

ArrayUDF: User-Defined Scientific Data Analysis on Arrays

<u>Bin Dong</u>¹, Kesheng Wu¹, Surendra Byna¹, Jialin Liu¹ Weijie Zhao², Florin Rusu² ¹LBNL, Berkeley, CA ²UC Merced, Merced, CA

HPDC 2017, Washington D.C. June 28, 2017.

Scientific Activities Evolved into Big Data Analysis

Example: scientific projects for dark matter/energy, supernovae, etc.

Data Size for Sky Survey Porjects

Q1: How many data analysis operations that have been and will be developed ?

Q1: How many data analysis operations that have been and will be developed ?

Large population

Implication from popular data analysis languages

	Total amount	Avg Growth	
Python modules	110,486	69/day	
R packages	10,877	8/day	

*Data from http://www.modulecounts.com/ on June 21 2017

Q1: How many data analysis operations that have been and will be developed ?

Large population

Q2: What are the functions of these data analysis operations ?

Q1: How many data analysis operations that can be used to extract scientific meaning? Large population Q2: What are the functions of these data analysis operations? Variety Smoothin IFFERENCE Optimization Learning Scatterpl ression Filtering UNION Sug ence Estimato Prediction **Back-Propagati Deep Belief Networ** Evaluating integra RESTRI Differential equati Locally Classificat inear Regression Local Naive I Naive I Bayesian N Stepwise Regression Mul-Averaged One-Depend

FRKELEY

Two Methods to Embrace Large Population & High variety in Data Analysis Operations

UDF is at Heart of Modern Big Data system

Examples: MapReduce in Apache Hadoop and Spark

MapReduce Doesn't Fit Scientific Data Analysis

Reason 1: Most Scientific Data are Multi-dimensional Arrays

Converting array to (key, value) is expensive

Pictures Credit: Kyle Hemes, Peter Nugent, Suren Byna, etc.

MapReduce Doesn't Fit Scientific Data Analysis

Reason 1: Most Scientific Data are Multi-dimensional Arrays Reason 2: Most Scientific Data Analysis Operations Own Structure Locality Property

Structure Locality:

The analysis operation on a single cell accesses its neighborhood cells

Map deals with a single element at a time

- Reduce requires to duplicate an each cell for all neighborhood cells
- Reduce only happens after expensive shuffle

2D Poisson Equation Solver (Discrete)

ArrayUDF: User-Defined Scientific Data Analysis on Arrays

- Stencil based User-defined Function
 Structural locality aware array operations
- Native Multidimensional Array Data Model
 - In-situ data processing in scientific data formats, e.g., HDF5
- Optimal Chunking and Ghost Zone Method
 - Efficiently parallel array processing on HPC system

Stencil Definition

• Stencil S Definition for *d*-dimensional array

$$S = \{ c_{i_1 + \delta_1, \bullet \bullet \bullet, i_d + \delta_d, | \delta \in [L, R], L \in [-i, 0], R \in [0, N - i] \}$$

Materialized structure locality

Flexible neighborhood expression

- Centre of Stencil: $S_{0,\bullet\bullet\bullet,0} = C_{i_1,\bullet\bullet\bullet,i_d}$
- Element at offsets $\delta_{1}, \bullet \bullet \bullet, \delta_{d}$:

$$S_{\delta_1,\bullet\bullet\bullet,\delta_d} = C_{i_1+\delta_1,\bullet\bullet\bullet,i_d+\delta_d}$$

2D Example:

Stencil based Computing Model

$$c'_{i_{1}, \dots, i_{d}} = f\left(\{s_{\delta_{1}, \dots, \delta_{d}} \mid \delta \in [L, R]\}\right)$$

The cell in array A'
at coordinate $i_{1} \dots i_{d}$
The stencil set in array A
at offset: $\delta_{1} \dots \delta_{d}$

