Stochastic Gradient Descent on Modern Hardware: Multi-core CPU or GPU? Synchronous or Asynchronous?

Yujing Ma, Florin Rusu, and Martin Torres University of California Merced

ML/AI Golden Age

- Big training data
 - Millions billions examples
 - Thousands millions features (dimensions)

- Highly-parallel hardware
 - Multi-core CPUs with 20+ cores
 - GPUs with 1000s of cores
 - Huge memory (100s GBs 1s TB on a server)

Stochastic Gradient Descent (SGD)

- Powers ML/AI golden age
- 100s of variants/implementations/papers
- Implemented by any single ML/AI system
 - Google Brain, Microsoft Project Adam, IBM
 System ML, Spark Mllib, etc.
- CPU & GPU implementations
 - Caffe, TensorFlow, MXNet, BIDMach, SINGA, Theano, Torch, etc.

SGD in Databases

- It is not so much about deep learning
 - Regression (linear, logistic)
 - Classification (SVM)
 - Recommendation (LMF)
- Mostly about training
 - Inside DB, close to data
 - Over joins or factorized databases
 - Compressed data, (compressed) large models
- Selection of optimization algorithm and hyperparameters
 - BGD vs. SGD vs. SCD

Contribution: SGD Study on Highly-Parallel Architectures

ML Training with Gradient Descent

$$\min_{\vec{w} \in \mathbb{R}^d} \left\{ \Lambda(\vec{w}) = \sum_{(\vec{x}_i, y_i) \in \mathsf{data}} f(\vec{w}, \vec{x}_i; y_i) \right\}$$

$$\vec{w}^{(k+1)} = \vec{w}^{(k)} - \alpha^{(k)} \nabla \Lambda \left(\vec{w}^{(k)} \right)$$

$$\Lambda(\vec{w}) \text{ is the loss}$$

$$\nabla \Lambda(\vec{w}) = \left[\frac{\partial \Lambda(\vec{w})}{\partial w_1}, \dots, \frac{\partial \Lambda(\vec{w})}{\partial w_d}\right] \text{ is the gradient}$$

$$\alpha^{(k)} \text{ is step size or learning rate}$$

$$\vec{w}^{(0)} \text{ is the starting point (random)}$$

• Convergence to minimum guaranteed for convex objective function

$$\begin{aligned} f_{LR}(\vec{w}) &= \log\left(1 + e^{-y_i \vec{x}_i \cdot \vec{w}}\right) \\ \frac{\partial f_{LR}(\vec{w})}{\partial w_j} &= x_{ij} \left(-y_i \frac{e^{-y_i \vec{x}_i \cdot \vec{w}}}{1 + e^{-y_i \vec{x}_i \cdot \vec{w}}}\right) \\ \frac{\partial f_{SVM}(\vec{w})}{\partial w_j} &= \begin{cases} -y_i x_{ij}, & \text{if } y_i \vec{x}_i \cdot \vec{w} < 1 \\ 0, & \text{otherwise} \end{cases} \end{aligned}$$

Stochastic Gradient Descent (SGD)

Algorithm 1 Stochastic Gradient Descent (SGD) Require: →

Training examples $\vec{X} \in \mathbb{R}^{N \times d}$ and their labels $\vec{Y} \in \mathbb{R}^N$ Loss function f and its gradient $\overrightarrow{\nabla f}$ Initial model $\vec{w} \in \mathbb{R}^d$ and step size $\alpha \in \mathbb{R}$ Number of epochs t and batch size B

- 1. for k = 1 to t do OPTIMIZATION EPOCH
- 2. Select a random subset of *B* examples $\vec{X}_k = {\vec{x}_{i_1}, \dots, \vec{x}_{i_B}}$ and their labels $\vec{Y}_k = {y_{i_1}, \dots, y_{i_B}}$
- 3. Compute gradient estimate: $\vec{g} \leftarrow \sum_{\vec{X}_{k}, \vec{Y}_{k}} \overline{\nabla f}(\vec{w})$
- 4. Update model: $\vec{w} \leftarrow \vec{w} \alpha \vec{g}$
- 5. end for
- 6. return \vec{w}

(Mini-)Batch SGD

Algorithm 2 Batch SGD Optimization Epoch

1. Compute gradient:

for i = 1 to N do $\vec{g} \leftarrow \vec{g} + \overrightarrow{\nabla f}(\vec{w}; \vec{x_i}, y_i)$

2. Update model: $\vec{w} \leftarrow \vec{w} - \alpha \vec{g}$

http://www.holehouse.org/mlclass/17_Large_Scale_Machine_Learning.html

Synchronous Parallel SGD

Incremental SGD

Algorithm 3 Incremental SGD Optimization Epoch

- 1. for i = 1 to N do
- 2. Compute gradient estimate: $\vec{g} \leftarrow \overrightarrow{\nabla f}(\vec{w}; \vec{x_i}, y_i)$
- 3. Update model: $\vec{w} \leftarrow \vec{w} \alpha \vec{g}$
- 4. end for

http://www.holehouse.org/mlclass/17_Large_Scale_Machine_Learning.html

Asynchronous Parallel SGD (Hogwild!)

