



# OLA-RAW: Scalable Exploration over Raw Data

#### Florin Rusu\*, Yu Cheng+, Weijie Zhao\*

+: Amobee, Inc.

\*: University of California Merced



## Palomar Transient Factory (PTF)

The Palomar Transient Factory (PTF) project aims to identify and automatically classify transient astrophysical objects such as variable stars and supernovae in real-time.





#### SHARE RESEARCH ARTICLE



## Illuminating gravitational waves: A concordant picture of photons from a neutron star merger

M. M. Kasliwal<sup>1,\*</sup>, E. Nakar<sup>2</sup>, L. P. Singer<sup>3,4</sup>, D. L. Kaplan<sup>5</sup>, D. O. Cook<sup>1</sup>, A. Van Sistine<sup>5</sup>, R. M. Lau<sup>1</sup>, C. Fremling<sup>1</sup>, O. Gottlieb<sup>2</sup>, J. E. Jencson<sup>1</sup>, S. M. Adams<sup>1</sup>, U. Feindt<sup>6</sup>, K. Hotokezaka<sup>7</sup>, S. Ghosh<sup>5</sup>, D. A. Perley<sup>8</sup>, P.-C. Yu<sup>9</sup>, T. Piran<sup>10</sup>, J. R. Allison<sup>11,12</sup>, G. C. Anupama<sup>13</sup>, A. Balasubramanian<sup>14</sup>, K. W Bannister<sup>15</sup>, J. Bally<sup>16</sup>, J. Barnes<sup>17</sup>, S. Barway<sup>18</sup>, E. Bellm<sup>19</sup>, V. Bhalerao<sup>20</sup>, D. Bhattacharya<sup>21</sup>, N. Blagorodnova<sup>1</sup>, J. S. Bloom<sup>22,23</sup>, P. R. Brady<sup>5</sup>, C. Cannella<sup>1</sup>, D. Chatterjee<sup>5</sup>, S. B. Cenko<sup>3,4</sup>, B. E. Cobb<sup>24</sup>, C. Copperwheat<sup>8</sup>, A. Corsi<sup>25</sup>, K. De<sup>1</sup>, D. Dobie<sup>11,26,15</sup>, S. W. K. Emery<sup>27</sup>, P. A. Evans<sup>28</sup>, O. D. Fox<sup>29</sup>, D. A. Frail<sup>30</sup>, C. Frohmaier<sup>31,32</sup>, A. Goobar<sup>6</sup>, G. Hallinan<sup>1</sup>, F. Harrison<sup>1</sup>, G. Helou<sup>33</sup>, T. Hinderer<sup>34</sup>, A. Y. Q. Ho<sup>1</sup>, A. Horesh<sup>10</sup>, W.-H. Ip<sup>9</sup>, R. Itoh<sup>35</sup>, D. Kasen<sup>22,36</sup>, H. Kim<sup>37</sup>, N. P. M. Kuin<sup>27</sup>, T. Kupfer<sup>1</sup>, C. Lynch<sup>11,26</sup>, K. Madsen<sup>1</sup>, P. A. Mazzali<sup>8,38</sup>, A. A. Miller<sup>39,40</sup>, K. Mooley<sup>41</sup>, T. Murphy<sup>11,26</sup>, C.-C. Ngeow<sup>9</sup>, D. Nichols<sup>34</sup>, S. Nissanke<sup>34</sup>, P. Nugent<sup>22,23</sup>, E. O. Ofek<sup>42</sup>, H. Qi<sup>5</sup>, R. M. Quimby<sup>43,44</sup>, S. Rosswog<sup>45</sup>, F. Rusu<sup>46</sup>, E. M. Sadler<sup>11,26</sup>, P. Schmidt<sup>34</sup>, J. Sollerman<sup>45</sup>, I. Steele<sup>8</sup>, A. R. Williamson<sup>34</sup>, Y. Xu<sup>1</sup>, L. Yan<sup>1,33</sup>, Y. Yatsu<sup>35</sup>, C. Zhang<sup>5</sup>, W. Zhao<sup>46</sup>

## Illustrative Example

Gamma ray burst identification



SELECT AGGREGATE(expression) AS agg FROM candidate WHERE predicate HAVING agg < threshold



