
SKETCHES FOR AGGREGATE ESTIMATIONS OVER DATA STREAMS

By

FLORIN I. RUSU

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2009

1

c© 2009 Florin I. Rusu

2

TABLE OF CONTENTS

page

LIST OF TABLES . 6

LIST OF FIGURES . 7

ABSTRACT . 9

CHAPTER

1 INTRODUCTION . 10

1.1 Contributions . 13
1.2 Outline . 15

2 PRELIMINARIES . 16

2.1 Problem Formulation . 16
2.2 Sketches . 17
2.3 Confidence Bounds . 18

2.3.1 Distribution-Independent Confidence Bounds 19
2.3.2 Distribution-Dependent Confidence Bounds 20
2.3.3 Mean Estimator . 21
2.3.4 Median Estimator . 22
2.3.5 Mean vs Median . 24
2.3.6 Median of Means Estimator . 25
2.3.7 Minimum Estimator . 27

3 PSEUDO-RANDOM SCHEMES FOR SKETCHES 29

3.1 Generating Schemes . 30
3.1.1 Problem Definition . 30
3.1.2 Orthogonal Arrays . 31
3.1.3 Abstract Algebra . 33
3.1.4 Bose-Chaudhuri-Hocquenghem Scheme (BCH) 34
3.1.5 Extended Hamming 3-Wise Scheme (EH3) 36
3.1.6 Reed-Muller Scheme . 36
3.1.7 Polynomials over Primes Scheme . 37
3.1.8 Toeplitz Matrices Scheme . 38
3.1.9 Tabulation Based Schemes . 38
3.1.10 Performance Evaluation . 39

3.2 Size of Join using AGMS Sketches . 41
3.2.1 Variance for BCH5 . 43
3.2.2 Variance for BCH3 . 43
3.2.3 Variance for EH3 . 46
3.2.4 Empirical Evaluation . 50

3.3 Conclusions . 51

3

4 SKETCHING SAMPLED DATA STREAMS 55

4.1 Sampling . 58
4.1.1 Generic Sampling . 58
4.1.2 Bernoulli Sampling . 59
4.1.3 Sampling with Replacement . 61

4.2 Sketches . 63
4.3 Sketches over Samples . 64

4.3.1 Generic Sampling . 65
4.3.2 Bernoulli Sampling . 71
4.3.3 Sampling with Replacement . 73
4.3.4 Discussion . 75

4.4 Experimental Evaluation . 76
4.5 Conclusions . 78

5 STATISTICAL ANALYSIS OF SKETCHES . 82

5.1 Sketches . 85
5.1.1 Basic AGMS Sketches . 86
5.1.2 Fast-AGMS Sketches . 88
5.1.3 Fast-Count Sketches . 89
5.1.4 Count-Min Sketches . 90
5.1.5 Comparison . 92

5.2 Statistical Analysis of Sketch Estimators 92
5.2.1 Basic AGMS Sketches . 93
5.2.2 Fast-AGMS Sketches . 94
5.2.3 Count-Min Sketches . 99
5.2.4 Fast-Count Sketches . 102

5.3 Empirical Evaluation . 103
5.3.1 Testbed and Methodology . 104
5.3.2 Results . 105
5.3.3 Discussion . 108

5.4 Conclusions . 109

6 SKETCHES FOR INTERVAL DATA . 116

6.1 Sketch Applications . 118
6.1.1 Size of Spatial Joins . 119
6.1.2 Selectivity Estimation for Building Dynamic Histograms 119

6.2 Problem Formulation . 120
6.3 Dyadic Mapping (DMAP) . 121

6.3.1 Dyadic Intervals . 121
6.3.2 Dyadic Mapping Method . 127
6.3.3 Algorithm DMAP COUNTS . 130

6.4 Fast Range-Summable Generating Schemes 131
6.4.1 Scheme BCH3 . 132

4

6.4.2 Scheme EH3 . 140
6.4.3 Four-Wise Independent Schemes . 143
6.4.4 Scheme RM7 . 144
6.4.5 Approximate Four-Wise Independent Schemes 145
6.4.6 Empirical Evaluation . 147

6.5 Fast Range-Summation Method . 148
6.6 Experimental Results . 153
6.7 Discussion . 157
6.8 Conclusions . 158

7 CONCLUSIONS . 167

REFERENCES . 169

BIOGRAPHICAL SKETCH . 173

5

LIST OF TABLES

Table page

3-1 Orthogonal array OA(8, 4, 2, 3). 52

3-2 Truth table for the function x1 ⊕ x2. 52

3-3 Generation time and seed size. 52

5-1 Families of ±1 random variables. 110

5-2 Families of hash functions. 110

5-3 Expected theoretical performance. 110

5-4 Expected statistical/empirical performance. 110

6-1 Sketching time per interval. 162

6-2 Sketching time per interval (ns). 162

6

LIST OF FIGURES

Figure page

2-1 AGMS Sketches. 28

3-1 EH3 error. 53

3-2 BCH5 error. 53

3-3 Scheme comparison (full). 54

3-4 Scheme comparison (detail). 54

4-1 Size of join variance. 79

4-2 Self-join size variance. 79

4-3 Size of join error. 80

4-4 Self-join size error. 80

4-5 Size of join sample size. 81

4-6 Self-join size sample size. 81

5-1 The distribution of AGMS sketches for self-join size. 111

5-2 The distribution of F-AGMS sketches for self-join size. 111

5-3 The distribution of CM sketches for self-join size. 111

5-4 The distribution of FC sketches for self-join size. 111

5-5 F-AGMS kurtosis. 112

5-6 F-AGMS efficiency. 112

5-7 Confidence bounds for F-AGMS sketches as a function of the skewness of the
data. 113

5-8 Accuracy as a function of the Zipf coefficient for self-join size estimation. 113

5-9 Accuracy as a function of the correlation coefficient for size of join estimation. . 113

5-10 Relative performance for size of join estimation. 114

5-11 Accuracy as a function of the skewness of the data for size of join estimation. . . 114

5-12 Accuracy as a function of the available space budget. 114

5-13 Confidence bounds for CM sketches as a function of the skewness of the data. . 115

7

5-14 Update time as a function of the number of counters in a sketch that has only
one row. 115

6-1 The number of polynomial evaluations. 162

6-2 The set of dyadic intervals over the domain I = {0, 1, . . . , 15}. 163

6-3 Dyadic mappings. 163

6-4 Fast range-summation with domain partitioning. 163

6-5 LANDO 1 LANDC. 164

6-6 LANDO 1 SOIL. 164

6-7 LANDC 1 SOIL. 165

6-8 Selectivity estimation. 165

6-9 Accuracy of sketches for interval data. 166

6-10 Update time per interval as a function of the number of partitions for the SOIL
data set. 166

8

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SKETCHES FOR AGGREGATE ESTIMATIONS OVER DATA STREAMS

By

Florin I. Rusu

May 2009

Chair: Alin Dobra
Major: Computer Engineering

In this work, we present methods to speed-up the sketch computation. Sketches are

randomized algorithms that use small amount of memory and that can be computed

in one pass over the data. Frequency moments represent important distributional

characteristics of the data that are required in any statistical modeling method. This

work focuses on AGMS-sketches used for the estimation of the second frequency moment.

Fast-AGMS sketches use hash functions to speed-up the computation by reducing the

number of basic estimators that need to be updated. We show that hashing also changes

the distribution of the estimator, thus improving the accuracy by orders of magnitude.

The second method to speed-up the sketch computation is related to the degree of

randomization used to build the estimator. We show that by using 3-wise independent

random variables instead of the proposed 4-wise, significant improvements are obtained

both in computation time and memory usage while the accuracy of the estimator stays

the same. The last speed-up method we discuss is combining sketches and sampling.

Instead of sketching the entire data, the sketch is built only over a sample of the data. We

show that the accuracy of the estimator is not drastically affected even when the sample

contains a small amount of the original data.

When the three speed-up methods are put together, it is possible to sketch streams

having input rates of millions of tuples per second in small memory while providing similar

accuracy as the original AGMS sketches.

9

CHAPTER 1
INTRODUCTION

Over the last decade, the development of computers and information technology

has been tremendous. The clocks of processors reached un-imaginable speed rates,

the capacity of the storage devices has increased exponentially, and the amount of

data transferred over the communication networks has scaled to un-thinkable sizes.

Although we are able to generate, store, and transport rivers of data, we do not have

the computation power to efficiently process them. We are flooded with data we cannot

process and analyze exactly. Thus, new models of computation have been proposed.

The data stream model [6, 47] changes the perspective we look at the data and

computation. In the data stream model [6, 47], the input data are not available for

random access from disk or memory, but rather arrive as one or more continuous data

streams. Data streams differ from the conventional relational model in several ways. First,

the data elements in the stream arrive online in a completely arbitrary order. Second, data

streams are potentially unbounded in size. And third, once an element from a data stream

has been processed, it is discarded or archived, making it difficult to be subsequently

referenced unless it is explicitly stored in memory, which is typically small relative to the

size of the data stream. In other words, data stream processing implies only one pass over

the data and using small space. Given these stringent requirements, approximation and

randomization are key ingredients in processing rapid data streams, contrary to traditional

applications which focus largely on providing precise answers.

Given the properties of the data stream computational model, there are multiple

factors that need to be considered when designing algorithms. Since the size of the

stream is potentially unbounded, methods to store or summarize the data are required.

It is possible to store the entire data in a distributed fashion or to summarize only the

most important characteristics of the stream. If the entire stream is stored, no data is

lost and any subsequent processing is nothing else than another streaming algorithm

10

with potentially different sources. A solution to the original problem is only delayed.

If a summary of the data is built, it should capture the most important features of the

stream relevant for the desired computation. There are multiple alternatives that can

be considered depending on the actual problem. In the most general case, a uniform

sample with a fixed size can be extracted from the unbounded stream. This allows

the computation of a large number of functions of the data stream at the expense

of a costly overhead. For specific properties that are defined before-hand, better

synopsis structures [31] can be used. In the case when the data is distributed over

multiple sources—either originally or because they were entirely stored—it is infeasible

to re-assemble the stream in a single location for further processing because of the

communication overhead. A more efficient solution is to create a synopsis at each site

and then transfer only the synopsis. Of course, the necessary condition for this to work is

that the single synopsis created by composing the local synopses is a true summary of the

entire data. The update rate of the stream is an important factor that also needs to be

considered in this computational model. In order for any of the synopsis to be applicable,

it should be able to keep-up with the rate of the stream. Unfortunately, this is not always

the case in practice where extremely fast streams are available—consider for example

the stream of data read from the hard-drives in a datawarehouse environment. In such

scenarios, even the fastest synopses are not always good enough and new solutions might

be required.

Sketches are randomized synopses that summarize large amounts of data in a much

smaller space. While sampling maintains the individual identity of the elements contained

in the samples, the identity of an element is entirely lost once sketched. Due to this

summarization, specific sketches need to be built for different problems, which is not

always the case for samples. At the same time, the maintenance overhead is usually much

smaller for sketches, making them more amenable for the data stream computational

model. There exist multiple categories of sketches proposed in the literature, each of them

11

solving a different class of problems. Flajolet-Martin (FM) sketches [26] are used for the

estimation of different set cardinalities such as the number of distinct elements, the size

of the union, intersection, and difference of two data sets. Alon-Gibbons-Matias-Szegedy

(AGMS) sketches [3] were initially proposed for the computation of the second frequency

moment of a data set and then extended to the estimation of the dot-product of two

vectors. [20] further extended AGMS-sketches to the processing of complex aggregate

functions over joins of multiple relations. Sketches based on stable distributions [37]

were proposed for the computation of different norms of a data stream. All types of

sketches share the same idea of combining randomness with the data in order to reduce

the memory space. They differ in the type of randomness they use, the update procedure,

and the way they define the estimator.

Aggregate estimation represents a long-standing topic in the database literature.

The proposed estimation techniques evolved as the application scenarios changed. Query

optimization was the starting point for statistics estimation. In order to select the optimal

execution plan for a query, the optimizer utilizes pre-computed statistics. These were

initially stored inside the database for each table under the form of number of distinct

elements and distributional histograms. Based on these statistics, a cost was computed

for plans containing any possible combination of relational operators. There exists a large

body of work on histogram computation and maintenance and on the effectiveness of

histograms for cardinality estimation (see [22, 31] for a complete list). Since the theoretical

characterization of the estimations using histograms was hard to achieve, sampling

methods were also investigated in this context [22, 31]. The main advantage sketches

have over the other estimation techniques is that they can be maintained up-to-date while

the database is updated without significant overhead. At the same time, sketches were

characterized theoretically from the beginning. Approximate query answering represents

the next level in the treatment of aggregate estimation by the database community

(see the AQUA project white paper from Bell Labs). In a datawarehouse environment

12

containing terabytes of data, queries have un-acceptable running times. In order to

decrease the response time, it is acceptable to provide approximate answers with clear

error guarantees for specific classes of applications – analytical and exploratory. Thus,

random summaries of the datawarehouse are computed and the queries are evaluated on

them much faster. If these summaries are pre-computed and stored inside the database,

there is no significant difference between query optimization and approximate query

processing. The main difference is the visibility: while the query optimizer is not explicitly

visible to the user, the approximate results provided by an approximate query processing

system immediately affect a user. Another alternative to approximate query answering

is online aggregation [35]. In this case the estimates are computed at run-time from the

actual data. As more data are seen, the estimates get better and better, to the point

where they are the true answer to the query when the entire data are processed. The focus

is different in such a system. Instead of providing a single estimate based on pre-computed

statistics, a continuous estimate is updated throughout the entire execution of a query.

The main requirement for such a system to work is that the data are processed in a

random fashion. This is necessary because the estimators are computed from small enough

samples that need to fit into memory at each particular instance of time.

The focus of this work is AGMS-sketches for aggregate estimations. More specific,

estimating the dot-product of two streams, and the second frequency moment of a stream

as a particular case, is the central problem of this study. The goal is to completely

understand the strengths and weaknesses of AGMS-sketches both from a theoretical

and practical perspective, thus putting them on the map of the current approximation

techniques. The ultimate aim is to make AGMS-sketches usable in practice.

1.1 Contributions

The focus of this research work is on sketch synopsis for aggregate queries over data

streams. We aim at deeply understanding the theoretical foundations that lie at the

basis of the sketching methods and further improve the existing techniques both from a

13

theoretical and practical perspective. Our final goal is to make sketch synopsis practical

for the application in a data stream environment. To this end, a detailed theoretical

characterization represents a necessary prerequisite.

Our contributions are fundamental for sketch synopsis, targeting the basic foundations

of the method. The directions of our research and the corresponding theoretical and

practical findings of our work can be summarized as follows:

• Pseudo-random numbers with specific properties lie at the ground of many
randomization algorithms, including sketching techniques. We study the existing
random number generation methods and identify the practical algorithms that apply
to sketches. Our main finding is that the best accuracy performance is obtained for
a 3-wise independent generating scheme, i.e., EH3, which is completely surprising
because the general belief was that 4-wise independent random variables are required
for sketch synopsis. We provide the theoretical results that support our findings
and show that the 4-wise independence requirement is necessary only to simplify
the theoretical analysis. From a practical point of view, 3-wise independent random
variables require less memory and are faster to generate—they provide a factor of
2 improvement both in space and time compared to 4-wise independent random
variables.

• Although using 3-wise independent random numbers represents a considerable
improvement in the time performance of the sketch synopsis, this could not be
sufficient for the high rate data streams that have to be processed in the current
networking equipment. To alleviate this problem, we propose the combination of
sampling and sketch synopsis to further increase the processing rate. We introduce
the first sketch over samples estimator in the literature and provide the complete
theoretical characterization. Our main finding with respect to the new estimator
is that almost the same accuracy results can be obtained even when the sketch is
computed over a 1% sample of the data rather than the entire data set. This implies
a 100 factor improvement in speed or processing time.

• Multiple sketch synopsis using hashing have been proposed in order to further
improve the processing time while maintaining the original accuracy requirements.
Although equivalent from a theoretical analysis based on frequency moments, these
methods had surprisingly different results in practice. This motivated us to realize
a more detailed statistical analysis of the sketch estimators based on the probability
distribution. Our surprising finding is that the hybrid sketch Fast-AGMS synopsis
outperforms almost always the other sketches although the original theoretical
results showed that they were equivalent. We provide both the statistical support
and significant experimental evidence for these results.

14

• Sketches were proved to be a viable solution for handling the interval data
streams that appear in spatial applications. Dyadic mapping (DMAP), the
state-of-the-art solution for sketching intervals, uses a set of transformations to
avoid the sketching of each point in the input interval at the cost of a significant
degradation in accuracy. The natural solution for sketching intervals is to use
efficient algorithms for summing-up the values in the interval, solution called fast
range-summation. We realize a detailed study of the random number generating
schemes in order to identify the fast range-summable schemes. Our main finding
is that while none of the 4-wise independent schemes is fast range-summable,
two of the 3-wise independent schemes, i.e., BCH3 and EH3, have efficient fast
range-summable algorithms. The gain in accuracy over DMAP when using the EH3
fast range-summable scheme is significant, as much as a factor of 8. We show that
fast range-summation cannot be applied in conjunction with hash-based sketches. To
alleviate this and the accuracy performance of DMAP, we develop hybrid algorithms
with significantly improved results for both solutions.

The contributions and findings are further detailed in the chapters corresponding to

each of the general problems introduced in this section. In order to ease the reading, the

experimental results are presented separately for each problem.

1.2 Outline

An introduction to sketches and methods to analyze randomization algorithms is

given in Preliminaries (Chapter 2). Pseudo-random number generating schemes and the

analysis of the original AGMS sketching synopsis are presented in Chapter 3. Chapter 4

contains the details of the combined sketch over samples estimator. The statistical analysis

of the sketch synopsis and estimators is provided in Chapter 5. The extension to sketches

for interval data streams is detailed in Chapter 6. Chapter 7 contains the conclusions.

15

CHAPTER 2
PRELIMINARIES

The material in this section serves as a basis for the rest of the work. The material

is further detailed accordingly to the demands of each subsequent section. The formal

definition of the problem we deal with in this work—estimating the size of join over data

streams using sketches—is provided in Section 2.1. Then we take a close look at the

existing methods to derive confidence bounds for randomized algorithms—sketches are

ultimately a randomized algorithm—in Section 2.3. The basic AGMS sketching method we

considerably refine and improve throughout the work is introduced in Section 2.2.

2.1 Problem Formulation

Let S = (e1, w1), (e2, w2), . . . , (es, ws) be a data stream, where the keys ei are

members of the set I = {0, 1, . . . , N − 1} and wi represent frequencies. The frequency

vector f̄ = [f0, f1, . . . , fN−1] over the stream S consists of the elements fi defined as

fi =
∑

j:ej=i wj. The key idea behind the existing sketching techniques is to represent the

domain-size frequency vector as a much smaller sketch vector x̄f [14] that can be easily

maintained as the updates are streaming by and that can provide good approximations for

a wide spectrum of queries.

Our focus is on sketching techniques that approximate the size of join of two data

streams. The size of join is defined as the inner-product of the frequency vectors f̄ and ḡ,

f̄ � ḡ =
∑N−1

i=0 figi. As shown in [51], this operator is generic since other classes of queries

can be reduced to the size of join computation. For example, a range query over the

interval [α, β], i.e.,
∑β

i=α fi, can be expressed as the size of join between the data stream

S and a virtual stream consisting of a tuple (i, 1) for each α ≤ i ≤ β. Notice that point

queries are range queries over size zero intervals, i.e., α = β. Also, the second frequency

moment or the self-join size of S is nothing else than the inner-product f̄ � f̄ .

16

2.2 Sketches

AGMS sketches are randomized schemes that were initially introduced for approximating

the second frequency moment of a relation in small space [3]. Afterwards, they were

applied to the general size of join problem [4].

The size of join of two relations F and G, each with a single attribute A, consists in

computing the quantity |F 1A G| =
∑

i∈I figi, where I is the domain of A and fi and gi,

respectively, are the frequencies of the tuples in the two relations. The exact solution to

this problem is to maintain the frequency vectors f̄ and ḡ and then to compute the size

of join. Such a solution would not work if the amount of memory or the communication

bandwidth is smaller than Min(|I|, cardinality of relation).

The approximate solution based on sketches is defined as follows [4]:

1. Start with a family of 4-wise independent ±1 random variables ξ corresponding to
the elements in the domain I.

2. Define the sketches XF =
∑

i∈I fiξi =
∑

t∈R ξt.A and XG =
∑

i∈I giξi =
∑

t∈S ξt.A.
The sketch summarizes the frequency vector of the relation as a single value by
randomly projecting each tuple over the values +1 and −1. Notice that the tuples
with the same value are always projected either on +1 or −1.

3. Let the random variable X be X = XF XG. X has the properties that it is an
unbiased estimator for the size of join |F 1A G| and that it has small variance. An
estimator with relative error at most ε with probability at least 1− δ can be obtained
by taking the median over averages of multiple independent copies of the random
variable X: the median is computed over s2 = 2 log 1

δ
such averages, each average

containing s1 = 8
ε2

Var[X]

E[X]2
instances of X (Figure 2-1).

Sketches are perfectly suited for both data-streaming and distributed computation

since they can be updated on pieces. For example, if the tuples in one relation are

streamed one by one, the atomic sketch can be computed by simply adding the value ξi

corresponding to the value i of the current item. For distributed computation, each party

can compute the sketch of the data it owns. Then, by only exchanging the sketch with the

other parties and adding them up, the sketch of the entire dataset can be computed.

17

The AGMS sketches described above have at their core ±1 random variables. The

values +1 and −1 can be obtained by simply generating random bits and then interpreting

them as −1 and +1 values. The necessary and sufficient requirement for X to be an

unbiased estimator for the size of join of F and G is that the ξ family of random variables

to be 2-wise independent. The stronger 4-wise independence property is required in

order to make the variance as small as possible, thus reducing the number of copies of

X that need to be averaged in order to achieve the desired accuracy. But, as we show in

Section 3.1, generating 4-wise independent random variables is more demanding both in

the amount of required memory, as well as in time efficiency.

2.3 Confidence Bounds

The abstract problem we tackle throughout this work is the following. Given

X1, . . . , Xn independent instances of a generic random variable X, define an estimator

for the expected value E [X] and provide confidence bounds for the estimate. While

E [X] is the convergence value of the estimator (hopefully the true value of the estimated

quantity), confidence bounds provide information about the interval where the expected

value lies with high probability or, equivalently, the probability that a particular instance

of X deviates by a given amount from the expectation E [X].

In this section we provide an overview of the methods to derive confidence bounds

for generic random variables in general, and sketches, in particular. There exist two

types of confidence bounds: distribution-independent and distribution-dependent.

Distribution-independent confidence bounds are derived from general notions in measure

theory and are mainly used in theoretical computer science. Distribution-dependent

confidence bounds assume certain distributions for the estimator of the expectation

E [X] and are largely used in statistics. While distribution-independent bounds are

based on general inequalities, a detailed problem-specific analysis is required for

distribution-dependent bounds. In the context of sketch estimators we show that

18

distribution-independent bounds, although easier to obtain, are unacceptably loose in

some situations, thus making it necessary to derive tighter distribution-dependent bounds.

2.3.1 Distribution-Independent Confidence Bounds

As already specified, distribution-independent confidence bounds are derived from

general inequalities on tail probabilities in measure theory. No assumption on the

probability distribution of the estimator is made. We introduce the inequalities used

for characterizing sketching techniques in what follows.

Theorem 1 (Markov Inequality [46]). Let X be any random variable with expected value

E [X] and f any positive real function. Then for all t ∈ R+:

P [f(X) ≥ t] ≤ E [f(X)]

t
(2–1)

Or, equivalently,

P [f(X) ≥ tE [f(X)]] ≤ 1

t
(2–2)

Markov inequality states that the probability that a random variable deviates by a

factor larger than t from its expected value is smaller than 1
t
. This is the tightest bound

that can be obtained when only the expectation E [X] is known. Tighter confidence

bounds can be derived using Chebyshev inequality and its extension to higher moments.

These bounds require more information on the distribution of the estimator for E [X]

which is not always available.

Theorem 2 (Chebyshev Inequality [46]). Let X be a random variable with expectation

E [X] and variance Var [X]. Then, for any real function f and any t ∈ R+:

P
[
|f(X)− E [f(X)]| ≥ t

√
Var [f(X)]

]
≤ 1

t2
(2–3)

Chernoff bounds are exponential tail bounds applicable to sums of independent

Poisson trials. They are largely used for the analysis and design of randomized algorithms

(including sketches) because of the tight bounds (logarithmic) they provide.

19

Theorem 3 (Chernoff Bound [46]). Let X1, . . . , Xn be independent Poisson trials (random

variables taking only the values 0 or 1) such that, for 1 ≤ i ≤ n, P [Xi = 1] = pi, where

0 < pi < 1. Then, for X =
∑n

i=1 Xi, µ = E [X] =
∑n

i=1 pi, and any δ > 0,

P [X > (1 + δ)µ] <

[
eδ

(1 + δ)(1+δ)

]µ

(2–4)

Corollary 1 (Chernoff Upper Tail [46]). For the same setup as in Theorem 3, it holds:

P [X > (1 + δ)µ] < e
−µδ2

3 (2–5)

Corollary 2 (Chernoff Lower Tail [46]). For the same setup as in Theorem 3, it holds:

P [X < (1− δ)µ] <

[
eδ

(1− δ)(1−δ)

]µ

< e
−µδ2

2 (2–6)

Notice that the above inequalities require the computation of a certain number

of frequency moments of the random variable X. The larger the number of moments

computed, the tighter the confidence bounds. Unfortunately, the computation of higher

moments demands larger degrees of independence between the instances of X and it

cannot always be carried out exactly. Moreover, the improvement gained by computing

higher moments is usually a constant factor which is asymptotically insignificant. Thus,

distribution-independent confidence bounds are mostly expressed in terms of the first two

frequency moments (expectation and variance) using Markov and Chebyshev inequalities.

2.3.2 Distribution-Dependent Confidence Bounds

In order to compute distribution-dependent confidence bounds, a parametric

distribution is assumed for the estimator of E [X]. Then confidence bounds are derived

from the cumulative distribution function (cdf) of the assumed distribution. The

parameters of the considered distribution are generally computed from the frequency

moments of X, i.e., a number of moments equal with the number of parameters have to be

computed. Since a large number of distributions have only two parameters, e.g., Normal,

Gamma, Beta, etc., only the expectation and the variance of X have to be determined.

20

Notice that although both types of confidence bounds require the computation of

the frequency moments of X, the actual bounds are extracted in different ways. The

question that immediately arises is which confidence bounds should be used. Typically,

distribution-dependent bounds are tighter, but there exist assumptions that need to be

satisfied in order for them to hold. Specifically, the distribution of the estimator for E [X]

has to be similar in shape with the assumed parametric distribution. In the following we

provide a short overview of the results from statistics on distribution-dependent confidence

bounds that are used throughout this work.

2.3.3 Mean Estimator

Usually the mean X̄ of X1, . . . , Xn is considered as the proper estimator for E [X]. It

is known from statistics [54] that when the distribution of X is normal, the mean X̄ is the

uniformly minimum variance unbiased estimator (UMVUE), the minimum risk invariant

estimator (MRIE), and the maximum likelihood estimator (MLE) for E [X]. This is strong

evidence that X̄ should be used as the estimator of E [X] when the distribution of X is

normal or almost normal. Central Limit Theorem (CLT) extends the characterization of

the mean estimator to arbitrary distributions of X.

Theorem 4 (Mean CLT [54]). Let X1, . . . , Xn be independent samples drawn from the

distribution of the random variable X and X̄ be the average of the n samples. Then, as

long as Var [X] <∞:

X̄ →d N

(
E [X] ,

Var [X]

n

)
(2–7)

Essentially, CLT states that the distribution of the mean is asymptotically a normal

distribution centered on the expected value and having variance Var[X]
n

irrespective of the

distribution of X. Confidence bounds for X̄ can be immediately derived from the cdf of

the normal distribution:

21

Theorem 5 (Mean Bounds [53]). For the same setup as in Theorem 4, the asymptotic

confidence bounds for X̄ are:

P

[
|X̄ − E [X] | > zα/2

√
Var [X]

n

]
< α (2–8)

where zβ is the β quantile (β ∈ [0, 1]) of the normal N(0, 1) distribution, i.e., the point for

which the probability of N(0, 1) to be smaller than the point is β.

Since fast series algorithms for the computation of zβ are widely available1 ,

the computation of confidence bounds for X̄ is straightforward. Usually, the CLT

approximation of the distribution of the mean and the confidence bounds produced with

it are correct starting with hundreds of samples being averaged. If the number of samples

is smaller, confidence bounds can be determined based on the Student t-distribution [53].

The only difference is that the β quantile tn−1,β of the Student t-distribution with n − 1

degrees of freedom has to be used instead of the β quantile zβ of the normal distribution

in Theorem 5.

Notice that in order to characterize the mean estimator, only the variance of X has to

be determined. When Var [X] is not known – this is the case for sketches since estimating

the variance is at least as hard as estimating the expected value – the variance can be

estimated from the samples in the form of sample variance. This is the common practice

in statistics and also in database literature (approximate query processing with sampling).

2.3.4 Median Estimator

Although the mean is the preferable estimator in most circumstances, there exist

distributions for which the mean cannot be used as an estimator of E [X]. For Cauchy

distributions (which have infinite variance) the mean can be shown to have the same

distribution as a single random sample. In such cases the median X̃ of the samples is

1 The GNU Scientific Library (GSL) implements pdf, cdf, inverse cdf, and other
functions for the most popular distributions, including Normal and Student t.

22

the only viable estimator of the expected value. The necessary condition for the median

to be an estimator of the expected value is that the distribution of the estimator to be

symmetric, case in which the mean and the median coincide. We start the investigation

of the median estimator by introducing its corresponding central limit theorem and then

show how to derive confidence bounds.

Theorem 6 (Median CLT [54]). Let X1, . . . , Xn be independent samples drawn from

the distribution of the random variable X and X̃ be the median of the n samples. Then,

as long as the probability density function f of the distribution of X has the property

f(θ) > 0:

X̃ →d N

(
θ,

1

4n · f(θ)2

)
(2–9)

where θ is the true median of the distribution.

Median CLT states that the distribution of the median is asymptotically a normal

distribution centered on the true median and having the variance equal to 1
4n·f(θ)2

. In

order to compute the variance of this normal distribution and derive confidence bounds

from it, the probability density function (pdf) of X has to be determined or at least

estimated at the true median θ. Since f(θ) cannot be computed exactly in general,

multiple estimators for the variance are proposed in the statistics literature [50]. We use

the variance estimator proposed in [48] for deriving confidence bounds:

Theorem 7 (Median Bounds [48]). For the same setup as in Theorem 6, the confidence

bounds for X̃ are given by:

P
[
|X̃ − θ| ≤ tn−1,1−α/2SE(X̃)

]
≥ 1− α (2–10)

where tn−1,β is the β quantile of the Student t-distribution with n − 1 degrees of freedom

and SE(X̃) is the estimate for the standard deviation of X̃ given by:

SE(X̃) =
X(Un) −X(Ln+1)

2
, where Ln =

[n
2

]
−
⌈√

n

4

⌉
, Un = n− Ln (2–11)

23

Notice that while the distribution corresponding to the mean estimator is centered

on the expected value E [X], the distribution of the median is centered on the true

median, thus the requirement on the symmetry of the distribution for the median to be an

estimator of E [X].

2.3.5 Mean vs Median

For the cases when the distribution is symmetric, thus the expected value and the

median coincide, or when the difference between the median and the expected value is

insignificant, the decision with respect to which of the mean or the median to be used as

an estimate for the expected value is reduced to establishing which of the two has smaller

variance. Since for both estimators the variance decreases by a factor of n, the question is

further reduced to comparing the variance Var [X] and the quantity 1
4f(θ)2

. The relation

between these two quantities is established in statistics through the notion of asymptotic

relative efficiency :

Definition 1 ([54]). The relative efficiency of the median estimator X̃ with respect to

the mean estimator X̄, shortly the efficiency of the distribution of X with the probability

density function f , is defined as:

e(f) = 4f(θ)2Var [X] (2–12)

The efficiency of a distribution for which E [X] = θ indicates which of the mean or

the median is a better estimator for E [X]. More precisely, e(f) indicates the reduction in

mean squared error if the median is used instead of the mean. When e(f) > 1, median is a

better estimator, while for e(f) < 1 the mean provides better estimates.

An important case to consider is when X has normal distribution. In this situation

the efficiency is independent of the parameters of the distribution and it is equal to

2
π
≈ 0.64 (derived from the above definition and the pdf of the normal distribution). This

immediately implies that when the estimator is defined as the average of the samples,

i.e., by Mean CLT the distribution of the estimator is asymptotically normal, the mean

24

estimator is more efficient than the median estimator. We exploit this result for analyzing

sketches in Section 5.2. In terms of mean squared error, the mean estimator has error

0.64 times smaller, while in terms of root mean squared error or relative error, the mean

estimator has error 0.8 times smaller.

As already pointed out, when the efficiency is supra-unitary, i.e., e(f) > 1, medians

should be preferred to means for estimating the expected value, if the distribution

is symmetric or almost symmetric. An interesting question is what property of the

distribution – hopefully involving only moments since they are easier to compute for

discrete distributions – indicates supra-unitary efficiency. According to the statistics

literature [7], kurtosis is the perfect indicator of supra-unitary efficiency.

Definition 2 ([7]). The kurtosis k of the distribution of the random variable X is defined

as:

k =
E [(X − E [X])4]

Var [X]2
(2–13)

For normal distributions, the kurtosis is equal to 3 irrespective of the parameters.

Even though there does not exist a distribution-independent relationship between the

kurtosis and the efficiency, empirical studies [49] show that whenever k ≤ 6 the mean is a

better estimator of E [X], while for k > 6 the median is the better estimator.

2.3.6 Median of Means Estimator

Instead of using only the mean or the median as an estimator for the expected value,

we can also consider combined estimators. One possible combination that is used in

conjunction with sketching techniques (see Section 4.2) is to group the samples into groups

of equal size, compute the mean of each group, and then the median of the means, thus

obtaining the overall estimator for the expected value. To characterize this estimator using

distribution-independent bounds, a combination of the Chebyshev and Chernoff bounds

(Theorem 2 and Theorem 3) can be used:

25

Theorem 8 ([3]). The median Y of 2 ln(1
α
) means, each averaging 16

ε2
independent samples

of the random variable X, has the property:

P
[
|Y − E [X] | ≤ ε

√
Var [X]

]
≥ 1− α (2–14)

We provide an example that compares the bounds for the median of means estimator.

