to regulate the temperature of the
air coming out of the heat exchanger have been described. On the basis of
previous experience, a multilayer ANN was preferred even though the
methodology is perfectly general; specifically, the ANNs used in the control
system had a 6-10-5-1 configuration. The inputs to the network correspond
to Tair

out and voltage to the variable speed drive. Three values of these two vari-
ables taken at consecutive instants in time were used. Thus, ðyi�2; yi�1; yiÞ
correspond to values of Tair

out and ðxi�2;xi�1;xiÞ to values of the voltage to
the variable speed drive. The variables were sampled by the computer at a
time interval of Dt around one second; this is fast enough compared to the
time rates of change in the heat exchanger.

The difference between stable and unstable behaviors of the controller
was demonstrated using two different controllers with r < 1 and r > 1,
respectively. The weights for the stabilized controller were found using the
algorithm proposed here, Eq. (13), while the unstable controller was found

FIGURE 10. 2-1-1 network spectral radius contours; thick line is e ¼ 0; abc error minimization alone; abd

error minimization with stabilization; inset shows zig-zag path.
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by using the same equation but with a change in sign in the right side to drive
the weights in a direction that makes the controller unstable. The reference
temperature was chosen to be Tref ¼ 34:0�C. The flow rates and tempera-
tures in the test facility were first adjusted to get Tair

out as close to Tref as pos-
sible, and then the controller was turned on. Figure 13 shows the response of
the two controllers. For the stabilized controller, Tair

out oscillates a few times
but eventually goes to Tref . On the other hand, for otherwise identical
conditions, the unstable controller takes the system to the maximum air
speed, Umax, where it remains without accomplishing the control task.

CONCLUSIONS

Controllers used for thermal systems should be stable. It is thus
important that, if neural networks are used for this purpose, the training
procedures be such that the resulting system is guaranteed to be stable. This
is especially true if the network is adaptive (Dı́az et al. 2001b), such as in
thermal systems that evolve over time either due to fouling or changes in
hardware.

FIGURE 11. 2-1-1 network, case C.
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The stability of a thermal open- or closed-loop neurocontroller is deter-
mined by the spectral radius of the Jacobian of the map that governs the
process. This is easily calculated for small networks. A training algorithm
for networks is proposed here that can find a set of weights and biases that
reduces the target error to a minimum, but for which the control system is

FIGURE 12. Experimental setup: (a) heat exchanger test facility with wind tunnel and in-draft fan,

(b) heat exchanger with water air flows indicated; Tair
out is the air outlet temperature.
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also stable. This technique was experimentally tested and verified on the
control of the air temperature coming out of a water-air heat exchanger.

NOMENCLATURE

e error
F mapping function
f function for model of plant
g function for controller
(i; j) neuron j in layer i
J Jacobian matrix of linearized map
m number of components for control variable
n number of components for controlled variable
r spectral radius of Jacobian matrix
Tref reference temperature [�C]
Tair
out outlet air temperature [�C]

t time
Dt time interval
U air velocity

FIGURE 13. Experimental operation of stabilized and unstable controllers for control of Tout
air .
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Umax maximum air velocity
u mapping vector
wk;l
i;j synaptic weight between neurons (i; j) and (k; l)

Dwk;l
i;j correction to weight wk;l

i;j

x control variable
y controlled variable
y� reference value of controlled variable

Greek Symbols

g relaxation parameter
hi;j bias of neuron (i; j)
kk ¼ @f =uik

Subscripts and Superscripts

i time index
ðÞ value at fixed point

NOTES

1. Bristol Technology, Inc., Version 3.1.
2. Type T, manufactured by Trane, Inc., La Crosse, WI 54601.
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