Distributed Caching for Processing Raw Arrays

Weijie Zhao!, Florin Rusu®?, Bin Dong?, Kesheng Wu?, Anna
Y. Q. Ho3, and Peter Nugent?

LUniversity of California Merced, ?Lawrence Berkeley National Laboratory,
3CalTech

July 2018

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

lomar Transient Fac

Detailed
Processing

Archival Pipeline

(" B Image & Catalog
P48 Scheduler Server
Pas Observat
Control System

Data Quality
Monitor

Follow-Up Follow-Up
S

Telescope

Automatic
Identification & Classification

@ 2,000-4,000 images 2,048x4,096 pixels per night
@ 60-100 GB per night

@ Complete processing of an image set within 30-45 minutes of
aquisition

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Automatic Transient Identification & Classification

@ 1-1.5 million candidates extracted per night; 10,000 every 45
minutes; 30-150 are real

@ Real-or-bogus classification: Is the candidate real?

@ What is the transient type of a real candidate: VarStar?
SN/Nova? circumnuclear event? asteroid?

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Array Construction

Py N
Detailed Image & Catalog
P48 Scheduler Processing Server
Archival Pipeline
P48 Observatory
Control System
Y q Real-Time Image \
i
Automatic

Data Quality
Monitor

_ Telescope /

Identification & Classification

\ReaI-Time Transient Detegtion Pipeline /

Follow-Up
Telescopes

Follow-Up
Marshal

Image processin, . .
o Image — 255 P8, Objects — 3-D array [ra, dec, time]

@ Array is chunked and stored in a shared-nothing array
database

@ Array is sparse and skewed

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

@ Motivation, Contributions, and Related Work

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Raw PTF Data

A: Standard FITS Format

| Primary Header I

Image or Data

B: Binary Table Extension

| Primary Header I

Binay Table Header

[rae—
e chmnd

8,16, 2 kit inbger st

32, 64bit float (IEEE -754)

Binary Table

Cobmm 1 Lo i dinrine]
Binary Table -

ot Do [Namenine]
[

Figure FITS -1 Figure FITS

FITS, HDF5, CSV

0bjID, skyVersion, run, rerun, cancol, field, obj ,mode,nChild, type, clean, probPSF, insideMask, 1
1237645942366274027, 2,109,301, 3,114,491, 1,0,3,1,0,0, 217164284160, 22689418, 0. 13062, 1969,
1237645042366274688, 2,109,301, 3,114,1152,1,0,3,0,0,0,281543964623104, 145. 553284, 0. 520364

1237645942370140518, 2,109, 361, 3,173, 358, 1

31
1358, 3525507620624, 1255. 73218, 0.109877, 3
1237645942370140519, 2,169, 3013, 173,359, 1

505426755424528,1270. 13306, 0. 565565,

o A file for each night; file ranges overlap

@ High object cardinality variance across files

@ Files stored across a distributed cluster

@ Load and partition inside array database before query

W. Zhao, F. Rusu, B. Don,

K. Wu, A. Ho, and P. Nugen

Distributed Caching for Processing Raw Ari

Contributions

@ Design query-driven distributed caching framework for raw
arrays

o lIdentify cells to be cached locally and incrementally from each
input file
o Assign cells to nodes such that dependent cells are collocated
@ Design an evolving R-tree index that refines the chunking of a
sparse array to efficiently find the cells contained in a given
subarray query

@ Propose efficient cost-based algorithms for distributed cache
eviction and placement that consider a historical query
workload

@ Evaluate experimentally distributed caching over raw arrays on
two real sparse arrays with more than 1 billion cells stored in
three file formats—FITS, HDF5, and CSV

Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Related Work

@ Raw or in-situ data processing over CSV and JSON files
o NoDB, SCANRAW, OLA-RAW, VIDa, SLALOM, Proteus
Raw array processing in SciDB (HDF5)
o ArrayBridge

Caching of raw semi-structured data (JSON, Parquet)
o NoDB, ReCache, vertical partitioning, invisible loading

Distributed caching in relational databases and web systems

o LRU-K, DBMIN, LRFU, LRU-Threshold, Lowest-Latency-First,
and Greedy-Dual-Size

Distributed caching in Hadoop and Spark

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

© Arrays and Shape-Based Similarity Join

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Raw Array Data Model

\J_[1] 2] 3] 4 [7] [8]

2 Y £ | [sZ2lXas|vies

<Z,3>

@ Raw array A<n:char,f:int>[i=1,6;j=1,8] consisting of 7
files distributed over 3 nodes

@ Attributes n and f correspond to the node and the file id on
the node, e.g., <X,2> is a cell in the second file on node X

@ The cell color also shows the server on which the file is stored

@ The dashed rectangle specifies a query

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Array Similarity Join
o SELECT fINTO 7 FROM « SIMILARITY JOIN 5 ON M
WITH SHAPE o

f : computation function, 7 : result array, a, 8 : input arrays,
M : array mapping function, o : similarity shape array

.