While distribution-independent bounds are computed using the results in Theorem 8,

distribution-dependent bounds are computed through a combination of Mean CLT,

Median CLT, and efficiency.

Example 1. Suppose that we want to compute 95% confidence bounds for the median of

means estimator. Then the number of means for which we compute the median should be

2 ln 1
0.05

= 2 ln 20 ≈ 9 according to Theorem 8. If the number of samples is n, then each

mean is the average of n
9

samples, thus ε =
√

144
n

= 12 ·
√

1
n
. The width of the confidence

bound in terms of
√

Var[X]
n

is thus 12.

By applying Mean CLT, the distribution of each mean is asymptotically normal with

variance Var[X]
n/9

. In practice, confidence bounds can be easily derived by applying the results

in Theorem 7. We cannot do that in this example because the values of the 9 means are

unknown. Instead we assume that the distribution of the means is asymptotically normal

and, by Median CLT and the definition of efficiency, the median of the 9 means has

variance 1
9e(N)

· Var[X]
n/9

, with e(N) = 2
π

the efficiency of the normal distribution. The

variance of Y is thus π
2
· Var[X]

n
≈ 1.57 · Var[X]

n
. With this, the width of the CLT-based

confidence bound for Y with respect to
√

Var[X]
n

is
√

1.57 · 1.96 = 2.45 (1.96 is the 95%

quantile), which is 12
2.45
≈ 4.89 times smaller than the distribution-independent confidence

bound.

This result confirms that distribution-dependent confidence bounds are tighter and is

consistent with other results that compare the two types of bounds [53]. Confidence bounds

of different widths can be computed in a similar manner, the only difference being the

26

values that are plugged into the formulas. For example, the ratio for the 99% confidence

bound is 4.64 and 4.34 for the 99.9% confidence interval.

An important point in the above derivation of the CLT confidence bounds for Y is the

fact that the confidence interval is wider by
√

π
2
≈ 1.25 if medians are used, compared to

the situation when the estimator is only the mean (with no medians). This implies that

the median of means estimator is always inferior to the mean estimator irrespective of the

distribution of X. A simple explanation for this is that the asymptotic regime of Mean

CLT starts to take effect (the distribution becomes normal) since means are computed

first and the mean estimator is more efficient than the median estimator. Thus, from

a practical and statistical point of view based on the efficiency of the distribution, the

estimator should be either the mean (e < 1), or the median (e > 1), but never the median

of means.

2.3.7 Minimum Estimator

Although the minimum of the samples X1, . . . , Xn is not an estimator for the

expectation E [X], a discussion on the behavior of the minimum estimator is included

because of its relation to Count-Min sketches. It is known from statistics [12] that the

minimum of a set of samples has an asymptotic distribution called the generalized extreme

value distribution (GEV) independent of the distribution of X. The parameters of the

GEV distribution can be computed from the frequency moments of X, thus confidence

bounds for the minimum estimator can be derived from the cdf of GEV. Although this is

a straightforward method to characterize the behavior of the minimum estimator, it is not

applicable to Count-Min sketches (Section 5.2).

27

Sketch

Average

Average

Average

Median

X1,1

X2,1

Xs2,1

X2,2

Xs2,2

X1,s1

X2,s1

Xs2,s1

X1

X2

Xs2

X

X1,2

Atomic sketch

Atomic sketch

Atomic sketch Atomic sketch

Atomic sketch

Atomic sketch

Atomic sketch

Atomic sketch

Atomic sketch

Figure 2-1. AGMS Sketches.

28

CHAPTER 3
PSEUDO-RANDOM SCHEMES FOR SKETCHES

The exact computation of aggregate queries, like the size of join of two relations,

usually requires large amounts of memory, constrained in data-streaming, or communication,

constrained in distributed computation, and large processing times. In this situation,

approximation techniques with provable guarantees, like sketches, are one possible

solution. Due to their linearity, AGMS sketches [3] have all these properties and they

have been successfully used for the estimation of aggregates, like the size of join,

over data-streams [4, 20] and in distributed environments, like sensor networks [41].

The performance of sketches depends crucially on the ability to generate particular

pseudo-random numbers. In this chapter we investigate both theoretically and empirically

the problem of generating k-wise independent pseudo-random numbers and, in particular,

that of generating 3 and 4-wise independent pseudo-random numbers. Our specific

contributions are:

• We provide a thorough comparison of the various generating schemes with the goal
of identifying the efficient ones. To this end, we explain how the schemes can be
implemented on modern processors and we use such implementations to empirically
evaluate them.

• We provide thorough theoretical analysis for the behavior of the BCH3 and
EH3 schemes as replacements for the 4-wise independent schemes in size of join
estimations using AGMS sketches. We show that while BCH3 is a poor replacement
for non-skewed distributions, EH3 is in general as good as or significantly better
than any 4-wise independent scheme. The fact that EH3 gets within a constant
factor of the error of the 4-wise independent schemes for the problem of computing
the L1-difference of two streaming vectors was theoretically proved in [25]. Here we
generalize this result to size of join estimations using AGMS sketches and we show
that EH3 can always replace the 4-wise independent schemes without sacrificing
accuracy. Our empirical evaluation confirms these theoretical predictions.

In the rest of the chapter, we discuss the known generating schemes for random

variables with limited independence in Section 3.1. In Section 3.2 we provide theoretical

proof that the Extended Hamming (EH3) generating scheme works as well as the 4-wise

29

independent schemes. We provide empirical evidence for this fact and a thorough

comparison between EH3 and the 4-wise schemes in Section 3.2.4.

3.1 Generating Schemes

Based on the published literature [3], the AGMS sketches described in Section 2.2

need ±1 4-wise independent random variables that can be generated in small space in

order to produce reliable estimations. We address the question of whether the 4-wise

independence is actually required later in the chapter, but the 2-wise independence is a

minimum requirement, since otherwise the estimator is not even unbiased. In this section

we review a number of generating schemes for random variables with limited degree of

independence and we discuss how they can be implemented on modern processors. In the

subsequent sections we refer back to these generating schemes.

3.1.1 Problem Definition

Let I be a domain—without loss of generality we assume that I = {0, 1, . . . , N −

1}—and ξ be a family of two-valued random variables with a member for each i ∈ I,

denoted by ξi. We assume that these random variables take the values ±1 with the same

probability. For different values, a mapping has to be defined. Usually, the domain I

is large, for example N = 232, so a large amount of space is required to store even one

instance of the family ξ. In order to be space efficient, each ξi is generated on demand

according to a generating function:

ξi(S) = (−1)f(S,i), i ∈ I (3–1)

S is a random seed that can be stored in small space and the function f can be efficiently

computed from the index i and S. The space used by S and the function f depend

upon the desired degree of independence k. To allow simple generation, the seed S is

uniformly and randomly chosen from its domain. With S generated this way, the k-wise

independence property required for ξ translates into requiring that function f , for each k

different indices i1, i2,. . . ,ik, generates any of the 2k possible outcomes the same number

30

of times, as S covers its domain. [9] give a formal definition of uniform k-wise independent

random variables, also known as k-universal hashing functions:

Definition 3. A family ξ of ±1 random variables defined over the sample space I is k-

wise uniform independent if for any k different instances of the family ξi1 , ξi2 , . . . , ξik ,

and any k ±1 values v1, v2, . . . , vk, it holds:

Pr[ξi1 = v1 ∧ ξi2 = v2 ∧ · · · ∧ ξik = vk] =
1

2k
(3–2)

3.1.2 Orthogonal Arrays

The problem of generating two-valued k-wise independent random variables is

equivalent to the construction of orthogonal arrays. Precisely, ±1 k-wise independent

random variables over the domain I = {0, 1, . . . , N − 1} form an orthogonal array with |S|

runs, N variables, two levels and strength k, denoted OA(|S|, N, 2, k), where |S| is the size

of the seed space. Since there exist clear relations defining the size of an orthogonal array,

first we overview their main properties. Then, we extend these relations for characterizing

the size of the seed space. Our presentation follows the approach in [36].

Definition 4. An r × c matrix A with entries from a set M is called an orthogonal

array OA(r, c, m, t) with m levels, strength t and index λ – for some t in the range

0 ≤ t ≤ c – if every r × t sub-matrix of A contains each t-tuple based on M exactly λ times

as a row.

M is the set containing the elements {0, 1, . . . ,m − 1}, where m is the number of

symbols or the number of levels. The number of rows r is known as the size of the array

or the number of runs. c, the number of columns, represents the number of constraints,

factors, or variables. A less formal way of defining an orthogonal array is to say that it

is an array with the property that in any t columns you see equally often all possible

t-tuples. When each tuple appears exactly once, i.e., λ = 1, we say that the array has

index unity.

Example 2. Table 3-1 represents an orthogonal array OA(8, 4, 2, 3) that has index unity.

31

Given the values of the parameters, the size of an orthogonal array is expressed in

Rao’s Inequalities. A particular form of these inequalities, for m = 2, was introduced in

the context of k-wise independent random variables by [2]. We present the inequalities

here and later we show how they are used for characterizing different construction

schemes.

Theorem 9 ([36]). The parameters of an orthogonal array OA(r, c, s, t) satisfy the

following inequalities:

r ≥
u∑

i=0

(
c

i

)
(m− 1)i, if t = 2u,

r ≥
u∑

i=0

(
c

i

)
(m− 1)i +

(
c− 1

u

)
(m− 1)u+1, if t = 2u + 1,

(3–3)

for u ≥ 0, r ≡ 0 mod st.

Since the problem of generating two-valued random variables that are k-wise

independent is identical to constructing an orthogonal array OA(|S|, N, 2, k). In our

particular case, we are interested in finding optimal constructions, that is, constructions

that minimize the number of runs given fixed values for the number of variables, i.e.,

N = 2n, and the number of levels, since such constructions reduce the size of the seed,

thus the space to generate and store it. Also, we need general constructions that exist for

any value of the strength, i.e., the degree of independence.

The constructions based on BCH and Reed-Muller error-correcting codes are widely

used. As stated in [36], the BCH arrays are the densest known for N = 2n variables,

when n is odd. When n is even, there exist arrays with fewer runs based on Kerdock

codes and, respectively, Delsarte-Goethals codes. However, these constructions exist

only for even values of n and their advantage over the corresponding BCH arrays is

minimal—one or two bits less for representing the number of runs—while overhead

is incurred for computations in Z4, the ring of integers modulo 4. Both BCH and

32

Reed-Muller constructions touch the bounds given by Rao’s Inequalities only for small

values of k, e.g., 2, 3.

3.1.3 Abstract Algebra

As mentioned previously, ±1 random variables with limited independence can be

obtained by generating {0, 1} random variables and mapping them to ±1. Since 0 and 1

are the only elements of the Galois Field with order 2, denoted by GF (2), abstract algebra

[19] is the ideal framework in which to talk about generating families of random variables

with limited independence. The field GF (2) has two operations: addition (boolean XOR)

and multiplication (boolean AND). Abstract algebra provides two ways to extend the

base field GF (2)—vector spaces and extension fields—both of them useful for generating

limited independence random variables.

GF (2)k Vector Spaces are spaces obtained by bundling together k dimensions, each

with a GF (2) domain. The only operation we are interested in here is the dot-product

between two vectors v̄ and ū, defined as: v̄ · ū = ⊕k−1
j=0vj � uj. For GF (2)k vector spaces

this corresponds to AND-ing the arguments and then XOR-ing all the bits in the result.

GF (p) Prime Fields are fields over the domain {0, 1, . . . , p − 1} with both the

multiplication and the addition defined as the arithmetic multiplication and addition

modulo the prime p.

GF (2k) Extension Fields are fields defined over the domain {0, 1, . . . , 2k − 1} that

have two operations: addition, +, with zero element 0, and multiplication, ·, with unity

element 1. Both addition and multiplication have to be associative and commutative.

Also, multiplication is distributive over addition. All the elements, except 0, must have

an inverse with respect to the multiplication operation. The usual representation of the

extension fields GF (2k) is as polynomials of degree k − 1 with the most significant bit as

the coefficient for Xk−1, and the least significant as the constant term. The addition of

two elements is simply the addition, term by term, of the corresponding polynomials. The

multiplication is the polynomial multiplication modulo an irreducible polynomial of degree

33

k that defines the extension field. With this representation, the addition is simple (just

XOR the bit representations), but the multiplication is more intricate since it requires

both polynomial multiplication and division.

As we will see, a large number of schemes use dot-products in vector spaces.

Dot-products can be implemented by simply AND-ing the two vectors and XOR-ing

the resulting bits. While AND-ing entire words (integers) on modern architectures is

extremely fast, XOR-ing the bits of a word (which has to be eventually performed) is

problematic since no high-level programming language supports such an operation (this

operation is actually the parity-bit computation). To speed-up this operation, which is

critical, we implemented it in Assembly for Pentium processors to take advantage of the

supported 8-bit parity computation.

3.1.4 Bose-Chaudhuri-Hocquenghem Scheme (BCH)

For all the schemes, we assume the domain to be I = {0, . . . , 2n − 1}, for a generic n

(the description of the schemes depends on n). We also make the convention that [a, b] is

equivalent with the vector obtained by concatenating the vectors a and b. The size of a, b,

and [a, b] is clear from the context.

The BCH scheme was first introduced in [2] and it is based on BCH error-correcting

codes. This scheme can generate (2k + 1)-wise independent random variables by using

uniformly random seeds S that are kn + 1 bits in size. S can be represented as a vector

S = [s0, S0, . . . , Sk−1], where s0 is one bit and each Si, 0 ≤ i < k, is a vector of size n.

If s0 is dropped from the seed, 2k-wise independent random variables are obtained. The

generating function f(S, i) is defined as:

f(S, i) = S · [1, i, . . . , i2k−1] (3–4)

where i2k−1 is computed in the extension field GF (2n). This scheme comes close to the

theoretical bounds [36] on how dense the seed space can be – it is the scheme with the

34

densest seed requirement amongst all the known schemes. The proof that this scheme

produces (2k + 1)-wise independent families can be found in [2].

Implementing i2k−1 over finite fields is problematic on modern processors if speed is

paramount, but in the special case when only 3-wise independence is required this problem

is avoided (see the speed comparison at the end of the section). The 3-wise independent

version of this scheme is:

f(S, i) = S · [1, i] (3–5)

Example 3. We give an example that shows how the BCH schemes work. Consider that

n = 16 and the seeds have the values: s0 = 1, S0 = 7, 469 = (0001110100101101)2,

and S1 = 346 = (0000000101011010)2. We generate the 3 and 5-wise random variables

corresponding to i = 2, 500 = (0000100111000100)2. Then, i3 = 15, 625, 000, 000 =

(1001010001000000)2, where the exponentiation is computed arithmetically, rather than

over the extension field GF (216), and only the least significant 16 bits are kept.

S0 · i =
15⊕

j=0

 0001110100101101 �

0000100111000100

 =
15⊕

j=0

0000100100000100 = 1 (3–6)

S1 · i3 =
15⊕

j=0

 0000000101011010 �

1001010001000000

 =
15⊕

j=0

0000000001000000 = 1 (3–7)

Computing S0 · i, first the AND of the two binary values is calculated. Second, the

sequential XOR of the resulting bits gives the final result. The same is equivalent for S1 · i3.

When implementing these schemes, the sequential XOR can be computed only at the end,

after all the intermediate results are XOR-ed. The result for the 3-wise case is:

s0 ⊕ S0 · i = 1⊕ 1 = 0 (3–8)

while the result for the 5-wise case is:

s0 ⊕ S0 · i⊕ S1 · i3 = 1⊕ 1⊕ 1 = 1 (3–9)

35

3.1.5 Extended Hamming 3-Wise Scheme (EH3)

The Extended Hamming 3-wise scheme is a modification of BCH3 and it was

introduced in [25]. It requires seeds S of size n + 1 and its generating function is defined

as:

f(S, i) = S · [1, i]⊕ h(i) (3–10)

where h(i) is a nonlinear function of the bits of i. A possible form for h is:

h(i) = i0 ∨ i1 ⊕ · · · ⊕ in−2 ∨ in−1 (3–11)

Function h does not change the amount of independence, thus, from the traditional AGMS

sketches theory, it is not as good as a 4-wise independent scheme. As we will show in

Section 3.2, the use of EH3 actually results in size of join AGMS sketches estimations as

precise as a 4-wise independent scheme gives1 .

From the point of view of a fast implementation, only a small modification has to

be added to the implementation of BCH3 – the computation of function h(i). As the

experimental results show, there is virtually no running time difference between these

schemes if a careful implementation is deployed on modern processors.

3.1.6 Reed-Muller Scheme

The BCH schemes require computations over extension fields for degrees of

independence greater than 3. Since the AGMS sketches need 4-wise independent random

variables, alternative schemes that require only simple computations might be desirable.

The Reed-Muller scheme [36] generalizes the BCH codes in a different way in order to

obtain higher degrees of independence. Seeds of size 1 +
(

n
1

)
+ · · · +

(
n
t

)
are required to

obtain a degree of independence of k = 2t+1 − 1, t > 0. We introduce here only the 7-wise

1 The first theoretical result on the benefits of EH3 is provided in [25]. Our results are
significantly more general.

36

independent version of the scheme that requires 1 + n + n(n−1)
2

seed bits:

f(S, i) = S · [1, i, i(2)] (3–12)

where

i(2) = [i0 � i1, i0 � i2, . . . , in−2 � in−1] (3–13)

Example 4. We exemplify the Reed-Muller scheme (RM7), i.e., t = 2, for n = 4. s0 = 0,

S0 = 11 = (1011)2, and S1 = 45 = (101101)2. S1 contains
(
4
2

)
= 6 bits. The index variable

is i = 6 = (0110)2. i(2) = [0� 1, 0� 1, 0� 0, 1� 1, 1� 0, 1� 0] = (000100)2.

S0 · i =
3⊕

j=0

 1011 �

0110

 =
3⊕

j=0

0010 = 1 (3–14)

S1 · i(2) =
5⊕

j=0

 101101 �

000100

 =
5⊕

j=0

000100 = 1 (3–15)

The final result is:

s0 ⊕ S0 · i⊕ S1 · i(2) = 0⊕ 1⊕ 1 = 0 (3–16)

An important fact about the Reed-Muller scheme is that the seeds required are

significantly large. For example, for a domain of size 232, RM7 needs seeds of 1 + 32 +

32·31
2

= 529 bits. For comparison, the BCH5 seeds are only 1 + 2 · 32 = 65 bits in size.

3.1.7 Polynomials over Primes Scheme

The generating schemes in the previous sections are derived from error-correcting

codes. A different method to generate k-wise independent random variables uses

polynomials over a prime number field.

The generating function is defined as in [59]:

f(S, i) =
k−1∑
j=0

aji
j mod p (3–17)

37

for some prime p > i with each aj picked randomly from Zp. The seed S consists of the k

coefficients aj, 0 ≤ j < k, each represented on dlog pe bits. This scheme generates k-wise

independent random variables that have p values. To obtain the ±1 random variables, we

can take the least significant bit in the binary representation and map it to ±12 .

The drawback of the polynomials scheme is that it requires multiplications over the

field of the prime p, task that can be computationally intensive because it actually involves

divisions and modulo operations. [10] introduce a method to increase the speed of these

computations. The idea is to use Mersenne primes of the form p = 2l − 1 which facilitate

the computation of the remainder after a division with simple bitwise operations such as

shifts, AND, OR, etc.

3.1.8 Toeplitz Matrices Scheme

The 2-universal Toeplitz family of 2m-valued hash functions [8, 34] is defined over

m × n Toeplitz matrices, i.e., matrices whose diagonals are homogeneous (all the entries

in each diagonal contain the same value). Thus, a Toeplitz matrix is completely specified

by the values in its first row and its first column. Each function f : {0, 1}n → {0, 1}m in

the Toeplitz family is specified by a seed S = [U, v], where U is a random m × n Toeplitz

matrix over GF (2), and v ∈ {0, 1}m is a random vector. Given a vector i ∈ {0, 1}n,

f(S, i) = Ui + v, where the operations are over GF (2). Notice that each f in the family is

specified by n + 2m− 1 bits, the seed.

For m = 1, i.e., two-valued 2-wise independent random variables, the Toeplitz scheme

is identical with BCH3, thus we do not need to analyze this scheme independently.

3.1.9 Tabulation Based Schemes

For degrees of independence higher than three, both the BCH and the polynomials

schemes require exponentiation over the extension field GF (2n), computations that are

2 This mapping introduces a small bias since the two values are not uniformly
distributed. The bias is in the order of 1

p
, thus negligible.

38

time consuming. In this case, it could be faster to pre-compute and store (tabulate) the

random variables in memory, instead of generating them on the fly. When the random

variable corresponding to an index i is needed, it is simply extracted from a look-up

table. For large domains multiple tables are maintained, each corresponding to a different

sub-domain. The random variable is obtained as a simple function of the tabulated values.

[10] show that the function f̄ mapping i0i1 . . . in−1 to f0[i0] ⊕ f1[i1] ⊕ · · · ⊕ fn−1[in−1]

is 3-universal if each of the independent tabulated functions fj is 3-universal. This implies

that in order to obtain a 3-universal hash function for a large sequence, it is enough to

divide the sequence into sub-sequences and to tabulate 3-universal functions for each such

sub-sequence. The value of the function is computed by XOR-ing the tabulated values

corresponding to each sub-sequence. This result was subsequently extended to 4-universal

hashing by [58]. They show that the function f̄ [ab] = f0[a]⊕ f1[b]⊕ f2[a + b] is 4-universal

if f0, f1, and f2 are independent 4-universal hash functions.

The tabulation method reduces the processing time, but increases the required

memory. As long as the the pre-computed tables fit in the fast memory, we expect an

improvement in processing time. Since AGMS sketches require multiple instances of the

estimator in order to provide the desired error guarantees, the space requirement could

become a problem.

3.1.10 Performance Evaluation

We implemented BCH3, BCH5, EH3, and RM7, and we used the implementation in

[58] for the polynomials over primes and the tabulation schemes. BCH5 was implemented

by performing the i3 operation arithmetically not in an extension field. This does not

change the degree of independence of BCH5 for domains not too large, but it significantly

improves the performance. The polynomials scheme uses Mersenne primes in order to

speed-up the implementation. For the tabulation scheme, both 8 and 16 bits sub-sequences

were tested, but only the best result is reported.

39

We ran our experiments on a two-processor Xeon 2.80 GHz machine3 , each with

a 512 KB cache. The system has 1 GB available memory and uses a Fedora Core 3

operating system. As a comparison for our results, the time to read a word from a

memory location that is not cached takes about 250 ns on this machine. We used the

special assembly implementation of the dot-product for all the methods. Experiments

consisted in generating 10, 000 variables i and 10, 000 seeds and then computing all

possible combinations of random variables, i.e., 100, 000, 000. Each experiment was

run 100 times and the average of the results is reported. The relative error or error

(relative error = |true value−experimental value|
true value

) of a run was in general under 1%, with a

maximum of 1.2%. Since the results are so stable, we do not report the actual error

for individual experiments. The generation time, in nanoseconds per random variable,

is reported in Table 3-3. When compared to the memory random access time, all the

schemes, except RM7, are much faster. Indeed, EH3 is at least as fast as BCH3 (we

believe it is actually faster since the extra operations maintain a better flow through the

processor pipelines) and both are significantly faster than the polynomials scheme. The

tabulation scheme is the fastest both for 2-wise and 4-wise independent random variables

since the tables fit in the cache. Notice that EH3 and BCH5 give close results to the

tabulation scheme although they generate the value of the random variables from scratch.

Table 3-3 also contains the size of the seed for the given schemes. n represents the

number of bits the domain I can be represented on. For the polynomials over primes

scheme, n is the smallest power of 2 for which 2n ≥ p. As noted, the BCH schemes have

the densest seeds, while the Reed-Muller scheme needs the largest seed. For the same

degree of independence, the polynomials over primes scheme requires a seed double in

size compared to BCH. The tabulation scheme does not store seeds. Instead it stores the

3 While the machine has two processors, only one of them was used in our experiments.

40

values of the random variables for non-overlapping sub-domains. Thus, it has the most

stringent memory requirement of all the schemes.

When deciding what scheme to use, the tradeoffs involved should be analyzed. While

the tabulation scheme is the fastest, it also requires the largest amount of memory. For

AGMS sketches estimations this could become a drawback. The BCH schemes have

the least restrictive memory requirement while being quite fast. We will see that for

fast range-summation (efficient sketching of intervals) a real generating scheme gives

the best results. With a tabulation scheme all the points inside an interval have to be

independently sketched, a solution that we try to improve.

3.2 Size of Join using AGMS Sketches

Using the current understanding of the AGMS sketches applied to the size of join

problem, the 4-wise independence of the random variables is required in order to keep

the variance small (we show why latter in the section). What we show in this section

is that the Extended Hamming EH3 scheme [25] not only can be used as a reasonable

replacement of the 4-wise independent schemes (this is the theoretical result proved

in [25] for the L1-difference of two streaming functions), but it is usually as good, in

absolute big-O notation terms, and in certain situations significantly surpasses the 4-wise

independent schemes for AGMS sketches solutions to the size of join problem. We provide

here both the theoretical support for this statement and the empirical evidence.

We proceed by taking a close look at the estimation of the size of join of two relations

using AGMS sketches. As already presented in Section 2.2, the size of join |F 1A G| of

two relations F and G with a common attribute A is defined as |F 1A G| =
∑

i∈I figi.

To estimate this quantity, we use a ±1 family of random variables {ξi|i ∈ I} that are

at least 2-wise independent (but not necessarily more). We define the sketches, one for

each relation, as XF =
∑

i∈I fiξi and XG =
∑

i∈I giξi. The random variable X = XF XG

estimates, on expectation, the size of join |F 1A G|. It is easy to show that, due to the

2-wise independence, E[X] =
∑

i∈I figi, which is exactly the size of join. Since all the

41

generating schemes published in the literature (see Section 3.1 for a review of the most

important ones) are 2-wise independent, they all produce estimates that are correct on

average. The main difference between the schemes is the variance of X, Var [X]. The

smaller the variance, the better the estimation; in particular, the error of the estimate is

proportional with

√
Var[X]

E[X]
.

We analyze now the variance of X. Following the technique in [3], we first compute

E [X2] since Var [X] = E [X2]− E [X]2. We have:

E
[
X2
]

= E

(∑
i∈I

fiξi

∑
i∈I

giξi

)2
 =

∑
i∈I

∑
j∈I

∑
k∈I

∑
l∈I

fifjgkglE [ξiξjξkξl] (3–18)

The expression E [ξiξjξkξl] is equal to 1 if groups of two variables are the same (i.e.,

i = j ∧ k = l or i = k ∧ j = l or i = l ∧ j = k) since ξ2
i = 1 irrespective of the actual

value of ξi (12 = 1 and (−1)2 = 1). E [ξiξjξkξl] is equal to 0 if two variables are identical,

say i = j, and two are different, since then E [ξiξjξkξl] = E [1 · ξkξl] = 0, using the

2-wise independence property. The same is true when three of the variables are equal, say

i = j = k, but the fourth one is not, since E [ξiξjξkξl] = E [ξ3
i ξl] = 0 (we use the fact that

ξ3
i = ξi). The above observations are not dependent on what generating scheme is used, as

long as it is at least 2-wise independent. The contribution of the 1 values to E [X2] adds

up to: ∑
i∈I

∑
j∈I

f 2
i g2

j + 2 ·

(∑
i∈I

figi

)2

− 2 ·
∑
i∈I

f 2
i g2

i (3–19)

In the expression of the variance Var [X], the middle term has the coefficient 1, instead

of 2, since E [X]2 is subtracted. The difference between the various generating schemes

consists in what other terms have to be added to the above formula. The additional terms

correspond only to the values of i, j, k, l that are all different (otherwise the contribution is

1 or 0 irrespective to the scheme, as explained before). We explore what are the additional

terms for three of the schemes, namely BCH5, BCH3, and EH3.

42

3.2.1 Variance for BCH5

The BCH5 scheme is 4-wise independent, which means that for i 6= j 6= k 6= l, we

have:

E [ξiξjξkξl] = E [ξi] · E [ξj] · E [ξk] · E [ξl] = 0 (3–20)

since all the ξs are independent and E [ξi] = 0 for all generators. This means that no other

terms are added to the above variance. The following formula results:

Var [X]BCH5 =
∑
i∈I

∑
j∈I

f 2
i g2

j +

(∑
i∈I

figi

)2

− 2 ·
∑
i∈I

f 2
i g2

i (3–21)

3.2.2 Variance for BCH3

BCH3 is only 3-wise independent, thus clearly it is not the case that, for all i 6= j 6=

k 6= l, E [ξiξjξkξl] = 0. To characterize the value of the expectation for different variables,

the following results are extensively applied.

Proposition 1. Consider the function XOR(x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn defined

over n binary variables x1, x2, . . . , xn. Then, the function XOR takes the values 0 and 1

equally often, each value 2n−1 times.

Proof. We prove this proposition by induction on n.

Base case: n = 2. The truth table for the XOR function with two variables is given

in Table 3-2. Function XOR takes the values 0 and 1 the same number of times, 22−1 = 2.

Inductive case: We suppose that the proposition is true for n and we have to show

that it is also true for n + 1, that is, function x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ xn+1 takes both values

0 and 1 2n times each. For every combination of the first n variables, xn+1 takes one time

the value 0 and one time the value 1. When xn+1 = 0, function XOR of n + 1 variables

is identical with function XOR of n variables. This means that it takes the values 0 and

1 2n−1 times each. The effect of xn+1 being equal with 1 is to invert the result of the

function XOR with n variables, that is, the combinations that gave result 0, give 1 now,

and the combinations that gave 1 for n variables, give 0 for n + 1 variables. As we already

43

know that the number of combinations for both cases is equal to 2n−1 times each, by

summing the results for xn+1 = 0 and xn+1 = 1, we obtain that function XOR with n + 1

variables takes the values 0 and 1 2n times each.

Proposition 2. Let the function F on n binary variables x1, x2, . . . , xn be defined as:

F (x1, x2, . . . , xn) = C ⊕ S1 � x1 ⊕ S2 � x2 ⊕ · · · ⊕ Sn � xn (3–22)

where C ∈ {0, 1} is a constant and Sk ∈ {0, 1}, for 1 ≤ k ≤ n, are parameters. If

there exists at least one Sk that is equal to 1, function F takes the values 0 and 1 equally

often, each value 2n−1 times. Otherwise, function F evaluates to the constant C for all the

combinations of x1, x2, . . . , xn.

Proof. Let Sk1 , Sk2 , . . . , Skr , 0 ≤ r < n, be the parameters that are constrained to the value

0 and Skr+1 , . . . , Skn be the parameters that equal 1. Then, we can rewrite function F as:

F (x1, x2, . . . , xn) = C ⊕ xkr+1 ⊕ · · · ⊕ xkn (3–23)

When C = 0 it has no effect on the value of the function F, while C = 1 inverts the result

of the function. We know from Proposition 1 that the function XOR with n − r variables

takes the values 0 and 1 2n−r−1 times each. The 2n combinations of n variables consist

now of 2r repetitions of the 2n−r combinations of n− r variables. It results that function F

takes the value 0, as well as value 1, 2n−r−1 · 2r = 2n−1 times, for C = 0. The same result

holds for C = 1 since 2n − 2n−1 = 2n−1. For r = n, we have F (x1, x2, . . . , xn) = C.

Lemma 1. Assume the ξs are generated using the BCH3 scheme. Then, for i 6= j 6= k 6= l,

E [ξiξjξkξl] = 0 if i⊕ j ⊕ k ⊕ l 6= 0, and E [ξiξjξkξl] = 1 if i⊕ j ⊕ k ⊕ l = 0, where ⊕ is the

bitwise XOR.

Proof. Let S = [s0, S1] be the (n + 1)-bits random seed with s0 its first bit and S1 the last

n bits. Using the notations and the definition of BCH3 in Section 3.1, we have:

ξi = (−1)s0⊕S1·i (3–24)

44

With this, we obtain:

E [ξiξjξkξl] = E
[
(−1)s0⊕S1·i · (−1)s0⊕S1·j · (−1)s0⊕S1·k · (−1)s0⊕S1·l

]
= E

[
(−1)S1·i⊕S1·j⊕S1·k⊕S1·l

]
= E

[
(−1)S1·(i⊕j⊕k⊕l)

] (3–25)

Using the result in Proposition 2 with C = 0 and S1, . . . , Sn set as the last n bits of the

seed S, we know that the expression S1 ·(i⊕j⊕k⊕ l) takes the values 0 and 1 equally often

for random seeds S1 when i⊕ j ⊕ k⊕ l 6= 0 – this immediately implies that E [ξiξjξkξl] = 0.

When i⊕ j ⊕ k⊕ l = 0, S1 · (i⊕ j ⊕ k⊕ l) = 0 irrespective of S1, giving E [ξiξjξkξl] = 1.

This implies that the variance for BCH3 contains an additional term besides the ones

that appear in the variance formula for BCH5. The extra term has the following form:

∆Var [BCH3] =
∑
i∈I

∑
j∈I,j 6=i

∑
k∈I,k 6=i,j

fifjgkgi⊕j⊕k (3–26)

since i ⊕ j ⊕ k ⊕ l = 0 implies l = i ⊕ j ⊕ k. The additional term in the BCH3 variance

can be significantly large, implying a big increase over the variance of BCH5. However, as

we will see in the experimental section, the influence of the extra-term almost vanishes for

high-skew data and the variance of BCH3 becomes comparable with the variance of BCH5.

Example 5. In order to give a clear image on the values ∆Var [BCH3] can take, we

provide two extreme examples. First, consider that both relations F and G have uniform

distributions with the value f , respectively g. This gives:

∆Var [BCH3]uniform = f 2g2
∑
i∈I

∑
j∈I,j 6=i

∑
k∈I,k 6=i,j

1 / f 2g2|I|3 (3–27)

value that is an order of |I| greater than the BCH5 variance, thus dominating it and

increasing the BCH3 variance to possibly extreme high values. Second, consider that both

F and G are very skewed. Actually, there exists only one positive frequency in F (f),

45

respectively G (g). The extra-variance becomes:

∆Var [BCH3]skewed = fg ≤ f 2g2 (3–28)

which is smaller than the corresponding BCH5 variance, thus it can be ignored.

