
GLADE: A Scalable 
Framework for Efficient 

Analytics

Florin Rusu
University of California, Merced



2

Motivation and Objective

● Large scale data 
processing
● Map-Reduce is 

standard technique
– Targeted to distributed 

index computation
● Hadoop is standard 

system
– Scalable, but 

inefficient

● Design and implement a 
system for aggregate 
computation
● Large scale data
● Exact and approximate
● Complex aggregates
● Architecture-independent
● Efficient and scalable



3

Outline

● DataPath Query Execution Engine
● Storage Manager
● Waypoints & Work-units

● Generalized Linear Aggregates (GLA)
● GLADE

● Shared-Memory
● Shared-Nothing

● GLA vs. Map-Reduce



4

DataPath [Arumugam et al. 2010]

● Multi-query analytical execution engine
● Shared scan & processing

● Push-driven execution
● Data pushed through operators at speed read from disk

● Chunk-at-a-time processing [MapReduce 2004]

● Sequential scan (large pages)
● Vectorized execution (loop unrolling) [MonetDB/X100 2007]

● Runtime code generation, compilation, loading, and 
execution
● M4 templates instantiated into C code with query attribute types 

and arithmetical & logical expressions



5

Architecture

Thread pool

Controller

Chunk

Storage
Manager

Selection
Waypoint

Selection
Waypoint

Join
Waypoint

Path
Graph

Query

1

2

3

4

5



6

Storage Manager

● Table (relation) layout
● Horizontal partitioning into chunks

● Chunk layout
● Vertical partitioning on columns
● Limit on number of rows (2 million)

● Column layout
● Page size (512KB)
● Fixed size

– Array of data

● Variable size
– Array of indexes

– Data



7

Waypoints & Work-units

● Waypoint
● Controller for specific 

operation
– Selection, Join, etc.

● State
● Tasks = work-units

● Work-unit
● Code generated & 

loaded at runtime

● Selection waypoint
● No state
● Work-units: Filter

● Join waypoint
● State: hash table
● Work-units: 

BuildHash, 
MergeHash, Probe



8

Query Execution

● When a new query arrives in the system, the code to be 
executed is first generated, then compiled and loaded into the 
execution engine. Essentially, the waypoints are configured with 
the code (work-units) to execute for the new query.

● Once the storage manager starts to produce chunks for the new 
query, they are routed to waypoints based on the query 
execution plan (path graph).

● If there are available threads in the system, a chunk and the 
work-unit selected by its waypoint are sent to a worker thread 
for execution.

● When the worker thread finishes a work-unit, it is returned to the 
pool and the chunk is routed to the next waypoint.



9

Outline

● DataPath Query Execution Engine
● Storage Manager
● Waypoints & Work-units

● Generalized Linear Aggregates (GLA)
● GLADE

● Shared-Memory
● Shared-Nothing

● GLA vs. Map-Reduce



10

User-Defined Aggregates (UDA)
[Wang and Zaniolo 2000, Cohen 2006]

AGGREGATE Avg(Next Int) : Real {

TABLE state(tsum Int, cnt Int);

INITIALIZE : {

INSERT INTO state VALUES (Next, 1);

}

ITERATE : {
UPDATE state

SET tsum = tsum + Next, cnt = cnt + 1;

}

TERMINATE : {

INSERT INTO RETURN

SELECT tsum / cnt FROM state;

}

}

public class Avg {

int sum;

int count;

public void Init() {
sum = 0;

count = 1;

}

public void Accumulate(int newVal) {
sum = sum + newVal;

count = count + 1;

}

public void Merge(Avg other) {
sum = sum + other.sum;

count = count + other.count;

}

public double Terminate() {
return (double)sum / count;

}

}



11

Generalized Linear Aggregates (GLA)

● Aggregates computed through 
sequential passes over data 
(multiple)

● State

● UDA interface
● Init
● Accumulate
● Merge
● Terminate

● Serialize/Deserialize

● Define and invoke in C++
● Direct access to state

public class Avg {

int sum;

int count;

public void Init() {
sum = 0;

count = 1;

}

public void Accumulate(int newVal) {

sum = sum + newVal;

count = count + 1;

