ArrayUDF: User-Defined Scientific Data Analysis on Arrays

Bin Dong1, Kesheng Wu1, Surendra Byna1, Jialin Liu1
Weijie Zhao2, Florin Rusu2

1LBNL, Berkeley, CA
2UC Merced, Merced, CA

Scientific Activities Evolved into Big Data Analysis

Example: scientific projects for dark matter/energy, supernovae, etc.

Data Size for Sky Survey Projects

Data source: Rick White, J. Hart, R. Cutri, Ian Foster, C. J. Grillmair, etc.
Q1: How many data analysis operations that have been and will be developed?
Q1: How many data analysis operations that have been and will be developed?

Large population

Implication from popular data analysis languages

<table>
<thead>
<tr>
<th></th>
<th>Total amount</th>
<th>Avg Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python modules</td>
<td>110,486</td>
<td>69/day</td>
</tr>
<tr>
<td>R packages</td>
<td>10,877</td>
<td>8/day</td>
</tr>
</tbody>
</table>

Data from http://www.modulecounts.com/ on June 21 2017
Q1: How many data analysis operations that have been and will be developed?

Large population

Q2: What are the functions of these data analysis operations?
Q1: How many data analysis operations that can be used to extract scientific meaning?

Large population

Q2: What are the functions of these data analysis operations?

Variety
Two Methods to Embrace Large Population & High variety in Data Analysis Operations

Customized Solutions

For each operation P Do

- Develop P's:
 - Data management
 - Expression execution
 - X components: parallel, communication, cache, etc.

End For

User-defined Functions (UDF)

Operation expression 1

- **UDF API**
 - Data management
 - Generic exec. engine
 - X components: parallel, comm., cache, etc.

Amateurishly tuned

- Data management
- Expression execution
- X components: parallel, communication, cache, etc.

Professionally tuned

- Data management
- Expression execution
- X components: parallel, communication, cache, etc.

<table>
<thead>
<tr>
<th>For each operation P Do</th>
<th>Redundant</th>
<th>Diverse</th>
<th>Redundant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop P’s:</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>- Data management</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>- Expression execution</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- X components:</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>parallel, communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cache, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation expression 1</th>
<th>Redundant</th>
<th>✔</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UDF API</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>- Data management</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>- Generic exec. engine</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>- X components:</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>parallel, comm., cache,</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>
UDF is at Heart of Modern Big Data system

Examples: MapReduce in Apache Hadoop and Spark

Input Data

MAP()

MAP()

MAP()

shuffle/sort

UDF to generate (key, value) pairs

reduce()

reduce()

UDF to merge (key, values) pairs

Output Data
MapReduce Doesn’t Fit Scientific Data Analysis

Reason 1: Most Scientific Data are Multi-dimensional Arrays

Converting array to (key, value) is expensive

Pictures Credit: Kyle Hemes, Peter Nugent, Suren Byna, etc.
MapReduce Doesn’t Fit Scientific Data Analysis

Reason 1: Most Scientific Data are Multi-dimensional Arrays

Reason 2: Most Scientific Data Analysis Operations Own Structure Locality Property

Structure Locality:
The analysis operation on a single cell accesses its neighborhood cells

- Map deals with a single element at a time
- Reduce requires to duplicate an each cell for all neighborhood cells
- Reduce only happens after expensive shuffle

Pictures Credit: Kyle Hemes, Peter Nugent, Suren Byna, etc.
ArrayUDF: User-Defined Scientific Data Analysis on Arrays

- Stencil based User-defined Function
 - Structural locality aware array operations
- Native Multidimensional Array Data Model
 - In-situ data processing in scientific data formats, e.g., HDF5
- Optimal Chunking and Ghost Zone Method
 - Efficiently parallel array processing on HPC system
Stencil Definition

- Stencil S Definition for d-dimensional array

$$S = \{ c_{i_1+\delta_1, \ldots, i_d+\delta_d}, \quad |\delta| \in [L, R], \quad L \in [-i, 0], \quad R \in [0, N-i] \}$$

Materialized structure locality

Flexible neighborhood expression

- Centre of Stencil: $S_{0, \ldots, 0} = c_{i_1, \ldots, i_d}$
- Element at offsets $\delta_1, \ldots, \delta_d$:

$$S_{\delta_1, \ldots, \delta_d} = c_{i_1+\delta_1, \ldots, i_d+\delta_d}$$

2D Example:
Stencil based Computing Model

\[C'_{i_1, \cdots, i_d} = f\left(\{ S_{\delta_1, \cdots, \delta_d} \mid \delta \in [L, R] \} \right) \]

- The cell in array \(A' \) at coordinate \(i_1 \cdots i_d \)
- The stencil set in array \(A \) at offset: \(\delta_1 \cdots \delta_d \)
- \(A = A' \) when in-situ updates
- \(\text{Dim}(A) = \text{Dim}(A') \) in most cases
<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
<th>UDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL</td>
<td>Tuple t</td>
<td>Tuple t'</td>
<td>$t'=f(t)$</td>
</tr>
<tr>
<td>SciDB</td>
<td>Cell c</td>
<td>Cell c'</td>
<td>$c'=f(c)$</td>
</tr>
<tr>
<td>MapReduce</td>
<td>KeyValue kv</td>
<td>KeyValue kv''</td>
<td>$kv'=Map(kv)$ [kv''=Reduce(kv'_1, kv'_2, ...)]</td>
</tr>
<tr>
<td>ArrayUDF</td>
<td>Stencil s</td>
<td>Cell c'</td>
<td>$c'=f(s)$</td>
</tr>
</tbody>
</table>

vs. MapReduce: ArrayUDF generalizes its two steps as a single step on array

vs. SciDB: ArrayUDF supports structure-locality based computing on array
Examples of ArrayUDF