3.2.3 Variance for EH3

As BCH3, the Extended Hamming scheme (EH3) is also 3-wise independent, which

might suggest that the variance of EH3 is similar to the variance of BCH3 (extra terms

not in the variance of BCH5 have to appear, otherwise the scheme would be 4-wise

independent). As we show next, even though only positive terms appeared in the variance

for BCH3, in the EH3 variance negative terms appear as well. These negative terms,

in certain circumstances, can compensate completely for the positive terms and give a

variance that becomes zero.

Lemma 2. Assume the ξs are generated using the EH3 scheme. Then, for i 6= j 6= k 6= l,

E [ξiξjξkξl] =



0, if i⊕ j ⊕ k ⊕ l 6= 0

1, if i⊕ j ⊕ k ⊕ l = 0 ∧

h(i)⊕ h(j)⊕ h(k)⊕ h(l) = 0

−1, if i⊕ j ⊕ k ⊕ l = 0 ∧

h(i)⊕ h(j)⊕ h(k)⊕ h(l) = 1

(3–29)

where ⊕ is the bitwise XOR.

Proof. We know that

ξi = (−1)s0⊕S1·i⊕h(i) (3–30)

for random variables generated using the EH3 scheme. Replacing this form into the

expression for E [ξiξjξkξl] and applying the same manipulations as in the proof of

46

Proposition 1, we get:

E [ξiξjξkξl] = E
[
(−1)S1·(i⊕j⊕k⊕l)⊕(h(i)⊕h(j)⊕h(k)⊕h(l))

]
(3–31)

If we use again Proposition 2 with C = h(i)⊕ h(j)⊕ h(k)⊕ h(l) and S1, . . . , Sn set as the

last n bits of the seed S, we first observe that the expectation is 0 when i⊕ j ⊕ k ⊕ l 6= 0.

When i ⊕ j ⊕ k ⊕ l = 0, the expected value is always (−1)C . For BCH3 the constant

C always took the value 0, thus the expectation in that case was always 1. For EH3, the

value of C depends on the function h – it is 1 when h(i) ⊕ h(j) ⊕ h(k) ⊕ h(l) = 1. This

implies the value −1 for E [ξiξjξkξl].

Using the above result, we observe that E [ξiξjξkξl] = −1 when i ⊕ j ⊕ k ⊕ l = 0

and h(i) ⊕ h(j) ⊕ h(k) ⊕ h(l) = 1. This means that, even though EH3 can have all the 1

terms BCH3 has, it can also have −1 terms, thus, it can potentially compensate for the 1

terms. Indeed, the following results show that this is exactly what happens under certain

independence assumptions.

In order to predict the performance of EH3, we perform an average-case analysis of

the scheme. Since AGMS sketches are randomized schemes, the average-case analysis is

a more appropriate characterization than a worst-case analysis. [25] provide a worst-case

analysis of EH3 for the particular case of computing the L1-difference of two functions.

For the size of join problem, the situation is more complicated because the frequencies

have to be considered too and the parameter we are interested in is the self-join size of

each relation.

To obtain an average analysis, consider first the theorem:

Theorem 10. For i, j, k taking all the possible values over the domain I = {0, . . . , 4n − 1},

n > 0, the function g(i, j, k) = h(i)⊕ h(j)⊕ h(k)⊕ h(i⊕ j ⊕ k) takes the value 0 zn times

47

and the value 1 yn times, where zn and yn are given by the following recursive equations:

z1 = 40, y1 = 24

zn = 40 · zn−1 + 24 · yn−1

yn = 24 · zn−1 + 40 · yn−1

Proof. The base case, n = 1, can be easily verified by hand. The recursion is based on the

observation that the groups of two bits from different h functions interact independently

and give 40 zero values and 24 one values. When the results of two groups are XOR-ed, a

zero is obtained if both groups are zero or both are one; a one is obtained if a group equals

zero and the other group equals one.

We have to characterize the behavior of function g(i, j, k) for i 6= j 6= k (when at least

two of these variables are equal, we obtain the special case of the variance for BCH5 that

we have already considered). The number of times at least two out of the three variables

are equal is eqn = 3 · (4n)2 − 2 · 4n, which allows us to determine the desired quantities, i.e.,

the number of zeros is zn − eqn, while the number of ones is yn. To determine the average

behavior of EH3, we assume that neither the frequencies in F are correlated with the

frequencies in G nor the frequencies in G are correlated amongst themselves. This allows

us to model the quantity l = i ⊕ j ⊕ k as a uniformly distributed random variable L over

the domain I. Moreover, due to the same independence assumptions, function g(i, j, k) can

be modeled as a random variable G, independent of L, that has the same macro behavior

as g(i, j, k), i.e., it takes the values 0 and 1 the same number of times. With these random

variables, we get:

E [gL] =
1

|I|
∑
l∈I

gl (3–32)

and

E
[
(−1)G

]
= 1 · P [G = 0] + (−1) · P [G = 1] =

zn − eqn − yn

zn − eqn + yn

(3–33)

48

The expected value of the additional terms that appear in the variance of EH3 is given by:

E [∆Var [EH3]] = E

[∑
i∈I

∑
j∈I

∑
k∈I

fifjgk(−1)GgL

]

=
∑
i∈I

∑
j∈I

∑
k∈I

fifjgkE
[
(−1)G

]
E [gL]

=
1

|I|

(∑
i∈I

fi

)2(∑
i∈I

gi

)2
zn − eqn − yn

zn − eqn + yn

(3–34)

Overall, the variance of the EH3 generating scheme is:

Var [X]EH3 =
1

|I|

(∑
i∈I

fi

)2(∑
i∈I

gi

)2
zn − eqn − yn

zn − eqn + yn

+ Var [X]BCH5 (3–35)

Notice that the additional term over the variance for BCH5 is inversely proportional

with the size of the domain I. Also, the last factor in the additional term takes small

sub-unitary values. The combined effect of these two is to drastically decrease the

influence of the extra-term on the EH3 variance, making it close to the BCH5 variance.

Actually, there exist situations for which the EH3 variance is significantly smaller than

the BCH5 variance. It can even become equal to zero. The following corollary states this

surprising result:

Corollary 3. If fi = f and gi = g, i ∈ I, with f and g constants, and |I| = 4n, then:

Var [X]EH3 = 0 (3–36)

The reason the variance of EH3 is zero when the distribution of both F and G is

uniform is the fact that the −1 terms cancel out entirely the 1 terms. For less extreme

cases, when the distribution of the two relations is close to a uniform distribution,

EH3 significantly outperforms BCH5. This intuition is confirmed by the the following

experimental results.

49

3.2.4 Empirical Evaluation

The purpose of the empirical evaluation is twofold. First, we want to validate the

theoretical models for the variance of different generating schemes, especially the average

behavior of EH3. Then, we want to compare the BCH3, EH3, and BCH5 schemes for

estimations using AGMS sketches.

The main findings of our experimental study can be summarized as follows:

• Validation of the theoretical model for the EH3 generating scheme. Our
study shows that the behavior of the EH3 generating scheme is well predicted by the
theoretical model in Section 3.2.

• BCH3 vs EH3 vs BCH5. EH3 has approximately the same error, or, in the case
of low-skew distributions, a significantly better error than the BCH5 scheme. This
justifies our recommendation to use EH3 instead of BCH5. For high-skew data,
BCH3 has approximately the same error as BCH5 and EH3, making it the perfect
solution for sketching when the data is skewed.

We performed the experiments using the setup in Section 3.1. We give detailed

descriptions of the datasets and the comparison methodology for each group of experiments.

Validation of the EH3 Model: To validate the average error formula in Equation 3–35,

we generated Zipf distributed data with the Zipf coefficient ranging from 0 to 5 over

domains of various sizes in order to estimate the self-join size. The prediction is performed

using AGMS sketches with only one median, i.e., only averaging is used to decrease the

error of the estimate. In Figure 3-1 we depict the comparison between the average error

of the EH3 scheme and the theoretical prediction given by Equation 3–35 for a domain

with the size 16, 384 and a relation containing 100, 000 tuples. Notice that, when the

value of the Zipf coefficient is larger than 1, the prediction is accurate. When the Zipf

coefficient is between 0 and 1, the error of EH3 is much smaller (it is zero for a uniform

distribution). This is explained in Corollary 3, which states that the variance of EH3 is

zero when the distribution of the data is uniform and the size of the domain is a power

of 4. For completeness, we depict the comparison between the theoretical model and the

experimental results for BCH5 scheme in Figure 3-2.

50

BCH3 vs EH3 vs BCH5: We performed the same experiments as in the previous

section for BCH3, EH3, and BCH5, except that the number of medians was fixed to 10.

The results of the experiments are depicted in Figure 3-3 (full-size picture) and Figure 3-4

(detailed picture focusing on EH3 and BCH5). Notice that the errors of BCH3, EH3, and

BCH5 are virtually the same for Zipf coefficients greater than 1. While the EH3 error is

significantly smaller for Zipf coefficients lower than 1, the BCH3 error can get extremely

high values (100% relative error). These results confirm our theoretical characterizations

both for BCH3 and EH3 schemes. When compared to the results in Figure 3-1, the errors

are smaller by a factor of 3. This is due to the fact that 10 medians were used instead of

only 1 and the medians have almost the same effect in reducing the error as the averages –

the same observation was made in [18].

Given the theoretical and the experimental results in this section, and the fact that

EH3 can be implemented more efficiently than BCH5, we recommend the exclusive use of

the EH3 random variables for size of join estimations using AGMS sketches.

3.3 Conclusions

In this chapter we conducted both a theoretical as well as an empirical study of the

various schemes used for the generation of the random variables that appear in AGMS

sketches estimations. We provide theoretical and empirical evidence that EH3 can replace

the 4-wise independent schemes for the estimation of the size of join using AGMS sketches.

The main recommendation of this chapter is to use the EH3 random variables for AGMS

sketches estimations of the size of join since they can be generated more efficiently and use

smaller seeds than any of the 4-wise independent schemes. At the same time, the error of

the estimate is as good as or, in the case when the distribution has low skew, better than

the error provided by a 4-wise independent scheme.

51

Table 3-1. Orthogonal array OA(8, 4, 2, 3).

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Table 3-2. Truth table for the function x1 ⊕ x2.

x1 x2 x1 ⊕ x2

0 0 0
0 1 1
1 0 1
1 1 0

Table 3-3. Generation time and seed size.

Scheme Time (ns) Seed size
BCH3 10.8 n + 1
EH3 7.3 n + 1
Polynomials2 31.4 2n
Tabulation2 5.1 2b · n

b

BCH5 12.7 2n + 1
Polynomials4 106.4 4n

RM7 3, 301 1 + n + n(n−1)
2

Tabulation4 10.3 2b ·
(

n
b

)log2 3

52

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 1 2 3 4 5

R
el

at
iv

e
E

rr
or

ZIPF Parameter

Empirical
Theoretical

Figure 3-1. EH3 error.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 1 2 3 4 5

R
el

at
iv

e
E

rr
or

ZIPF Parameter

Empirical
Theoretical

Figure 3-2. BCH5 error.

53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

R
el

at
iv

e
E

rr
or

ZIPF Parameter

EH3
BCH5
BCH3

Figure 3-3. Scheme comparison (full).

 0

 0.005

 0.01

 0.015

 0.02

 0 1 2 3 4 5

R
el

at
iv

e
E

rr
or

ZIPF Parameter

EH3
BCH5
BCH3

Figure 3-4. Scheme comparison (detail).

54

CHAPTER 4
SKETCHING SAMPLED DATA STREAMS

Sampling is used as a universal method to reduce the running time of computations

– the computation is performed on a much smaller sample and then the result is only

adjusted. Sketches are a popular approximation method for data streams and they proved

to be useful for estimating frequency moments and aggregates over joins. A possibility to

further improve the time performance of sketches is to compute the sketch over a sample

of the stream rather than the entire data stream.

In this chapter we analyze the behavior of the sketch estimator when computed over

a sample of the stream, not the entire data stream, for the size of join and the self-join

size problems. Our analysis is developed for a generic sampling process. We instantiate

the results of the analysis for two particular types of sampling—Bernoulli sampling which

is used for load shedding and sampling with replacement which is used to generate i.i.d.

samples from a distribution—and compare these particular results with the results of the

basic sketch estimator. Our experimental results show that the accuracy of the sketch

computed over a small sample of the data is in general close to the accuracy of the sketch

estimator computed over the entire data even when the sample size is only 1% of the

dataset size. This is equivalent to a speed-up factor of 100 when updating the sketch.

Data streaming received a lot of attention from the research community in the

last decade. The requirement to process fast data streams motivates the need for

approximation methods that make use of both small space and small time. AGMS

sketches [3, 4] and their improved variant F-AGMS sketches [14, 52] proved to be a

viable solution for estimating aggregates over joins. The main strengths of the sketching

techniques are the simple and fast update procedure, the small memory requirement,

and provable error guarantees. When the data streams that need to be processed are

extremely fast, for example in the case of networking data or large datasets streamed

over the Internet, it is desirable to further reduce the update time of sketches in order to

55

achieve the required processing rates. Sampling is a universal method for data reduction

and, in principle, it can be used to reduce the amount of data that needs to be sketched.

If samples are sketched instead of the original data, an immediate update time reduction

results. This is similar to the existing load shedding techniques employed in data stream

processing engines [56]. The main concern when samples rather than the original data

are sketched is how to extend the error guarantees sketches provide to this new situation.

The formulas resulting from such an analysis could be used to determine how aggressive

the load shedding can be without a significant loss in the accuracy of the sketch over

samples estimator. In other words, how much can the update time be improved without a

significant accuracy degradation.

A seemingly unrelated, but, as shown in the chapter, technically related, problem

is analyzing streams of samples from unknown distributions. Samples from unknown

distributions—the so called i.i.d. samples—are the input to most of the online data-mining

algorithms [21]. In this case the samples are not used as a data reduction technique,

but rather they are the only information available about the unknown distribution. A

fundamental problem in this context is how to characterize the unknown distribution

using only the samples. This is one of the fundamental problems in statistics [54]. If the

samples are streamed, as is the case in online data-mining, the aim is to characterize the

unknown distribution by using small space only, thus making sketches a natural candidate

for computations that involve aggregates. It is a simple matter to use sketches in order

to estimate aggregates of the samples. If predictions about the unknown distribution

need to be made, the problem is significantly more difficult. Interestingly, this problem is

mathematically similar to the load shedding problem in which sampling is used to reduce

the update time of sketching. Both problems require the analysis of sketching samples:

Bernoulli sampling in the case of load shedding and sampling with replacement in the case

of characterizing unknown distributions from samples.

56

In this chapter we analyze the sketch over samples estimator for a generic sampling

process. Then we instantiate the results for Bernoulli sampling and sampling with

replacement. Our technical contributions are:

• We analyze the sampling methods in the frequency domain. This is a building block
necessary to combine the analysis of sketches and sampling.

• We provide a generic analysis of the sketch over samples estimator. The analysis
consists in expressing the first two frequency moments of the estimator in terms of
the moments of the sampling frequency random variables.

• We instantiate the generic analysis to derive formulas for sketching Bernoulli
samples. This immediately indicates how random load shedding for sketching data
streams behaves.

• We instantiate the generic analysis to derive formulas for sketching samples with
replacement from a large population. The analysis readily generalizes to sketching
i.i.d. samples from an unknown distribution. The ability to sketch i.i.d. data is
important if sketches are to be used for data-mining applications.

• We present empirical evidence that the analysis is necessary since the error of
the sketch over samples estimator is not simply the sum of the errors of the two
individual estimators. The interaction, which is predicted by the analysis, plays a
major role. The experiments also point out that in the majority of the cases a 1%
sample results in minimal error degradation – the sketching of streams can thus be
speed-up by a factor of 100.

There exists a large body of work on approximate query processing methods. The

idea of combining two estimators to capitalize on the strengths of both is not new.

F-AGMS sketches [14] are essentially a combination of random histograms and AGMS

sketches. [30] presents a method to build incremental histograms from samples. To the

best of our knowledge, sketching and sampling have not been combined in a principled

fashion before. The main difficulty in characterizing sketches over samples is the fact

that the sampling analysis [35, 39] is performed in the tuple domain while the sketch

analysis [3] is performed in the frequency domain. This is the first obstacle we overcome

in this chapter. The work on sketching probabilistic data streams [13, 38] is somehow

similar to our work. The important difference is the fact that sampling is part of the

estimate in our work while it represents only a way to interpret the probabilistic data in

57

the related work. The results in [13] do not characterize the sketch over sample estimator

but approximate the probabilistic aggregates using sketches. The only overlap in terms of

analysis seems to be the computation of the expected value of sketch over samples for the

second frequency moment computation in [38].

In the rest of the chapter, Section 4.1 gives an overview on sampling while Section 4.2

introduces sketches. The formal analysis of the combined sketch over samples estimator is

detailed in Section 4.3. The empirical evaluation of the combined estimator is presented in

Section 4.4.

4.1 Sampling

Sampling as an approximation technique consists in obtaining samples F ′ and G′

from relations F and G, respectively, computing the size of join aggregate over the

samples, and applying a correction to ensure that the sampling estimator is unbiased. This

method is generic and applies to all types of sampling. In order to simplify the theoretical

developments, we keep the treatment of sampling as generic as possible.

In Section 2.1 we expressed the size of join aggregate as a function of fi and gi, the

frequencies of value i of the join attribute in relations F and G, respectively. If we define

f ′i and g′i to be the frequencies of i in F ′ and G′, respectively, the size of join of the sample

relations is:

|F ′ 1A G′| =
∑
i∈I

f ′ig
′
i (4–1)

f ′i and g′i are random variables that depend on the type of sampling and the parameters

of the sampling process. Interestingly, a large part of the characterization of sampling can

be carried out without specifying the type of sampling. This is also true for sketches over

samples in Section 4.3.

4.1.1 Generic Sampling

In general, |F ′ 1A G′| is not an unbiased estimator for the size of join |F 1A G|.

Fortunately, in the majority of the cases a constant correction that scales for the difference

in size between the samples and the original relations can be made to obtain an unbiased

58

estimator. If we define the estimator for the size of join as X = C
∑

i∈I f ′ig
′
i, where C

is the scaling factor, we can determine the value of C such that X is unbiased. In order

to derive error bounds for the estimator X, the moments E [X] and Var [X] have to be

computed. It turns out that expressions for E [X] and Var [X] can be written for generic

sampling, as we show below. There are two distinct cases that need separate treatment.

The first case is when relations F and G are different and the samples are obtained

independently from the two relations. The second case is when F and G are identical, thus

only one sample is available. This situation arises in the case of self-join size.

Size of Join: When F ′ and G′ are obtained independently, the random variables f ′i

and g′i are independent. We immediately have:

E [X] = C
∑
i∈I

E [f ′i] E [g′i]

Var [X] = C2

∑
i∈I

∑
j∈I

E
[
f ′if

′
j

]
E
[
g′ig

′
j

]
−

(∑
i∈I

E [f ′i] E [g′i]

)2
 (4–2)

Self-Join Size: When F and G are identical and only the sample F ′ is available, the

random variables f ′i and g′i are also identical. Then, we obtain:

E [X] = C
∑
i∈I

E
[
f ′2i
]

Var [X] = C2

∑
i∈I

∑
j∈I

E
[
f ′2i f ′2j

]
−

(∑
i∈I

E
[
f ′2i
])2

 (4–3)

A specific type of sampling would determine the value of the expectations E [f ′i], E [g′i],

E
[
f ′if

′
j

]
, E
[
g′ig

′
j

]
, E [f ′2i] and E

[
f ′2i f ′2j

]
. Deriving final formulas for E [X] and Var [X] and

determining the constant C becomes just a matter of plugging in these quantities for a

specific type of sampling.

4.1.2 Bernoulli Sampling

Consider that the sampling process is Bernoulli sampling. Each tuple in F and G

is selected independently in the sample F ′ and G′ with probability p or q, 0 ≤ p ≤ 1,

59

0 ≤ q ≤ 1, respectively. Then, f ′i and g′i are independent binomial random variables,

f ′i = Binomial(fi, p) and g′i = Binomial(gi, q), respectively, with expected values:

E [f ′i] = pfi

E [g′i] = qgi

(4–4)

Size of Join: The expectation of the size of join estimator E [X] is then:

E [X] = pq
∑
i∈I

figi (4–5)

which is different from the size of join |F 1A G|. Thus, in order for X to be an unbiased

estimator, it has to be scaled with the product of the inverses of the two probabilities p

and q, respectively, i.e., C = 1
pq

. For deriving the variance Var [X] = E [X2] − E2 [X],

expectations of the form E
[
f ′if

′
j

]
have to be computed. f ′i and f ′j are independent

random variables whenever i 6= j because the decision to include a tuple in the sample is

independent for each tuple, thus E
[
f ′if

′
j

]
= E [f ′i] E

[
f ′j
]
. When i = j, E [f ′2i] is the second

frequency moment of a binomial random variable. The variance Var [X] is then:

Var [X] =
1

p2q2

[∑
i∈I

E
[
f ′2i
]
E
[
g′2i
]
−
∑
i∈I

E2 [f ′i] E
2 [g′i]

]
(4–6)

where
∑

i∈I

∑
j∈I E

[
f ′if

′
j

]
E
[
g′ig

′
j

]
=
∑

i∈I E [f ′2i] E [g′2i] +
(∑

i∈I E [f ′i] E [g′i]
)2 −∑

i∈I E2 [f ′i] E
2 [g′i] is used for simplifying the formula. The frequency moments of

standard random variables, as the binomial is, can be found in any statistical resource,

for example [54]. After we plug in the second frequency moment of the binomial random

variables, i.e., E [f ′2i] = pfi (1− p + pfi) and E [g′2i] = qgi (1− q + qgi), in Equation 4–6, we

obtain the final formula for the variance:

Var [X] =
1− p

p

∑
i∈I

fig
2
i +

1− q

q

∑
i∈I

f 2
i gi +

(1− p)(1− q)

pq

∑
i∈I

figi (4–7)

60

Self-Join Size: The expectation of the self-join size estimator is given by:

E [X] = p2
∑
i∈I

f 2
i + p(1− p)

∑
i∈I

fi (4–8)

Then, the self-join size unbiased estimator X has to be defined as X = 1
p2

∑
i∈I f ′2i −

1−p
p

∑
i∈I fi, with the scaling constant C = 1

p2 . The effect of the extra term is minimal,

the only modification being that a bias correction is needed when the estimate is actually

computed. The variance is not affected since Var [aX + b] = a2Var [X], for a, b constants.

The expectations E
[
f ′2i f ′2j

]
follow the same rules as E

[
f ′if

′
j

]
in the size of join variance.

They are independent for i 6= j, while for i = j they generate the fourth frequency

moment. After simplifications, we obtain the following formula for the variance:

Var [X] =
1

p4
·

[∑
i∈I

E
[
f ′4i
]
−
∑
i∈I

E2
[
f ′2i
]]

(4–9)

4.1.3 Sampling with Replacement

A sample of fixed size can be generated by repeatedly choosing a random tuple from

the base relation for the specified number of times. If the same tuple can appear in the

sample multiple times, the process is sampling with replacement. In this case the random

variables corresponding to the frequencies in the sample, f ′i and g′i, respectively, are the

components of a multinomial random variable with parameters the size of the sample

and the probability fi

|F | and gi

|G| , respectively, where |F | and |G| are the size of F and G.

Since each component of a multinomial random variable is a binomial random variable, the

expectations in Equation 4–4 still hold but with different probabilities:

E [f ′i] =
|F ′|
|F |

fi

E [g′i] =
|G′|
|G|

gi

(4–10)

Size of Join: The size of join estimator X is defined as follows:

X =
|F |
|F ′|
|G|
|G′|

∑
i∈I

f ′ig
′
i (4–11)

61

where |F |
|F ′| and |G|

|G′| are scaling factors that make the estimator unbiased, i.e., C = |F |
|F ′|

|G|
|G′| .

The expectations of the form E
[
f ′if

′
j

]
needed for the derivation of the variance quantify

the interaction between the binomial components of the multinomial random variable

characterizing the sampling frequencies. They can be derived from the moment generating

function corresponding to a multinomial distribution. With E
[
f ′if

′
j

]
= |F ′|(|F ′|−1)

|F |2 fifj and

E [f ′2i] = |F ′|(|F ′|−1)
|F |2 f 2

i + |F ′|
|F | fi, and E

[
g′ig

′
j

]
= |G′|(|G′|−1)

|G|2 gigj and E [g′2i] = |G′|(|G′|−1)
|G|2 g2

i + |G′|
|G| gi,

respectively, the variance is:

Var [X] =
|F |
|F ′|
|G|
|G′|

∑
i∈I

figi + |F | |G
′| − 1

|G′|
∑
i∈I

fig
2
i +
|F ′| − 1

|F ′|
|G|
∑
i∈I

f 2
i gi

+
(|F ′| − 1) (|G′| − 1)− |F ′||G′|

|F ′||G′|

(∑
i∈I

figi

)2 (4–12)

The more complicated formula of the variance in the case of sampling with replacement is

due to the constraint imposed by the fixed size of the sample, thus the more complicated

interaction between the random variables corresponding to the frequencies f ′i and g′i.

Self-Join Size: Following a similar treatment as for Bernoulli sampling, the self-join

size unbiased estimator X is defined as follows:

X =
|F |2

|F ′| (|F ′| − 1)

∑
i∈I

f ′2i −
|F |2

|F ′| − 1
(4–13)

with the scaling constant C = |F |2
|F ′|(|F ′|−1)

. Notice that the estimator is defined for sample

sizes larger than 1, but in order to compute the variance the size of the sample has to

be larger than 3. The bias correction requires knowledge only about the size of the base

relation and the size of the sample. The variance can be computed in a similar way as for

Bernoulli sampling since the components of a multinomial random variable are binomial

random variables, thus they have the same frequency moments. Expectations of the form

E
[
f ′2i f ′2j

]
appearing in the variance can be derived from the moment generating function

62

of the multinomial random variable, i.e.:

E
[
f ′2i f ′2j

]
=
|F ′| (|F ′| − 1)

|F |2
fifj

[
1 +
|F ′| − 2

|F |
(fi + fj) +

(|F ′| − 2) (|F ′| − 3)

|F |2
fifj

]
(4–14)

4.2 Sketches

While sampling techniques select a random subset of tuples from the input relation,

sketching techniques summarize all the tuples as a small number of random variables.

This is accomplished by projecting the domain of the input relation on a significantly

smaller domain using random functions. Multiple sketching techniques are proposed in

the literature for estimating the size of join and the second frequency moment (see [52] for

details). Although using different random functions, i.e., {+1,−1} or hashing, the existing

sketching techniques have similar analytical properties, i.e., the sketch estimators have the

same variance. For this reason we focus on the basic AGMS sketches [3, 4] throughout the

chapter.

The basic AGMS sketch of relation F consists of a single random variable S that

summarizes all the tuples t from F . S is defined as:

S =
∑
t∈F

ξt.A =
∑
i∈I

fiξi (4–15)

where ξ is a family of {+1,−1} random variables that are 4–wise independent. Essentially,

a random value of either +1 or −1 is associated to each point in the domain of attribute

A. Then, the corresponding random value is added to the sketch S for each tuple t in

the relation. We can define a sketch T for relation G in a similar way and using the same

family ξ.

Size of Join: The sketch-based estimator X defined as:

X = S · T =
∑
i∈I

fiξi ·
∑
j∈I

gjξj (4–16)

63

is an unbiased estimator for the size of join |F 1A G|. The variance of the sketch

estimator is given by:

Var [X] =
∑
i∈I

f 2
i

∑
j∈I

g2
j +

(∑
i∈I

figi

)2

− 2
∑
i∈I

f 2
i g2

i (4–17)

Self-Join Size: The unbiased estimator for the self-join size is defined as:

X = S2 =
∑
i∈I

∑
j∈I

fifjξiξj (4–18)

The variance of the sketch estimator is given by:

Var [X] = 2

(∑
i∈I

f 2
i

)2

−
∑
i∈I

f 4
i

 (4–19)

A common technique to reduce the variance of an estimator is to generate multiple

independent instances of the basic estimator and then to build a more complex estimator

as the average of the basic estimators. While the expected value of the complex estimator

is equal with the expectation of one basic estimator, the variance is reduced by a factor

of n since Var
[

1
n
·
∑n

k=1 Xk

]
= 1

n2

∑n
k=1 Var [Xk] = Var[Xk]

n
, where n is the number of

basic estimators being averaged. This technique can be applied to reduce the variance of

the sketch estimator if different families ξ are used for the basic estimators (see [3, 4] for

details).

4.3 Sketches over Samples

Given the ability of sampling to make predictions about an entire dataset from a

randomly selected subset and that sketches require the summarizing of the entire dataset

in order to determine any of its properties, an interesting question that immediately

arises is how to combine these two randomized techniques. Although the intuitive answer

to this question seems to be simple – the sketch is computed over a sample of the data

instead of the entire dataset – as we show in Section 4.4, the behavior of the combined

estimator is not the simple composition of the individual behaviors of the ingredients. A

64

careful analytical characterization of the estimator needs to be carried out. Furthermore,

the sampling process can be either explicit and executed as an individual step before

sketching is done or implicit, situation in which the input dataset is assumed to be a

sample from a large population. In the first case, a significant speed-up in updating

the sketch structure can be obtained since only a random subset of the data is actually

sketched. This process is essentially a load shedding technique for sketching extremely

fast data streams that cannot be otherwise sketched. It can be implemented as an explicit

Bernoulli sampling that randomly filters the tuples that update the sketch structure. In

the second case, the data is assumed to be a sample from a large population and the goal

is to determine properties of the population based on the sample. The sample itself is

assumed to be large enough so it cannot be stored explicitly, thus sketching is required.

If the population is infinite, the entire process can be seen as sketching i.i.d. samples

from an unknown distribution. For practical reasons we view the data as a sample with

replacement from a finite population and we carry out the analysis in this context. The

analysis straightforwardly extends to i.i.d. samples if all estimators are normalized by the

size of the population and the limit, when the population size goes to infinity, is taken. In

such a circumstance, the frequencies in the original unknown population become densities

of the unknown population, but everything else remains the same.

In this section, we provide a generic framework for sketching sampled data streams

in order to estimate the size of join and the self-join size. Then we compute the first two

frequency moments of the combined estimator for two particular types of sampling –

Bernoulli sampling and sampling with replacement. This provides sufficient information to

allow the derivation of confidence bounds.

4.3.1 Generic Sampling

Consider F ′ to be a generic sample obtained from relation F . Sketching the sample

F ′ is similar to sketching the entire relation F and consists in summarizing the sampled

65

tuples t′ as follows:

S =
∑
t′∈F ′

ξt′.A =
∑
i∈I

f ′iξi (4–20)

where ξ is a family of {+1,−1} random variables that are 4–wise independent. A sample

G′ from relation G can be sketched in a similar way using the same family ξ:

T =
∑
t′∈G′

ξt′.A =
∑
i∈I

g′iξi (4–21)

Size of Join: We define the estimator X for the size of join |F 1A G| based on the

sketches computed over the samples as follows:

X = C · ST = C ·
∑
i∈I

f ′iξi ·
∑
j∈I

g′jξj (4–22)

Notice that the estimator is similar to the sketch estimator computed over the entire

dataset in Equation 4–16 multiplied with a constant scaling factor that compensates for

the difference in size. The constant C is the part that comes from sampling.

Self-Join Size: The self-join size or second frequency moment of a relation is the

particular case of size of join between two instances of the same relation. One way of

analyzing the sketches over samples estimator for the self-join size problem is to build

two independent samples and two independent sketches from the same base relation

and then to apply the results corresponding to size of join. Although sound from an

analytical point of view, this solution is inefficient in practice. In the following we consider

a practical solution that requires the construction of only one sample and one sketch from

the base relation. A new estimator for the self-join size has to be defined instead, but the

analysis is closely related to the analysis of the size of join estimator. With S defined in

Equation 4–20, we define the self-join size estimator X as follows:

X = S2 = C ·

(∑
i∈I

f ′iξi

)2

= C ·
∑
i∈I

f ′iξi ·
∑
j∈I

f ′jξj (4–23)

66

where C is the same scaling factor compensating for the difference in size. Notice that

the difference between the size of join estimator and the self-join size estimator is only

at the sampling level since the same family of ξ random variables is used for sketching in

both cases. For this reason we carry out the analysis for the two estimators in parallel and

make the distinction only when necessary.

In order to derive confidence bounds for the estimator X, the first two moments,

expected value and variance, have to be computed. Intuitively, the scaling factor C should

compensate for the difference in size and make the estimator unbiased. Since the two

processes, sampling and sketching, are independent and sequential, the interaction between

them is minimal and the sum of the two variances should be a good estimator for the

variance of the combined estimator. In the following, we derive the exact formulas for

the expectation and the variance in the generic case. The independence of the families

of random variables corresponding to sampling and sketching, f ′i , g
′
i and ξ, respectively,

plays an important role in simplifying the computation. This independence is due to

the independence of the two random processes. Then we consider Bernoulli sampling

and sampling with replacement and show that the intuition is correct in the case of

expectation. For the variance, the intuition proves to be wrong since the interaction

between sketching and sampling is more complex and it can be characterized only through

a detailed analysis. The empirical results in Section 4.4 confirm our findings.

The expectation E [X] can be derived as follows:

E [X] = C · E

[∑
i∈I

∑
j∈I

f ′iξi · g′jξj

]

= C ·
∑
i∈I

∑
j∈I

E
[
f ′ig

′
j

]
E [ξiξj]

= C ·
∑
i∈I

E [f ′ig
′
i]

(4–24)

since E [ξiξj] = E [ξi] · E [ξj] = 0 whenever i 6= j due to the 4–wise independence of the

family ξ, and E [ξ2
i] = 1.

67

Size of Join: For size of join, one more simplification step is possible due to the

independence of the sampling processes corresponding to the two relations:

E [X] = C ·
∑
i∈I

E [f ′i] E [g′i] (4–25)

Self-Join Size: For self-join size, the samples are identical, thus:

E [X] = C ·
∑
i∈I

E
[
f ′2i
]

(4–26)

In essence, the expectation E [X] is completely determined by the properties of the

sampling process, i.e., the frequency moments of the random variables corresponding to

the sampling frequencies. The interaction between sketching and sampling is minimal.