}

public void Merge(Avg other) {
sum = sum + other.sum;

count = count + other.count;

}

public double Terminate() {
return (double)sum / count;

}

ARCHIVER_SIMPLE_DEFINITION()

}



12

Outline

● DataPath Query Execution Engine
● Storage Manager
● Waypoints & Work-units

● Generalized Linear Aggregates (GLA)
● GLADE

● Shared-Memory
● Shared-Nothing

● GLA vs. Map-Reduce



13

GLADE

● GLA Distributed Engine
● User defines GLA
● User invokes GLA with data on DataPath

● Execute right near data
● Take advantage of full parallelism

– Single machine (GLADE Shared-Memory)
– Multiple machines (GLADE Shared-Nothing)

● User gets back computed GLA
● Hadoop + Map-Reduce :: DataPath + GLA



14

GLADE Shared-Memory

● GLA Waypoint
● State

– List of GLAs
● Work-units

– Accumulate
– Merge

● When a chunk needs to be processed, 
the GLA Waypoint extracts a GLA state 
from the list and passes it together with 
the chunk to the Accumulate work-unit. 
The task executed by the work-unit is to 
call Accumulate for each tuple such that 
the GLA is updated with all the tuples in 
the chunk. If no GLA state is passed with 
the work-unit, a new GLA is created and 
initialized (Init) inside the work-unit, such 
that a GLA is always sent back to the 
GLA Waypoint.

● When all the chunks are processed, the 
list of GLA states has to be merged. 
Notice that the maximum number of GLA 
states that can be created is bounded by 
the number of threads in the pool. The 
merging of two GLA states is done by the 
Merge work-unit which calls Merge on the 
two states.



15

Experimental Data [Pavlo et al. 2009]

● CREATE TABLE UserVisits (
● sourceIP VARCHAR(16), // internally INT (4 bytes)
● destURL VARCHAR(100),
● visitDate DATE, // internally INT (4 bytes)
● adRevenue FLOAT,
● userAgent VARCHAR(64),
● countryCode VARCHAR(3),
● languageCode VARCHAR(6),
● searchWord VARCHAR(32),
● duration INT);

● 155 million tuples, approx. 20GB



16

Experimental Tasks

● Average
● computes the average time a user spends on a web page

● SELECT AVG(duration) FROM UserVisits

● Group By
● computes the ad revenue generated by a user across all the visited web pages

● SELECT SUM(adRevenue) FROM UserVisits GROUP BY sourceIP

● Top-K
● determines the users who generated the largest one hundred (top-100) ad 

revenues on a single visit

● SELECT TOP 100 sourceIP, adRevenue FROM UserVisits ORDER BY 
adRevenue DESC 

● K-Means
● calculates the five most representative (5 centers) ad revenues



17

Experimental Setup

● Mid-level server
● CPU: 48 AMD Opteron cores @ 1.9GHz
● Memory: 256GB
● Disk: 76 hard-disks

– 3 RAID controllers
– 50MB/s disk bandwidth

● Ubuntu 10.04 SMP Server, kernel 2.6.32-26 (64-bit)

● Data
● One UserVisits instance (20GB) per disk
● Total maximum 1.3TB



18

Experimental Results

1 2 4 8 16 32 48 64

0

5

10

15

20

25

30

35

40

Average

No of disks

T
im

e
 (

s
e

c
o

n
d

s
)

1 2 4 8 16 32 48 64

0

5

10

15

20

25

30

35

K-Means Average Time per Iteration

No of disks

T
im

e
 (

s
e

c
o

n
d

s
)

1 2 4 8 16 32 48 64

0

10

20

30

40

50

60

Top-K

No of disks

T
im

e
 (

s
e

c
o

n
d

s
)

1 2 4 8 16 32 48 64

0

20

40

60

80

100

120

140

Group By

No of disks

T
im

e
 (

s
e

c
o

n
d

s
)



19

GLADE Shared-Nothing

Chunk

GLA

Chunk Chunk

GLA GLA

GLA

GLA
1

1. Init()

2. Accumulate(t)

3. Merge(GLA)

4. Serialize()
Node

1

Chunk

GLA

Chunk Chunk

GLA GLA

GLA

GLA
2

1. Init()

2. Accumulate(t)

3. Merge(GLA)

4. Serialize()
Node

2

Chunk

GLA

Chunk Chunk

GLA GLA

GLA

GLA
0

1. Init()

2. Accumulate(t)

3. Merge(GLA)

4. Deserialize()

Node
0

GLA
1

GLA
2

GLA

5. Merge(GLA)

6. Terminate()



20

Query Execution

● The coordinator generates the code to be executed at each waypoint in the DataPath execution 
plan. A single execution plan is used for all the workers.