0 }:'
M(iJ) : k=i @
) f: Identity (2] i
e
> m—) L
N W A
//// 0 M /T T 3] .

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Similarity Shape Array for Popular Distance Metrics

L° EMD Hamming

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

© Raw Array Distributed Caching

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Raw Array Distributed Caching Approach

NomlrlZ 3l 4] (51 (6]) (8 N[2 TN C TN N C W s B] m g i3l [C T RG]
&) (1] <Y, 2> (1] Z,3>|
2] 2] <V,2>| &
8 o) (3] KZA4] <z,3:
) 4] 4] 71
)] I (5] (2>] (5] 74 K774
)] | o] il el il (5]
| _Cached cells | Read but not cached, | Cached cells Read but not cached | Cached cells Read but not cached
X|r1.11, (2.3, 3] X|[1.11, (2.3, 3] [X)i1,1], [2,31[3,3]
¥Yl|[2,3], [2,2] ¥[12,31, [2,2],1[1,4] ¥(|[1,3], [2,2],,[1
Z |[3,3], [4,2], [5,2]|[1,4], [2,5], [5,6], [6,4]| Z |[3,3], [4,2], [5,2] , [2,51, [5,6], [6,4]] Z §3,1], [4,2], [5,2] 1 [2,5], [5,6], [6,4]

Local caching ———» Distributed caching Cost-based caching

@ Build in-memory chunks incrementally based on the query
(workload-driven chunking)

@ Create higher granularity chunks for the entire file
@ Design a global cost-based caching mechanism

@ Combine query processing with cache replacement

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Distributed Caching Architecture

Coordinator

Catalog metadata

file/chunk i chunk
metadata/ metadata
« y N

Cache coordinator 1:7:; ution Query optimizer

execution & cache plan

file/chunk
metaddta
4 Cache jj_"" Cache [¢h "‘> Cache)
manager manager | manager
! ! !
[Memory] [Memory] [Memory]
— —
|

\ Node X \ NodeY / \\ Nodez /

Distributed Caching for Processing Raw Arrays

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent

Raw Array Chunking

@ Original raw array and resulting chunked array

2 =
° o]
eo®)
% ‘o S = @

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Chunk Split Algorithm

Input: Chunk o with bounding box BB, that intersects query
subarray @; Minimum number of cells threshold MinC

Output: Chunks 8 and ~ after splitting «

1. if(cells in & < MinC) and (3 cell in @ € Q) then return

2: min_vol = +o00

3: for each boundary b € @ that intersects with B, do

4 (Bp,vp) « split cells in « into two sets by boundary b

5. if vol(8p) + vol(yp) < min_vol then

6 min_vol < vol(5p) + vol(7)

7: B < bounding_box(5p), v < bounding_box(vs)

8: end if

9: end for

@ Build an evolving R-tree incrementally based on queries
@ When to split? Cell number threshold or no cells at all
@ How to split? Always split into two chunks

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Cost-Based Caching

NI N 3 NN NN C) NN (NN C NN c RN (3 NV ¢ S) NN) NN (3 DU N () N o) N) [] [C T R G)
[} (1] <Y, 2>| (1] Z,3>|
2] 2] <V,2>| &
e e E Kz <3
(4] (4] (4)]
S 1 25|) K2
O B il el il)
Cached cells | Read but not cached, Cached cells = Read but not cached | Cached cells | Read but not cached
- | > T~ >
X221, 23], [3.1] X221, 23], [3,1] X jf1.11, 12,31,
¥i[[2,3], [2,2] ¥[[2,31, [2,2],1[1,4 ¥(|[1,3], [2,21,[1.4
Z |[3,3], [4,2], [5:2]| [1,4], [2,5], [5,6], [6/4]| Z |[3,3], [4.2], [5.2] , [2,5], [5,6], [6,4]) Z 3,1, [4,2], [5,2} , [2,5), [5,6], [6,4]