In order to compute the variance Var [X], the expectation E [X2] has to be evaluated

first since Var [X] = E [X2] − E2 [X]. Although E [X2] contains 8 random variables, the

computation is again significantly simplified by the independence of the sampling and

sketching processes. E [X2] can be derived as follows:

E
[
X2
]

= C2 · E

[∑
i∈I

∑
j∈I

∑
i′∈I

∑
j′∈I

f ′iξi · g′jξj · f ′i′ξi′ · g′j′ξj′

]

= C2 ·
∑
i∈I

∑
j∈I

∑
i′∈I

∑
j′∈I

E
[
f ′ig

′
jf

′
i′g

′
j′

]
· E [ξiξjξi′ξj′]

(4–27)

Size of Join: For size of join, more simplifications are possible due to the independence

of the sampling processes corresponding to the two relations and the 4–wise independence

of the ξ family (see [51] for details). With E [X2] given by:

E
[
X2
]

=

C2 ·

[∑
i∈I

∑
j∈I

E
[
f ′2i
]
E
[
g′2j
]
+ 2 ·

∑
i∈I

∑
j∈I

E
[
f ′if

′
j

]
E
[
g′ig

′
j

]
− 2 ·

∑
i∈I

E
[
f ′2i
]
E
[
g′2i
]]
(4–28)

68

we obtain the formula for the variance:

Var [X] = C2 ·

[∑
i∈I

E
[
f ′2i
]∑

j∈I

E
[
g′2j
]
+ 2 ·

∑
i∈I

∑
j∈I

E
[
f ′if

′
j

]
E
[
g′ig

′
j

]
−2 ·

∑
i∈I

E
[
f ′2i
]
E
[
g′2i
]
−

(∑
i∈I

E [f ′i] E [g′i]

)2
 (4–29)

Notice that the variance of sketching over generic sampling is an expression depending

only on the properties of the sampling process. More precisely, in order to evaluate the

variance, only expectations of the form E [f ′i] and E
[
f ′if

′
j

]
have to be computed, where f ′i

and f ′j are random variables corresponding to the frequencies in the sample.

Self-Join Size: For self-join size, the samples are identical, thus E [X2] is given by:

E
[
X2
]

= C2 ·

[
3 ·
∑
i∈I

∑
j∈I

E
[
f ′2i f ′2j

]
− 2 ·

∑
i∈I

E
[
f ′4i
]]

(4–30)

The variance of the self-join size estimator is then:

Var [X] = C2

3 ·
∑
i∈I

∑
j∈I

E
[
f ′2i f ′2j

]
− 2 ·

∑
i∈I

E
[
f ′4i
]
−

(∑
i∈I

E
[
f ′2i
])2

 (4–31)

The averaging technique applied to reduce the variance of basic sketches in Section 4.2

cannot be used straightforwardly in the case of sketches computed over samples. This

is the case since, although the basic sketch estimators are built independently using

different ξ families of random variables, they are computed over the same sample and this

introduces correlations between any two estimators. The variance of the average estimator

is in this case:

Var

[
1

n
·

n∑
k=1

Xk

]
=

1

n
[Var [Xk] + (n− 1) · Covk 6=l [Xk, Xl]] (4–32)

where n is the number of basic estimators being averaged and Cov [Xk, Xl] = E [XkXl] −

E [Xk] E [Xl] is the covariance between any two basic estimators. Thus, in order to derive

the variance of the average estimator, the expectation E [XkXl] has to be evaluated

first. This derivation is similar to the derivation of E [X2] with the difference that the

69

estimators Xk and Xl are built over the same sample using different sketch families of

random variables:

E [XkXl] = C2 · E

[∑
i∈I

∑
j∈I

∑
i′∈I

∑
j′∈I

f ′iξ
(k)
i · g′jξ

(k)
j · f ′i′ξ

(l)
i′ · g

′
j′ξ

(l)
j′

]

= C2 ·
∑
i∈I

∑
j∈I

∑
i′∈I

∑
j′∈I

E
[
f ′ig

′
jf

′
i′g

′
j′

]
E
[
ξ

(k)
i ξ

(k)
j

]
E
[
ξ

(l)
i′ ξ

(l)
j′

] (4–33)

Size of Join: With E [XkXl] = C2 ·
∑

i∈I

∑
j∈I E

[
f ′if

′
j

]
E
[
g′ig

′
j

]
, we can write a

formula for the variance of the average estimator as follows:

Var

[
1

n
·

n∑
k=1

Xk

]
= C2 ·

∑
i∈I

∑
j∈I

E
[
f ′if

′
j

]
E
[
g′ig

′
j

]
−

(∑
i∈I

E [f ′i] E [g′i]

)2

+
1

n

(∑
i∈I

E
[
f ′2i
]∑

j∈I

E
[
g′2j
]
+
∑
i∈I

∑
j∈I

E
[
f ′if

′
j

]
E
[
g′ig

′
j

]
−2 ·

∑
i∈I

E
[
f ′2i
]
E
[
g′2i
])]

(4–34)

which is the sum of the variance of the generic sampling estimator in Equation 4–2 and

a term that seems to be similar to the variance of the sketch estimator in Equation 4–17.

Notice that the complexity of the formula has not increased when compared to the

variance of the basic estimator (Equation 4–29), only expectations of the form E [f ′i] and

E
[
f ′if

′
j

]
having to be computed. At the same time, the improvement is less significant

than a factor of n obtained in the case of independent estimators.

Self-Join Size: In the case of the self-join size estimator, E [XkXl] = C2 ·∑
i∈I

∑
j∈I E

[
f ′2i f ′2j

]
, and then, the variance of the average estimator is given by:

Var

[
1

n
·

n∑
k=1

Xk

]
= C2 ·

∑
i∈I

∑
j∈I

E
[
f ′2i f ′2j

]
−

(∑
i∈I

E
[
f ′2i
])2

+
2

n

(∑
i∈I

∑
j∈I

E
[
f ′2i f ′2j

]
−
∑
i∈I

E
[
f ′4i
])] (4–35)

Again, the variance of the sketching over samples estimator is the sum of the generic

sampling estimator in Equation 4–3 and a term that is related to the variance of the

70

sketch estimator. Notice that the formulas for the self-join size estimator depend only on

the second or the fourth frequency moment of the random variables associated with the

sampling frequencies.

4.3.2 Bernoulli Sampling

We instantiate the formulas derived for generic sampling in Section 4.3.1 with the

moments of the binomial random variables corresponding to the sampling frequencies. The

fact that two binomial random variables corresponding to different elements of the domain

are independent further simplify the formulas.

Size of Join: Following the analysis for Bernoulli sampling in Section 4.1.2, we

identify the unbiased estimator for the size of join to be:

X =
1

pq

∑
i∈I

f ′iξi ·
∑
j∈I

g′jξj (4–36)

with the constant C = 1
pq

. The generic variance in Equation 4–29 takes the following form

in the case of Bernoulli sampling:

Var [X] =

1

p2q2

∑
i∈I

E
[
f ′2i
]∑

j∈I

E
[
g′2j
]
+

(∑
i∈I

E [f ′i] E [g′i]

)2

− 2 ·
∑
i∈I

E2 [f ′i] E
2 [g′i]

 (4–37)

since the random variables f ′i and g′i are independent, and more, the pairs f ′i , f ′j are

independent for i 6= j, thus the equality
∑

i∈I

∑
j∈I E

[
f ′if

′
j

]
E
[
g′ig

′
j

]
=
∑

i∈I E [f ′2i] E [g′2i] +(∑
i∈I E [f ′i] E [g′i]

)2 −∑i∈I E2 [f ′i] E
2 [g′i] holds. The generic variance of the average

estimator in Equation 4–34 can be instantiated in a similar way:

Var

[
1

n
·

n∑
k=1

Xk

]
=

1

p2q2

[∑
i∈I

E
[
f ′2i
]
E
[
g′2i
]
−
∑
i∈I

E2 [f ′i] E
2 [g′i]

+
1

n

∑
i∈I

E
[
f ′2i
]∑

j∈I

E
[
g′2j
]
+

(∑
i∈I

E [f ′i] E [g′i]

)2

−
∑
i∈I

E
[
f ′2i
]
E
[
g′2i
]
−
∑
i∈I

E2 [f ′i] E
2 [g′i]


(4–38)

71

After we plug in the second frequency moment of the binomial random variables, we

obtain:

Var

[
1

n
·

n∑
k=1

Xk

]
=

1

n

∑
i∈I

f 2
i

∑
j∈I

g2
j +

(∑
i∈I

figi

)2

− 2
∑
i∈I

f 2
i g2

i


+

n− 1

n

[
1− p

p

∑
i∈I

fig
2
i +

1− q

q

∑
i∈I

f 2
i gi +

(1− p)(1− q)

pq

∑
i∈I

figi

]

+
1

n

[
1− p

p

∑
i∈I

fi

∑
j∈I

g2
j +

1− q

q

∑
i∈I

f 2
i

∑
j∈I

gj +
(1− p)(1− q)

pq

∑
i∈I

fi

∑
j∈I

gj

]
(4–39)

which is exactly the sum of the average sketch estimator individual variance (Equation 4–17),

the Bernoulli sampling estimator individual variance (Equation 4–7), and an interaction

term. The dominant term seems to be the variance of the sketch estimator due to the

product of the sums of the squares of the frequencies. The interaction term also contains

products of sums which can become quite large (and comparable) with the sketch variance

in some particular scenarios. In the empirical evaluation section (Section 4.4) we provide a

study that shows what is the relative significance of each of the three terms as a function

of the data parameters.

Self-Join Size: The unbiased estimator for Bernoulli sampling is defined similarly to

Equation 4–8:

X =
1

p2

(∑
i∈I

f ′iξi

)2

− 1− p

p

∑
i∈I

fi (4–40)

with the scaling factor C = 1
p2 and an extra term for bias correction. The extra term

does not affect the sketching over samples process, the only modification being that a bias

correction is needed when the estimate is actually computed. Precisely, the bias correction

only requires knowledge about the size of the base relation. The generic variance in

Equation 4–31 is not significantly affected by the modification of the basic estimator since

Var [aX + b] = a2Var [X] holds for constants a and b. Thus, the variance Var [X] is:

Var [X] =
1

p4

∑
i∈I

E
[
f ′4i
]
+ 2

(∑
i∈I

E
[
f ′2i
])2

− 3
∑
i∈I

E2
[
f ′2i
] (4–41)

72

We used the equality
∑

i∈I

∑
j∈I E

[
f ′2i f ′2j

]
=
∑

i∈I E [f ′4i] +
(∑

i∈I E [f ′2i]
)2 −∑i∈I E2 [f ′2i]

for simplifications. The variance of the average estimator can be derived in a similar

manner:

Var

[
1

n
·

n∑
k=1

Xk

]
=

1

p4

∑
i∈I

E
[
f ′4i
]
−
∑
i∈I

E2
[
f ′2i
]
+

2

n

(∑
i∈I

E
[
f ′2i
])2

−
∑
i∈I

E2
[
f ′2i
] (4–42)

In order to obtain the exact formula, the second and the fourth frequency moments of the

binomial random variable f ′i have to be plugged in. After simplification, we obtain the

final formula for the average estimator variance:

Var

[
1

n
·

n∑
k=1

Xk

]
=

2

n

(∑
i∈I

f 2
i

)2

−
∑
i∈I

f 4
i

+
4(1− p)

p

∑
i∈I

f 3
i

+
2(1− p)(3− 5p)

p2

∑
i∈I

f 2
i +

(1− p)(6p2 − 6p + 1)

p3

∑
i∈I

fi

+
2

n

[
(1− p)2

p2

∑
i∈I

∑
j∈I,j 6=i

fifj +
2(1− p)

p

∑
i∈I

∑
j∈I,j 6=i

f 2
i fj

] (4–43)

which is, as expected, the sum of the sketch average estimator variance, the variance of the

sampling estimator, and an interaction term.

4.3.3 Sampling with Replacement

In a similar way to Bernoulli sampling, we instantiate the formulas derived for

generic sampling in Section 4.3.1 with the moments of the multinomial random variables

corresponding to the sampling frequencies. Although the components of the multinomial

random variable are binomial random variables, the formulas for sampling with replacement

are more complicated due to the interaction between two different binomial random

variables.

73

Size of Join: Following the analysis for sampling with replacement in Section 4.1.3,

we identify the unbiased estimator for the size of join to be:

X =
|F |
|F ′|
|G|
|G′|
·
∑
i∈I

f ′iξi ·
∑
j∈I

g′jξj (4–44)

with C = |F |
|F ′|

|G|
|G′| . The generic variance in Equation 4–29 takes the following form in the

case of sampling with replacement:

Var [X] =

|F |2

|F ′|2
|G|2

|G′|2
·

∑
i∈I

E
[
f ′2i
]∑

j∈I

E
[
g′2j
]
−

(∑
i∈I

E [f ′i] E [g′i]

)2

+ 2 ·
∑
i∈I

∑
j∈I,j 6=i

E
[
f ′if

′
j

]
E
[
g′ig

′
j

]
(4–45)

since the random variables f ′i and g′i are independent and
∑

i∈I

∑
j∈I E

[
f ′if

′
j

]
E
[
g′ig

′
j

]
=∑

i∈I E [f ′2i] E [g′2i] +
∑

i∈I

∑
j∈I,j 6=i E

[
f ′if

′
j

]
E
[
g′ig

′
j

]
holds. The generic variance of the

average estimator in Equation 4–34 can be derived in a similar way. After simplification,

we obtain:

Var

[
1

n
·

n∑
k=1

Xk

]
=

(|F ′| − 1) (|G′| − 1)− |F ′||G′|
|F ′||G′|

(∑
i∈I

figi

)2

+
|F |
|F ′|
|G|
|G′|

∑
i∈I

figi + |F | |G
′| − 1

|G′|
∑
i∈I

fig
2
i +
|F ′| − 1

|F ′|
|G|
∑
i∈I

f 2
i gi

+
1

n

(|F ′| − 1) (|G′| − 1)

|F ′||G′|

∑
i∈I

f 2
i

∑
j∈I

g2
j +

(∑
i∈I

figi

)2

− 2
∑
i∈I

f 2
i g2

i


+

1

n

[
|F |
|F ′|
|G|
|G′|

∑
i∈I

∑
j∈I,j 6=i

figj + |F | |G
′| − 1

|G′|
∑
i∈I

∑
j∈I,j 6=i

fig
2
j +
|F ′| − 1

|F ′|
|G|
∑
i∈I

∑
j∈I,j 6=i

f 2
i gj

]
(4–46)

which is exactly the sum of the sampling with replacement estimator individual variance

(Equation 4–12), the average sketch estimator individual variance (Equation 4–17), and an

interaction term.

74

Self-Join Size: For sampling with replacement, the unbiased estimator for the

self-join size is defined as follows:

X =
|F |2

|F ′| (|F ′| − 1)

(∑
i∈I

f ′iξi

)2

− |F |2

|F ′| − 1
(4–47)

with C = |F |2
|F ′|(|F ′|−1)

. The variance can be computed in a similar way as for Bernoulli

sampling since the components of a multinomial random variable are binomial random

variables, thus they have the same frequency moments. Expectations of the form

E
[
f ′2i f ′2j

]
have the same form as in Equation 4–14. We do not provide the formulas for

the variance, but essentially the variance of the average estimator can still be written as

the sum of the sketch average estimator variance, the variance of the sampling estimator,

and an interaction term.

4.3.4 Discussion

The estimators for sketches over samples are defined almost as the basic sketching

estimators. The only difference is a constant scaling factor that needs to be added to

compensate for the difference in size. In the case of self-join size, an extra constant term

is required to compensate for the bias. The variance of the combined estimator can be

written as the sum of the sketch estimator, the sampling estimator, and an interaction

term. This immediately gives an intuitive interpretation to the formulas we derived.

Although the sketch variance seems to be the dominant term, the exact significance of

each of the terms is dependent on the actual distribution of the data (see the experimental

results in Section 4.4). When multiple sketch estimators are averaged in order to decrease

the variance, the covariance also has to be considered since the sketch estimators are

computed over the same sample, thus they are not completely independent. Our results

show that the variance of the combined estimator does not decrease by a factor equal to

the number of averages anymore, just the sketch term does.

75

4.4 Experimental Evaluation

We pursue three main goals in the experimental evaluation of the sketching over

samples estimators. First, we want to determine what is the relative contribution of each

of the three terms that appear in the variance of the average estimator. More precisely,

we want to determine if the interaction term represents a significant amount from the

variance. Second, we want to determine the behavior of the error of the sketch over

samples estimator when compared with the error of the sketch estimator. And third, we

want to identify what is the behavior of the estimation error as a function of the sample

size.

In order to accomplish these goals, we designed a series of experiments over synthetic

datasets. This allows a better control of the important parameters that affect the results.

The datasets used in our experiments contain either 10 or 100 million tuples generated

from a Zipfian distribution with the coefficient ranging between 0 (uniform) and 5

(skewed). The domain of the possible values is 1 million. In the case of size of join,

the tuples in the two relations are generated completely independent. We used F-AGMS

sketches [14] in all of the experiments due to their superior performance both in accuracy

and update time (see [52] for details on sketching techniques). The number of buckets is

either 5, 000 or 10, 000. This is equivalent to averaging 5, 000 or 10, 000 basic estimators.

In order to be statistically significant, all the results presented in this section are the

average of at least 100 independent experiments.

Figure 4-1 and 4-2 depict the relative contribution of each of the three terms

appearing in the variance of the average estimator over Bernoulli samples (Equation 4–43

and 4–39). The relative contribution is represented as a function of the data skew for

different sampling probabilities. A common trend both for size of join and self-join size

is that the interaction term is highly significant for low skew data. This completely

justifies the analysis we develop throughout the chapter since an analysis assuming that

the variance of the composed estimator is the sum of the variance of the basic estimators

76

would be incorrect. As expected, the impact of the variance of the sampling estimator

is more significant as the size of the sample is smaller. For self-join size (Figure 4-2), the

variance is dominated by the term corresponding to the sampling estimator, while for

size of join (Figure 4-1) the variance of the sketch estimator quantifies for almost the

entire variance irrespective of the sampling probability. This is entirely supported by the

existing theoretical results which show that sketches are optimal for estimating the second

frequency moment while sampling is optimal for the estimation of size of join [4].

The experimental relative error, i.e., |estimation−true result|
true result

, of the sketch over Bernoulli

samples estimator is depicted in Figure 4-3 and 4-4 as a function of the data skew for

different sampling probabilities. Probability p = 1.0 corresponds to sketching the entire

dataset. These experimental results show that, with some exceptions, the sampling rate

does not significantly affect the accuracy of the sketch estimator. For Zipf coefficients

larger than 1, in the case of self-join size, and smaller than 3, in the case of size of join, the

error of the sketch estimator is almost the same both when the entire dataset is sketched

or when only one tuple out of a thousand is sketched. The impact of the sampling rate is

significant only for low skew data in the case of self-join size. This is to be expected from

the theoretical analysis since the interaction term dominates the variance. What cannot be

explained from the theoretical analysis is the effect of the sampling rate for skewed data in

the case of size of join. As shown in [52], the experimental behavior of F-AGMS sketches

is in some cases orders of magnitude better than the theoretical predictions, thus although

the theoretical variance is dominated by the variance of the sketch estimator, the empirical

absolute value is small when compared to the variance of the sampling estimator. In

the light of [52], the empirical results for high sampling rates are much better than the

theoretical predictions, increasing the significance of the sampling rate for skewed data.

In Figure 4-5 and 4-6 we depict the experimental relative error as a function of the

sample size for sampling with replacement. Since the actual size of the sample is different

for different Zipf coefficients, we represent on the x axis the size of the sample as a fraction

77

from the population size, with 1 corresponding to a sample with replacement of size equal

to the population size. As expected, the error is decreasing as the sample size becomes

larger, but it stabilizes after a certain sample size (a 0.1 fraction of the population size for

the included figures). This is due entirely to the error of the sketch estimator which exists

even when the entire population is available.

In conclusion, the experimental evaluation section supports the need for the detailed

analysis of the sketch over samples estimators in Section 4.3. Our experiments show that

a significant speed-up (a factor of 10 in general and a factor of up to 1000 in some cases)

can be obtained by sketching only a small sample of the data instead of the entire data.

At the same time, when the data is a sample (with replacement) from a large population,

properties of the entire population can be accurately inferred by sketching only a small

sample (a fraction of 0.1 or less from the population size).

4.5 Conclusions

In this chapter we provide the moment analysis of the sketch over samples estimators

for two types of sampling: Bernoulli and sampling with replacement. Sketching Bernoulli

samples is essentially a load shedding technique for sketching data streams which results,

as our theory and experiments suggest, in significant update time reduction – by as

much as a factor of 100 – with minimal accuracy degradation. Sketching samples with

replacement from an unknown distribution allows efficient characterization of the unknown

distribution which has many applications to online data-mining.

78

Interaction

Sampling

Sketch

 0

 0.2

 0.4

 0.6

 0.8

 1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

V
ar

ia
n

ce
 t

er
m

s
d

is
tr

ib
u

ti
o

n

Zipf coefficient / p

0.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0

Figure 4-1. Size of join variance.

Interaction

Sampling

Sketch

 0

 0.2

 0.4

 0.6

 0.8

 1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

0
.1

0
.0

1
0

.0
0

1

V
ar

ia
n

ce
 t

er
m

s
d

is
tr

ib
u

ti
o

n

Zipf coefficient / p

0.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0

Figure 4-2. Self-join size variance.

79

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5

R
el

at
iv

e
er

ro
r

ZIPF coefficient

p=0.001
p=0.01
p=0.1
p=1.0

Figure 4-3. Size of join error.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1 2 3 4 5

R
el

at
iv

e
er

ro
r

ZIPF coefficient

p=0.001
p=0.01
p=0.1
p=1.0

Figure 4-4. Self-join size error.

80

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.001 0.01 0.1 1

R
el

at
iv

e
er

ro
r

Sampling rate (log scale)

ZIPF=0.0
ZIPF=0.5
ZIPF=1.0
ZIPF=2.0

Figure 4-5. Size of join sample size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.001 0.01 0.1 1

R
el

at
iv

e
er

ro
r

Sampling rate (log scale)

ZIPF=0.0
ZIPF=0.5
ZIPF=1.0
ZIPF=2.0

Figure 4-6. Self-join size sample size.

81

CHAPTER 5
STATISTICAL ANALYSIS OF SKETCHES

Sketching techniques provide approximate answers to aggregate queries both for

data-streaming and distributed computation. Small space summaries that have linearity

properties are required for both types of applications. The prevalent method for analyzing

sketches uses moment analysis and distribution independent bounds based on moments.

This method produces clean, easy to interpret, theoretical bounds that are especially

useful for deriving asymptotic results. However, the theoretical bounds obscure fine details

of the behavior of various sketches and they are mostly not indicative of which type of

sketches should be used in practice. Moreover, no significant empirical comparison between

various sketching techniques has been published, which makes the choice even harder.

In this chapter, we take a close look at the sketching techniques proposed in the

literature from a statistical point of view with the goal of determining properties that

indicate the actual behavior and producing tighter confidence bounds. Interestingly,

the statistical analysis reveals that two of the techniques, Fast-AGMS and Count-Min,

provide results that are in some cases orders of magnitude better than the corresponding

theoretical predictions. We conduct an extensive empirical study that compares the

different sketching techniques in order to corroborate the statistical analysis with the

conclusions we draw from it. The study indicates the expected performance of various

sketches, which is crucial if the techniques are to be used by practitioners. The overall

conclusion of the study is that Fast-AGMS sketches are, for the full spectrum of problems,

either the best, or close to the best, sketching technique.

Through research in the last decade, sketching techniques evolved as the premier

approximation technique for aggregate queries over data streams. All sketching techniques

share one common feature: they are based on randomized algorithms that combine

random seeds with data to produce random variables that have distributions connected

to the true value of the aggregate being estimated. By measuring certain characteristics

82

of the distribution, correct estimates of the aggregate are obtained. The interesting

thing about all sketching techniques that have been proposed is that the combination

of randomization and data is a linear operation with the result that, as observed

in [14, 41], sketching techniques can be used to perform distributed computation of

aggregates without the need to send the actual data values. The tight connection with

both data-streaming and distributed computation makes sketching techniques important

from both the theoretical and practical point of view.

Sketches can be used either as the actual approximation technique, in which case

they require a single pass over the data or, in order to improve the performance, as

the basic technique in multi-pass techniques such as skimmed sketches [28] and red-

sketches [29]. For either application, it is important to understand as well as possible

its approximation behavior depending on the characteristics of the problem and

to be able to predict as accurately as possible the estimation error. As opposed to

most approximation techniques—one of the few exceptions are sampling techniques

[35]—theoretical approximation guarantees in the form of confidence bounds were provided

for all types of sketches from the beginning [3]. All the theoretical guarantees that

we know of are expressed as memory and update time requirements in terms of big-O

notation, and are parameterized by ε, the target relative error, δ, the target confidence

(the relative error is at most ε with probability at least 1 − δ), and the characteristics

of the data – usually the first and the second frequency moments. While these types

of theoretical results are useful in theoretical computer science, the fear is that they

might hide details that are relevant in practice. In particular, it might be hard to

compare methods, or some methods can look equally good according to the theoretical

characterization, but differ substantially in practice. An even more significant concern,

which we show to be perfectly justified, is that some of the theoretical bounds are too

conservative.

83

In this chapter, we set out to perform a detailed study of the statistical and empirical

behavior of the four basic sketching techniques that have been proposed in the research

literature for computing size of join and related problems: AGMS [3, 4], Fast-AGMS

[14], Count-Min [15], and Fast-Count [58] sketches. The initial goal of the study was

to complement the theoretical results and to make sketching techniques accessible and

useful for the practitioners. While accomplishing these tasks, the study also shows that,

in general, the theoretical bounds are conservative by at least a constant factor of 3. For

Fast-AGMS and Count-Min sketches, the study shows that the theoretical prediction is

off by many orders of magnitude if the data is skewed. As part of our study we provide

practical confidence intervals for all sketches except Count-Min. We use statistical

techniques to provide confidence bounds at the same time the estimate is produced

without any prior knowledge about the distribution1 . Notice that prior knowledge is

required in order to use the theoretical confidence bounds provided in the literature and

might not actually be available in practice. As far as we know, there does not exist any

detailed statistical study of sketching techniques and only limited empirical studies to

asses their accuracy. The insight we get from the statistical analysis and the extensive

empirical study we perform allows us to clearly show that, from a practical point of

view, Fast-AGMS sketches are the best basic sketching technique. The behavior of these

sketches is truly exceptional and much better than previously believed – the exceptional

behavior is masked by the result in [14], but revealed by our detailed statistical analysis.

The timing results for the three hash-based sketching techniques (Fast-AGMS, Fast-Count,

and Count-Min) reveal that sketches are practical, easily able to keep up with streams of

million tuples/second.

The rest of the chapter is organized as follows. In Section 5.1 we give an overview of

the four basic sketching techniques proposed in the literature. Section 5.2 contains our

1 This is the common practice for sampling estimators [35].

84

statistical analysis of the four sketching techniques with insights on their behavior.

Section 5.3 contains the details and results of our extensive empirical study that

corroborates the statistical analysis.

5.1 Sketches

Sketches are small-space summaries of data suited for massive, rapid-rate data

streams processed either in a centralized or distributed environment. Queries are not

answered precisely anymore, but rather approximately, by considering only the synopsis

(sketch) of the data. All sketching techniques generate multiple random instances of

an elementary sketch estimator, instances that are effectively random samples of the

elementary estimator. While the random instances of the elementary sketch estimator are

samples of the estimator, these samples should not be confused with the samples from

the underlying data used by the sampling techniques [35]. The samples of the elementary

sketch estimator are grouped and combined in different ways in order to obtain the overall

estimate. Typically, in order to produce an elementary sketch estimator—the process

is duplicated for each sample of the elementary sketch estimator—multiple counters

corresponding to random variables with required properties are maintained. The collection

of counters for all the samples of the elementary estimator is called the sketch. The

existing sketching techniques differ in how the random variables are organized, thus the

update procedure, the way the elementary sketch estimator is computed, and how the

answer to a given query is computed by combining the elementary sketch estimators.

In this section we provide an overview of the existing sketching techniques used for

approximating the size of join of two data streams (see Section 2.1). For each technique we

specify the elementary sketch estimator, denoted by X possibly with a subscript indicating

the type of sketch, and the way the elementary sketches are combined to obtain the final

estimate Z.

85

5.1.1 Basic AGMS Sketches

The ith entry of the size n AGMS (or, tug-of-war) [3, 4] sketch vector is defined

as the random variable xf [i] =
∑N−1

j=0 fj · ξi(j), where {ξi(j) : j ∈ I} is a family of

uniformly distributed ±1 4-wise independent random variables, with different families

being independent. The advantage of using ±1 random variables comes from the fact

that they can be efficiently generated in small space [51]. When a new data stream item

(e, w) arrives, all the counters in the sketch vector are updated as xf [i] = xf [i] + w · ξi(e),

1 ≤ i ≤ n. The time to process an update is thus proportional with the size of the sketch

vector.

It can be shown that X[i] = xf [i] · xg[i] is an unbiased estimator of the inner-product

of the frequency vectors f̄ and ḡ, i.e., E [X[i]] = f̄ � ḡ. The variance of the estimator is:

Var [X[i]] =

(∑
j∈I

f 2
j

)(∑
k∈I

g2
k

)
+

(∑
j∈I

fjgj

)2

− 2 ·
∑
j∈I

f 2
j g2

j (5–1)

By averaging n independent estimators, Y = 1
n

∑n
i=1 X[i], the variance can be reduced by

a factor of n, i.e., Var [Y] = Var[X[i]]
n

, thus improving the estimation error. In order to make

the estimation more stable, the original solution [3] returned as the result the median of m

Y estimators, i.e., Z = Median1≤k≤mY [k]. We provide an example to illustrate how AGMS

sketches work.

Example 6. Consider two data streams F and G given as pairs (key, frequency):

F = {(1, 5), (4,−2), (1, 2), (2, 3), (3, 1), (1,−3), (3, 2), (5, 2), (4, 3)}

G = {(2, 1), (4, 3), (3, 2), (1, 3), (3,−2), (1, 2), (5,−1), (1, 2), (4,−1)}
(5–2)

We want to estimate the size of join |F 1 G| of the two streams using sketches consisting

of 3 counters. A family of 4-wise independent ±1 random variables corresponds to each

counter. Let the mappings from the key domain ({1, 2, 3, 4, 5} in this case) to ±1 to be

given as in Table 5-1.

86

As the data is streaming by, all the counters in the corresponding sketch vector

are updated. For example, the pair (1, 5) in F updates the counters in xf as follows:

xf [1] = 5, xf [2] = 5, and xf [3] = −5 (the counters are initialized to 0), while after the

pair (4,−2) is processed the counters have the following values: xf [1] = 7, xf [2] = 3, and

xf [3] = −7. After all the elements in the two streams passed by, the two sketch vectors are:

xf = [7, 1,−5] and xg = [7, 7,−3]. The estimator X for the size of join |F 1 G| consists

of the values X = [49, 7, 15] having the mean Y = 23.66. The correct result is 31. Multiple

instances of Y can be obtained if other groups of 3 counters and their associated families of

±1 random variables are added to the sketch. In this case the median of the instances of Y

is returned as the final result.

Notice the tradeoffs involved by the AGMS sketch structure. In order to decrease the

error of the estimator (proportional with the variance), the size n of the sketch vector has

to be increased. Since the space and the update-time are linear functions of n, an increase

of the sketch size implies a corresponding increase of these two quantities.

The following theorem relates the accuracy of the estimator with the size of the

sketch, i.e., n = O(1
ε2

) and m = O(log 1
δ
).

Theorem 11 ([4]). Let x̄f and x̄g denote two parallel sketches comprising O
(

1
ε2

log 1
δ

)
counters each, where ε and 1 − δ represent the desired bounds on error and probabilistic

confidence, respectively. Then, with probability at least 1 − δ, Z ∈ (f̄ � ḡ ± ε||f̄ ||2||ḡ||2).

The processing time required to maintain each sketch is O
(

1
ε2

log 1
δ

)
per update.

||f̄ ||2 =
√

f̄ � f̄ =
√∑

i∈I f 2
i is the L2 norm of f̄ and ||ḡ||2 =

√
ḡ � ḡ =√∑

i∈I g2
i is the L2 norm of ḡ, respectively. From the perspective of the abstract

problem in Section 2.3, X[i] represent the primitive instances of the generic random

variable X. Median of means Z is the estimator for the expected value E [X]. The

distribution-independent confidence bounds in Theorem 11 are derived from Theorem 8.

87

5.1.2 Fast-AGMS Sketches

As we have already mentioned, the main drawback of AGMS sketches is that any

update on the stream affects all the entries in the sketch vector. Fast-AGMS sketches [14],

as a refinement of Count sketches proposed in [11] for detecting the most frequent items in

a data stream, combine the power of ±1 random variables and hashing to create a scheme

with a significantly reduced update time while preserving the error bounds of AGMS

sketches. The sketch vector x̄f consists of n counters, xf [i]. Two independent random

processes are associated with the sketch vector: a family of ±1 4-wise independent random

variables ξ and a 2-universal hash function h : I → {1, . . . , n}. The role of the hash

function is to scatter the keys in the data stream to different counters in the sketch vector,

thus reducing the interaction between the keys. Meanwhile, the unique family ξ preserves

the dependencies across the counters. When a new data stream item (e, w) arrives, only

the counter xf [h(e)] is updated with the value of the function ξ corresponding to the key

e, i.e., xf [h(e)] = xf [h(e)] + w · ξ(e).

Given two parallel sketch vectors x̄f and x̄g using the same hash function h and

ξ family, the inner-product f̄ � ḡ is estimated by Y =
∑n

i=1 xf [i] · xg[i]. The final

estimator Z is computed as the median of m independent basic estimators Y , i.e., Z =

Median1≤k≤mY [k]. In the light of Section 2.3, Y corresponds to the basic instances while

the median is the estimator for the expected value. We provide a simple example to

illustrate the Fast-AGMS sketch data structure.

Example 7. Consider the same data streams from Example 6. The sketch vector consists

of 9 counters grouped into 3 rows of 3 counters each. The same families of ±1 random

variables (Example 6) are used, but a family corresponds to a row of counters instead of

only one counter. An additional family of 2-universal hash functions corresponding to the

rows of the sketch maps the elements in the key domain to only one counter in each row.

