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Scientific Activities Evolved into Big Data Analysis

Example: scientific projects for dark matter/energy, supernovae， etc. 

             Data source: 
                     Rick White, 
                     J. Hart, 
                     R. Cutri, 
                     Ian Foster, 
                     C. J. Grillmair,
                     etc.



Q1: How many data analysis operations that 
have been and will be developed ? 



Total amount Avg Growth
Python modules 110,486 69/day
R packages   10,877   8/day

Q1: How many data analysis operations that have 
been and will be developed  ? 

Implication from popular data analysis languages 

*Data from http://www.modulecounts.com/ on June 21 2017

Large population

http://www.modulecounts.com/


Q2: What are the functions of these data analysis 
operations  ?

Q1: How many data analysis operations that have 
been and will be developed ? 

Large population



Q2: What are the functions of these data analysis 
operations  ?

Variety

Q1: How many data analysis operations that can 
be used to extract scientific meaning ? 

Large population



Two Methods to Embrace Large Population
& High variety in Data Analysis Operations

For each operation P  Do
    Develop P’s :
     - Data management
      - Expression execution
      - X components:
            parallel, 
            communication
            cache,
            etc. 
End For

Redundant
Diverse

Customized Solutions

✔
✗

✗Redundant

Amateurishly tuned

     UDF API                      
  - Data management
  - Generic exec. engine
  - X components: 
        parallel, comm., 
        cache, etc. 

Diverse

One single 
and shared

✔

✔

Operation expression 1

✗

User-defined Functions (UDF)

Professionally tuned ✔



UDF is at Heart of Modern Big Data system

Examples: MapReduce in Apache Hadoop and Spark

MAP()

MAP()

MAP()

reduce()

reduce()

UDF to generate
(key, value) pairs

UDF to merge
(key, values) pairs

shuffle/sort

Input
Data

Output
Data



MapReduce Doesn’t Fit Scientific Data Analysis

Reason 1: Most Scientific Data are Multi-dimensional Arrays
 

Pictures Credit:  Kyle Hemes,  Peter Nugent,  Suren Byna, etc.  

 Converting array to (key, value) is expensive 



MapReduce Doesn’t Fit Scientific Data Analysis

Reason 1: Most Scientific Data are Multi-dimensional Arrays
 

Pictures Credit:  Kyle Hemes,  Peter Nugent,  Suren Byna, etc.  

Reason 2: Most Scientific Data Analysis Operations Own 
                 Structure Locality Property

Structure Locality:
   The analysis operation on a single cell 
    accesses its neighborhood cells

Map deals with a single element at a time

Moving Average

2D Poisson Equation
Solver (Discrete)

Reduce requires to duplicate an each cell
for all neighborhood cells

Reduce only happens after expensive shuffle 



ArrayUDF: User-Defined Scientific Data 
Analysis on Arrays 

• Stencil based User-defined Function  
- Structural locality aware array operations

• Native Multidimensional Array Data Model
- In-situ data processing in scientific data 
formats, e.g., HDF5

• Optimal Chunking and Ghost Zone Method
- Efficiently parallel array processing on HPC 
system



• Stencil S Definition for d-dimensional array

• Centre of Stencil: 
• Element at offsets              :

Stencil Definition

Materialized structure locality 

Flexible neighborhood expression

2D Example:



Stencil based Computing Model

• A = A’ when in-situ updates
• Dim(A) = Dim(A’) in most cases

The stencil set in array A
at offset:

The cell in array A’ 
at coordinate

A’ A



Stencil based Computing Model vs Others

Input Output UDF

SQL Tuple t Tuple t’ t’=f(t)

SciDB Cell c Cell c’ c’=f(c)

MapReduce KeyValue kv KeyValue kv’’ kv’=Map(kv)
kv’’=Reduce(kv’1, kv’2, …)

ArrayUDF Stencil s Cell c’ c’=f(s)

vs. MapReduce:
   ArrayUDF generalizes its two steps as a single step on array 
vs. SciDB:
   ArrayUDF supports structure-locality based computing on array