- A = A' when in-situ updates
- Dim(A) = Dim(A') in most cases

Stencil based Computing Model vs Others

	Input	Output	UDF
SQL	Tuple <i>t</i>	Tuple <i>t</i> '	$t'=\boldsymbol{f}(t)$
SciDB	Cell c	Cell c'	c'= f (c)
MapReduce	KeyValue kv	KeyValue kv"	kv'=Map(kv) kv''=Reduce(kv' ₁ , kv' _{2,})
ArrayUDF	Stencil s	Cell c'	c'= f (s)

vs. MapReduce:

ArrayUDF generalizes its two steps as a single step on array *vs.* SciDB:

ArrayUDF supports structure-locality based computing on array

Examples of ArrayUDF

Example 2: Vorticity computation

UDF Support System: Chunking

- Chunking enables parallel and out-of-cores processing
 - general chunking (layout unknown)
 - minimize ghost cells

UDF Support System: Ghost Zone handling

- ArrayUDF processes chunks in parallel and/or in out-of-core manner
- Ghost zone avoids communications between chunks
- •Ghost zone size might be unknown in advance
 - UDF source code might be unavailable
- •Trail-run is used to find ghost zone size:
 - Run UDF on a sample Stencil instance, that collects the offsets applied within UDF

Evaluations

- Hardware:
 - Edison, a Cray XC30 supercomputer at NERSC
 - 5576 computing nodes, 24 cores/node, 64GB DDR3 Memory
- Software
 - ArrayUDF 0.0.1
 - Spark 1.5.0
 - SciDB 16.9

- RasDaMan 9.5 (sequential version)
- EXTASCID, hand-optimized version
- Hand-optimized C/C++ code

- Workloads
 - Two synthetic data sets (i.e., 2D and 3D array) for micro benchmarks
 - Chunking strategy, trail-run, etc.
 - Four real scientific data sets (i.e., S3D, MSI , VPIC , CoRTAD)
 - Overall performance tests /w generic UDF interface

Chunking Strategy Evaluation

- general chunking (for average cases)
 - minimize ghost cells # to reduce I/O cost
- layout-aware chunking (for layout special case)
 - maximize contiguous disk read
 - ignore the impact of ghost zone

Comparison with peer systems with standard "window" operators

- "window" comes from SCiDB and RasDaMan
- "window" supports certain structure locality but lack the link to
 UDF function
 BasDaMan(Sequential)
 Spark

Poisson equation solver /w Stencil S of ArrayUDF 2D : 4S(0,0)-S(-1,0)-S(0,1)-S(1,0)-S(-1,0)3D : 6S(0, 0,0)-S(-1,0,0)-S(0, 1, 0)-S(1,0, 0)-S(-1,0,0)-S(0,0,-1)-S(0, 0,1)

- ArrayUDF has close performance to hand-optimized code
- ArrayUDF is at least 13X faster than peer systems

Comparison with Spark in supporting real applications operations

of local cells used by an UDF /w generic interface

Conclusions

- ArrayUDF: User-Defined Scientific Data Analysis on Arrays
 - Stencil based UDF for structural locality-aware operations
 - •Native array model & In-situ array processing in HDF5, etc.
 - Optimal chunking and ghost zone methods for large array
- ArrayUDF provides close performance to hand-optimized code
- ArrayUDF is as much as 2070X faster than Spark
- ArrayUDF source code: <u>https://bitbucket.org/arrayudf/</u>
- Future work
 - Python and other language interface
 - Communication optimizations

Acknowledgments

- Nicholas Chaimov from University of Oregon for suggestions to set up Spark on Editon at NERSC
- Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, support for the SDS project (Program manager: Dr. Lucy Nowell) under contract number DE-AC02-05CH11231

National Energy Research Scientific Computing Center

Thanks

Bin Dong dbin@lbl.gov http://crd.lbl.gov//dongbin

Trail-run overhead

- Detect ghost zone size automatically
 - Run the UDF on a single Stencil but the UDF might access more neighborhood cells

	The number of cells used by UDF							
Data sets	4	8	16	32	64	128	256	
S1	0.37	0.38	0.46	0.48	0.54	0.59	0.80	
S2	0.48	0.52	0.65	0.75	0.79	0.84	1.04	

Unit: microsecond

≈ 1 ms when 256 cells are used in the UDF