The hash functions are specified in Table 5-2.

88

For each stream element only one counter from each row is updated. For example,

after the pair (2, 3) in F is processed, the sketch vector xf looks like: xf [1] = [10, 2, 0],

xf [2] = [5, 0,−3], and xf [3] = [0, 3,−9] (the counters are initialized to 0). Af-

ter processing all the elements in the two streams, the two sketch vectors are: xf =

[[7,−1, 1], [5,−1,−3], [−2, 3,−6]] and xg = [[8,−2, 1], [9,−1,−1], [1, 1,−5]]. The estimator

for the size of join |F 1 G| consists of the median of Y = [59, 49, 31] which is 49, while the

correct result is still 31.

The following theorem relates the number of sketch vectors m and their size n with

the error bound ε and the probabilistic confidence δ, respectively.

Theorem 12 ([14]). Let n be defined as n = O(1
ε2

) and m as m = O(log 1
δ
). Then, with

probability at least 1 − δ, Z ∈ (f̄ � ḡ ± ε||f̄ ||2||ḡ||2). Sketch updates are performed in

O(log 1
δ
) time.

The above theorem states that Fast-AGMS sketches provide the same guarantees as

basic AGMS sketches, while requiring only O(log 1
δ
) time to process the updates and using

only one ξ family per sketch vector (and one additional hash function h). Moreover, notice

that only the sketch vector size is dependent on the error ε.

5.1.3 Fast-Count Sketches

Fast-Count sketches, introduced in [58], provide the error guarantees and the update

time of Fast-AGMS sketches, while requiring only one underlying random process –

hashing. The tradeoffs involved are the size of the sketch vector (or, equivalently, the

error) and the degree of independence of the hash function. The sketch vector consists

of the same n counters as for AGMS sketches. The difference is that there exists only

a 4-universal hash function associated with the sketch vector. When a new data item

(e, w) arrives, w is directly added to a single counter, i.e., xf [h(e)] = xf [h(e)] + w, where

h : I → {1, . . . , n} is the 4-universal hash function.

89

The size of join estimator is defined as (this is a generalization of the second

frequency moment estimator in [58]):

Y =
1

n− 1

[
n ·

n∑
i=1

xf [i] · xg[i]−

(
n∑

i=1

xf [i]

)(
n∑

i=1

xg[i]

)]
(5–3)

The complicated form of Y is due to the bias of the natural estimator Y ′ =
∑n

i=1 xf [i] · xg[i].

Y is obtained by a simple correction of the bias of Y ′. It can be proved that Y is an

unbiased estimator of the inner-product f̄ � ḡ. Its variance is almost identical to

the variance of the Y estimator for AGMS (Fast-AGMS) sketches in (5–1). The only

difference is the multiplicative factor, 1
n−1

for Fast-Count sketches, compared to 1
n

for

AGMS sketches. Hence, given desirable error guarantees, Fast-Count sketches require one

additional entry in the sketch vector. For large values of n, e.g., n > 100, the difference in

variance between AGMS (Fast-AGMS) and Fast-Count sketches can be ignored and the

results in Theorem 12 apply. Notice that in practice multiple instances of Y are computed

and the final estimator for the expected value of the size of join is the mean (average) of

these instances. We provide an example that shows how Fast-Count sketches work.

Example 8. Consider the same data streams from Example 6. The sketch vector consists

of 9 counters grouped into 3 rows of 3 counters each. The same hash functions as in

Example 7 are used (suppose that they are 4-universal). For each stream element only one

counter from each row is updated. For example, after the pair (2, 3) in F is processed, the

sketch vector xf looks like: xf [1] = [10,−2, 0], xf [2] = [5, 0, 3], and xf [3] = [0, 3, 5] (the

counters are initialized to 0). After processing all the elements in the two streams, the two

sketch vectors are: xf = [[7, 1, 5], [5, 5, 3], [2, 3, 8]] and xg = [[8, 2,−1], [9,−1, 1], [−1, 1, 9]].

The estimator for the size of join |F 1 G| consists of the vector Y = [21, 6, 51]. The

average 26 of the elements in Y is returned as the final estimate.

5.1.4 Count-Min Sketches

Count-Min sketches [15] have almost the same structure as Fast-Count sketches. The

only difference is that the hash function is drawn randomly from a family of 2-universal

90

hash functions instead of 4-universal. The update procedure is identical to Fast-Count

sketches, only the counter xf [h(e)] being updated as xf [h(e)] = xf [h(e)] + w when

the item (e, w) arrives. The size of join estimator is defined in a natural way as Y =∑n
i=1 xf [i] · xg[i] (notice that Y is actually equivalent with the above Y ′ estimator). It can

be shown that Y is an overestimate of the inner-product f̄ � ḡ. In order to minimize the

over-estimated quantity, the minimum over m independent Y estimators is computed, i.e.,

Z = Min1≤k≤mY [k]. Notice the different methods applied to correct the bias of the size of

join estimator Y ′. While Fast-Count sketches define an unbiased estimator Y based on Y ′,

Count-Min sketches select the minimum over multiple such overestimates. The following

example illustrates the behavior of Count-Min sketches.

Example 9. For the same setup as in Example 8, exactly the same sketch vectors are

obtained after updating the two streams. Only the final estimator is different. It is the

minimum of Y = [53, 43, 73], that is 43.

The relationship between the size of the sketch and the accuracy of the estimator Z is

expressed by the following theorem:

Theorem 13 ([15]). Z ≤ f̄ � ḡ + ε||f̄ ||1||ḡ||1 with probability 1 − δ, where the size of the

sketch vector is n = O(1
ε
) and the minimum is taken over m = O(log 1

δ
) sketch vectors.

Updates are performed in time O(log 1
δ
).

||f̄ ||1 =
∑

i∈I fi and ||ḡ||1 =
∑

i∈I gi represent the L1 norms of the vectors f̄ and

ḡ, respectively. Notice the dependence on the L1 norm, compared to the dependence on

the L2 norm for AGMS sketches. The L2 norm is always smaller than the L1 norm. In

the extreme case of uniform frequency distributions, L2 is quadratically smaller than L1.

This implies increased errors for Count-Min sketches as compared to AGMS sketches, or,

equivalently, more space in order to guarantee the same error bounds (even though the

sketch vector size is only O(1
ε
)).

91

5.1.5 Comparison

Given the above sketching techniques, we qualitatively compare their expected

performance based on the existing theoretical results. The techniques are compared

relatively to the result obtained by the use of AGMS sketches for the self-join size

problem, known to be asymptotically optimal [3]. The size of join results are considered

relatively to the product of the L2 (L1 for Count-Min) norms of the data streams.

Notice that large results correspond to the particular self-join size problem. Low

skew corresponds to frequency vectors for which the ratio L1

L2
is close to

√
N (uniform

distribution), while for high skew the ratio L1

L2
is close to 1.

Table 5-3 summarizes the distribution-independent confidence bounds predicted

by the theory. Since the bounds for AGMS, Fast-AGMS, and Fast-Count sketches are

identical, they have the same behavior from a theoretical perspective. For small size of

join results, the performance of these three methods worsens. Count-Min sketches have a

distinct behavior due to their dependency on the L1 norm. Their performance is highly

influenced not only by the size of the result, but also by the skewness of the data. For low

skew data, the performance is significantly worse than the performance of AGMS sketches.

Since L1 ≥ L2, the theoretical performance for Count-Min sketches is always worse than

the performance of AGMS (Fast-AGMS, Fast-Count) sketches.

5.2 Statistical Analysis of Sketch Estimators

The goals pursued in refining the sketching techniques were to leverage the randomness

and to decrease the update time while maintaining the same error guarantees as for the

original AGMS sketches. As we have previously seen, all kinds of tradeoffs are involved.

The main drawback of the existing theoretical results is that they characterize only

the asymptotic behavior, but do not provide enough details about the behavior of the

sketching techniques in practice (they ignore important details about the estimator

because they are derived from distribution-independent confidence bounds). From a purely

practical point of view, we are interested in sketching techniques that are reasonably easy

92

to implement, are fast (i.e., small update time for the synopsis data-structure), have good

accuracy and can estimate as precisely as possible their error through confidence intervals.

Although the same goals are pursued from the theoretical point of view, in theory we

insist on deriving simple formulas for the error expressed in terms of asymptotic big-O

notation. This is perfectly reflected by the theoretical results we presented in the previous

section. The problem with theoretical results is the fact that, since we always insist on

expressible formulas, we might ignore details that matter at least in some cases – the

theoretical results are always conservative, but they might be too conservative sometimes.

In this section, we explore the sketching techniques from a statistical perspective by

asking the following questions that reflect the difference between the pragmatic and the

theoretical points of view:

• All sketching techniques combine multiple independent instances of elementary
sketches using the estimators from Section 2.3 (Mean, Median, Minimum) in order to
define a more accurate estimator for the expected value. We ask the question which
of the estimators is more accurate for each of the four sketching techniques?

• How tight are the theoretical distribution-independent confidence bounds? And is
it possible to derive tighter distribution-dependent confidence bounds that work
in practice based on the estimator chosen in the previous question? We are not
interested in tight bounds only for some situations, but in confidence bounds that
are realistic for all situations. The golden standard we are aiming for is confidence
bounds similar to the ones for sampling techniques [35].

We use a large-scale statistical analysis based on experiments in order to answer the above

questions. The plots in this section have statistical significance and are not highly sensitive

at the experimental setup (Section 4.4).

5.2.1 Basic AGMS Sketches

We explore which estimator—mean, median, or minimum—to use for AGMS sketches

instead of the median of means estimator proposed in the original paper [3] and if that

would be advisable. In order to accomplish this task, we plotted the distribution of the

basic sketch for a large spectrum of problems. Figure 5-1 is a generic example for the form

of the distribution. It is clear from this figure that both the minimum and the median

93

are poor choices. The median is a poor choice because the distribution of the elementary

AGMS sketch is not symmetric and there exists a variable gap between the mean of the

distribution and the median, gap that is not easily to compute and, thus, to compensate

for. In order to verify that the mean is the optimal estimator (as the theory predicts), we

plot its distribution for the same input data (Figure 5-1). As expected, the distribution

is normal and its expected value is the true result. As explained in Section 2.3.6, the

mean is always preferable to the median of means as an estimator for the expected value

of a random variable given as samples. This is the case because once averaging over the

sample space the distribution of the estimator starts to become normal (Mean CLT)

and it is known that the mean is more efficient than the median for normal distributions

(Section 2.3.5).

Although the median of means estimator has no statistical significance, it allows the

derivation of exponentially decreasing distribution-independent confidence intervals based

on Chernoff bound (Theorem 3). To derive tighter distribution-dependent confidence

bounds based only on the mean estimator, we can use Theorem 5. The value of the

variance is either the exact one (if it can be determined) or, more realistically, an

estimate computed from the samples. The distribution-independent confidence bounds

in Theorem 8 are wider by a factor of approximately 4 than the CLT bounds, as derived

in Example 1. This discrepancy between the distribution-independent bounds and

the effective error was observed experimentally in [18, 51], but it was not explained.

In conclusion, the mean estimator seems the right choice from a practical perspective

considering its advantages over the median of means estimator of which it is anyway a

part.

5.2.2 Fast-AGMS Sketches

Comparing Theorem 11 and 12 that characterize AGMS and Fast-AGMS (F-AGMS)

sketches, respectively, we observe that the predicted accuracy is identical, but Fast-AGMS

have significantly lower update time. This immediately indicates that F-AGMS should

94

be preferred to AGMS. In the previous section, we saw a discrepancy of a factor of

approximately 4 between the distribution-independent bounds and the CLT-based bounds

for AGMS sketches and the possibility of a significant improvement if the median of

means estimator is replaced by means only. In this section, we investigate the statistical

properties of F-AGMS sketches in order to identify the most adequate estimator and to

possibly derive tighter distribution-dependent confidence bounds.

We start the investigation on the statistical properties of Fast-AGMS sketches with

the following result on the first two frequency moments (expected value and variance) of

the basic estimator:

Proposition 3 ([14]). Let X be the Fast-AGMS estimator obtained with a family of

4-universal hash functions h : I → B and a 4-wise independent family ξ of ±1 random

variables. Then,

Eh,ξ[X] = E[XAGMS]

Eh[V arξ[X]] =
1

B
V ar[XAGMS]

The first two moments of the elementary Fast-AGMS sketch coincide with the

first two moments of the average of B elementary AGMS sketches (in order to have the

same space usage). This is a somewhat unexpected result since it suggests that hashing

plays the same role as averaging when it comes to reducing the variance and that the

transformation on the distribution of elementary F-AGMS sketches is the same, i.e., the

distribution becomes normal and the variance is reduced by a factor equal to the number

of buckets. The following result on the fourth frequency moment of F-AGMS represents

the first discrepancy between the distributions of Fast-AGMS and AGMS sketches:

95

Proposition 4. With the same setup as in Proposition 3, we have:

V arh[V arξ[X]] =
B − 1

B2

3

(∑
i

f 2
i g2

i

)2

+ 4
∑

i

f 3
i gi

∑
j

fjg
3
j +

+
∑

i

f 4
i

∑
j

g4
j − 8

∑
i

f 4
i g4

i

] (5–4)

V arh[V arξ[X]] is a lower bound on the fourth moment of the estimator for which

we cannot derive a simple closed-form formula because the ξ family is only 4-wise

independent and 8-wise independence is required to remove the dependency of the formula

on the actual generating scheme. Also, if the hash function h is only 2-universal, instead of

4-universal, more terms are added to the expression, thus making the fourth moment even

larger. We use kurtosis (the ratio between the fourth frequency moment and the square

of the variance, see Section 2.3.5) to characterize the distribution of the Fast-AGMS basic

estimator. From Figure 5-5 that depicts the experimental kurtosis and its lower bound

in Proposition 4, we observe that when the Zipf coefficient is larger than 1 the kurtosis

grows significantly, to the point that it gets around 1000 for a Zipf coefficient equal to

5. Given these values of the kurtosis, we expect that the distribution of the F-AGMS

estimator to be (close to) normal for Zipf coefficients smaller than 1 (kurtosis is equal to

3 for normal distributions, see Section 2.3.5) and then to suffer a drastic change as the

Zipf coefficient increases. Large kurtosis is an indicator of distributions that are more

concentrated than the normal distribution, but also that have heavier tails [7]. Indeed,

Figure 5-2 confirms experimentally these observations for Zipf coefficients equal to 0.2 and

1.5, respectively. The interaction between hashing and the frequent items is an intuitive

explanation for the transformation suffered by the F-AGMS distribution as a function

of the Zipf coefficient. For low skew data (uniform distribution) there does not exist a

significant difference between the way the frequencies are spread into the buckets by the

hash function. Although there exists some variation due to the randomness of the hash

function, the distribution of the estimator is normally centered on the true value. The

96

situation is completely different for skewed data which consists of some extremely high

frequencies and some other small frequencies. The impact of the hash function is dominant

in this case. Whenever the high frequencies are distributed in different buckets (this

happens with high probability) the estimation is extremely accurate. When at least two

high frequencies are hashed into the same bucket (with small probability) the estimator

is orders of magnitude away from the true result. This behavior explains perfectly the

shape of the distribution for skewed data: the majority of the mass of the distribution is

concentrated on the true result while some small mass is situated far away in the heavy

tails. Notice that although large values of kurtosis capture this behavior, an extremely

large number of experiments is required to observe the behavior in practice. For example,

in Figure 5-5 the experimental kurtosis lies under the lower bound in some cases because

the colliding events did not appear even after 10 million experiments.

Given the different shapes of the distribution, no single estimator (mean or median,

since minimum is clearly not a valid estimator for the expected value) is always optimal

for Fast-AGMS sketches. While mean is optimal for low skew data since the distribution

is normal (see Section 2.3.5), median is clearly preferable for skewed data because of

the large values of kurtosis. The symmetry condition required for the median to be

an estimator for the expected value is satisfied because of the symmetric ±1 random

variables. In the following, we consider median as the estimator for Fast-AGMS sketches

even though its error is larger by a factor of 1.25 for low skew data compared to the error

of the mean. In order to quantify exactly what is the gain of the median over the mean,

we use the concept of efficiency (see Section 2.3.5). Unfortunately, we cannot derive an

analytical formula for efficiency because it depends on the value of the probability density

function at the true median, which we actually try to determine. The alternative is to

estimate empirically the efficiency as a function of kurtosis which, as we have already seen,

is a good indicator for the distribution of the F-AGMS estimator and can be computed

analytically. Figure 5-6 depicts the experimental efficiency as a function of kurtosis for

97

sketches with various number of buckets. As expected, efficiency increases as the kurtosis

increases, i.e., as the data becomes more skewed, and gets to some extreme values in the

order of 1010. While efficiency is independent of the number of buckets in the sketch,

the value of kurtosis is limited, with larger values corresponding to a sketch with more

buckets. This implies that efficiency is not a simple function of the kurtosis and other

parameters of the sketch and the data have also to be considered. Consequently, although

we could not quantify exactly what is the gain of using the median instead of the mean,

the extremely large values of efficiency clearly indicate that median is the right estimator

for F-AGMS sketches.

The distribution-independent confidence bounds given by Theorem 12 are likely to

be far too conservative because they are derived from the first two frequency moments

using Chebyshev and Chernoff inequalities. These bounds are identical to the bounds for

AGMS sketches since the two have the same expected value and variance. The significant

discrepancy in the fourth moment and the shape of the distribution (Figure 5-1 and 5-2

depict the distributions for the same data) between F-AGMS and AGMS is not reflected

by the distribution-independent confidence bounds. Figure 5-7(a) confirms the huge gap

(as much as 10 orders of magnitude) that exists between the distribution-independent

bounds and the experimental error. Practical distribution-dependent confidence

bounds can be derived from the median bounds in Theorem 7. A comparison between

distribution-independent confidence bounds, distribution-dependent confidence bounds

and the experimental error (95%) is depicted in Figure 5-7(b). Two important facts can

be drawn from these results: first, the distribution-independent bounds are too large for

large Zipf coefficients and, second, the median bounds are always accurate. Figure 5-7(a)

also reveals that the ratio between the actual error and the prediction is not strongly

dependent on the correlation between the data for the same Zipf coefficient. This implies

that in order to characterize the behavior of F-AGMS sketches for the size of join problem

only the Zipf coefficient of the distribution of the two streams has to be considered.

98

5.2.3 Count-Min Sketches

Based on Theorem 13, we expect Count-Min (CM) sketches to over-estimate the

true value by a factor proportional with the product of the sizes of the two streams and

inversely proportional with the number of buckets of the sketch structure. This is the

only sketch that has error dependencies on the first frequency moment, not the second

frequency moment, and the amount of memory (number of hashing buckets), not the

squared root of the amount of memory. While the dependency on the first frequency

moment is worse than the dependency on the squared root of the second frequency

moment since the first is always larger or equal than the second, the dependency on

the amount of memory is favorable to Count-Min sketches. According to the theoretic

distribution-independent confidence bounds, we expect Count-Min sketches to have weak

performance for relations with low skew, but comparable performance to AGMS sketches

(not much better though) for skewed relations. In this section, we take a closer look at

the distribution of the basic CM estimator and discuss the methods to derive confidence

bounds for Count-Min sketches.

We start the study of the distribution of the elementary CM estimator with the

following result that characterizes the frequency moments of the estimator:

Proposition 5. If XCM is the elementary Count-Min estimator then:

E[XCM] =
∑
i∈I

figi +
1

B

(∑
i∈I

fi

∑
j∈I

gj −
∑
i∈I

figi

)
(5–5)

V ar[XCM] ≥ 1

B
V ar[XAGMS] (5–6)

Equation 5–5 is proved in [15]. The inequality in Equation 5–6 becomes equality if

the hash functions used are 4-universal. For 2-universal hashes, the variance increases

depending on the particular generating scheme and no simple formula can be derived.

Most of the proof of Equation 5–6 for 4-universal hashes is embedded in the computation

of the variance for Fast-Count sketches (see Section 5.2.4), but the exact formula does

99

not appear in previous work2 . The expected value of XCM is always an over-estimate for

the true result – this is the reason why the minimum estimator is chosen. Interestingly,

the variance of the estimator coincides with the variance of averages of B AGMS sketches

and the variance of Fast-AGMS sketches. In order to characterize the distribution of

CM sketches we conducted an extensive statistical study based on experiments. As for

Fast-AGMS sketches, the distribution of the XCM estimator is highly dependent on the

skewness of the data and the randomness of hashing. The fundamental difference is that

the distribution is not symmetric anymore because ±1 random variables are not used.

The generic shape of the distribution has the majority of the mass concentrated to the

left extremity while the right tail is extremely long. The intuition behind this shape

lies in the way hashing spreads the data into buckets: with high probability the data is

evenly distributed into the buckets (this situation corresponds to the left peak) while

with some extremely low probability a large number of items collide into the same bucket

(this situation corresponds to the right tail). Although the shape is generic, the position

of the left peak (the minimum of the distribution) depends heavily on the actual data.

For low skew data the peak is far away from the true value. As the data becomes more

skewed the peak starts to translate to the left, to the point it gets to the true value.

The movement towards the true value while increasing the Zipf parameter is due to the

importance high frequencies start to gain. For low skew data (uniform distribution) the

position of the peak is given by the average number of frequencies that are hashed into the

same bucket. For skewed data dominated by some high frequencies the peak is situated

at the point corresponding to the high frequencies being hashed into different buckets.

Since high frequencies dominate the result, the estimate is in this case closer to the true

2 Since proving the formula is a simple matter of rewriting the equations in [58], we do
not provide the proof here.

100

value. Figure 5-3 depicts the distribution of XCM for Zipf coefficients equal to 1.0 and 2.0,

respectively.

The distribution-independent confidence bounds for CM sketches in [15] are derived

from the Markov inequality. Essentially, the error bounds are expressed in terms of

the expected value of the over-estimated quantity 1
B

(∑
i∈I fi

∑
j∈I gj −

∑
i∈I figi

)
in

E [XCM]. Neither the variance nor the bias are considered in deriving these bounds. To

verify the accuracy of the confidence bounds, we plot in Figure 5-13 the ratio between the

experimental error obtained for data sets with different Zipf and correlation coefficients

(see Section 4.4) and the corresponding predicted error. The main observation from these

results is that the ratio between the actual error and the prediction decreases as the Zipf

coefficient increases, to the point where the gap is many orders of magnitude. In what

follows we provide an intuitive explanation for this behavior.

For low skew data the error is almost entirely due to the bias, correctly estimated

by the expected value, thus the perfect correspondence between the actual error and the

prediction. This observation is inferred from Figure 5-3(a) which plots the distribution of

the elementary sketch estimator for Zipf coefficient equal with 1.0. In this situation, the

standard deviation of the elementary estimator is much smaller than the bias. If multiple

instances of the elementary sketch are obtained, they will all be relatively close to the

expected value (no more than a number of standard deviations to the left), thus their

minimum will be close to the expected value. The fact that the standard deviation is small

when compared to the bias for low skew data can be predicted using Proposition 5 based

on the fact that L2 norm is much smaller than L1 norm for low skew data.

For high skew, the standard deviation becomes significantly larger than the bias as

it can be seen in Figure 5-3(b). In this situation, even though the bias is still significant,

with high probability some of the samples of the elementary sketch will be close to the

true value, thus the minimum of multiple elementary sketches will have significantly

smaller error. Notice how the shape of the distribution changes when the Zipf coefficient

101

increases: it is normal-like for low skew, but it has no left tail for high skew. The

distribution is forced to take this shape when the standard deviation is larger than the

bias since CM sketch estimators cannot take values smaller than the true value. Referring

back to the moments of the CM elementary estimator in Proposition 5, for large skew

the standard deviation is comparable to the expected value, but the bias is much smaller

since most of the result is given by the large frequencies whose contribution is accurately

captured by the estimator.

While the above discussion gives a good intuition why the theory gives reasonable

error predictions for low skew data and makes large errors for high skew data, unfortunately

it does not lead to better bounds for skewed data. In order to provide tight confidence

bounds, the distribution of the minimum of multiple elementary sketch estimators has

to be characterized. While CLT-based results exist for the minimum estimator (see

Section 2.3.7), they provide means to characterize the variance, but not the bias of

the minimum estimator. Determining the bias of the minimum is crucial for correct

predictions of the error for large skew, but it seems a difficult task since it depends on the

precise distribution of the data not only some characteristics like the first few moments.

It is worth mentioning that tighter bounds for CM sketches can be obtained if the Zipf

coefficient of the data is determined by other means [16]. Notice the particular problems

of deriving confidence bounds for CM sketches: high errors are correctly predicted while

small errors are incorrectly over-estimated. Consequently, Count-Min sketches are difficult

to use in practice because their behavior cannot be predicted accurately.

5.2.4 Fast-Count Sketches

Fast-Count (FC) elementary estimator is essentially the bias-corrected version of

the Count-Min elementary estimator. The bias correction is a translation by bias and a

scaling by the factor B
B−1

. This can be observed in Figure 5-4 that depicts the distribution

of Fast-Count sketches. Everything stated for CM sketch distribution still holds for

the distribution of FC sketches, with the major difference that Fast-Count sketches are

102

unbiased, while Count-Min sketches are biased. Given the unbiased estimator and the

asymmetric shape of the distribution, mean is the only viable estimator for the expected

value, which is also the true value in this case.

The distribution-independent confidence bounds for FC sketches, derived in a similar

manner using Chebyshev and Chernoff bounds, are identical to those for AGMS and

Fast-AGMS sketches because the first two moments of the distributions are equal. Tighter

distribution-dependent confidence bounds are derived using Mean CLT for AGMS and

Median CLT for Fast-AGMS sketches, respectively. Although the mean estimator is also

used for FC sketches, the asymptotic regime of Mean CLT does not apply in this case

because the number of samples averaged is only in the order of tens. The alternative is to

use the Student t-distribution for modeling the behavior of the mean (see Section 2.3.3),

but the improvement over the distribution-independent bounds is not so remarkable. In

conclusion, both distribution-independent and distribution-dependent bounds can be used

for FC sketches without a significant advantage for any of them.

5.3 Empirical Evaluation

The main purpose of the experimental evaluation is to validate and complement the

statistical results we obtained in Section 5.2 for the four sketching techniques. The specific

goals are: (1) establish the relative accuracy performance of the four sketching techniques

for various problems, and (2) determine the actual update performance. Our main tool in

establishing the accuracy of sketches is to measure their error on synthetic data sets for

which we control both the skew, via the Zipf coefficient, and the correlation. This allows

us to efficiently cover a large spectrum of problems and to draw insightful observations

about the performance of sketches. We then validate the findings on real-life data sets and

other synthetic data generators.

The main findings of the study are:

• AGMS and Fast-Count (FC) sketches have virtually identical accuracy throughout
the spectrum of problems if only averages are used for AGMS. FC sketches are
preferable since they have significantly smaller update time.

103

• The performance of Count-Min sketches is strongly dependent on the skew of the
data. For small skew, the error is orders of magnitude larger than the error of the
other types of sketches. For large skew, CM sketches have the best performance –
much better than AGMS and FC.

• Fast-AGMS (F-AGMS) sketches have error at most 25% larger than AGMS sketches
for small skew, but the error is orders of magnitude (as much as 6 orders of
magnitude for large skew) smaller for moderate and large skew. Their error for
large skew is slightly larger than the error of CM sketches.

• All sketches, except CM for small skew, are practical in evaluating self-join size
queries. This is to be expected since AGMS sketches are asymptotically optimal [3]
for this problem. For size of join problems, F-AGMS sketches remain practical well
beyond AGMS and FC sketches. CM sketches have good accuracy as long as the
data is skewed.

• F-AGMS, FC, and CM sketches (all of them are based on random hashing) have fast
and comparable update performance that ranges between 50 − 400 ns depending on
the size of the sketch.

5.3.1 Testbed and Methodology

Sketch Implementation: We implemented a generic framework that incorporates

the sketching techniques mentioned throughout the chapter. Algorithms for generating

random variables with limited degree of independence [45, 51] are at the core of the

framework. Since the sketching techniques have a similar structure, they are designed

as a hierarchy parameterized on the type of random variables they employ. Applications

have only to instantiate the sketching structures with the corresponding size and random

variables, and to call the update and the estimation procedures.

Data Sets: We used two synthetic data generators and one real-life data set in our

experiments. The data sets cover an extensive range of possible inputs, thus allowing us to

infer general results on the behavior of the compared sketching techniques.

Census data set [17]: This real-life data set was extracted from the Current

Population Survey (CPS) data repository, which is a monthly survey of about 50, 000

households. Each month’s data contains around 135, 000 tuples with 361 attributes.

We ran experiments for estimating the size of join on the weekly wage (PTERNWA)

104

numerical attribute with domain size 288, 416 for the surveys corresponding to the months

of September 2002 (15, 563 records) and September 2006 (14, 931 records)3 .

Estan’s et al. [24] synthetic data generator: Two tables with approximately 1

million tuples each with a Zipf distribution for the frequencies of the values are randomly

generated. The values are from a domain with 5 million values, and for each of the values

its corresponding frequency is chosen independently at random from the distribution

of the frequencies. We used in our experiments the memory-peaked (Zipf=0.8) and the

memory-unpeaked (Zipf=0.35) data sets.

Synthetic data generator: We implemented our synthetic data generator for

frequency vectors. It takes into account parameters such as the domain size, the number of

tuples, the frequency distribution, and the correlation (decor = 1− correlation) coefficient.

Out of the large variety of data sets that we conducted experiments on, we focus in this

experimental evaluation on frequency vectors over a 214 = 16, 384 size domain that contain

1 million tuples and having Zipf distributions (the Zipf coefficient ranges between 0 and

5). The degree of correlation between two frequency vectors varies from full correlation to

complete independence.

Answer-Quality Metrics: Each experiment is performed 100 times and the average

relative error, i.e., |actual−estimate|
actual

, over the number of experiments is reported. In the case

of direct comparison between two methods, the ratio between their average relative errors

is reported. Although we performed the experiments for different sketch sizes, the results

are reported only for a sketch structure consisting of 21 vectors with 1024 counters each

(n = 1024, m = 21), since the same trend was observed for the other sketch sizes.

5.3.2 Results

Self-Join Size Estimation: The behavior of the sketching techniques for estimating

the self-join size as a function of the Zipf coefficient of the frequency distribution is

3 After eliminating the records with missing values.

105

depicted in Figure 5-8 both on a normal (a) as well as logarithmic (b) scale. As expected,

the errors of AGMS and FC sketches are similar (the difference for (close to) uniform

distributions is due to the EH3 [51] random number generator). While F-AGMS has

almost the same behavior as FC (AGMS) for small Zipf coefficients, the F-AGMS error

is drastically decreasing for Zipf coefficients larger than 0.8. These are due to the effect

the median estimator has on the distribution of the predicted results: for small Zipf

coefficients the distribution is normal, thus the performance of the median estimator

is approximately 25% worse, while for large Zipf coefficients the distribution is focused

around the true result (Section 5.2). CM sketches have extremely poor performance for

distributions (close to) uniform. This can be explained theoretically by the dependency

on the L1 norm, much larger than the L2 norm in this regime. Intuitively, uniform

distributions have multiple non-zero frequencies that are hashed into the same bucket,

thus highly over-estimating the predicted result. The situation changes dramatically at

high skew when it is highly probable that each non-zero frequency is hashed to a different

bucket, making the estimation almost perfect. Based on these results, we can conclude

that F-AGMS is the best (or close to the best) sketch estimator for computing the second

frequency moment, irrespective of the skew.

Join Size Estimation: In order to determine the performance of the sketching

techniques for estimating the size of join, we conducted experiments based on the Zipf

coefficient and the correlation between the two frequency vectors. A correlation coefficient

of 0 corresponds to two identical frequency vectors (self-join size). For a correlation

coefficient of 1, the frequencies in the two vectors are completely shuffled. The results

for different Zipf coefficients are depicted in Figure 5-9 as a function of the correlation.

It can be clearly seen how the relation between the sketch estimators is changing as a

function of the skew (behavior identical to the self-join size). Moreover, it seems that the

degree of correlation is affecting similarly all the estimators (the error increases as the

degree of correlation is increasing), but it does not affect the relative order given by the

106

Zipf coefficient. The same findings are reinforced in Figure 5-10 which depicts the relative

performance, i.e., the ratio of the average relative errors, between pairs of estimators for

computing the size of join. Figure 5-11 plots the accuracy for estimating the size of join of

two streams with different skew coefficients. While the error of F-AGMS and FC increases

with the skewness of the free stream, the error of CM stays almost constant, having a

minimum where the two streams have equal Zipf coefficients. At the same time, it seems

that the value of the error is determined by the smallest skew parameter. Consequently,

we conclude that, as in the case of self-join size, the Zipf coefficient is the only parameter

that influences the relative behavior of the sketching techniques for estimating the size of

join of two frequency vectors.

Memory Budget: The accuracy of the sketching methods (AGMS is excluded since

its behavior is identical to FC, but its update time is much larger) as a function of the

space available is represented in Figure 5-12 for one of Estan’s synthetic data sets (a) and

for the census real-life data set (b). The error of CM sketches is orders of magnitude worse

than the error of the other two methods for the entire range of available memory (due to

the low skew). The accuracy of F-AGMS is comparable with that of FC for low skew data,

while for skewed data F-AGMS is clearly superior. Notice that the relative performance of

the techniques is not dependent on the memory budget.

Update Time: The goal of the timing experiment is to clarify if there exist

significant differences in update time between the hash sketches since the random variables

they use are different. As shown in Figure 5-14, all the schemes have comparable update

time performance, CM sketches being the fastest, while FC sketches are the slowest.

Notice that the relative gap between the schemes shrinks when the number of counters

is increasing since more references are made to the main memory. As long as the sketch

vector fits into the cache, the update rate is extremely high (around 10 million updates

107

can be executed per second on the test machine4), making hash sketches a viable solution

for high-speed data stream processing.

5.3.3 Discussion

As we have seen, the statistical and empirical study in this chapter paints a different

picture than suggested by the theory (see Table 5-3). Table 5-4 summarizes these results

qualitatively and indicates that on skewed data, F-AGMS and CM sketches have much

better accuracy than expected.

The statistical analysis in Section 5.2 revealed that the theoretical results for

Fast-AGMS (F-AGMS) and Count-Min (CM) sketches do not capture the significantly

better accuracy with respect to AGMS and Fast-Count (FC) sketches for skewed data.

