
ArrayUDF: User-Defined Scientific Data
Analysis on Arrays

Bin Dong1, Kesheng Wu1, Surendra Byna1, Jialin Liu1

Weijie Zhao2, Florin Rusu2

1LBNL, Berkeley, CA
2UC Merced, Merced, CA

HPDC 2017, Washington D.C. June 28, 2017.

Scientific Activities Evolved into Big Data Analysis

Example: scientific projects for dark matter/energy, supernovae， etc.

 Data source:
 Rick White,
 J. Hart,
 R. Cutri,
 Ian Foster,
 C. J. Grillmair,
 etc.

Q1: How many data analysis operations that
have been and will be developed ?

Total amount Avg Growth
Python modules 110,486 69/day
R packages 10,877 8/day

Q1: How many data analysis operations that have
been and will be developed ?

Implication from popular data analysis languages

*Data from http://www.modulecounts.com/ on June 21 2017

Large population

http://www.modulecounts.com/

Q2: What are the functions of these data analysis
operations ?

Q1: How many data analysis operations that have
been and will be developed ?

Large population

Q2: What are the functions of these data analysis
operations ?

Variety

Q1: How many data analysis operations that can
be used to extract scientific meaning ?

Large population

Two Methods to Embrace Large Population
& High variety in Data Analysis Operations

For each operation P Do
 Develop P’s :
 - Data management
 - Expression execution
 - X components:
 parallel,
 communication
 cache,
 etc.
End For

Redundant
Diverse

Customized Solutions

✔
✗

✗Redundant

Amateurishly tuned

 UDF API
 - Data management
 - Generic exec. engine
 - X components:
 parallel, comm.,
 cache, etc.

Diverse

One single
and shared

✔

✔

Operation expression 1

✗

User-defined Functions (UDF)

Professionally tuned ✔

UDF is at Heart of Modern Big Data system

Examples: MapReduce in Apache Hadoop and Spark

MAP()

MAP()

MAP()

reduce()

reduce()

UDF to generate
(key, value) pairs

UDF to merge
(key, values) pairs

shuffle/sort

Input
Data

Output
Data

MapReduce Doesn’t Fit Scientific Data Analysis

Reason 1: Most Scientific Data are Multi-dimensional Arrays

Pictures Credit: Kyle Hemes, Peter Nugent, Suren Byna, etc.

 Converting array to (key, value) is expensive

MapReduce Doesn’t Fit Scientific Data Analysis

Reason 1: Most Scientific Data are Multi-dimensional Arrays

Pictures Credit: Kyle Hemes, Peter Nugent, Suren Byna, etc.

Reason 2: Most Scientific Data Analysis Operations Own
 Structure Locality Property

Structure Locality:
 The analysis operation on a single cell
 accesses its neighborhood cells

Map deals with a single element at a time

Moving Average

2D Poisson Equation
Solver (Discrete)

Reduce requires to duplicate an each cell
for all neighborhood cells

Reduce only happens after expensive shuffle

ArrayUDF: User-Defined Scientific Data
Analysis on Arrays

• Stencil based User-defined Function
- Structural locality aware array operations

• Native Multidimensional Array Data Model
- In-situ data processing in scientific data
formats, e.g., HDF5

• Optimal Chunking and Ghost Zone Method
- Efficiently parallel array processing on HPC
system

• Stencil S Definition for d-dimensional array

• Centre of Stencil:
• Element at offsets :

Stencil Definition

Materialized structure locality

Flexible neighborhood expression

2D Example:

Stencil based Computing Model

• A = A’ when in-situ updates
• Dim(A) = Dim(A’) in most cases

The stencil set in array A
at offset:

The cell in array A’
at coordinate

A’ A

Stencil based Computing Model vs Others

Input Output UDF

SQL Tuple t Tuple t’ t’=f(t)

SciDB Cell c Cell c’ c’=f(c)

MapReduce KeyValue kv KeyValue kv’’ kv’=Map(kv)
kv’’=Reduce(kv’1, kv’2, …)

ArrayUDF Stencil s Cell c’ c’=f(s)

vs. MapReduce:
 ArrayUDF generalizes its two steps as a single step on array
vs. SciDB:
 ArrayUDF supports structure-locality based computing on array

Examples of ArrayUDF

Example 2: Vorticity computation

UDF_MV(Stencil s){
 return (s(-k)*wt-k+ … s(0)*wt+ … s(m)*wt+m)/(k+m-1)
}
V.Apply(UDF_MV)