Algorithm 3 Incremental SGD Optimization Epoch

Batch v Incremental

http://www.holehouse.org/miclass/17_Large_Scale_Machine_Learning.html

$$\vec{w}^{(k+1)} = \vec{w}^{(k)} - \alpha^{(k)} \nabla \Lambda \left(\vec{w}^{(k)} \right)$$

- Exact/accurate gradient computation
- One step for per batch/iteration
- Faster convergence close to minimum

Stochastic (SGD)

http://www.holehouse.org/miclass/17_Large_Scale_Machine_Learning.html

$$\vec{w}^{(k+1)} = \vec{w}^{(k)} - \beta^{(k)} \nabla f\left(\vec{w}^{(k)}, \vec{x}_{\eta^{(k)}}; y_{\eta^{(k)}}\right)$$

- Approximate gradient at each data point
- One step per data point
- Faster convergence far from minimum

NUMA CPU Architecture

GPU Architecture

NUMA CPU v GPU

	NUMA	GPU
CPU/MP	2	13
cores	14 per CPU	192 per MP
blocks	-	16 per MP
threads	28 per CPU	2048 per MP
L1 cache	32+32 KB	48 KB
L2 cache	256 KB	1.5 MB
L3 /shared	35 MB	48 KB
RAM/global	256 GB	12 GB

- CPU: 2 x Intel Xeon E5-2660 (14 cores, 28 threads)
- GPU: Tesla K80 (use only one multiprocessor, ~K40)

Datasets & Tasks

dense

dataset	#examples	#features	#nnz/exp (avg)	size (s/d)
covtype	581,012	54	54 to 54 (54)	– / 485MB
w8a	64,700	300	0 to 114 (12)	4.4MB / 155MB
real-sim	72,309	20,958	1 to 3,484 (51)	87MB / 12.1GB
rcv1	677,399	47,236	4 to 1,224 (73)	1.2GB / 256GB
news	19,996	1,355,191	1 to 16,423 (455)	134MB / 217GB
			A	
			I	
		S	barse	
	data	aset M	LP architecture	
	COV	type	54-10-5-2	_
	w8a		300-10-5-2	
	real	-sim	50-10-5-2	
	rcvl		50-10-5-2	
	new	'S	300-10-5-2	

Synchronous SGD Implementation

vector a = matrix-vector-product(data, model)

a = vector-vector-element-product(label, a)

```
vector b = vector-element-sum(1, a)
```

- a = vector-vector-element-division(a, b)
- a = vector-vector-element-product(a, -label)

gradient = matrix-vector-product(transpose(data), a)

ViennaCL (1.7.1) library kernels

- Same API for CPU and GPU
- Separate compilation for each architecture

Synchronous SGD Study (LR)

dense

Synchronous SGD Results

tock	datasat	latasot interview (sec)		nce (sec)	time-p	per-iteratio	n (msec)	onoche	speedup		
task	uataset	gpu	cpu-seq	cpu-par	gpu	cpu-seq	cpu-par	epocus	cpu-seq/cpu-par	cpu-par/gpu	u –
	covtype	1.05	145.11	1.29	<u>15</u>	2,073	18.42	70	112.54	1.2	3
	w8a	0.37	148.88	0.46	4.87	1,959	6.05	76	323.80	1.24	4
LR	real-sim	3.10	1,537.90	7.67	4.43	2,197	10.96	700	200.46	2.4	7
	rcv1	31.69	2,227.05	48.06	44.82	3,150	67.98	707	46.34	1.5	2
	news	0.65	240.21	3.68	6.37	2,355	36.08	102	65.27	5.6	6
	covtype	10.22	1,344.65	13.50	14.27	1,878	18.85	716	99.63	1.3	2
	w8a	0.78	342.85	0.80	4.13	1,814	4.23	189	428.84	1.02	2
SVM	real-sim	0.23	75.59	0.46	6.22	2,043	12.43	37	164.36	2.0	0
	rcv1	1.13	111.61	2.61	29.74	2,937	68.69	38	42.76	2.3	1
	news	0.30	98.42	1.69	6.67	2,187	37.56	45	58.23	5.6	3
	covtype	1,498	19,398	10,009	919	11,908	6,145	1,629	1.94	6.6	8
	w8a	83.57	909	388	107	1,161	495	783	2.34	4.64	4
MLP	real-sim	21.99	229	93.98	130	1,365	556	168	2.46	4.2	6
	rcv1	48.91	1,146	241	1,193	16,960	5,880	41	2.89	4.93	3
	news	4.03	35.04	16.08	40.23	357	164	98	2.17	4.03	8
					`\ /			'			/
		$\langle \rangle$			\bigvee						/

Asynchronous SGD Implementation (Hogwild!)