The reason there exists such a large gap between the theory and the actual behavior is

the fact that the median, for F-AGMS, and the minimum, for CM, have a fundamentally

different behavior than the mean on skewed data. This behavior defies statistical intuition

since most distributions that are encountered in practice have relatively small kurtosis,

usually below 20. The distributions of approximation techniques that use hashing on

skewed data can have kurtosis in the 1000 range, as we have seen for F-AGMS sketches.

For these distributions, the median, as an estimator for the expected value, can have error

106 smaller than the mean.

An interesting property of all sketching techniques is that the relationship between

their accuracy does not change significantly when the degree of correlation changes, as

indicated by Figure 5-10. The relationship is strongly influenced by the skew though,

which suggests that the nature of the individual relations, but not the interaction between

them, dictates how well sketching techniques behave.

4 The results in Figure 5-14 are for a Xeon 2.8 GHz processor with 512 KB of cache.
The main memory is 4 GB.

108

The relationship between sketches in Figure 5-10 also indicates that F-AGMS sketches

essentially work as well as AGMS and FC for small skew and just slightly worse than

CM for large skew. It seems that F-AGMS sketches combine in an ideal way the benefits

of AGMS sketches and hashes and give good performance throughout the spectrum of

problems without the need to determine the skew of the data. While CM sketches have

better performance for large skew, their use seems riskier since their performance outside

this regime is poor and their accuracy cannot be predicted precisely for large skew. It

seems that, unless extremely precise information about the data is available, F-AGMS

sketches are the safe choice.

5.4 Conclusions

In this chapter we studied the four basic sketching techniques proposed in the

literature, AGMS, Fast-AGMS, Fast-Count, and Count-Min, from both a statistical and

empirical point of view. Our study complements and refines the theoretical results known

about these sketches. The analysis reveals that Fast-AGMS and Count-Min sketches

have much better performance than the theoretical prediction for skewed data, by a

factor as much as 106 to 108 for large skew. Overall, the analysis indicates strongly that

Fast-AGMS sketches should be the preferred sketching technique since it has consistently

good performance throughout the spectrum of problems. The success of the statistical

analysis we performed indicates that, especially for estimators that use minimum or

median, such analysis gives insights that are easily missed by classical theoretical analysis.

Given the good performance, the small update time, and the fact that they have tight

error guarantees, Fast-AGMS sketches are appealing as a practical basic approximation

technique that is well suited for data stream processing.

109

Table 5-1. Families of ±1 random variables.

Counter Key domain
1 2 3 4 5

1 +1 +1 +1 −1 −1
2 +1 −1 −1 +1 +1
3 −1 +1 −1 +1 −1

Table 5-2. Families of hash functions.

Row Key domain
1 2 3 4 5

1 1 1 3 2 3
2 1 3 2 1 2
3 3 2 3 3 1

Table 5-3. Expected theoretical performance.

Sketch Size of Join
Large Small

Low Skew High Skew
AGMS 0 0 −
Fast-AGMS 0 0 −
Fast-Count 0 0 −
Count-Min − 0 −

Table 5-4. Expected statistical/empirical performance.

Sketch Size of Join
Large Small

Low Skew High Skew
AGMS 0 0 −
Fast-AGMS 0 + +
Fast-Count 0 0 −
Count-Min − + +

110

pd
f

0e+00 1e+11 2e+11 3e+11 4e+11 5e+11 6e+11

0e
+

00
4e

−
12

8e
−

12

(a) Basic estimator

pd
f

5e+10 1e+11 1.5e+11 2e+11 2.5e+11 3e+11 3.5e+11

0.
0e

+
00

5.
0e

−
11

1.
0e

−
10

1.
5e

−
10

(b) Average estimator

Figure 5-1. The distribution of AGMS sketches for self-join size.

pd
f

4e+07 5e+07 6e+07 7e+07 8e+07 9e+07

0e
+

00
1e

−
08

2e
−

08
3e

−
08

4e
−

08

(a) Zipf=0.2
pd

f

1.6e+11 1.7e+11 1.8e+11 1.9e+11 2.0e+11

0.
0e

+
00

1.
0e

−
10

2.
0e

−
10

3.
0e

−
10

(b) Zipf=1.5

Figure 5-2. The distribution of F-AGMS sketches for self-join size.

pd
f

1.6e+10 1.8e+10 2.0e+10 2.2e+10 2.4e+10 2.6e+10

0e
+

00
2e

−
10

4e
−

10
6e

−
10

(a) Zipf=1.0

pd
f

4.0e+11 4.1e+11 4.2e+11 4.3e+11 4.4e+11

0e
+

00
2e

−
10

4e
−

10
6e

−
10

(b) Zipf=2.0

Figure 5-3. The distribution of CM sketches for self-join size.

pd
f

1.5e+11 2e+11 2.5e+11

0.
0e

+
00

1.
0e

−
10

2.
0e

−
10

3.
0e

−
10

(a) Basic estimator

pd
f

1.5e+11 2e+11 2.5e+11

0e
+

00
2e

−
10

4e
−

10
6e

−
10

8e
−

10

(b) Average estimator

Figure 5-4. The distribution of FC sketches for self-join size.

111

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1 2 3 4 5

K
ur

to
si

s

ZIPF Parameter

Experimental
Theoretical lower bound

Figure 5-5. F-AGMS kurtosis.

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 0 100 200 300 400 500 600 700 800 900

E
ffi

ci
en

cy
 (

lo
g

sc
al

e)

Kurtosis

64
128
256
512

1024

Figure 5-6. F-AGMS efficiency.

112

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5

E
xp

er
im

en
ta

l e
rr

or
/T

he
or

et
ic

al
 e

rr
or

 (l
og

 s
ca

le
)

ZIPF Parameter

decor=0.0
decor=0.5
decor=1.0

(a) Correlation

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5

A
ve

ra
ge

 re
la

tiv
e

er
ro

r (
lo

g
sc

al
e)

ZIPF Parameter

Experimental
Median bound

Theoretical bound

(b) Confidence bounds

Figure 5-7. Confidence bounds for F-AGMS sketches as a function of the skewness of the
data.

 0

 0.005

 0.01

 0.015

 0.02

 0 1 2 3 4 5

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

ZIPF Parameter

AGMS
F-AGMS

FC
CM

(a) Normal scale

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 0 1 2 3 4 5

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (l
og

 s
ca

le
)

ZIPF Parameter

AGMS
F-AGMS

FC
CM

(b) Log scale

Figure 5-8. Accuracy as a function of the Zipf coefficient for self-join size estimation.

 0.01

 0.1

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 re
la

tiv
e

er
ro

r (
lo

g
sc

al
e)

Correlation coefficient

AGMS
F-AGMS

FC
CM

(a) Zipf = 0.8

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 re
la

tiv
e

er
ro

r (
lo

g
sc

al
e)

Correlation coefficient

AGMS
F-AGMS

FC
CM

(b) Zipf = 3.0

Figure 5-9. Accuracy as a function of the correlation coefficient for size of join estimation.

113

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 1 2 3 4 5

F-
A

G
M

S
/F

C
 (l

og
 s

ca
le

)

ZIPF Parameter

decor=0.0
decor=0.5
decor=1.0

(a) F-AGMS vs AGMS (FC)

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5

F-
A

G
M

S
/C

M
 (l

og
 s

ca
le

)

ZIPF Parameter

decor=0.0
decor=0.5
decor=1.0

(b) F-AGMS vs CM

Figure 5-10. Relative performance for size of join estimation.

 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5

R
el

at
iv

e
E

rr
or

 (
lo

g
sc

al
e)

ZIPF Parameter

F-AGMS
CM
FC

(a) Zipf = 0.5

 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5

R
el

at
iv

e
E

rr
or

 (
lo

g
sc

al
e)

ZIPF Parameter

F-AGMS
CM
FC

(b) Zipf = 1.0

Figure 5-11. Accuracy as a function of the skewness of the data for size of join estimation.

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06

A
ve

ra
ge

 re
la

tiv
e

er
ro

r (
lo

g
sc

al
e)

Memory budget (log scale)

F-AGMS
FC
CM

(a) Memory peaked

 0.001

 0.01

 0.1

 1

 10

 100 1000 10000 100000

A
ve

ra
ge

 re
la

tiv
e

er
ro

r (
lo

g
sc

al
e)

Memory budget (log scale)

F-AGMS
FC
CM

(b) Census

Figure 5-12. Accuracy as a function of the available space budget.

114

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5

E
xp

er
im

en
ta

l e
rr

or
/T

he
or

et
ic

al
 e

rr
or

 (l
og

 s
ca

le
)

ZIPF Parameter

decor=0.0
decor=0.5
decor=1.0

Figure 5-13. Confidence bounds for CM sketches as a function of the skewness of the data.

 0

 100

 200

 300

 400

 500

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

Ti
m

e
/ s

ke
tc

h
up

da
te

 (n
s)

Bucket size (log scale)

F-AGMS
FC
CM

Figure 5-14. Update time as a function of the number of counters in a sketch that has
only one row.

115

CHAPTER 6
SKETCHES FOR INTERVAL DATA

The problem we treat in this section is to estimate the size of join between a data

stream given as points and a data stream given as intervals using sketches. Notice that

this remains a size of join problem defined over the frequencies of individual points but,

since one of the streams is specified by intervals rather than individual points, if basic

sketches are used the update time is proportional to the size of the interval, which is

undesirable. In order to apply sketching techniques for the derived problem, there exist

two alternatives: either use random variables that are fast range-summable, or apply a

domain transformation for reducing the size of the intervals. The two solutions, DMAP

and fast range-summation, have update time sub-linear in the interval size. DMAP [18]

consists in mapping both the intervals and the points into the space of dyadic intervals in

order to reduce the size of the interval representation. Since both intervals and points map

to a logarithmic number of dyadic intervals in the dyadic space, the update time becomes

poly-logarithmic with respect to the input. Fast range-summation [51] uses properties of

the pseudo-random variables in order to sketch intervals in sub-linear time, while points

are sketched as before. While the update time of these methods is poly-logarithmic with

respect to the size of the interval, since they are based on AGMS sketches, the update

time is also proportional with the size of the sketch. In the light of the statistical and

empirical evaluation of hash-based sketches, the update time due to sketching could be

significantly improved without loss in accuracy. The question we ask and thoroughly

explore in this section is whether hash-based sketches can be combined successfully with

the two methods to sketch interval data. The insights gained from the statistical analysis

and the empirical evaluation of the hash-based sketching techniques are applied in this

section to provide variants of the two methods for sketching interval data that have

significantly smaller update time and comparable accuracy.

116

In this chapter we investigate both theoretically and empirically the known methods

for generating the random variables used by AGMS sketches with the goal of identifying

the generating schemes that are practical, both for the traditional application of AGMS

sketches, i.e., aggregate computation over streaming data, and for applications that involve

interval input. More specifically, our contributions are:

• We provide a detailed study of the practicality of fast range-summation for the
known generating schemes. We show that no 4-wise independent generating scheme
is practically fast range-summable, even though the scheme based on Reed-Muller
codes can be theoretically range-summed in sub-linear time [9].

• We provide a formal treatment of dyadic intervals that allows us to design efficient
fast range-summable algorithms for two schemes: 3-wise independent BCH scheme
(BCH3) [2] and Extended Hamming scheme (EH3) [25].

• We explain how two problems, size of spatial joins and selectivity estimation, can
be reduced to the size of join problem, reduction that allows us to provide estimates
of their results based on AGMS sketches. The resulting estimators significantly
outperform the state-of-the-art solution based on dyadic mappings [18], sometimes
by as much as a factor of 8 in relative error.

We apply the results obtained from the statistical study to design effective algorithms

for sketching interval data. Sketches over interval data can be useful by themselves, but

they are also a building block in solutions to more complex problems like the size of

spatial joins [5, 18, 55]. DMAP and fast range-summation [51] are the existing solutions

for sketching interval data. They are both inefficient when compared to hash-based

sketches because of the use of AGMS sketches which have higher update time. In this

chapter we study how DMAP and fast range-summation can use the more efficient

hash-based sketches. In particular, we show that only DMAP can be extended to other

types of sketches and, thus, a significant improvement in update time can be gained by

a simple replacement of the underlying sketching technique. To improve the accuracy of

DMAP, significantly inferior to that of the fast range-summation method, we propose

a simple modification that keeps exact counts for some of the frequencies. We call this

modification DMAP COUNTS. We also introduce a method to improve the update

117

performance of fast range-summation AGMS sketches based on a simple equi-width

partitioning of the domain. The experimental results show that these derived methods

keep the advantage of their base methods, while significantly improving their drawbacks,

to the point where they are efficient both in accuracy and update time. The gain in

update time can be as large as two orders of magnitude, thus making the improved

methods practical. The empirical study suggests that DMAP is preferable when the

update time is primordial and fast range-summation is desirable for better accuracy.

In the rest of the chapter, we first identify applications that can be reduced to

sketching interval data in Section 6.1. Section 6.3 is a detailed study of the dyadic

mapping method, with a particular emphasis on dyadic intervals. Section 6.4 treats fast

range-summable generating schemes, while Section 6.5 deals with fast range-summation

for sketching interval data. Section 6.6 contains an experimental study of the sketching

methods for interval data.

6.1 Sketch Applications

AGMS sketches have been also used as building blocks in many applications. For

example, [27] compute aggregates over expressions involving set operators, while [25]

approximate the L1-difference of two data-streams. A solution based on AGMS sketches

for the wavelet decomposition of a data-stream is introduced in [32], while dynamic

quantiles are approximated using random subset sums in [33]. In networking, sketches can

be applied for change detection as in [42].

As already mentioned, sketching interval data is a fundamental problem that is used

as a building block in more complex problems such as estimating the size of spatial joins

and building dynamic histograms. For example, for the size of spatial joins problem in

which two data streams of intervals are given, two sketches are built for each stream, one

for the entire interval and one for the end-points. The size of the spatial join between the

two interval data streams is subsequently estimated as the average of the product of the

118

interval sketch from one stream and the sketch for the end-points from the other stream

(see [18] for complete details).

Although they were introduced for estimating the size of join of two point relations,

AGMS sketches are a versatile approximation method that can accommodate multiple

types of input. In this chapter we focus on a variation of the original size of join problem

in which one of the relations is specified as intervals (this is equivalent to specifying

every point inside the interval). To motivate the importance of the derived problem, we

introduce two applications that can be expressed as the size of join of two relations, one

consisting of points, and one containing intervals. We also identify a class of applications

that can be reduced to size of join problems involving an interval relation and a point

relation.

6.1.1 Size of Spatial Joins

Given two relations of line segments in the unidimensional space, the size of spatial

join problem is to compute the number of segments from the two relations that overlap.

The approach in [18], even though not explicitly stated, reduces the size of spatial join

problem to two size of join problems, each involving a point relation and an interval

relation: the size of join of the line segments from the first relation and the segment

end-points from the second relation and, symmetrically, the size of join of the segment

end-points from the first relation and the segments from the second relation.

In order to implement a solution based on AGMS sketches for the point-interval size

of join problem, we have to deal first with efficiently sketching intervals. The solution

proposed in [18] realizes a number of transformations for reducing the size of each interval,

thus improving the sketching time. We present a detailed analysis of this generic method

for sketching intervals in Section 6.3.

6.1.2 Selectivity Estimation for Building Dynamic Histograms

Any histogram construction algorithm has to evaluate the average frequency of the

elements in a bucket, also known as the selectivity of the bucket. By introducing a virtual

119

relation having value 1 only for the elements in the bucket, and value 0 otherwise, the

average frequency can be expressed as the size of join between the original relation and the

virtual relation corresponding to the bucket, divided by the size of the bucket. Usually a

bucket is an interval in the unidimensional space, thus the problem of sketching intervals

has to be solved in order to implement an AGMS sketches solution for the selectivity

estimation problem.

[57] introduce a solution based on sketches for building dynamic histograms. The

streaming relation is summarized as a sketch and then the histogram is extracted from the

sketch. The authors focused more on how to determine the buckets such that the resulting

histogram to be optimal. They did not consider in detail the problem of sketching a

bucket and took this step as a black-box in their algorithms.

6.2 Problem Formulation

The common point of the above applications is that they can be reduced to size of

join problems between a point relation and an interval relation. In order to implement

effective sketch-based solutions for this derived problem, the sketch of an interval has to be

computed more efficiently than sketching each point in the interval.

The problem considered in this section is a derivation of the size of join problem

defined in Section 2.1 in which one of the two data streams is given by (interval,

frequency) pairs rather than (key, frequency) pairs. The frequency is attached to each

element in the interval, not only to a single key. Formally, let S = (e1, w1), . . . , (es, ws)

and T = ([l1, r1], v1), . . . , ([lt, rt], vt) be two data streams, where the keys ei and the

intervals [li, ri], with li ≤ ri, are members of the set I = {0, 1, . . . , N − 1}, and wi and

vi, respectively, represent frequencies. The computation using sketches of the size of join

of the two data streams defined as the inner-product of their frequency vectors remains

our focus. Notice that it is straightforward to reduce this problem to the basic size of join

problem by observing that a pair ([li, ri], vi) in T can be represented as an equivalent set

of pairs (ej, vi) in S, with ej taking all the values between li and ri, li ≤ ej ≤ ri. The

120

drawback of this solution is the time to process an interval which is linear in the size of

the interval.

Summarizing, the problem we treat in this chapter is to estimate the size of join

between a point relation and an interval relation using AGMS sketches. We

start by revisiting the state-of-the-art solution based on dyadic mappings (DMAP). Then

we introduce solutions that use fast range-summable random variables that are based on

the known schemes for generating ±1 random variables (Section 3.1).

6.3 Dyadic Mapping (DMAP)

The dyadic mapping method [18], which we call here DMAP, uses dyadic intervals

in order to reduce the size of an interval, thus making possible the efficient sketching

of intervals. Since dyadic intervals are at the foundation of the method, we introduce

them first. We will see that dyadic intervals are also important for fast range-summation

(Section 6.4).

6.3.1 Dyadic Intervals

[33] introduce dyadic ranges for sketching intervals in the context of quantile

computation. Although they are employed in different work [18, 25, 32], a formal

treatment of dyadic intervals was not previously provided. Such a formal treatment is

necessary to design efficient algorithms for methods that need dyadic interval decomposition.

In this section we provide such a formal treatment.

For the rest of this section, consider that the domain I has size |I| = N = 2n. If this

is not the case, the domain can be extended to the first power of 2 that is greater than N .

The dyadic intervals of the domain I are intervals that can be organized in a hierarchical

structure – the dyadic intervals over the domain {0, . . . , 15} are depicted in Figure 6-2 –

that has n + 1 layers. There exists only one interval at level 0 – the entire domain. On

the subsequent levels, each interval is split in two equal-size intervals to produce smaller

dyadic intervals. On the last level, all dyadic intervals have size one and they consist of

all the individual points in the domain. Intuitively, such a construction produces intervals

121

that have size a power of 2 (more precisely all the intervals at level k have size 2n−k)

and that have boundaries aligned at multiples of powers of 2. This description is good

enough to argue properties of dyadic intervals, but it does not suffice to formally prove

the correctness of algorithms that use dyadic intervals. Insights from the strict theoretical

treatment of dyadic intervals actually lead to very efficient implementations.

We start our presentation with a formal definition of dyadic intervals and some basic

properties.

Definition 5. A dyadic interval over the domain I = {0, 1, . . . , N − 1}, |I| = N = 2n,

is an interval of the form [q2j, (q + 1)2j), where 0 ≤ j ≤ n and 0 ≤ q ≤ 2n−j − 1.

Proposition 6. There are exactly 2j dyadic intervals at level j, each containing 2n−j

points from I.

Proof. Follows directly from definition.

Proposition 7. The dyadic intervals at level j, 0 ≤ j ≤ n, form a partition of the domain

I. That is, they are disjoint and their union is equal with the entire domain.

Proof. If j is fixed, using the above definition, the dyadic intervals at level j are:

[0, 2j), [2j, 2 · 2j), . . . , [(2n−j − 1) · 2j, 2n−j · 2j). Clearly, they form a partition of [0, 2n).

Proposition 8. Let δ1 and δ2 be two arbitrary distinct dyadic intervals. If δ1 ∩ δ2 6= ∅,

then either δ1 ⊂ δ2 or δ2 ⊂ δ1.

Proof. Let δ1 = [q2j, (q + 1)2j) and δ2 = [r2k, (r + 1)2k). We have two distinct cases, j = k,

and j 6= k. We discuss each in turn.

Suppose j = k. Then either q = r, which is not possible since δ1 6= δ2, or q 6= r. In the

latter case, the two dyadic intervals, according to Proposition 7, are different elements of a

partition of the domain, so they do not intersect, which is a contradiction.

Suppose, without loss of generality, that j > k. We have to show that δ2 ⊂ δ1. This

is the only possibility since δ1 has more elements than δ2. We have two distinct cases:

r2k ∈ δ1 and r2k < q2j.

122

• If r2k ∈ δ1 then either r2k ≤ (q+1)2j−2k, in which case δ2 ⊂ δ1 since we can fit all 2k

elements of δ2 from r2k to the end of δ1, or r2k ∈ ((q+1)2j−2k, (q+1)2j). In this last
case, we have r2k > (q + 1)2j − 2k and r2k < (q + 1)2j. Dividing the two inequalities
by 2k, which is a positive quantity, we get: (q + 1)2j−k > r > (q + 1)2j−k − 1. Since
j > k, 2j−k is an integer quantity. But both r and q are integers and this inequality
is a contradiction since we cannot insert an integer between two consecutive integers.

• If r2k < q2j, since δ1 ∩ δ2 6= ∅, it must be the case that (r + 1)2k > q2j. From
these two inequalities, by dividing by 2k, we have: r < q2j−k < r + 1. This is again
a contradiction since q2j−k is an integer that has to be between two consecutive
integers.

An interesting question is how to express an arbitrary interval as the union of dyadic

intervals. Since the decomposition is not unique in general and it is desirable to have

decompositions of small sizes, we look for minimal decompositions in terms of the number

of elements. The concept of minimal dyadic cover of an interval and its properties are

introduced next.

Definition 6. The minimal dyadic cover of an interval [α, β], D([α, β]), is the set of

dyadic intervals δ1, δ2, . . . , δm of smallest cardinality, for which δ1 ∪ δ2 ∪ · · · ∪ δm = [α, β].

Proposition 9. The dyadic intervals in a minimal dyadic cover of an interval form a

partition of that interval.

Proof. Let δ1 ∪ δ2 ∪ · · · ∪ δm = [α, β] be a minimal dyadic cover of the arbitrary

interval [α, β]. It is enough to show that no two dyadic intervals intersect. According to

Proposition 8, if two dyadic intervals intersect, then one includes the other. The one that

is included can be eliminated from the minimal dyadic cover of [α, β] without changing the

coverage, which implies that the cover is not minimal, a contradiction.

Definition 7. d([α, β]) = q2j is the dyadic cut-point of the interval [α, β] if j is the

largest integer smaller than n (|I| = 2n) for which there exists q such that q2j ∈ [α, β].

Proposition 10. The dyadic cut-point of an interval is unique.

123

Proof. Let q2j and q′2j, q < q′, be two distinct dyadic cut-points of the same interval.

Since, by definition, both are included in the interval, all integers q′′2j with q ≤ q′′ ≤ q′ are

also included in the interval, so they are also dyadic cut-points. Since q 6= q′, at least one

of the q′′ has to be even, for example q′′ = 2r, thus q′′2j = r2j+1. This contradicts the fact

that j is maximal and proves the uniqueness of q2j.

Using these properties, we formalize the relation between the dyadic cut-point of an

interval and its minimal dyadic cover in the following lemma.

Lemma 3. Let [α, β] be an interval, d([α, β]) = q2j be its dyadic cut-point, and D([α, β])

be its minimal dyadic cover. Then:

1. None of the dyadic intervals in D([α, β]) contains the dyadic cut-point, except as a
left end-point.

2. The minimal dyadic cover D([α, β]) is the union of the minimal dyadic covers of
[α, q2j) and [q2j, β], i.e., D([α, β]) = D([α, q2j) ∪D([q2j, β]).

3. The minimal dyadic cover D([q2j, β]) consists of a sequence of at most j dyadic
intervals with strictly decreasing sizes.

4. The minimal dyadic cover D([α, q2j) consists of a sequence of at most j dyadic
intervals with strictly increasing sizes.

5. The minimal dyadic cover D([α, β]) contains at most 2j dyadic intervals, from
which at most two are from the same level.

Proof.

1. Let δ be a dyadic interval in the minimal dyadic cover that contains the dyadic
cut-point d([α, β]) = q2j, but not as its left end-point. Then, by Proposition 8,
[q2j, (q + 1)2j) ⊂ δ. Equality is not possible because q2j would be at the start of δ.
Then [q

2
2j+1, (q

2
+ 1)2j+1) ⊂ δ is the smallest dyadic interval that can contain the

previous interval. This means that q
2
2j+1 is included in [α, β], which contradicts the

fact that q2j is the dyadic cut-point.

2. Suppose the union of the minimal dyadic covers of [α, q2j) and [q2j, β] is not the
minimal dyadic cover of [α, β] and let D′([α, β]) be this minimal cover. If q2j is not
included in the core of any of the dyadic intervals in the minimal dyadic cover, then
we can partition the minimal dyadic cover into two sets, one that covers [α, q2j),
and one that covers [q2j, β]. These covers have to be minimal, otherwise the cover
of [α, β] is not minimal. But, according to (1), q2j cannot be part of the core of

124

any dyadic interval in any dyadic cover of [α, β], so it has to be the case that the
statement is correct.

3. We give a constructive proof of the statement. The claim is that the following
algorithm finds the minimal dyadic cover of [q2j, β]. Starting from the point q2j,
find the largest dyadic interval that fits into [q2j, β], and then iterate from the
point immediately following this dyadic interval until all of [q2j, β] is covered. Since
[q2j, β] is finite and each dyadic interval contains at least one point, the algorithm
terminates in at most β − q2j + 1 steps.
Let us show that the built cover is minimal and has size at most j. We consider an
arbitrary interval [q′2j′ , β] with q′2j′ being its dyadic cut-point. Let q′′2j′′ be the
dyadic cut-point of the interval (q′2j′ , β], i.e., the next dyadic cut-point since the
current dyadic cut-point is excluded from the interval. We claim that the interval
[q′2j′ , q′′2j′′) is the largest dyadic interval that is part of the minimal dyadic cover of
[q′2j′ , β]. First, j′′ < j′ otherwise q′′2j′′ would be the dyadic cut-point of [q′2j′ , β].
This means that [q′2j′ , q′′2j′′) is a dyadic interval of size 2j′′ since it is equivalent
to [2j′−j′′q′ · 2j′′ , q′′2j′′) and it cannot be a union of dyadic intervals from level j′′

because this would contradict the fact that q′′2j′′ is a dyadic cut-point. In fact, this
dyadic interval is the largest dyadic interval included in [q′2j′ , β], otherwise we again
contradict the fact that q′′2j′′ is a dyadic cut-point. From this, it follows directly
that the dyadic interval [q′2j′ , q′′2j′′) is the unique largest dyadic interval in the
minimal dyadic cover of [q′2j′ , β]. By induction, the sequence of dyadic intervals
generated by the algorithm produces the minimal dyadic cover of [q2j, β]. Since
j′′ < j′, the algorithm ends in at most j steps.

4. The proof is symmetric to 3.

5. Follows directly from 3 and 4.

Corollary 4. The minimal dyadic cover of an interval [α, β] has cardinality at most

2(n− 1), where |I| = 2n. That is, |D([α, β)]| ≤ 2(n− 1).

Proof. Follows directly from Lemma 3 by observing that j = n − 1 maximizes the

cardinality of the minimal dyadic cover.

The algorithm used in the constructive proof of Lemma 3 uses as a prerequisite the

dyadic cut-point and starts determining the minimal dyadic cover to the left and to the

right of this point. To avoid determining the dyadic cut-point, we can run the algorithm

in reverse and find the dyadic intervals in the minimal dyadic cover starting from α and

125

going to the right, and starting from β and going to the left. Moreover, it is enough to

inspect the binary representation of α and β to determine these dyadic intervals, as it

is shown in Algorithm MinimalDyadicCover 6.8. For example, to determine the dyadic

intervals covering [α, d([α, β])), we inspect the bits of α starting from the least significant

and whenever we detect a 1 bit, say in position j, we have to include the dyadic interval

of size 2j that covers all the integers that have the same binary representation as α on the

most significant n− j bits. For β the same pattern has to be followed, but the 0 bits signal

the inclusion of a dyadic interval. At every step, a new bit in the description of α and β is

analyzed and the algorithm stops when α = β + 1 = d([α, β]). Example 10 illustrates how

the algorithm runs.

Example 10. Consider the interval [100, 200], with α = 100 = (01100100)2 and

β = 200 = (11001000)2. The algorithm inspects the bits in α and β starting from the

least significant one. If a 1 bit is seen in α, useful processing has to be done. The same

is equivalent for 0 bits in β. Bit 0 in β is 0, implying the addition to the minimal dyadic

cover of the interval [200, 201) and the new β becomes β(1) = 199 = (11000111)2. The

first bit in α that is equal with 1 is the third one. It forces the addition of the interval

[100, 104) to the minimal dyadic cover and α(1) = 104 = (01101000)2. The next steps of the

algorithm add the intervals [104, 112), [192, 200), [112, 128) and [128, 192) to the minimal

dyadic cover,

D([100, 200]) = {[100, 104), [104, 112), [112, 128), [128, 192), [192, 200), [200, 201)} (6–1)

At this point, α(3) = 128 = (10000000)2 and β(3) = 127 = (01111111)2, and the algorithm

returns. Notice that α(3) equals the dyadic cut-point of the interval, d([100, 200]) = 27 =

128.

Algorithm MinimalDyadicCover 6.8 has running time O(log(β − α)) if the elementary

operations on integers take O(1) time (as it is the case for implementations on real

computers). If the notion of dyadic cut-point is not developed and Lemma 3 is not proved,

126

the intuitive algorithm to find the minimal dyadic cover of an interval is: find the largest

dyadic interval contained in [α, β]; add this dyadic interval to the minimal dyadic cover

and then recurse on the start and end left-over parts of [α, β]. The largest dyadic interval

contained in a given interval can be found in O(log(|I|) steps and this has to be done

for each of O(log(β − α)) dyadic intervals in the decomposition of [α, β], resulting in

an O(log(|I|) log(β − α)) algorithm. Notice that there is an O(log(|I|) gap between the

two algorithms. This is due to the fact that the algorithm we provide cleverly avoids the

search for the maximal dyadic interval and it is able to determine what dyadic intervals

are in the minimal cover by simply inspecting the bit representation of the end-points α

and β.

The main conclusion of the above mathematical formalization is that any interval

can be decomposed efficiently in at most a logarithmic number of dyadic intervals.

This implies that instead of identifying an interval by all the points it contains, we can

represent the interval by its minimal dyadic cover. Thus, a reduction from a linear-size

representation to a logarithmic-size representation is obtained. As we will see, this is a

significant improvement in the sketching context. Moreover, determining the minimal

dyadic cover of an interval can be implemented very efficiently by considering only the

binary representation of the interval end-points.

6.3.2 Dyadic Mapping Method

DMAP [18] employs dyadic intervals for efficiently sketching intervals in the context

of the size of join between a point relation and an interval relation. As already mentioned,

the dyadic representation of an interval is more compact than the point representation.

DMAP method uses dyadic intervals in order to reduce the representation of an

interval, thus making possible the efficient sketching of intervals (see [18, 33, 51] for

details). DMAP is based on a set of three transformations (Figure 6-3) to which the size of

join operation is invariant. The original domain is mapped into the domain of all possible

dyadic intervals that can be defined over it. An interval in the original domain is mapped

127

into its minimal dyadic cover in the new domain. By doing this, the representation of the

interval reduces to at most a logarithmic number of points in the new domain, i.e., the

number of sketch updates reduces from linear to logarithmic in the size of the interval.

At the same time, a point in the original domain maps to the set of all dyadic intervals

that contain the point in the new domain, thus increasing the number of sketch updates

from one to logarithmic in the size of the original domain. DMAP allows the correct

approximation of the size of join in the mapped domain with the added benefit that the

sketch of each relation can be computed efficiently since both for an interval, as well as a

point, at most log |I| = n dyadic intervals have to be sketched.

[18] prove that the size of join between a point relation and an interval relation is

invariant to these transformations, that is, the size of join over the original domain is

equal with the size of join over the mapped domain. The intuition behind the proof lies

on the fact that for each point in an interval there exists exactly one dyadic interval in the

minimal dyadic cover that contains that point.

The application of any of the sketching methods in the dyadic domain is straightforward.

For a point, the sketch data structure is updated with all the dyadic intervals that contain

the point (exactly log |I| = n). For an interval, the sketch is updated with the dyadic

intervals contained in the minimal dyadic cover (at most 2n − 2, but still logarithmic in

the size of the interval). Specifically, in the case of AGMS sketches all the counters are

updated for each dyadic interval, while in the case of hash-based sketches (Fast-AGMS,

Fast-Count, Count-Min) only one counter in each row is updated for each dyadic interval.

Notice that the update procedure is identical to the procedure for point data streams since

a dyadic interval is represented as a point in the dyadic domain. Once the sketches for

the two data streams are updated, the estimation procedure corresponding to each type of

sketch described in Section 4.2 is immediately applicable.

The experimental results in [51] showed that DMAP has significantly worse

performance, as much as a factor of 8, than fast range-summable methods for AGMS

128

sketches. We provide an explanation for this behavior based on the statistical analysis in

Section 5.2 and the empirical results in Section 4.4. At the same time, we provide evidence

that the performance of DMAP for hash-based sketches (Fast-AGMS in particular) cannot

be significantly better. To characterize statistically the performance of DMAP, we first

look at the distribution of the two data streams in the dyadic domain. The distribution

of the point data stream has a peak corresponding to the domain (the largest dyadic

interval) due to the fact that this dyadic interval contains all the points, so its associated

counters get updated for each streaming point. The dyadic intervals at the second level,

of size half of the domain size, also have high frequencies due to the same reason. As the

size of dyadic intervals decreases, their frequency decreases too, to the point it is exactly

the true frequency for point dyadic intervals. Unfortunately, the high frequencies in the

dyadic domain are outliers because their impact on the size of join result is minimal (for

example, the domain dyadic interval appears in the size of join only if the interval data

stream contains the entire domain as an interval). Practically, DMAP transforms the

distribution of the point data stream into a skewed distribution dominated by outliers

corresponding to large dyadic intervals. The effect of DMAP over the distribution of the

interval data stream is far less dramatic, but more difficult to quantify. This is due to

the fact that both the size of the interval and the position are important parameters.