UDF_VC_U(Stencil u){
 return u(0,1)- u(0, -1)
}
U.Apply(UDF_VC_1)

UDF_VC_V(Stencil v){
 return v(1,0)- u(-1, 0)
}
V.Apply(UDF_VC_V)

ArrayUDF’s C++ implementation

tim
e: t

Example 1: Moving average

UDF Support System: Chunking
•Chunking enables parallel and out-of-cores processing

• general chunking (layout unknown)
- minimize ghost cells

• layout-aware chunking (row-major)
- maximize contiguous disk read

See theoretical
proof in paper

UDF Support System: Ghost Zone handling

•ArrayUDF processes chunks in parallel and/or in
out-of-core manner

•Ghost zone avoids communications between chunks
•Ghost zone size might be unknown in advance
- UDF source code might be unavailable

•Trail-run is used to find ghost zone size:
- Run UDF on a sample Stencil instance, that collects

the offsets applied within UDF

Evaluations
• Hardware:
-Edison, a Cray XC30 supercomputer at NERSC
-5576 computing nodes, 24 cores/node, 64GB DDR3 Memory

• Software
- ArrayUDF 0.0.1 - RasDaMan 9.5 (sequential version)
- Spark 1.5.0 - EXTASCID, hand-optimized version
- SciDB 16.9 - Hand-optimized C/C++ code

• Workloads
-Two synthetic data sets (i.e., 2D and 3D array) for micro benchmarks

▪ Chunking strategy, trail-run, etc.
-Four real scientific data sets (i.e., S3D, MSI , VPIC , CoRTAD)

▪ Overall performance tests /w generic UDF interface

Chunking Strategy Evaluation

2D Dataset (100000, 100000)

Square chunk
(1K, 1K)

• general chunking (for average cases)
- minimize ghost cells # to reduce I/O cost

• layout-aware chunking (for layout special case)
- maximize contiguous disk read
- ignore the impact of ghost zone

Ghost zone has
ignorable impact

Comparison with peer systems with
standard “window” operators

• “window” comes from SCiDB and RasDaMan
• “window” supports certain structure locality but lack the link to

UDF function
Poisson equation solver /w
Stencil S of ArrayUDF
2D : 4S(0,0)−S(−1,0)−S(0,1)
 −S(1,0)−S(−1,0)
3D : 6S(0, 0,0)−S(−1,0,0)−S(0, 1, 0)
 −S(1,0, 0)−S(−1,0,0)−S(0,0,−1)
 −S(0, 0,1)

• ArrayUDF has close performance to hand-optimized code
• ArrayUDF is at least 13X faster than peer systems

Comparison with Spark in supporting
real applications operations

Spark’s
Out-Of-Memory:
 - large data size
 - more local cells

S3D
Vorticity comp.
301GB
2 local cells/op.

MSI
Laplacian op.
21GB
4 local cells/op.

VPIC
Tri interpolation
36GB
8 local cells/op.

CoRTAD
Moving average
225GB
4 local cells/op.

D
at

a
S

iz
e

of local cells used by an UDF /w generic interface

ArrayUDF is as
much as 2070X
faster than Spark

Conclusions

• ArrayUDF: User-Defined Scientific Data Analysis on Arrays
• Stencil based UDF for structural locality-aware operations
• Native array model & In-situ array processing in HDF5, etc.
• Optimal chunking and ghost zone methods for large array

• ArrayUDF provides close performance to hand-optimized code
• ArrayUDF is as much as 2070X faster than Spark
• ArrayUDF source code: https://bitbucket.org/arrayudf/
• Future work

• Python and other language interface
• Communication optimizations

https://bitbucket.org/arrayudf/

Acknowledgments

• Nicholas Chaimov from University of Oregon for suggestions to set up Spark
on Editon at NERSC

• Office of Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, support for the SDS project (Program manager: Dr.
Lucy Nowell) under contract number DE-AC02-05CH11231

• National Energy Research Scientific Computing Center

Thanks

Bin Dong
dbin@lbl.gov
http://crd.lbl.gov//dongbin

mailto:DBin@lbl.gov
mailto:DBin@lbl.gov

Trail-run overhead
• Detect ghost zone size automatically

• Run the UDF on a single Stencil but the UDF might access
more neighborhood cells

Unit: microsecond

≈ 1 ms when 256 cells
are used in the UDF