Dimension	Strategies			
Data access path	row-major round-robin (row-rr) row-major chunking (row-ch) column-major round-robin (col-rr) column-major chunking (col-ch)			
Model replication	kernel block thread example			
Data replication	no replication (no-rep) k-wise replication (rep-2, rep-5, rep-10)			

- NUMA CPU
 - Extensive study in DimmWitted by Zhang and Re (PVLDB 2014)
- GPU
 - Novel study

Map Hogwild! to GPU

Data Access Path row-major round-robin (row-rr)

Data Access Path row-major chunking (row-ch)

Data Access Path column-major round-robin (col-rr)

Data Access Path column-major chunking (col-ch)

Data Access Path Study

dense

sparse

Model Replication

Model Replication

block

Model Replication Study

sparse

Data Replication

Data Replication

Data Replication Study

sparse

Asynchronous SGD Results

tock	datasat	time-to-convergence (sec)		time-per-iteration (msec)			epochs			speedu	p	
tasn	ualasei	gpu	cpu-seq	cpu-par	gpu	cpu-seq	cpu-par	gpu	cpu-seq	cpu-par	cpu-seq/cpu-par	gpu/cpu-par
	covtype	1.97	0.60	1.51	<u>15</u>	150	251	135	<u>4</u>	6	0.60	0.06
	w8a	0.22	0.27	<u>0.18</u>	<u>2.8</u>	15	5.9	80	<u>18</u>	27	2.54	0.47
LR	real-sim	2.48	1.35	0.52	27	25	8.1	92	<u>54</u>	61	3.09	3.33
	rcv1	18.29	20.37	4.64	226	345	71	81	59	65	4.86	3.18
	news	∞	5.47	∞	65	53	8.7	∞	103	∞	6.09	7.47
	covtype	0.96	0.16	0.35	15	53	77	63	3	4	0.69	0.19
	w8a	∞	0.54	1.89	2.6	2.2	5.6	∞	239	333	0.39	1.18
SVM	real-sim	3.46	1.82	1.28	14	11	7.6	247	164	166	1.45	1.84
	rcv1	10.25	22.71	7.57	94	216	68	109	105	111	3.18	1.38
	news	∞	20.01	1.79	50	47	8.4	∞	425	<u>211</u>	5.60	5.95
	covtype	2,106	6,365	288	6,056	19,058	814	344	334	354	23.42	7.44
	w8a	495	1,284	986	635	1,668	92.61	776	770	10,635	18.01	6.85
MLP	real-sim	140	317	11.14	715	1,925	107	196	165	108	18.04	6.70
	rcv1	352	724	34.47	8,326	17,234	858	42	42	40	20.08	9.70
	news	18.25	47.35	1.12	234	512	<u>34.04</u>	78	91	32	15.06	6.87
		-										

GPU Hogwild! Summary

task	dataset	optimal configuration		
	covtype	col-rr + block + no-rep		
	w8a	row-rr + kernel + rep-10		
LR	real-sim	row-ch + kernel + rep-10		
	rcv1	row-ch + kernel + no-rep		
	news	row-rr + kernel + rep-10		
	covtype	col-rr + block + no-rep		
	w8a	row-ch + kernel + rep-10		
SVM	real-sim	row-rr + kernel + rep-10		
	rcv1	row-rr + kernel + rep-10		
	news	row-rr + kernel + rep-10		

MLP Speedup (real-sim)

Synchronous GPU v Asynchronous CPU

Speedup CPU v GPU

Conclusions

- Synchronous SGD
 - GPU is always faster than parallel CPU in time to convergence
 - Gap is larger for MLP (5X on average)
 - Results are on par or better than TensorFlow and BIDMach
- Asynchronous SGD
 - CPU always outperforms GPU in time to convergence, even when GPU has a speedup larger than 10X in hardware efficiency
 - Gap is higher than 5X on sparse data and deep nets
- Synchronous GPU v Asynchronous CPU
 - The best is task- and dataset-dependent
 - CPU should not be discarded
 - GPU is more cost-effective alternative

Code: <u>https://github.com/YMA33/GradientDescent</u>

Thank you. Questions ???