Model Calibration for Terascale Analytics

Florin Rusu and Chengjie Qin
University of California, Merced

May 19, 2015
Terascale Analytics

- Massive amounts of example data, e.g., 10 billion
- Highly-dimensional models, e.g., 50 to 600 million

Analytics task	**Objective function**
Logistic Regression (LR) | $\sum_{(x_i,y_i) \in \text{data}} \log \left(1 + e^{-y_i w^T x_i} \right) + \mu \| \vec{w} \|_1$
Classification (Support Vector Machines - SVM) | $\sum_{(x_i,y_i) \in \text{data}} (1 - y_i w^T x_i) + \mu \| \vec{w} \|_1$
Recommendation (Low-Rank Matrix Factorization - LMF) | $\sum_{(i,j) \in \Omega} \left(L_i^T R_j - M_{ij} \right)^2 + \mu \| L, R \|_F^2$
Labeling (Conditional Random Fields - CRF) | $\sum_{(x_i,y_i) \in \text{data}} \left[\sum_j w_j F_j (y_i, x_i) - \log Z(x_i) \right]$

Table 1: [Feng, Kumar, Recht, and Re: *Towards a Unified Architecture for in-RDBMS Analytics*, SIGMOD 2012]
Gradient Descent Optimization

\[
\min_{w \in \mathbb{R}^d} \sum_{(x_i, y_i) \in \text{data}} f(w, x_i, y_i)
\]

\[
w^{(k+1)} = w^{(k)} - \alpha_k \nabla f \left(w^{(k)} \right)
\]

\(\nabla f\) is the gradient
\(\alpha_k\) is step size or learning rate
\(w^{(0)}\) is the starting point (random)

- Convergence to minimum guaranteed for convex objective function
Batch and Stochastic Gradient Descent

Batch Gradient Descent (BGD)

\[w^{(k+1)} = w^{(k)} - \alpha_k \nabla f\left(w^{(k)}\right) \]

- Exact gradient computation
- Single step for one iteration
- Faster convergence close to minimum

Stochastic Gradient Descent (SGD)

\[w^{(k+1)} = w^{(k)} - \beta_k \nabla f_{\eta(k)}\left(w^{(k)}\right) \]

- Approximate gradient at data point
- One step for each data point
- Faster convergence far from minimum

http://www.holehouse.org/mlclass/17_Large_Scale_Machine_Learning.html

Florin Rusu and Chengjie Qin – Terascale Analytics
Gradient Descent as Generalized Linear Aggregate in GLADE

$w_{1i}^{(k+1)} = w_{1i}^{(k)} - \beta_k \Delta f \eta_1(w_{1i}^{(k)}) \eta_{11}$

$w_{1j}^{(k+1)} = w_{1j}^{(k)} - \beta_k \Delta f \eta_1(w_{1j}^{(k)}) \eta_{1r}$

$w_{ni}^{(k+1)} = w_{ni}^{(k)} - \beta_k \Delta f \eta_n(w_{ni}^{(k)}) \eta_{n1}$

$w_{nj}^{(k+1)} = w_{nj}^{(k)} - \beta_k \Delta f \eta_n(w_{nj}^{(k)}) \eta_{ns}$

Florin Rusu and Chengjie Qin – Terascale Analytics
Online Hyper-Parameter Concurrent Testing

- Concurrent evaluation of multiple hyper-parameter configurations
- Online identification of sub-optimal configurations
• Consider model structure in partitioning
• Improve convergence by eliminating unnecessary model merges
Complete Description & Experimental Results

- C. Qin and F. Rusu: “Scalable I/O-Bound Parallel Incremental Gradient Descent for Big Data Analytics in GLADE” (2013)
- C. Qin and F. Rusu: “Speeding-Up Distributed Low-Rank Matrix Factorization” (2013)
- C. Qin and F. Rusu: “Speculative Approximations for Terascale Analytics” (2014)