Examples of ArrayUDF

Example 2: Vorticity computation  

UDF_MV(Stencil s){
    return (s(-k)*wt-k+ … s(0)*wt+ … s(m)*wt+m)/(k+m-1)
}
V.Apply(UDF_MV)

UDF_VC_U(Stencil u){
    return u(0,1)- u(0, -1)
}
U.Apply(UDF_VC_1)

UDF_VC_V(Stencil v){
    return v(1,0)- u(-1, 0)
}
V.Apply(UDF_VC_V)

ArrayUDF’s C++ implementation 

tim
e: t

Example 1: Moving average



UDF Support System: Chunking
•Chunking enables parallel and out-of-cores processing

• general chunking (layout unknown)
-  minimize ghost cells

• layout-aware chunking (row-major)
-  maximize contiguous disk read

See theoretical 
proof in paper



UDF Support System: Ghost Zone handling

•ArrayUDF processes chunks in parallel and/or in 
out-of-core manner

•Ghost zone avoids communications between chunks
•Ghost zone size might be unknown in advance 
- UDF source code might be unavailable 

•Trail-run is used to find ghost zone size:
- Run UDF on a sample Stencil instance, that collects 

the offsets applied within UDF



Evaluations
• Hardware:
-Edison, a Cray XC30 supercomputer at NERSC
-5576 computing nodes,  24 cores/node, 64GB DDR3 Memory

• Software
-  ArrayUDF 0.0.1           - RasDaMan 9.5 (sequential version)
-  Spark 1.5.0                  - EXTASCID,  hand-optimized version 
-  SciDB  16.9                 - Hand-optimized C/C++ code

• Workloads
-Two synthetic data sets (i.e., 2D and 3D array) for micro benchmarks

▪ Chunking strategy, trail-run, etc.
-Four real scientific data sets (i.e., S3D, MSI , VPIC , CoRTAD) 

▪ Overall performance tests /w generic UDF interface



Chunking Strategy Evaluation

2D Dataset (100000, 100000)

Square chunk 
(1K, 1K)

• general chunking (for average cases)
- minimize ghost cells # to reduce I/O cost

• layout-aware chunking (for layout special case)
- maximize contiguous disk read 
- ignore the impact of ghost zone

Ghost zone has 
ignorable impact 



Comparison with peer systems with 
standard “window” operators

• “window” comes from SCiDB and RasDaMan 
• “window” supports certain structure locality but lack the link to 

UDF function
Poisson equation solver /w 
Stencil S of ArrayUDF
2D : 4S(0,0)−S(−1,0)−S(0,1)
        −S(1,0)−S(−1,0)
3D : 6S(0,  0,0)−S(−1,0,0)−S(0, 1, 0)
        −S( 1,0, 0)−S(−1,0,0)−S(0,0,−1)
        −S(0,  0,1) 

• ArrayUDF has close performance to hand-optimized code
• ArrayUDF is at least 13X faster than peer systems



Comparison with Spark in supporting 
real applications operations

Spark’s 
Out-Of-Memory: 
 - large data size     
 - more local cells

S3D
Vorticity comp.
301GB
2 local cells/op.

MSI
Laplacian op.
21GB
4 local cells/op.

VPIC
Tri interpolation
36GB
8 local cells/op.

CoRTAD
Moving average
225GB
4 local cells/op.

D
at

a 
S

iz
e

# of local cells used by an UDF /w generic interface 

ArrayUDF is as 
much as 2070X 
faster than Spark



Conclusions

• ArrayUDF: User-Defined Scientific Data Analysis on Arrays 
• Stencil based UDF for structural locality-aware operations
• Native array model & In-situ array processing in HDF5, etc. 
• Optimal chunking and ghost zone methods for large array

• ArrayUDF provides close performance to hand-optimized code
• ArrayUDF is as much as 2070X faster than Spark 
• ArrayUDF source code:  https://bitbucket.org/arrayudf/
• Future work

• Python and other language interface
• Communication optimizations 

https://bitbucket.org/arrayudf/
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Trail-run overhead
• Detect ghost zone size automatically

• Run the UDF on a single Stencil but the UDF might access 
more neighborhood cells  

Unit: microsecond

≈ 1 ms when 256 cells 
are used in the UDF