Example 1: Moving average

\[V' = \frac{w_t V_{t-k} + \ldots + w_t V_t + \ldots + w_{t+m} V_{t+m}}{k + m + 1} \]

UDF_MV(Stencil s){
 return (s(-k)*w_{t-k} + \ldots s(0)*w_t + \ldots s(m)*w_{t+m})/(k+m-1)
}
V.Apply(UDF_MV)

Example 2: Vorticity computation

\[\xi_{i,j} = \frac{u_{i,j+1} - u_{i,j-1}}{2\Delta x} + \frac{v_{i+1,j} - v_{i-1,j}}{2\Delta y} \]

UDF_VC_U(Stencil u){
 return u(0,1)- u(0, -1)
}
U.Apply(UDF_VC_1)

UDF_VC_V(Stencil v){
 return v(1,0)- u(-1, 0)
}
V.Apply(UDF_VC_V)

ArrayUDF’s C++ implementation
UDF Support System: Chunking

- Chunking enables parallel and out-of-cores processing
 - general chunking (layout unknown)
 - minimize ghost cells
 - layout-aware chunking (row-major)
 - maximize contiguous disk read

See theoretical proof in paper
UDF Support System: Ghost Zone handling

- ArrayUDF processes chunks in parallel and/or in out-of-core manner
- Ghost zone avoids communications between chunks
- Ghost zone size might be unknown in advance
 - UDF source code might be unavailable
- Trail-run is used to find ghost zone size:
 - Run UDF on a sample Stencil instance, that collects the offsets applied within UDF
Evaluations

• Hardware:
 - Edison, a Cray XC30 supercomputer at NERSC
 - 5576 computing nodes, 24 cores/node, 64GB DDR3 Memory

• Software
 - ArrayUDF 0.0.1
 - Spark 1.5.0
 - SciDB 16.9
 - RasDaMan 9.5 (sequential version)
 - EXTASCID, hand-optimized version
 - Hand-optimized C/C++ code

• Workloads
 - Two synthetic data sets (i.e., 2D and 3D array) for micro benchmarks
 ▪ Chunking strategy, trail-run, etc.
 - Four real scientific data sets (i.e., S3D, MSI, VPIC, CoRTAD)
 ▪ Overall performance tests /w generic UDF interface
Chunking Strategy Evaluation

- **general chunking** (for average cases)
 - minimize ghost cells # to reduce I/O cost
- **layout-aware chunking** (for layout special case)
 - maximize contiguous disk read
 - ignore the impact of ghost zone

2D Dataset (100000, 100000)

![Graph showing chunking strategy evaluation](image-url)
Comparison with peer systems with standard “window” operators

- “window” comes from SCiDB and RasDaMan
- “window” supports certain structure locality but lack the link to UDF function

Poisson equation solver \(w\)
Stencil S of ArrayUDF
2D : \[4S(0,0)−S(−1,0)−S(0,1)−S(1,0)−S(−1,0)\]
3D : \[6S(0,0,0)−S(−1,0,0)−S(0,1,0)−S(1,0,0)−S(−1,0,0)−S(0,0,−1)−S(0,0,1)\]

- ArrayUDF has close performance to hand-optimized code
- ArrayUDF is at least 13X faster than peer systems
Comparison with Spark in supporting real applications operations

Data Size

<table>
<thead>
<tr>
<th>Data Size</th>
<th>Spark</th>
<th>ArrayUDF</th>
<th>Data Size</th>
<th>Spark</th>
<th>ArrayUDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3D Vorticity comp.</td>
<td>301GB</td>
<td>2 local cells/op.</td>
<td>CoRTAD Moving average</td>
<td>225GB</td>
<td>4 local cells/op.</td>
</tr>
<tr>
<td>MSI Laplacian op.</td>
<td>21GB</td>
<td>4 local cells/op.</td>
<td>VPIC Tri interpolation</td>
<td>36GB</td>
<td>8 local cells/op.</td>
</tr>
</tbody>
</table>

Spark’s Out-Of-Memory:
- large data size
- more local cells

ArrayUDF is as much as 2070X faster than Spark

of local cells used by an UDF /w generic interface
Conclusions

• ArrayUDF: User-Defined Scientific Data Analysis on Arrays
 • Stencil based UDF for structural locality-aware operations
 • Native array model & In-situ array processing in HDF5, etc.
 • Optimal chunking and ghost zone methods for large array
• ArrayUDF provides close performance to hand-optimized code
• ArrayUDF is as much as 2070X faster than Spark
• ArrayUDF source code: https://bitbucket.org/arrayudf/
• Future work
 • Python and other language interface
 • Communication optimizations
Acknowledgments

• Nicholas Chaimov from University of Oregon for suggestions to set up Spark on Editon at NERSC
• Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, support for the SDS project (Program manager: Dr. Lucy Nowell) under contract number DE-AC02-05CH11231
• National Energy Research Scientific Computing Center
Thanks

Bin Dong
dbin@lbl.gov
http://crd.lbl.gov//dongbin
Trail-run overhead

- Detect ghost zone size automatically
- Run the UDF on a single Stencil but the UDF might access more neighborhood cells

<table>
<thead>
<tr>
<th>Data sets</th>
<th>The number of cells used by UDF</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td>0.37</td>
<td>0.38</td>
<td>0.46</td>
<td>0.48</td>
<td>0.54</td>
<td>0.59</td>
<td>0.80</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>0.48</td>
<td>0.52</td>
<td>0.65</td>
<td>0.75</td>
<td>0.79</td>
<td>0.84</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Unit: microsecond

≈ 1 ms when 256 cells are used in the UDF