# Existing Solutions

|                      | Time to<br>query | Execution | Storage             |
|----------------------|------------------|-----------|---------------------|
| files External Table | instant          | slow      | zero                |
| SQL*Loader           | loading          | fast      | full<br>replication |
| SCANRAW              | instant          | fast      | adaptive            |

## Illustrative Example

Gamma ray burst identification



SELECT AGGREGATE(expression) AS agg FROM candidate WHERE predicate HAVING agg > threshold WITH ACCURACY α







## Research Problem

Can we find an efficient parallel solution to execute approximate queries over raw files?
 Instant access to data In-situ data processing
 Generate results fast Online aggregation (OLA)
 Minimize storage In-memory synopsis



## Related Work

 Adaptive partial loading [Idreos et al., CIDR 2011] Only load necessary attributes before query starts
 NoDB [Alagianis et al., SIGMOD 2012] Instead of loading, build index and cache necessary attributes in memory
 Invisible loading [Abouzied et al., EDBT/ICDT 2013] Portion of necessary data is loaded into database for every query
 Data vaults [Ivanova et al., SSDBM 2012] Memory cache for complex data in scientific repositories
 SCANRAW [Cheng and Rusu, SIGMOD 2014] Load data using spare system resources without affecting query processing





- OnLine Aggregation for RAW data processing
- How to generate random samples in-situ in parallel?

• How to efficiently reuse extracted samples?







- OnLine Aggregation for RAW data processing
- How to generate random samples in-situ in parallel?
  Resource-aware bi-level sampling
- How to efficiently reuse extracted samples?

## Parallel Bi-Level Sampling



**Inspection paradox: Result order**  $\neq$  **Random chunk order!!!** 

## Estimator and Variance

$$\widehat{\tau} = \frac{N}{n} \sum_{j=1}^{n} \widehat{y}_j = \frac{N}{n} \sum_{j=1}^{n} \frac{M_j}{m_j} \sum_{i \in C'_j} x_i$$

$$Var(\hat{\tau}) = \frac{N}{N-1} \frac{N-n}{n} \sum_{j=1}^{N} \left( y_j - \frac{\sum_{i \in T} x_i}{N} \right)^2 + \frac{N}{n} \sum_{j=1}^{N} \left[ \frac{M_j}{M_j - 1} \frac{M_j - m_j}{m_j} \sum_{i \in C_j} \left( x_i - \frac{y_j}{M_j} \right)^2 \right]$$

$$\widehat{Var}(\widehat{\tau}) = \frac{N}{n} \frac{N-n}{n-1} \sum_{j=1}^{n} \left( \frac{M_j}{m_j} y'_j - \frac{\sum_{j'=1}^{n} \frac{M_j}{m_j} y'_{j'}}{n} \right)^2 + \frac{N}{n} \sum_{j=1}^{n} \left[ \frac{M_j}{m_j} \frac{M_j - m_j}{m_j - 1} \sum_{i \in C'_j} \left( x_i - \frac{y'_j}{m_j} \right)^2 \right]$$

## How many samples are enough?



Make sure to generate good-enough estimate in one pass over data

Generate accurate estimate for each chunk

## Resource-Aware Bi-Level Sampling







- OnLine Aggregation for RAW data processing
- How to generate random samples in-situ in parallel?
  Resource-aware bi-level sampling
- How to efficiently reuse extracted samples? In-memory sample synopsis



- What kind of samples should be preserved?
  - Chunk-based variance-driven
- When to populate synopsis?
  - During query
- How to make sure the additional samples have not been selected before?
  - Permutation seeds + offset





## Evaluation

System: 16 cores, 64 GB of memory, 4 disks in RAID-0 with 565 MB/s I/O bandwidth

| Dataset   | # Tuples | # Chunks | # Columns | Size  |
|-----------|----------|----------|-----------|-------|
| ptf-csv   | 1B       | 1000     | 8         | 68 GB |
| ptf-fits  | 1B       | 1000     | 8         | 60 GB |
| wiki      | 1.8B     | 130      | 4         | 19 GB |
| synthetic | 134M     | 512      | 16        | 20 GB |







## Resource-Aware Bi-Level Sampling







## **Resource** Utilization





OLA-RAW is a novel resource-aware bilevel sampling method for parallel online aggregation over raw data

OLA-RAW is an efficient scheme for data exploration that avoids unnecessary work





## Thank you! Questions?

Selectivity = 100%







Selectivity = 100%

wiki