For example, two intervals of the same size, one which happens to be dyadic and one

translated by only a position, can generate extremely different minimal dyadic covers

and, thus, distributions in the dyadic domain. Even without any further assumptions

on the distribution of the interval data stream, we expect the skewed distribution of the

point stream to affect negatively the estimate, due to the outliers corresponding to large

dyadic intervals. At the same time, we would expect not to have a significant difference

between AGMS (Fast-Count) and Fast-AGMS sketches unless the distribution of the

interval stream is also skewed towards large dyadic intervals. The reason for this lies in

the fact that since the point stream over the dyadic domain is skewed and the behavior

129

of the sketch estimators for the size of join of two streams with different Zipf coefficients

is governed by the smallest skew factor, the overall behavior is determined by the skew of

the interval stream. Figure 5-11 shows a significant difference between FC and F-AGMS

only when both streams are skewed.The experimental results in Section 6.6 verify these

hypotheses.

An evident drawback of DMAP is that it cannot be extended easily to the case when

both input data streams are given as intervals. If the sketches are simply updated with the

dyadic intervals in the minimal dyadic cover, the size of join of the points in the dyadic

domain is computed which is different from the size of join in the original domain because

a point in the dyadic domain corresponds to a range of points in the original domain.

Updating one of the sketches with the product of the size of the dyadic interval and the

frequency instead of only the frequency seems to be an easy fix that would compensate for

the reduction in the representation. This is not the case because a point can be part of

different dyadic intervals with different sizes, situation that is not caught by moving in the

dyadic domain.

6.3.3 Algorithm DMAP COUNTS

A possible improvement to the basic DMAP method is to keep exact counts for large

dyadic intervals in both streams and to compute sketches only for the rest of the data. By

doing this, the distribution of the point stream in the dyadic domain becomes closer to the

original distribution since the effect of the outliers is neutralized. The contribution of the

large dyadic intervals to the size of join is computed exactly through the counts, while the

contribution of the rest of dyadic intervals is better approximated through the sketches.

Although the evident resemblance between this technique and other types of complex

sketches, e.g., count sketches [11], skimmed sketches [28], and red sketches [29], there is

a subtle difference. While for all the other techniques the high frequencies have to be

determined and represent an important fraction of the result, in this case they are known

before and represent an outlier whose effect has to be minimized. In order to quantify

130

the error of this method and to determine the optimal number of exact counts, similar

solutions to [11, 29] can be applied with the added complexity of dealing with interval

distributions over a dyadic domain. The deeper insights such an analysis could reveal

are hard to determine since even the exact behavior of DMAP is only loosely quantified

in [18, 51]. The empirical results we provide in Section 6.6 show that the improvement is

effective.

6.4 Fast Range-Summable Generating Schemes

In Section 6 we have seen that DMAP is the state-of-the-art solution for sketching

intervals. DMAP uses dyadic mappings in order to reduce the size of an interval,

thus decreasing the number of random variables that have to be generated. The fast

range-summation property is the ability to compute the sum of random variables in an

interval in time sub-linear in the size of the interval – the alternative is to generate and

sum-up the values ξi for each i in the interval. This property is a characteristic of the

generating scheme and it is formally defined in [9]:

Definition 8. A generating scheme for two-valued k-wise independent random variables is

called fast range-summable if there exists a polynomial-time function g such that

g([α, β], S) =
∑

α≤i≤β

ξi(S) =
∑

α≤i≤β

(−1)f(S,i) (6–2)

where α, β, and i are values in the domain I, with α ≤ β.

Computing the function g over general [α, β] intervals is usually not straightforward.

The task is simpler for dyadic intervals (see Section 6.3.1) due to their regularity.

Fortunately, any scheme that is fast range-summable for dyadic intervals can be extended

to general intervals [α, β] by simply determining the minimal dyadic cover, computing

the function g over each dyadic interval in the cover, and then summing-up these results.

Since the decomposition of any [α, β] interval contains at most a logarithmic number

of dyadic intervals, fast range-summable algorithms for dyadic intervals remain fast

range-summable for general intervals. Notice how dyadic intervals are used in different

131

ways for fast range-summation and in DMAP. While DMAP represents an interval by

its minimal dyadic cover and random variables are generated for each dyadic interval

in the cover, dyadic intervals speed-up the summing of the random variables in fast

range-summation methods.

In this section, we study the fast range-summation property of the generating schemes

presented in Section 3.1. For 2-wise independent random variables, both the BCH3 scheme

and its EH3 variant are fast range-summable. [8] show that the Toeplitz family of hash

functions is fast range-summable. Since for two-valued random variables the Toeplitz

scheme is equivalent with BCH3, the algorithm we introduce for BCH3 also applies for

the Toeplitz scheme. For the 4-wise case, the Reed-Muller generating scheme is the only

scheme known to be fast range-summable [9, 32].

As suggested in [43], reducing the range-summing problem to determining the number

of boolean variables assignments that satisfy an XOR-AND logical expression, and

using the results in [23], is a formal method to determine if a generating scheme is fast

range-summable. We apply this method to show that neither BCH5 nor the polynomial

schemes are fast range-summable.

6.4.1 Scheme BCH3

We prove that BCH3 is fast range-summable and we provide an average case constant

time O(1) algorithm for computing the sum of the ±1 random variables in any [α, β]

interval. The BCH3 generating function f has the following form:

f(S, i) = [s0, S0] · [1, i] = s0 ⊕
n−1⊕
k=0

S0,k � ik (6–3)

where ⊕ denotes the bitwise XOR, and � denotes the bitwise AND. Both S0 and i are

vectors over the space GF (2)n. Given two vectors in GF (2)n, α and β, with α ≤ β, when

interpreted as binary numbers, the problem of fast range-summing function f over the

132

interval [α, β] is to compute the function g defined below:

g([α, β], S) =
∑

α≤i≤β

(−1)f(S,i)

=
∑

α≤i≤β

(−1)[s0,S0]·[1,i] =
∑

α≤i≤β

(−1)s0⊕
Ln−1

k=0 S0,k�ik

(6–4)

Notice that the operations that involve the seed and the index variable are over GF (2),

but the summation over the interval [α, β] is in Z. Initially, we consider that the interval

[α, β] is dyadic. This means that it has the form [q2j, (q + 1)2j), with 0 ≤ j ≤ n and

0 ≤ q ≤ 2n−j − 1. Lemma 4 shows how to evaluate the function g for the BCH3 scheme

over a dyadic interval. The results in Proposition 1 and 2 are used for the subsequent

proofs.

Lemma 4. Let [q2j, (q + 1)2j) be a dyadic interval with 1 ≤ j ≤ n and 0 ≤ q ≤ 2n−j − 1,

and let function g be defined as:

g([q2j, (q + 1)2j), S) =

(q+1)2j−1∑
i=q2j

(−1)f(S,i) (6–5)

where S = [S0, s0], with S0 a vector in GF (2)n and s0 ∈ {0, 1}, and function f is defined

as f([S0, s0], i) = s0 ⊕
⊕n−1

k=0(S0,k � ik). Then, function g can take the following values:

g([q2j, (q + 1)2j), [S0, s0]) =

 0 , if 2j does not divide S0

2j · (−1)f([S0,s0],q2j) , if 2j divides S0

(6–6)

Proof. Function f can be rewritten as follows for the interval [q2j, (q + 1)2j) :

f([S0, s0], i) = s0 ⊕
n−1⊕
k=j

(S0,k � ik)⊕
j−1⊕
k=0

(S0,k � ik)

= C ⊕
j−1⊕
k=0

(S0,k � ik)

(6–7)

where C ∈ {0, 1} is constant for a given S0. This was possible because the most significant

n− j bits of a [q2j, (q + 1)2j) dyadic interval are identical for all the values in the interval.

133

Function g becomes:

g([q2j, (q + 1)2j), S) =

(q+1)2j−1∑
i=q2j

(−1)C⊕
Lj−1

k=0(S0,k�ik) (6–8)

Applying Proposition 2 for the expression C ⊕
⊕j−1

k=0(S0,k � ik) (provided that S0,k 6= 0,

0 ≤ k < j), we know that the values 0 and 1 are taken equally often, thus the sum in

function g gives the result 0. When all the j least significant bits of S0 are equal to 0, that

is, 2j divides S0, function f equals the constant C and function g can be written as:

g([q2j, (q + 1)2j), S) =

(q+1)2j−1∑
i=q2j

(−1)C

= 2j · (−1)C

(6–9)

where C = s0 ⊕
⊕n−1

k=j (S0,k � ik). In order to evaluate C and function g, it is enough to

compute function f for any of the points in the dyadic interval, for example q2j.

Lemma 4 gives a method to compute the sum of the BCH3 random variables for any

dyadic interval [q2j, (q + 1)2j) in a constant number of operations. Notice that, for the

majority of cases, there is no need to generate even one random variable in the interval

to find the result of the summation. Only when S0 is a multiple of 2j a computation of

the function f is required in order to compute the sum. The value of the sum in this

particular case is either −2j or 2j.

Thus far, we have seen that it is possible to fast range-sum the BCH3 random

variables over a dyadic interval by generating at most one of the variables in the interval.

The generation is required only when the least significant j bits in S0 are all equal to 0.

When this is not the case, i.e., there is at least one bit equal to 1, we know the result of

the summation without computing anything. Verifying that the least significant j bits

in the binary representation of a value are all equal to 0 can be done efficiently on any

processor, e.g., AND-ing with 2j+1 − 1. We conclude that, in order to fast range-sum

BCH3 random variables over a dyadic interval [q2j, (q + 1)2j), it is enough to analyze the

134

values of the least significant j bits in S0 and, sometimes, to generate one of the variables

in the interval. Both these tasks can be carried out efficiently.

The general fast range-summing problem is to compute the function g defined in

(6–4) for any interval [α, β], α ≤ β. As we know from Section 6.3.1, any interval can be

represented as a union of dyadic intervals. By decomposing the interval [α, β] into its

minimal dyadic cover D([α, β]) = {δ1, δ2, . . . , δm}, function g can be rewritten as:

g([α, β], S) =
∑

α≤i≤β

(−1)f(S,i) =
∑

i∈∪m
k=1δk

(−1)f(S,i)

=
∑
i∈δ1

(−1)f(S,i) +
∑
i∈δ2

(−1)f(S,i) + · · ·+
∑
i∈δm

(−1)f(S,i)

(6–10)

where δk, 1 ≤ k ≤ m, are dyadic intervals. Algorithm MinimalDyadicCover 6.8 computes

the minimal dyadic cover of an interval [α, β], while Lemma 4 shows how to efficiently

compute each of the sums in (6–10). The straightforward implementation of these two

steps results into a fast range-summable algorithm for the BCH3 generating scheme

since the number of intervals in the minimal dyadic cover is logarithmic in the size of

the interval and the computation of the sum over each of these intervals needs constant

time. We go one step further and introduce an algorithm that overlaps these two steps,

decomposition and summation. Besides overlapping these two stages, the algorithm we

propose has strong early termination conditions that make it a constant time algorithm

for the average case (over the seed space), improving considerably over the existing

logarithmic fast range-summable algorithms.

Instead of computing function g directly over the interval [α, β], we write it as a

difference over the intervals [0, β + 1) and [0, α), g([α, β], S) = g([0, β + 1), S)− g([0, α), S).

The advantage of this form comes from the fact that the minimal dyadic cover of a [0, γ)

interval, γ ∈ GF (2)n, can be directly determined from the binary representation of γ. If

γ = γn−1γn−2 . . . γ0, γk ∈ {0, 1} for 0 ≤ k < n, the minimal dyadic cover of the interval

[0, γ) contains a size 2k interval for every γk equal with 1. Based on this observation and

on Lemma 4, Algorithm BCH3Interval 6.8 computes function g over any [0, γ) interval.

135

Lines 1 − 2 initialize the variables sum and γ′. sum stores the result of function g.

γ′ is just a substitute of γ that is modified inside the algorithm. When γ is odd, that is,

D([0, γ) contains a point interval, function f is computed separately for it (Lines 3 − 5).

The for-loop in the Lines 6− 15 is the core of the algorithm. It detects the dyadic intervals

in D([0, γ)) and computes the sum of the random variables inside them according to

Lemma 4.

There exist two exit points from the algorithm inside the for-loop. The first one

(Lines 8 − 9) is straightforward: the algorithm returns when the range-sum is computed

over the entire interval. In this case γ′ equals 0 since it is decremented after the detection

of each interval in the minimal dyadic cover. The second exit point in the for-loop (Lines

10 − 11) is more interesting. We know from Lemma 4 that the range-sum is determined

without any computation for dyadic intervals that have non-zero corresponding bits in the

seed S0. We iterate through the intervals in the dyadic cover in ascending order of their

size and the existence of a single one bit in S0 automatically determines the range-sum for

all subsequent intervals in the cover. This enables us to compute the value of function g

without generating other random variables (we know that the sum is 0 in this case).

Lines 12 − 15 correspond to the case when the least significant k bits in S0 are all

equal to 0. As shown in Lemma 4, a random variable inside the dyadic interval has to

be generated in this case. The subtraction in Line 14 imposes that the random variable

corresponding to the first point in the dyadic interval is generated. Line 16 contains the

last exit point. It can be attained only when the seed S0 is equal to 0 and γn−1 equals to

1. Notice that the operations that appear in the algorithm imply computations with 2 and

its powers and that they can be efficiently implemented using bit operations (AND, XOR,

SHIFT, etc.).

Algorithm BCH3 6.8 shows how to correctly invoke BCH3Interval 6.8 for [α, β]

intervals. Notice that the first call to BCH3Interval 6.8 is with β + 1. This is necessary for

the correct computation of function g.

136

Example 11. We show how Algorithm BCH3 6.8 works for the interval [100, 202] and

the seeds s0 = 0, S0 = 184 = (10111000)2. sum1 is computed over the interval [0, 203),

while sum2 is calculated over the interval [0, 100). Their difference is returned. For 203 =

(11001011)2, function f is invoked first outside the for-loop, with γ′ = 202 = (11001010)2,

sum1 taking the value (−1)0 = 1. f is then invoked for γ′ = 200 = (11001000)2, giving

the result 2 · (−1)0 = 2. sum1 is updated to 3. The last time f is invoked for the interval

[0, 203), γ′ = 192 = (11000000)2 and the returned result is 23 · (−1)1 = −8, the value of

sum1 until this point being −5. At the next iteration k = 4 and S0,3 = 1 and the routine

BCH3Interval returns the value −5 for sum1. For 100 = (01100100)2 function f is called

only once, with γ′ = 96 = (01100000)2, sum2 taking the value 22 · (−1)1 = −4. At the

fourth iteration of the for-loop, −4 is returned for sum2. Finally, the range-sum of the

BCH3 function for the interval [100, 202] is −5− (−4) = −1.

Theorem 14. Let [α, β], α ≤ β, be an interval, where α, β ∈ GF (2)n, and seed

S = [S0, s0] be a vector over GF (2)n+1, i.e., S0 ∈ GF (2)n and s0 ∈ {0, 1}. Then,

Algorithm BCH3 6.8 computes the sum of the BCH3 random variables over the interval

[α, β].

Proof. Instead of range-summing over the interval [α, β], we apply Algorithm BCH3Interval 6.8

over the intervals [0, β + 1) and [0, α) and return the difference of these results.

Algorithm BCH3Interval 6.8 has two termination points: exhausting the entire

interval [0, γ) and detecting the first least significant one bit in S0. For every interval

that is part of the minimal dyadic cover D([0, γ)), γ is decreased accordingly. When the

entire minimal dyadic cover is determined, γ equals 0 and the algorithm returns. This

is the ordinary termination, for which the algorithm executes the for-loop a logarithmic

number of times in the size of the [0, γ) interval. A reduction to a constant number of

executions of the for-loop is provided by the second return point, the detection of the

first one bit in S0. We know from Lemma 4 that the range-sum over dyadic intervals that

depend on non-zero seeds S0 can be computed without generating any random variable

137

in the interval. Applying this result to the current [0, γ) interval that is a union of dyadic

intervals that depend on a non-zero seed S0, the range-sum can be immediately returned.

Algorithm BCH3Interval 6.8 returns the range-sum over [0, γ) intervals. The minimal

dyadic cover D([0, γ)) is encoded in the binary representation of γ and consists of the

intervals that have decreasing sizes as we go from 0 toward γ. That is, for D([0, γ)) =

{δ1, δ2, . . . , δγm}, |δ1| > |δ2| > · · · > |δγm| holds. The range-sum over each δk dyadic

interval, 1 ≤ k ≤ γm, is computed according to Lemma 4. Since the intervals are detected

in the increasing order of their sizes, it is possible to determine the value of the range-sum

without any other computation, when the fast termination condition is met: the partial

sum is 0, as stated in Lemma 4.

Theorem 15. Algorithm BCH3Interval 6.8 performs on expectation 2 computations

of the function f , one outside the loop and one inside the for-loop, given that the seeds

S = [S0, s0] are 2-wise independent and uniformly distributed over GF (2)n+1. For 100

seeds S, the average number of function f computations is between 1.723 and 2.277, while

for 1, 000 seeds it is inside the interval [1.912, 2.088]. For 10, 000 seeds it lies between 1.972

and 2.028. All these results have a 0.95 confidence probability.

Proof. We consider that γ has the worst value for our algorithm, e.g., γ =

n︷ ︸︸ ︷
1 . . . 11.

This way, it always generates a computation of the function f . We prove that the fast

termination condition makes the algorithm to execute the for-loop 1 time, on expectation,

giving a total of 2 function f computations.

For this, we have to determine the average number of 0 consecutive bits that appear

in the least significant positions of S0, knowing that S0 is uniformly distributed over the

space GF (2)n. Since the bits in S0 are independent, the probability of having exactly k

consecutive bits with value 0, 1 ≤ k ≤ n, preceded by a 1, is 1
2k+1 . We define the random

variable X as the number of least significant consecutive 0 bits in S0 over the uniform

probability space GF (2)n. The expected value of X, E[X], gives us exactly what we are

138

looking for, that is, the average number of least significant consecutive 0 bits in S0.

E[X] = 1 · 1

22
+ 2 · 1

23
+ · · ·+ n · 1

2n+1

=
1

2

n∑
k=1

k ·
(

1

2

)k

/ 1
(6–11)

E[X] is a derived power series with ratio 1
2

that converges to 1. For a complete

characterization of the random variable X, we also compute its variance, V ar[X], which

tells us what is the range around the expected value variable X takes values in.

V ar[X] = E[X2]− E2[X] (6–12)

E[X2] = 12 · 1

22
+ 22 · 1

23
+ · · ·+ n2 · 1

2n+1

=
1

2

n∑
k=1

k2 ·
(

1

2

)k

/ 3
(6–13)

V ar[X] = E[X2]− E2[X]

= 3− 12 / 2

(6–14)

Both the expectation and the variance of X have finite values, e.g., 1 and, respectively,

2. For a large enough number of seeds S, e.g., greater than 100, the central limit theorem

[54] can be applied. Let the random variable Y be defined as:

Y =

∑N
k=1 Xk

N
(6–15)

where N is the number of seeds S, N ≥ 100. Using the central limit theorem, we know

that random variable Y can be approximated by a normal distribution with parameters

E[Y] = E[X] and V ar[Y] = V ar[X]
N

. We determine the range of variable Y within a

0.95 confidence interval using the cumulative distribution function (cdf) of the normal

distribution that approximates Y .

Yl = 1 +
2√
N
· Erf−1(−0.95) (6–16)

139

Yr = 1 +
2√
N
· Erf−1(0.95) (6–17)

Yl and Yr are the left and right interval end-points, while Erf−1 is the inverse of the

error function [54]. Replacing N with 100, 1, 000 and 10, 000 in the above formulae, and

adding 1 for the out of loop function f computation, we obtain the results stated in the

theorem.

In Theorem 15 we considered that γ takes the worst value for our algorithm, e.g.,

γ =

n︷ ︸︸ ︷
1 . . . 11. In practice, this does not happen too often and the number of function f

computations could be smaller. If we assume that the bits in γ take the values 0 and 1

with the same probability, the number of computations of f reduces to half, i.e., 1. Also,

there exist cases when no computation of f is done, e.g., γ0 = 0 and S0,0 = 1, i.e., the least

significant bits in γ and S0 are 0 and, respectively, 1.

Corollary 5. Function f is computed on expectation 4 times when BCH3 random

variables are range-summed over [α, β] intervals.

Proof. Algorithm BCH3Interval 6.8 is called two times by Algorithm BCH 6.8 and each

invocation computes function f 2 times on expectation.

The result in Corollary 5 is for interval end-points α and β that are worst for our

algorithm, e.g., both α and β + 1 end in 11. In the average case, with the bits taking

the values 0 and 1 uniformly probable, the number of function f computations reduces

to 2. This result is the best we could hope for, that is, computing the range-sum over an

interval [α, β] by taking into consideration only its end-points, α and β.

6.4.2 Scheme EH3

Although [25] show that the random variables generated using the Extended

Hamming scheme (EH3) are fast range-summable, the algorithm contained in the proof

is abstract and not appropriate for implementation purposes. We propose a practical

algorithm for the fast range-summation of the EH3 random variables. It is an extension of

our constant-time algorithm for fast range-summing BCH3 random variables.

140

The following theorem provides an analytical formula for computing the range-sum

function g. Notice that only one computation of the generating function f is required in

order to determine the value of g over any dyadic interval.

Theorem 16. Let [q4j, (q + 1)4j) be a dyadic interval1 with size at least 4, j ≥ 1. The

range-sum function g([q4j, (q + 1)4j), S) =
∑(q+1)4j

i=q4j (−1)f(S,i) defined for EH3 scheme is

equal to:

g([q4j, (q + 1)4j), S) = (−1)#ZERO · 2j · (−1)f(S,q4j) (6–18)

where #ZERO represents the number of two adjacent pair bits that OR to 0 (i.e., the

number of groups of 00 bits).

Proof. The generating function f can be written for i ∈ [q4j, (q + 1)4j) as follows:

f(S, i) = f(S, q4j)⊕

S0,2j−1 � i2j−1 ⊕ S0,2j−2 � i2j−2 ⊕ i2j−1 � i2j−2 ⊕ · · ·⊕

S0,1 � i1 ⊕ S0,0 � i0 ⊕ i1 � i0

(6–19)

where the first part is fixed, while the last 2j bits of i take all the possible values. When

the value of the changing expression is 0, f(S, i) = f(S, q4j), while when its value is 1,

f(S, i) is the negation of f(S, q4j). We know that any expression of the form S0,j � ij ⊕

S0,j−1 � ij−1 ⊕ ij � ij−1 has a 3 : 1 distribution of the values, depending on the seed bits.

Thus, the sum
∑

(S0,j � ij ⊕ S0,j−1 � ij−1 ⊕ ij � ij−1) takes either the value 2 or −2 when

ij and ij−1 take all the possible values. When j blocks of this form are combined together,

the resulting sum will be 2j or −2j. For one block, the sum is 2 only when S0,j∨S0,j−1 = 0,

i.e., S0,j = S0,j−1 = 0. For multiple blocks that are XOR-ed, the result is 1 only when an

odd number of them takes the value 1. This implies that in order to obtain the result 2j,

S0,j = S0,j−1 = 0 has to be valid for an odd number of blocks. If we denote by #ZERO the

1 Although we call them dyadic intervals, these intervals are defined over powers of 4.

141

number of blocks for which the relation S0,j = S0,j−1 = 0 holds, the range-sum function g

can be written as:

g([q4j, (q + 1)4j), S) = (−1)#ZERO · 2j · (−1)f(S,q4j) (6–20)

Based on the results in Theorem 16, Algorithm EH3Interval 6.8 computes function

g([α, β], S) =
∑

α≤i≤β(−1)f(S,i) for any interval [α, β]. First, the minimal dyadic cover

of [α, β] is determined, then the sum over each dyadic interval is computed using (6–18).

Notice that these two steps can be combined, the computation of g being performed

while determining the minimal dyadic cover of [α, β]. The minimal dyadic cover can be

efficiently determined from the binary representation of α and β. Since any interval can

be decomposed into a logarithmic number of dyadic intervals, algorithm EH3Interval 6.8

computes function g in O(log(β − α)) steps.

Example 12. We show how Algorithm EH3Interval 6.8 works for the interval [124, 197]

and the seed S = [s0, S0] = [0, 184 = (10111000)2]. The minimal dyadic cover of [124, 197]

is

D([124, 197]) = {[124, 128), [128, 192), [192, 196), [196, 197), [197, 198)} (6–21)

#ZERO is equal with 1 for the given S0, the only pair OR-ing to 0 being the pair at the

end. It affects the dyadic intervals with powers greater than 0.

g([124, 197], S) = g([124, 128), S) + g([128, 192), S) + g([192, 196), S)+

g([196, 197), S) + g([197, 198), S)

= −21 · (−1)f(S,124) − 23 · (−1)f(S,128) − 21 · (−1)f(S,192)+

20 · (−1)f(S,196) + 20 · (−1)f(S,197)

= 2 + 8 + 2 + 1− 1 = 12

(6–22)

While fast range-summing BCH3 random variables is constant-time on average,

the EH3 algorithm is logarithmic in the size of the interval. Although both algorithms

142

compute partial sums over the dyadic intervals in the minimal dyadic cover, the BCH3

algorithm can return the final result after only a small number of function f invocations.

This is not the case for EH3, which requires one invocation for each dyadic interval in the

minimal dyadic cover.

6.4.3 Four-Wise Independent Schemes

In this section we investigate the fast range-summation property of the 4-wise

independent generating schemes presented throughout this work, namely BCH and

polynomials over primes. The discussion regarding the Reed-Muller scheme is deferred to

the next section.

The main idea in showing that some of the schemes are not fast range-summable is

to use the result in [23] on the problem of counting the number of times a polynomial

over GF (2), written as XOR of ANDs (sums of products with operations in GF (2)),

takes each of the two values in GF (2), as suggested by [43]. The result states that the

problem is #P-complete if any of the terms of the polynomial written as an XOR of ANDs

contains at least three variables. In our particular case, to show that a scheme is not

fast range-summable, it is enough to prove that for some seed S the generating function

f(S, i), written as an XOR of ANDs polynomial in the bits of i, contains at least one term

that involves three or more variables. The following results use this fact to show that the

BCH5 and the polynomials over primes schemes are not fast range-summable.

Theorem 17. BCH schemes are not fast range-summable for k ≥ 5 and n ≥ 4.

Proof. We show that fast range-summing BCH5 random variables is equivalent to

determining the number of assignments that satisfy a 3XOR-AND boolean formula,

problem that is known to be #P-complete. Since for k > 5 any BCH scheme can be

reduced to BCH5 for some particular values of the seed, i.e., S2 = S3 = · · · = Sk/2 = 0̄,

if BCH5 is not fast range-summable implies that BCHk is not fast range-summable, for

k > 5.

143

BCH5 necessitates the computation of i3 over the extension field GF (2n). If we

consider the bit representation of i, it can be shown that i3 is a 3XOR-AND boolean

formula for n > 3 (the idea is to use the bit equations of a multiplier). This reduction

implies that BCH5 is not fast range-summable.

Theorem 18. Let n = dlog pe be the number of bits the prime p > 7 can be represented on

and [q2l, (q + 1)2l) be a dyadic interval with l ≥ 3. Then, the function f(S, i) = [(a0 + a1i)

mod p] mod 2 is not fast range-summable over the interval [q2l, (q + 1)2l).

Proof. Without loss of generality, we consider that a0 = 0, a1 = p − 1, and show that

function g is a 3XOR-AND formula, implying that it is not fast range-summable. The

expression (p − 1)̄i mod p takes the values 0, p − 1, p − 2, . . . , p − 7 for ī = 0, 1, . . . , 7.

Out of these values, only p − 2, p − 4, and p − 6 are odd, function g taking the value 3. If

we express the result of function g as an XOR-AND formula in terms of i0, i1, and i2, we

obtain:

g(i2i1i0, S) = i1 ⊕ i2 ⊕ i1 � i0 ⊕ i2 � i0 ⊕ i2 � i1 ⊕ i2 � i1 � i0 (6–23)

which is a 3XOR-AND formula. We know that the number of assignments to i2, i1, i0 that

satisfy this formula cannot be determined in polynomial time. This implies that function f

is not fast range-summable over dyadic intervals of size at least 8.

Theorem 18 shows that for the polynomials over primes scheme with k = 2 there exist

values for the coefficients a0 and a1 that make the scheme not fast range-summable for

dyadic intervals with size greater or equal than 23 = 8. Since the schemes for k > 2 can be

reduced to [(a0 + a1i) mod p] mod 2 by making a2 = · · · = ak−1 = 0, it results that the

polynomials over primes scheme is not fast range-summable for any k ≥ 2.

6.4.4 Scheme RM7

Together with the negative result on the hardness of counting the number of times

an XOR of ANDs polynomial with terms containing more that three variables AND-ed,

[23] provided an algorithm for such counting for formulae that contain only at most two

144

variables AND-ed in each term. This algorithm, that we refer to as 2XOR-AND, can

be readily used to produce a fast range-summable algorithm for the 7-wise independent

Reed-Muller (RM7) scheme. An algorithm for this scheme based on the same ideas was

proposed in [9]. We focus our discussion on the 2XOR-AND algorithm, but the same

conclusions are applicable to the algorithm in [9].

The observation at the core of the 2XOR-AND algorithm is the fact that polynomials

with a special shape are fast range-summable. These are polynomials with at most two

variables AND-ed in any term and with each variable participating in at most one such

term. The other cases can be reduced to this case by introducing new variables that are

linear combinations of the existing ones. To determine these linear combinations in the

general case, systems of linear equations have to be constructed and solved, one for each

variable. The overall algorithm is O(n3), with n the number of variables, if the summation

is performed over a dyadic interval.

The 2XOR-AND algorithm can be used to fast range-sum random variables produced

by the RM7 scheme since in the XOR of ANDs representation of this scheme as a

polynomial of the bits of i (which is the representation used in Section 3.1) only terms

with ANDs of at most two variables appear. Using the 2XOR-AND algorithm for each

dyadic interval in the minimal dyadic cover of a given interval, the overall running time

can be shown to be O(n4) where the size of I, the domain, is 2n. While this algorithm is

clearly fast range-summable using the definition, in practice it might still be too slow to be

useful. Indeed this is the case, as it is shown in the empirical evaluation section where we

provide a running time comparison of the fast range-summable algorithms.

6.4.5 Approximate Four-Wise Independent Schemes

Since the RM7 fast range-summable algorithm is not practical and fast range-summable

algorithms for BCH5 and polynomials over primes schemes do not exist, it is worth

investigating approximation algorithms for the 4-wise case. While such approximations are

145

possible [40, 44], we show that they are not more practical than the exact algorithm for

RM7.

Let xaf be a multivariate polynomial in the variables x1, x2, . . . , xn over GF (2) and

having the form:

xaf (x1, x2, . . . , xn) = t1(x1, x2, . . . , xn)⊕ · · · ⊕ tm(x1, x2, . . . , xn) (6–24)

where for each j = 1, 2, . . . ,m, the term tj(x1, x2, . . . , xn) is the product of a subset of the

variables x1, x2, . . . , xn. The approximate XOR-AND counting algorithm introduced in [40]

needs 4m2 ln (2
δ
) 1

ε2
random trials – particular value assignments to all of the variables – to

provide a result with relative error at most ε with probability at least 1− δ. Each of these

trials necessitates the evaluation of the polynomial xaf at the particular assigned value. In

order to have an efficient approximate algorithm, the number of trials it evaluates should

be small. We show that for obtaining a good approximation of the range-sum problem, the

number of trials is comparable with the size of the interval even for the RM7 scheme, thus

making the algorithm impractical.

Figure 6-1 represents the number of evaluations of the polynomial xaf for the RM7

scheme. The ratio between the number of linear point-by-point evaluations and the

number of evaluations invoked by the approximate algorithm in [40] is plotted for a

number of variables that ranges between 1 and 32. The number of terms m in the

RM7 polynomial is n(n+1)
2

. In the average case, half of these terms are simplified by

corresponding 0 seeds, giving a total of n(n+1)
4

terms. In order to obtain a satisfactory

approximation of the XOR-AND counting result, we set the value of the factor ln (2
δ
) 1

ε2

to 103. All these give the value 103 · n2(n+1)2

4
for the number of trials employed by the

approximate XOR-AND counting algorithm. As the number of polynomial evaluations for

the linear case is 2n, the function plotted in Figure 6-1 is 2n

103·n
2(n+1)2

4

, where n takes values

in the range [1 . . . 32].

146

The results in Figure 6-1 are not very encouraging. Only when the number of

variables is greater than 25, the approximate algorithm needs less polynomial evaluations

than the direct exhaustive method. But this implies intervals of extremely large size

that are unlikely to appear in practice. If we also take into account the fact that the

provided result is not exact and its error could propagate exponentially, we think that

the approximate XOR-AND counting algorithm is not applicable to the range-summing

problem.

6.4.6 Empirical Evaluation

We implemented the fast range-summable algorithms for the BCH3, EH3, and RM7

schemes and we empirically evaluated them with the same experimental setup as in

Section 3.1.10. The evaluation procedure is based on 100 experiments that use a number

of randomly generated intervals and an equal number of sketches chosen for each method

such that the overall running time is in the order of minutes in order to obtain stable

estimates of the running time per sketch. The results, depicted in Table 6-1, are the

average of the 100 runs and have errors of at most 5%. Notice that the execution time of

BCH3 for ranges is merely 7 times larger than the execution time for a single sketch (refer

to Table 3-3 for the running times of individual sketches). This happens because, as we

mentioned earlier, our algorithm for BCH3 is essentially O(1). The Extended Hamming

scheme EH3 has an encouraging running time of approximately 1.8 µs, thus about 550, 000

such computations can be performed per second on a modern processor. The RM7 fast

range-summable algorithm is completely impractical since only about 40 computations can

be performed per second. This is due to the fact that the algorithm is quite involved (a

significant number of systems of linear equations have to be formed and solved). Even if

special techniques are used to reduce the running time, at most a 32 factor reduction is

possible and the scheme would be still impractical.

