
Stochastic Gradient Descent on Modern Hardware: 
Multi-core CPU or GPU?

Synchronous or Asynchronous?

Yujing Ma, Florin Rusu, and Martin Torres
University of California Merced



ML/AI Golden Age
● Big training data

– Millions – billions examples
– Thousands – millions features (dimensions)

● Highly-parallel hardware

– Multi-core CPUs with 20+ cores
– GPUs with 1000s of cores
– Huge memory (100s GBs – 1s TB on a server)



Stochastic Gradient Descent (SGD)
● Powers ML/AI golden age
● 100s of variants/implementations/papers
● Implemented by any single ML/AI system

– Google Brain, Microsoft Project Adam, IBM 
System ML, Spark Mllib, etc.

● CPU & GPU implementations

– Caffe, TensorFlow, MXNet, BIDMach, SINGA, 
Theano, Torch, etc.



SGD in Databases
● It is not so much about deep learning

– Regression (linear, logistic)
– Classification (SVM)
– Recommendation (LMF)

● Mostly about training
– Inside DB, close to data
– Over joins or factorized databases
– Compressed data, (compressed) large models

● Selection of optimization algorithm and hyper-
parameters
– BGD vs. SGD vs. SCD 



Contribution: SGD Study on Highly-
Parallel Architectures

Exploratory axes Performance axes



ML Training with Gradient Descent



Stochastic Gradient Descent (SGD)



(Mini-)Batch SGD



Synchronous Parallel SGD

Parallel execution 
on CPU and/or GPU 
as linear algebra 
kernels



Incremental SGD



Asynchronous Parallel SGD (Hogwild!)

in parallel

No synchronization 
or locks



Batch v Incremental



NUMA CPU Architecture



GPU Architecture



NUMA CPU v GPU

• CPU: 2 x Intel Xeon E5-2660 (14 cores, 28 threads)
• GPU: Tesla K80 (use only one multiprocessor, ~K40)



Datasets & Tasks

sparse

dense



Synchronous SGD Implementation

ViennaCL (1.7.1) library kernels
● Same API for CPU and GPU
● Separate compilation for each architecture



Synchronous SGD Study (LR)

dense

sparse



Synchronous SGD Results



Asynchronous SGD Implementation 
(Hogwild!)

● NUMA CPU
● Extensive study in DimmWitted by Zhang and Re (PVLDB 2014)

● GPU
● Novel study



Map Hogwild! to GPU

Algorithm
Copy data and model to GPU
While not converge do

Execute Hogwild! kernel
End while



Data Access Path
row-major round-robin (row-rr)



Data Access Path
row-major chunking (row-ch)



Data Access Path
column-major round-robin (col-rr)



Data Access Path
column-major chunking (col-ch)



Data Access Path Study

dense

sparse



Model Replication



Model Replication



Model Replication Study

dense

sparse



Data Replication



Data Replication



Data Replication Study

dense

sparse



Asynchronous SGD Results



GPU Hogwild! Summary



MLP Speedup (real-sim)



Synchronous GPU v Asynchronous CPU



Speedup CPU v GPU



Conclusions
● Synchronous SGD

– GPU is always faster than parallel CPU in time to convergence

– Gap is larger for MLP (5X on average)

– Results are on par or better than TensorFlow and BIDMach

● Asynchronous SGD
– CPU always outperforms GPU in time to convergence, even when 

GPU has a speedup larger than 10X in hardware efficiency

– Gap is higher than 5X on sparse data and deep nets

● Synchronous GPU v Asynchronous CPU
– The best is task- and dataset-dependent

– CPU should not be discarded

– GPU is more cost-effective alternative



Code: 
https://github.com/YMA33/GradientDescent

Thank you.
Questions ???

https://github.com/YMA33/GradientDescent

	Slide 1
	ML in Databases
	Slide 3
	Slide 4
	Classification Tasks
	Gradient Descent
	Slide 7
	(Mini-)Batch Gradient Descent (BGD)
	Slide 9
	Stochastic Gradient Descent (SGD)
	Slide 11
	BGD vs. SGD
	Slide 13
	Slide 14
	Slide 15
	Datasets and Platforms
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Map Hogwild to GPU
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

