

Bi-Level Online Aggregation On Raw Data

Yu Cheng⁺, Weijie Zhao^{*}, Florin Rusu^{*}

+: Amobee. Inc.

*: University of California, Merced

Outline

- Background
- Problem
- OLA-RAW
- Evaluation

Palomar Transient Factory (PTF)

The Palomar Transient Factory (PTF) project aims to identify and automatically classify transient astrophysical objects such as variable stars and supernovae in realtime

Illustrative Example

Supernova identification

SELECT AGGREGATE(expression) AS agg FROM candidate WHERE predicate HAVING agg < threshold

Existing Solutions

Illustrative Example

Supernova identification

SELECT AGGREGATE(expression) AS agg FROM candidate WHERE predicate HAVING agg > threshold WITH ACCURACY α

Existing Solutions

Research Problem

- Can we find a better solution to execute approximate queries in-situ over raw files?
 - > Instant access to data
 - In-situ data processing
 - > Generate results faster
 - Online aggregation (OLA)
 - Minimize used storage

In-memory synopsis

Related Work ► Adaptive partial loading [Idreos et al., CIDR 2011] Only load necessary attributes before query starts ➤NoDB [Alagianis et al., SIGMOD 2012] Instead of loading, build index and cache necessary attributes in memory ➤ Invisible loading [Abouzied et al., EDBT/ICDT 2013] Portion of necessary data is loaded into database for every query ≻Data vaults [Ivanova et al., SSDBM 2012] Memory cache for complex data in scientific repositories ► SCANRAW [Cheng and Rusu, SIGMOD 2014] Load data using spare system resources without affecting query processing

- OnLine Aggregation for RAW data processing
 - How to generate random samples from raw files?
 - Design a feasible architecture to combine online aggregation with in-situ data processing
 - Find an efficient method to maintain extracted samples

- OnLine Aggregation for RAW data processing
 - How to generate random samples from raw files?
 Bi-Level Sampling
 - Design a feasible architecture to combine online aggregation with in-situ data processing
 - Find an efficient method to maintain extracted samples

Sampling and Estimator

$$Var(\hat{\tau}) = N(N-n)\frac{s_u^2}{n} + \frac{N}{n}\sum_{i=1}^n M_i(M_i - m_i)\frac{s_i^2}{m_i}$$

$$s_u^2 = \frac{1}{n-1} \sum_{i=1}^n (\hat{y}_i - \hat{\mu}_1)^2 , \ s_i^2 = (\frac{1}{m_i - 1}) \sum_{j=1}^{m_i} (y_{ij} - \bar{y}_i)^2$$

where
$$i = 1, ..., n$$
, and $\hat{\mu_1} = (1/n) \sum_{i=1}^n \hat{y_i}$.

- n: number of chunks
- m : number of processed tuples

OnLine Aggregation for RAW data processing

- How to generate random samples from raw files?
 Bi-Level Sampling
- Design a feasible architecture to combine online aggregation with in-situ data processing OLA-RAW
- Find an efficient method to maintain processed samples

How many samples are enough?

- Make sure to generate good enough estimation by accessing raw data only once
- Generate accurate estimate for each chunk

Parallel sampling procedure
Result order \neq Random chunk order \rightarrow Inspection paradox

- OnLine Aggregation for RAW data processing
 - How to generate random samples from raw files? Bi-Level Sampling
 - Design a feasible architecture to combine online aggregation with in-situ data processing OLA-RAW
 - Find an efficient method to maintain processed samples In-memory sample synopsis

Sample Maintenance

- What kind of samples should be preserved? Variance-driven
- When to load the samples?

During query or loading after query processing

• How to make sure the additional samples have not been selected before?

Permutation seeds + offset

Sample Maintenance

Variance-driven sample swap policy

Evaluation

Data : The PTF dataset with 1 billion transient detection tuples. Each tuple has 8 attributes, 6 of which are real numbers with 10 decimal digits

Query :

SELECT SUM ($\sum_{j=1}^{K} C_{i_j}$) FROM FILE

System : 2 AMD 8-core processors, 40 GB of memory, 4 disks in RAID-0 with I/O throughput 450 MB/s

Illustration: 16 attributes, 2²⁶ lines, 20GB

Parallel Sampling Comparison

Conclusions

- OLA-RAW is a novel resource-aware bi-level sampling method for parallel on-line aggregation over raw data
- OLA-RAW is an efficient scheme for data exploration that avoids unnecessary work

Thank you! Questions?