Local caching ——» Distributed caching Cost-based caching

e Find optimal caching plan
o Centralized setting: minimize cache misses
o Distributed setting: minimize network misses
@ Weigh chunks based on how they are accessed in the query
workload
o Access frequency: cache eviction
e Co-locality: cache placement

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent

Distributed Caching for Processing Raw Arrays

@ Scan a file entirely even if one accessed chunk is not cached
® costeict(Q), fi, { Cj}) = wq, - Zsize(s;iec(:c)hed G)

Input: Cache state as set of triples S = {(Qy, fi, {C;})} consisting
of the chunks j accessed from file i at query /; Set of pairs
(fi,{C;}) consisting of the chunks j accessed from file i at the
current query Q41; Cumulated cache budget B =), By
consisting of local budgets By at each node

Output: Updated cache state S’ = {(Q+1, i, {C})}

1S {(Qua i AGH)

2: while budget(S’) < B do

3: Extract triple t = (Qy, f;, {C;}) from S such that

budget(t U S") < B and cost(t) is maximum

4: S« Sut

5. S+ S\t

6: Increase cost of triples t' € S that contain chunks in t

7. end while

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Cache Placement

o Piggyback on the replication induced by query execution
@ Preserve a single copy of every chunk

@ Maximize co-locality of correlated chunks
® costpjace(Ci, 0, P, W) =3 0cy wo - |G € PLA (G, G) € Q|

Input: Set W = {(Q/,{(Ci, C;)})} consisting of chunk pairs (i, j)
that join at query /; Set of locations P = {(C;, {Nk})}
specifying all the nodes k that have a copy of cached chunk i
at current query Q11; Cache budget By at node k

Output: Updated locations P’ = {(C;, Nk)}

1. P' + {p € P}, where p has no replicas

2: for each p = (C;, {Nk}) € P with multiple replicas do

3: Select node n € { N} such that budget,(C;) < B, and

cost(C;, n, P', W) is maximum

P« P"U(C,n)

5: end for

»

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent

Distributed Caching for Processing Raw Arrays

@ Results and Conclusions

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

5 q 5 2
3 g~ H =~ 3. SN ~
o o o=
E e, 2 B O, 2 m— 3
H - % s f ig
wf %, -
H o 3 (-2 u”g °o g
H H H
2 2 F
o pl SRR —
K K] @
5 - B Y F | p—
e - e =
Ly S 2 8 & o
SEERRESE § g 8 =8
(si (SPu02as) awn uonndexa
() e @
s
m “
= EISSSSSSRY
: IS
a o
c £z 2 m— 0y 21 P
o Tx g Bx °
(@) =5 GE | e ed UF 8
2 o2 GE°
e~ i2 b g2
£s ES o v 88
£S s 2
= = %3 £
2 2 @
- " e v ®
=S
o >
(spuooas) awn uonnoaxa (spuo2as) awn uonnoaxa (spuo2as) awn uonnoaxa

)
>
O
(O]
X

LLl
>
|-
(D)
>

o

T
&
o

s

<
S

2

X

40 GB

|

mfile_Iru @chunk_Iru Devict

mfile_lru @chunk_lru Devict
mfile_lru @chunk_lru Devict

Iments

. e —
SEPIBIBIIINTY ~ i ——
2ooco9oag9o0 P
2 228 s 8 g g o
IBIRRSS g 8 § B
((spuodas) awn uonnoax3 (spuooas) aui uonnoaxa

W. Zhao, F. Rusu, B. Dol

Exper

First-Ever Neutron Star Merger Observation

A . B pight ascension

20%

Decination

Declination

UCMERCED [

@ Produces gravitational waves and turns out to be the origin of
heavy elements, including gold

@ Science article: /lluminating gravitational waves: A
concordant picture of photons from a neutron star merger

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Conclusions

@ Design query-driven distributed caching framework for raw
arrays

@ Design an evolving R-tree index that refines the chunking of a
sparse array to efficiently find the cells contained in a given
subarray query

@ Propose efficient cost-based algorithms for distributed cache
eviction and placement that consider a historical query
workload

W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

Thank you!

Questions?

W. Zhao, F. Rusu, B. Dong, K. A. Ho, and P. Nugent Distributed Caching for Processing Raw Arrays

	Motivation, Contributions, and Related Work
	Arrays and Shape-Based Similarity Join
	Raw Array Distributed Caching
	Results and Conclusions