● The coordinator creates an aggregation tree connecting all the workers. The tree is used for in-
network aggregation of the GLAs.

● The execution plan, the code, and the aggregation tree information are broadcasted to all the 
workers.

● Once the worker configures itself with the execution plan and loads the code, it starts to 
compute the GLA for its local data. This happens exactly in the same manner as for GLADE 
Shared-Memory.

● When a worker completes the computation of the local GLA, it first communicates this to the 
coordinator – the coordinator uses this information to monitor how the execution evolves. If the 
worker is a leaf, it sends the serialized GLA to its parent in the aggregation tree immediately.

● A non-leaf node has one more step to execute. It needs to aggregate the local GLA with the 
GLAs of its children. For this, it first deserializes the external GLAs and then executes another 
round of Merge work-units. In the end, it sends the combined GLA to the parent.

● The worker at the root of the aggregation tree calls the method Terminate before sending the 
final GLA to the coordinator who passes it further to the client who sent the job.



21

Experimental Setup

● 17 node cluster
● 1 coordinator node, 16 worker nodes
● CPU: 4 AMD Opteron cores @ 2.4GHz
● Memory: 4GB
● Disk: 1 hard-disk @ 50MB/s bandwidth
● Network: 1Gb/s (125GB/s) switch
● Ubuntu 7.4 Server, kernel 2.6.20-16 (32-bit)

● Data
● One UserVisits instance (20GB) per node
● Total maximum 320GB



22

Experimental Results

1 2 4 8 16

0

4

8

12

16

20

Average

No of machines

T
im

e
 (

s
e

c
o

n
d

s
)

1 2 4 8 16

0

4

8

12

16

20

K-Means Average Time per Iteration

No of machines

T
im

e
 (

s
e

c
o

n
d

s
)

1 2 4 8 16

0

5

10

15

20

25

30

35

Top-K

No of machines

T
im

e
 (

s
e

c
o

n
d

s
)

1 2 4 8 16

0

10

20

30

40

50

60

Group By

No of machines

T
im

e
 (

s
e

c
o

n
d

s
)



23

Outline

● DataPath Query Execution Engine
● Storage Manager
● Waypoints & Work-units

● Generalized Linear Aggregates (GLA)
● GLADE

● Shared-Memory
● Shared-Nothing

● GLA vs. Map-Reduce



24

GLA vs. Map-Reduce

● GLA
● State well-defined

● Interface

– Init

– Accumulate

– Merge

– Terminate

● Turing complete

● Runtime executes only user code

● Only point-to-point communication

● More intuitive

● Algorithms for complex analytics 
already defined

● Map-Reduce
● No state (only key-value pairs)

● Interface

– Map

– Combine

– Reduce

● Turing complete

● Runtime executes sorting & 
grouping

● All-to-all communication

● Aggregate computation difficult to 
express

– Extra merging job

– Single reducer

– Extra communication



25

Hadoop vs GLADE

1 2 4 8 16

0

200

400

600

800

1000

1200

1400

Hadoop Read

No of machines

T
im

e
 (

s
e

c
o

n
d

s
)

1 2 4 8 16

0

200

400

600

800

1000

1200

1400

1600

1800

Group By

Glade
Hadoop

No of machines

T
im

e
 (

s
e

c
o

n
d

s
)



26

Conclusions and Future Work

● GLA
● Express complex 

aggregates through 
intuitive interface

● User code

● GLADE
● Architecture-independent
● Efficient

– I/O bound

● Scalable

● Library of template 
aggregates

● GLA extension for 
approximate query 
processing
● Online aggregation

● Fault-tolerance
● Bulk-loading



27

Collaborators:
Alin Dobra, University of Florida

Questions ???


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