147

The net effect of these experimental results and of the theoretical discussions in this

section is that there is no practical fast range-summable algorithm for any of the known

4-wise generating schemes, while the algorithm for BCH3 is extremely efficient.

6.5 Fast Range-Summation Method

While DMAP uses mappings in the dyadic domain in order to sketch intervals

efficiently, fast range-summation methods are based on properties of the random variables

that allow the sketching of an interval in a number of steps sub-linear in the size of the

interval. Specifically, the sum of random variables over dyadic intervals is computed in a

constant number of steps and, since there exists a logarithmic number of dyadic intervals

in the minimal dyadic cover of any interval, the number of steps to sketch the entire

interval is logarithmic in its size. [51] show that fast range-summation is a property of the

generation scheme of the random variables and that there exist only two practical schemes

applicable to AGMS sketches, EH3 and BCH3, respectively. Moreover, the performance

of BCH3 is highly sensitive to the input data, so we consider only EH3 in this chapter.

[51] use fast range-summation only in the context of AGMS sketches where the update

of each key (interval) affects each counter in the sketch structure. More exactly, for all

the elements in an interval, the same counter has to be updated (and all the counters

overall). This is not the case anymore for hash-based sketches where different counters are

updated for different keys (unless they are hashed into the same bucket). In this section

we show that fast range-summation and random hashing are conflicting operations and,

consequently, fast range-summation is not applicable to hash-based sketches (Fast-AGMS,

Fast-Count, Count-Min). Fortunately, we show that fast range-summation for AGMS

sketches can be applied in conjunction with deterministic partitions of the domain without

loss in error, but with a significant improvement in the update time.

As mentioned in Section 4.2, the main drawback of AGMS sketches is the update

time. For each stream element, each counter in the sketch structure has to be updated.

Essentially, each counter is a randomized synopsis of the entire data. Fast range-summation

148

exploits exactly this additive property to sketch intervals efficiently since the update

corresponding to each element in the interval has to be added to the same counter.

Hash-based sketches partition randomly the domain I of the key attribute and associate

a single counter in the sketch structure with each of these partitions. For each stream

element, only the counter corresponding to its random partition is updated, thus the

considerable gain in update time. In order to determine if fast range-summation can be

extended to hash-based sketches, we focus on the interaction between random hashing,

whose goal is to partition evenly the keys into buckets, and the efficient sketching of

continuous intervals for which the maximum benefit is obtained when all the elements

in the interval are placed into the same bucket. The following proposition relates the

number of counters that have to be updated in a hash-based sketch to the size of the input

interval:

Proposition 11. Given a hash function h : I → B and an interval [α, β] of size l, the

number of buckets touched by the function h when applied to the elements in [α, β] is on

expectation B
[
1−

(
1− 1

B

)l]
.

Proof. Let Xi be a 0/1 random variable corresponding to each of the B buckets of the

hash function h, 0 ≤ i < B. Xi takes the value 1 when at least one element in the range

[α, β] is hashed into the bucket i and the value 0 otherwise:

Xi =

 1 , if ∃j ∈ [α, β] with h(j) = i

0 , otherwise
(6–25)

The expected value E [Xi] can be computed as:

E [Xi] = P [Xi = 1] = 1− P [Xi = 0] = 1−
(

1− 1

B

)l

(6–26)

149

since the probability of an element to be hashed in the ith bucket is 1
B

. The expected value

of the number of buckets touched by h over [α, β] is then:

E [X] = E

[
B−1∑
i=0

Xi

]
=

B−1∑
i=0

E [Xi] = B

[
1−

(
1− 1

B

)l
]

(6–27)

where X is defined as X =
∑B−1

i=0 Xi.

In order to give some practical interpretation to the above proposition, we consider

the size l to be proportional with the number of buckets B, i.e., l = kB, for k > 0. This

allows us to rewrite Equation 6–27 as:

B

[
1−

(
1− 1

B

)l
]

= B

[
1−

(
1− 1

B

)kB
]
≈ B

(
1− 1

ek

)
(6–28)

where we used the approximation 1
e

= limB→∞
(
1− 1

B

)B
.

Corollary 6. For a hash function with B buckets, 63.21% of the buckets are touched on

expectation when h is applied to an interval of size B. The number of buckets increases to

86.46% when the size of the interval is twice the number of buckets B, and to 98.16% for

k = 4.

The above corollary states that for intervals of size at least four times the size of the

hash almost all the buckets are touched on expectation. This eliminates completely the

effect of hashing for sketching intervals since AGMS sketches already require the update

of each counter in the sketch. The difference is that for AGMS sketches each counter is

updated with the entire interval, while for hash-based sketches a counter is updated only

with the elements in the interval assigned to the random partition corresponding to that

counter. Although the number of updates per counter is smaller for hash-based sketches,

determining how many (and which) elements in the given interval update the same

counter without looking at the entire interval is a difficult problem. The only solution

we are aware of is for 2-universal hash functions, so applicable only to Fast-AGMS and

Count-Min sketches. It consists in applying the sub-linear algorithm proposed in [1] for

150

counting how many elements in the interval are hashed into a range of buckets either

for each bucket or for ranges of increasing size. Notice that this actually is not even

enough for Fast-AGMS sketches for which the interaction between hashing and EH3

(or BCH3) [51] has to be quantified. While fast range-summation takes advantage of

properties of the generating scheme for the particular form of dyadic intervals, determining

the contribution of the elements in the same random partition without considering each

element separately has to be more difficult due to the lack of structure. Consequently,

fast range-summation is directly applicable only to Count-Min sketches throughout the

hash-based sketching techniques, with the requirement that each counter is updated when

sketching an interval.

Fast Range-Summation with Domain Partitioning: The intermediate solution

between AGMS sketches, which update all the counters, and hash-based sketches, which

update only one counter for a given key, is sketch partitioning [20]. The domain I is

partitioned in continuous blocks rather than random blocks. A number of counters from

the sketch structure proportional to the size of the block is assigned to each block. When

the update of a key has to be processed, only the counters in the block corresponding to

that key are updated. This method can be easily extended to fast range-summing intervals

without the need to update all the counters unless the size of the interval is close to the

size of the domain. The intersection between the given interval and each partition is first

determined and, for each non-empty intersection, the fast range-summation algorithm is

applied only to the set of associated counters. Thus, a number of counters proportional

with the number of non-empty intersections (and indirectly proportional to the size of the

interval) has to be updated. In what follows we provide an example to illustrate how fast

range-summation with sketch partitioning works.

Example 13. Consider the domain I = {0, . . . , 15} to be split into 4 equi-width partitions

as depicted in Figure 6-4. For simplicity, assume that the available AGMS sketch consists

of 8 counters which are evenly distributed between the domain partitions, 2 for each

151

partition. Instead of having a single estimator for the entire domain, a sketch estimator

combining the counters in the partition is built for each partition. The final estimator is

the sum of these individual estimators corresponding to each partition.

Figure 6-4 depicts the update procedure for the interval [2, 7]. The non-empty in-

tersections [2, 3] and [4, 7] correspond to partition 0 and 1, respectively. The fast range-

summation algorithm is applied to each of these intervals only for the counters associated

with the corresponding domain partition, not for all the counters in the sketch. In our

example, fast range-summation is applied to interval [2, 3] and the two counters associated

to partition 0, and to interval [4, 7] and the two counters associated to partition 1, respec-

tively. Overall, only four counters are updated, instead of eight, for sketching the interval

[2, 7].

The advantage of domain partitioning is the fact that the update time is smaller when

compared to the basic fast range-summation method. This is the case because only a part

of the sketch has to be updated if the interval is not too large with respect to the size of

a partition. In particular, only the sketches corresponding to the partitions that intersect

the interval need to be updated which means that the speedup is proportional to the

ratio between the number of partitions and the average number of partitions an interval

intersects. When points are sketched, only the counters corresponding to the partition the

point belongs to need to be updated instead of all the counters in the sketch. In the above

example only two counters have to be updated for each point, instead of eight.

Notice that, as shown in [20], any partitioning of the domain can be used and the

number of counters associated to each partition can also be different from partition to

partition. More precisely, any partitioning and any allocation scheme for the counters

results in an unbiased estimator for the size of join. An important question though is

what is the variance of the estimator, which is an indicator for the accuracy. In [20] a

sophisticated method to partition and allocate the counters per partition was proposed in

order to minimize the variance of the estimator. For gains to be obtained, regions of the

152

domain where high frequencies in one stream match small frequencies in the other have

to be identified. Since in this particular situation we do not expect large frequencies for

the interval stream, as explained in Section 6.3, we do not expect the sketch partitioning

technique in [20] to be able to reduce the variance significantly. Moreover, using the

fact that the variance of the estimator remains the same if the partitioning is random

(see Proposition 3), as long as there does not exist significant correlation between the

partitioning scheme and the input frequencies, we expect the variance of the estimator to

remain the same. The expected distribution of the interval frequencies also suggests that

a simple equi-width partitioning should behave reasonably well. Indeed, the experimental

results in Section 6.6 show that this partitioning is effective in reducing the update time

while the error of the estimate remains roughly the same.

6.6 Experimental Results

In this section we present the results of the empirical study designed to evaluate

the performance of five of the algorithms for efficiently sketching intervals introduced

previously. The five methods tested are: AGMS DMAP, F-AGMS DMAP (F-AGMS),

F-AGMS DMAP with exact counts (F-AGMS COUNTS), fast range-summation AGMS

(AGMS), and fast range-summation AGMS with sketch partitioning (AGMS P). Methods

based on Count-Min sketches are excluded due to their high sensitivity to the input

data, while for Fast-Count sketches the same behavior as for AGMS is expected (see

Section 4.4), where applicable. The accuracy and the update time per interval are the two

quantities measured in our study for the size of spatial join problem involving intervals

(see [18]). But first, we want to compare EH3 with DMAP [18] (see Section 6.3) on the

two applications introduced in Section 6.1, namely, size of spatial joins and selectivity

estimation for histograms construction. The comparison with BCH3 is omitted since

its error is significantly higher when compared to EH3 or DMAP. We do not perform

comparisons with the fast range-summable version of the Reed-Muller scheme (RM7) since

153

its throughput is not higher than 40 sketch computations per second (EH3 is capable of

performing more than 550, 000 sketch computations per second as shown in Section 6.4).

Following the experimental setup in [18, 51], three real data sets are used in our

experiments: LANDO, describing land cover ownership for the state of Wyoming and

containing 33, 860 objects; LANDC, describing land cover information such as vegetation

types for the state of Wyoming and containing 14, 731 objects; and SOIL, representing the

Wyoming state soils at a 1 : 105 scale and containing 29, 662 objects. The use of synthetic

generators for interval data is questionable because it is not clear what are acceptable

distributions for the size of the intervals, as well as the position of the interval end-points.

In a similar manner to Section 4.4, each experiment is performed 100 times and either the

average relative error, i.e., |actual−estimate|
actual

, or the median update time over the number of

experiments is reported.

EH3 vs DMAP for Spatial Joins: We used the same experimental setup as in [18]

to compare EH3 and DMAP for approximating the size of spatial joins. The average error

for estimating the size of spatial joins for both EH3 and DMAP is depicted in Figure 6-5,

6-6, and 6-7. The sketch size varies between 4 and 40 K words of memory. Notice that

in all the experiments EH3 significantly outperforms DMAP by as much as a factor of 8.

This means that DMAP needs as much as 64 times more memory in order to achieve the

same error guarantees.

Table 6-2 contains the timing results for sketching intervals using the two practical

fast range-summable schemes (BCH3 and EH3) and the DMAP method. We present

the average time for sketching an interval from each of the real datasets. As expected,

BCH3 is the fastest scheme both for sketching only the interval, but also for sketching the

interval as well as its end-points. The time to sketch an interval using DMAP is about

half the time used by the EH3 fast range-summable algorithm. When sketching both the

interval and its end-points, as is the case for the size of join between an interval relation

and a point relation, the ratio reverses – DMAP uses twice as much time as EH3. This

154

happens because DMAP uses a logarithmic number of points (in the size of the domain) to

represent each interval end-point, while EH3 has to generate only two random variables,

one for each end-point.

The difference between the results reported in Table 6-2 and the previous results

(Table 3-3 and 6-1) is due to the timing procedure. While for the previous results we

measured only the generating/fast range-summing time, the results in Table 6-2 also

include the overhead time (routine invocation, etc.).

EH3 vs DMAP for Selectivity Estimation: To compare EH3 and DMAP on

the task of selectivity estimation, we used the synthetic data generator from [20]. It

generates multi-dimensional data distributions consisting in regions, randomly placed

in the two-dimensional space, with the number of points in each region Zipf distributed

and the distribution within each region Zipf distributed as well. For the experiments we

report here, we generated two-dimensional datasets with the domain for each dimension

having the size 1024. A dataset consists of 10 regions of points. The distribution of the

frequencies within each region has a variable Zipf coefficient, as shown in Figure 6-8.

Notice that for small Zipf coefficients EH3 outperforms DMAP by a factor of 14. When

the Zipf coefficient becomes larger, the gap between DMAP and EH3 shrinks considerably,

but EH3 still outperforms DMAP by a large margin.

Accuracy: We pursue two goals in our accuracy experiments. First, we determine

the dependence of the average relative error on the memory budget, i.e., the number

of counters in the sketch structure. For this, we run experiments with different sketch

configurations having either 4 or 8 rows in the structure and varying the number of

counters in a row between 64 and 1024. Second, we want to establish the relation between

the accuracy and the number of partitions for AGMS P. For this, we distribute the

counters in the sketch into 4 to 64 groups corresponding to an equal number of partitions

of the domain. Given the previous results in [51] for AGMS and AGMS DMAP, we

expect the results for F-AGMS to be close to AGMS DMAP, with some improvement for

155

F-AGMS COUNTS which eliminates the effect of outliers to some extent. At the same

time, we expect that partitioning does not significantly deteriorate the performance of

AGMS P unless it is applied to the extreme where only one counter corresponds to each

partition.

Figure 6-9 depicts the accuracy results for a specific parameter configuration. The

same trend was observed for the other settings, with the normal behavior for the confined

action of each parameter. As expected, the error decreases as the memory budget increases

for all the methods (left plot). The behavior of DMAP methods is more sensitive to the

available memory, without a significant difference between AGMS and F-AGMS sketches,

but still slightly favorable to F-AGMS. What is significant is the effect of maintaining

exact counts for F-AGMS DMAP. The error reduces drastically, to the point it is almost

identical with the error of fast range-summation AGMS, the most accurate of the studied

methods. This is due to limiting the effect of outliers that would otherwise significantly

deteriorate the accuracy of the sketch. Notice the reduced levels of the error for fast

range-summation methods even when only low memory is available. Our second goal was

to detect the effect partitioning has on the accuracy of fast range-summation AGMS. From

the right plot in Figure 6-9, we observe that partitioning has almost no influence on the

accuracy of AGMS, the errors of the two methods being almost identical even when a

significant number of partitions is used. Clearly, we expect the accuracy to drop after a

certain level of partitioning, when the number of counters corresponding to a partition

is small. The error of the other methods is plotted in (b) only for completeness. The

fluctuations are due only to the randomness present in the methods since the experiments

were repeated with the same parameters for each different configuration of AGMS P.

Update Time: Our objective is to measure the time to update the sketch structure

for the presented sketching methods. For a sketch consisting of only one row of counters,

we know that the time is linear for AGMS sketches since all the counters have to be

updated. This is reflected in Figure 6-10 that depicts the update time per interval for

156

two sketch structures, one with 512 counters (left), and one with 4096 counters (right)2 .

Notice that Figure 6-10 actually plots the update time per interval as a function of the

number of partitions, thus the constant curves for all the methods except AGMS P. As

expected, the update time for AGMS P decreases as the number of partitions increases

since the number of counters in a partition decreases. The decrease is substantial for a

sketch with 512 counters, to the point where the update time is almost identical with

the time for DMAP over F-AGMS sketches, the fastest method. Notice the significant

gap of 2 to 4 orders of magnitude between the methods based on AGMS and those based

on F-AGMS sketches, with the update time for F-AGMS being in the order of a few

micro-seconds, while the update time for AGMS is in the order of milli-seconds.

6.7 Discussion

As it was already known [51], DMAP is inferior both in accuracy and update time

to fast range-summation for AGMS sketches, facts re-proved by our experimental results.

While DMAP can be used in conjunction with any type of sketching technique, fast

range-summation is immediately applicable only to AGMS sketches. In order to improve

the update time of AGMS, we propose AGMS P, a method that reduces the number of

counters that need to be updated by partitioning the domain of the key and distributing

the counters over the partitions. Even with a simple partitioning that splits the domain

into buckets with the same size, as is done for equi-width histograms, the improvement

we obtain is remarkable, the update time becoming comparable with that for F-AGMS

sketches, while the error remains as good as the error of fast range-summation AGMS.

The only improvement gained by using DMAP over F-AGMS sketches is in update time.

With a simple implementation modification that keeps exact counts for large dyadic

intervals (F-AGMS COUNTS), the error drops significantly and becomes comparable with

2 We used the same machine as in Section 4.4.

157

the error of fast range-summation AGMS. The roots of this modified method lie in the

statistical analysis presented in Section 5.2.

Overall, to obtain methods for sketching intervals that have both small error and

efficient update time, the basic techniques (DMAP and fast range-summation) have to

be modified. F-AGMS COUNTS is a modification of DMAP over F-AGMS sketches with

extremely efficient update time and with error approaching the standard given by AGMS

for large enough memory. AGMS P is a modification of fast range-summation AGMS

that has excellent error and with update time close to that of F-AGMS sketches when the

number of partitions is large enough. In conclusion, we recommend the use of F-AGMS

COUNTS when the update time is the bottleneck and AGMS P when the available space

is a problem.

6.8 Conclusions

Our primary focus in this chapter was the identification of the fast range-summable

schemes that can sketch intervals in sub-linear time. We explain how the fast range-summable

versions of two of the 3-wise independent schemes, BCH3 and EH3, can be implemented

efficiently and we provide an empirical comparison with the only known 4-wise independent

fast range-summable scheme (RM7) that reveals that only BCH3 and EH3 are practical.

The EH3-based solutions significantly outperform the state-of-the-art DMAP algorithms

for applications such as the size of spatial joins and the dynamic construction of

histograms. BCH3 is the perfect solution for sketching highly-skewed interval data

since we provide a constant-time algorithm for range-summing BCH3 random variables.

Fast range-summation remains the most accurate method to sketch interval data.

Unfortunately, it is applicable only to AGMS sketches and, thus, it is not practical

due to the high update time. The solution we propose in this chapter is based on the

partitioning of the domain and of the counters in the sketch structure in order to reduce

the number of counters that need to be updated. The improvement in update time is

substantial, getting close to DMAP over Fast-AGMS sketches, the fastest method studied.

158

Moreover, by applying a simple modification inspired from the statistical analysis and the

empirical study of the sketching techniques, the accuracy of DMAP over F-AGMS can

be reduced significantly, to the point where it is almost equal with the accuracy of fast

range-summation over AGMS for large enough space. Considering the overall results for

sketching interval data, we recommend the use of the fast range-summation method with

domain partitioning whenever the accuracy is critical and the use of DMAP COUNTS

method over F-AGMS sketches in situations where the time to maintain the sketch is

critical.

159

MinimalDyadicCover([α, β])

1 j ← 0

2 D([α, β])← ∅

3 while α ≤ β

4 do if αj = 1

5 then

6 D([α, β])← D([α, β])∪[α, α +2j)

7 α← α +2j

8 if βj = 0

9 then

10 D([α, β])← D([α, β])∪[β−2j + 1, β +1)

11 β ← β−2j

12 j ← j +1

13 return D([α, β])

160

BCH3Interval([0, γ], S = [S0, s0])

1 γ′ ← γ

2 sum ← 0

3 if γ′0 = 1

4 then γ′ ← γ′ −1

5 sum ← (−1)f(S ,γ′)

6 for k ← 1 to n −1

7 do

8 if γ′ = 0

9 then return sum

10 if S0 ,k -1 = 1

11 then return sum

12 else � S0 ,k -1 = 0

13 if γ′k = 1

14 then γ′ ← γ′ −2k

15 sum ← sum +2k · (−1)f(S ,γ′)

16 return sum

BCH3([α, β], S = [S0, s0])

1 sum1 ← BCH3Interval([0, β + 1), S)

2 sum2 ← BCH3Interval([0, α), S)

3 return sum1 − sum2

EH3Interval([α, β], S = [S0, s0])

1 Let D = {δ1, . . . , δm} be the minimal dyadic cover of [α, β]

2 sum ← 0

3 for δ ∈ D

4 do sum ← sum +(−1)#ZERO · 2j · (−1)f(S,q4j)

5 return sum

161

Table 6-1. Sketching time per interval.

Scheme Time (ns)
BCH3 68.9
EH3 1, 798
RM7 26.4 · 106

Table 6-2. Sketching time per interval (ns).

Scheme Interval Interval + End-Points
LANDC LANDO SOIL LANDC LANDO SOIL

BCH3 50 75 79 106 126 115
EH3 637 651 604 681 701 651
DMAP 409 298 309 1500 1401 1391

0

2

4

6

8

10

12

14

16

5 10 15 20 25 30

li
n
ea

r
a
p
p
ro

x
im

a
te

Number of variables (n)

Figure 6-1. The number of polynomial evaluations.

162

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

level 0

level 1

level 2

level 3

level 4

Figure 6-2. The set of dyadic intervals over the domain I = {0, 1, . . . , 15}.

1 2 3 5 6 7 8 9 10 11 12 13 14 150 4

2 12

(a) Interval mapping

1 2 3 5 6 7 8 9 10 11 12 13 14 150 4

8

(b) Point mapping

Figure 6-3. Dyadic mappings.

2 7

1 2 3 5 6 7 8 9 10 11 12 13 14 150 4

2 3 74

Figure 6-4. Fast range-summation with domain partitioning.

163

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40

R
el

at
iv

e
E

rr
or

Space Allocated (K words)

EH3
DMAP

Figure 6-5. LANDO 1 LANDC.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40

R
el

at
iv

e
E

rr
or

Space Allocated (K words)

EH3
DMAP

Figure 6-6. LANDO 1 SOIL.

164

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40

R
el

at
iv

e
E

rr
or

Space Allocated (K words)

EH3
DMAP

Figure 6-7. LANDC 1 SOIL.

 0

 0.05

 0.1

 0.15

 0.2

 0 0.5 1 1.5 2 2.5

R
el

at
iv

e
E

rr
or

ZIPF Parameter

EH3
DMAP

Figure 6-8. Selectivity estimation.

165

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

Memory budget (counters)

AGMS
AGMS DMAP

AGMS P
F-AGMS

F-AGMS COUNTS

(a) LANDO 1 LANDC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

No. of partitions

AGMS
AGMS DMAP

AGMS P
F-AGMS

F-AGMS COUNTS

(b) AGMS P

Figure 6-9. Accuracy of sketches for interval data.

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70

U
pd

at
e

tim
e

pe
r

in
te

rv
al

 in
 m

ic
ro

se
c

(lo
g

sc
al

e)

No. of partitions

AGMS
AGMS DMAP

AGMS P
F-AGMS

F-AGMS COUNTS

(a) SOIL with 512 counters

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70

U
pd

at
e

tim
e

pe
r

in
te

rv
al

 in
 m

ic
ro

se
c

(lo
g

sc
al

e)

No. of partitions

AGMS
AGMS DMAP

AGMS P
F-AGMS

F-AGMS COUNTS

(b) SOIL with 4096 counters

Figure 6-10. Update time per interval as a function of the number of partitions for the
SOIL data set.

166

CHAPTER 7
CONCLUSIONS

The focus of this research work was on sketch synopsis for aggregate queries over

data streams. We believe that our findings are essential for understanding the theoretical

foundations that lie at the basis of the sketching methods. At the same time, we believe

that the experimental results presented throughout this work support our final goal to

make sketch synopsis practical for the application in a data stream environment. The

theoretical and practical findings of our work can be summarized as follows:

• We conducted both a theoretical as well as an empirical study of the various schemes
used for the generation of the random variables that appear in AGMS sketches
estimations. We provided theoretical and empirical evidence that EH3 can replace
the 4-wise independent schemes for the estimation of the size of join using AGMS
sketches. Our main recommendation is to use the EH3 random variables for AGMS
sketches estimations of the size of join since they can be generated more efficiently
and use smaller seeds than any of the 4-wise independent schemes. At the same
time, the error of the estimate is as good as or, in the case when the distribution has
low skew, better than the error provided by a 4-wise independent scheme.

• We provided the moment analysis of the sketch over samples estimators for two
types of sampling: Bernoulli and sampling with replacement. Sketching Bernoulli
samples is essentially a load shedding technique for sketching data streams
which results, as our theory and experiments suggest, in significant update time
reduction – by as much as a factor of 100 – with minimal accuracy degradation.
Sketching samples with replacement from an unknown distribution allows efficient
characterization of the unknown distribution which has many applications to online
data-mining.

• We studied the four basic sketching techniques proposed in the literature, AGMS,
Fast-AGMS, Fast-Count, and Count-Min, from both a statistical and empirical
point of view. Our study complements and refines the theoretical results known
about these sketches. The analysis reveals that Fast-AGMS and Count-Min sketches
have much better performance than the theoretical prediction for skewed data, by a
factor as much as 106 to 108 for large skew. Overall, the analysis indicates strongly
that Fast-AGMS sketches should be the preferred sketching technique since it has
consistently good performance throughout the spectrum of problems. The success
of the statistical analysis we performed indicates that, especially for estimators
that use minimum or median, such analysis gives insights that are easily missed
by classical theoretical analysis. Given the good performance, the small update
time, and the fact that they have tight error guarantees, Fast-AGMS sketches are

167

appealing as a practical basic approximation technique that is well suited for data
stream processing.

• We identified the fast range-summable schemes that can sketch intervals in
sub-linear time. We explained how the fast range-summable versions of two of
the 3-wise independent schemes, BCH3 and EH3, can be implemented efficiently
and we provided an empirical comparison with the only known 4-wise independent
fast range-summable scheme (RM7) that reveals that only BCH3 and EH3 are
practical. The EH3-based solutions significantly outperform the state-of-the-art
DMAP algorithms for applications such as the size of spatial joins and the dynamic
construction of histograms. BCH3 is the perfect solution for sketching highly-skewed
interval data since we provided a constant-time algorithm for range-summing BCH3
random variables. Fast range-summation remains the most accurate method to
sketch interval data. Unfortunately, it is applicable only to AGMS sketches and,
thus, it is not practical due to the high update time. The solution we proposed
is based on the partitioning of the domain and of the counters in the sketch
structure in order to reduce the number of counters that need to be updated. The
improvement in update time is substantial, getting close to DMAP over Fast-AGMS
sketches, the fastest method studied. Moreover, by applying a simple modification
inspired from the statistical analysis and the empirical study of the sketching
techniques, the accuracy of DMAP over F-AGMS can be reduced significantly, to
the point where it is almost equal with the accuracy of fast range-summation over
AGMS for large enough space. Considering the overall results for sketching interval
data, we recommend the use of the fast range-summation method with domain
partitioning whenever the accuracy is critical and the use of DMAP COUNTS
method over F-AGMS sketches in situations where the time to maintain the sketch is
critical.

168

REFERENCES

[1] P. Aduri and S. Tirthapura, “Range efficient computation of F0 over massive data
streams,” Proc. IEEE ICDE, 2005.

[2] N. Alon, L. Babai, and A. Itai, “A fast and simple randomized parallel
algorithm for the maximal independent set problem,” Journal of Algorithms,
vol. 7, no. 4, pp. 567–583, 1986.

[3] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approximating the
frequency moments,” Proc. ACM STOC, 1996.

[4] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy, “Tracking join and
self-join sizes in limited storage,” Journal of Computer and System Sciences,
vol. 64, no. 3, pp. 719–747, 2002.

[5] N. An, Z. Y. Yang, and A. Sivasubramaniam, “Selectivity estimation for spatial
joins,” Proc. IEEE ICDE, 2001.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in
data stream systems,” Proc. ACM SIGMOD, 2002.

[7] K. P. Balanda and H. L. MacGillivray, “Kurtosis: A critical review,” J. American
Statistician, vol. 42, no. 2, pp. 111–119, 1988.

[8] Z. Bar-Yosseff, R. Kumar, and D. Sivakumar, “Reductions in streaming algorithms,
with an application to counting triangles in graphs,” Proc. ACM SODA, 2002.

[9] A. R. Calderbank, A. Gilbert, K. Levchenko, S. Muthukrishnan, and M. Strauss,
“Improved range-summable random variable construction algorithms,” Proc. ACM
SODA, 2005.

[10] L. Carter and M. N. Wegman, “Universal classes of hash functions,” Journal of
Computer and System Sciences, vol. 18, no. 2, pp. 143–154, 1979.

[11] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data
streams,” Proc. Int’l Conf. ICALP, 2002.

[12] S. Coles, “An Introduction to Statistical Modeling of Extreme Values,” Springer-
Verlag, 2001.

[13] G. Cormode and M. Garofalakis, “Sketching probabilistic data streams,” Proc. ACM
SIGMOD, 2007.

[14] G. Cormode and M. Garofalakis, “Sketching streams through the net: distributed
approximate query tracking,” Proc. 31st Int’l Conf. Very Large Data Bases (VLDB),
2005.

169

[15] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[16] G. Cormode and S. Muthukrishnan, “Summarizing and mining skewed data streams,”
Proc. SIAM Data Mining, 2005.

[17] CPS, http://www.census.gov/cps, accessed, Nov. 2006.

[18] A. Das, J. Gehrke, and M. Riedewald, “Approximation techniques for spatial data,”
Proc. ACM SIGMOD, 2004.

[19] W. E. Deskins, “Abstract Algebra,” Dover Publications, 1996.

[20] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi, “Processing complex aggregate
queries over data streams,” Proc. ACM SIGMOD, 2002.

[21] P. Domingos and G. Hulten, “Mining high-speed data streams,” Proc. ACM
SIGKDD, 2000.

[22] W. Dumouchel, C. Faloutsos, P.J. Haas, J.M. Hellerstein, Y. Ioannidis, H.V. Jagadish,
T. Johnson, R. Ng, V. Poosala, K.A. Ross, and K.C. Sevcik, “The New Jersey data
reduction report,” IEEE Data Eng. Bulletin, vol. 20, no. 1, pp. 3–45, 1997.

[23] A. Ehrenfeucht and M. Karpinski, “The computational complexity of (xor-and)
counting problems,” ICSI Technical Report TR-90-033, 1990.

[24] C. Estan and J. F. Naughton, “End-biased samples for join cardinality estimation,”
Proc. IEEE ICDE, 2006.

[25] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan, “An approximate
L1-difference algorithm for massive data streams,” SIAM Journal on Computing,
vol. 32, no. 1, pp. 131–151, 2002.

[26] P. Flajolet and G.N. Martin, “Probabilistic counting algorithms for data base
applications,” J. Comp. Syst. Sci., vol. 31, no. 1, pp. 182–209, 1985.

[27] S. Ganguly, M. Garofalakis, and R. Rastogi, “Processing set expressions over
continuous update streams,” Proc. ACM SIGMOD, 2003.

[28] S. Ganguly, M. Garofalakis, and R. Rastogi, “Processing data-stream join aggregates
using skimmed sketches,” Proc. Int’l Conf. EDBT, 2004.

[29] S. Ganguly, D. Kesh, and C. Saha, “Practical algorithms for tracking database join
sizes,” Proc. Int’l Conf. FSTTCS, 2005.

[30] P. Gibbons, Y. Matias, and V. Poosala, “Fast incremental maintenance of
approximate histograms,” Proc. 23rd Int’l Conf. Very Large Data Bases (VLDB),
2001.

170

http://www.census.gov/cps

[31] P. B. Gibbons and Y. Matias, “Synopsis data structures for massive data sets,”
DIMACS, 1999.

[32] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss, “One-pass wavelet
decompositions of data streams,” IEEE TKDE, vol. 15, no. 3, pp. 541–554, 2003.

[33] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss, “Domain-driven data
synopses for dynamic quantiles,” IEEE TKDE, vol. 17, no. 7, pp. 927–938, 2005.

[34] O. Goldreich, “A sample of samplers - a computational perspective on sampling,”
Electronic Colloquium on Computational Complexity, vol. 4, no. 20, 1997.

[35] P. J. Haas and J. M. Hellerstein, “Ripple joins for online aggregation,” Proc. ACM
SIGMOD, 1999.

[36] A. S. Hedayat, N. J. A. Sloane, and J. Stufken, “Orthogonal Arrays: Theory and
Applications,” Springer-Verlag, 1999.

[37] P. Indyk, “Stable distributions, pseudorandom generators, embeddings, and data
stream computation,” J. ACM, vol. 53, no. 3, pp. 307–323, 2006.

[38] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee, “Estimating statistical
aggregates on probabilistic data streams,” Proc. ACM SIGMOD, 2007.

[39] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and A. Pol, “The sort-merge-shrink
join,” ACM Transactions on Database Systems, vol. 31, no. 4, pp. 1382–1416, 2006.

[40] M. Karpinski and M. Luby, “Approximating the number of zeroes of a GF[2]
polynomial,” Journal of Algorithms, vol. 14, no. 2, pp. 280–287, 1993.

[41] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate
information,” Proc. IEEE FOCS, 2003.

[42] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change detection:
methods, evaluation, and applications,” Proc. ACM SIGCOMM, 2003.

[43] K. Levchenko, http://www.cse.ucsd.edu/∼klevchen/II-2005.pdf, accessed, Aug.
2005.

[44] M. Luby and A. Wigderson, “Pairwise independence and derandomization,” EECS
UC Berkeley Technical Report UCB/CSD-95-880, 1995.

[45] MassDAL. http://www.cs.rutgers.edu/∼muthu/massdal.html, accessed, Jul. 2006.

[46] R. Motwani and P. Raghavan, “Randomized Algorithms,” Cambridge University
Press, 1995.

[47] S. Muthukrishnan, “Data streams: algorithms and applications,” Found. Trends
Theor. Comput. Sci., vol. 1, no. 2, pp. 117–136, 2005.

171

http://www.cse.ucsd.edu/~klevchen/II-2005.pdf
http://www.cs.rutgers.edu/~muthu/massdal.html

[48] D. J. Olive, “A simple confidence interval for the median,” Manuscript, http:

//www.math.siu.edu/olive/ppmedci.pdf, accessed, Nov. 2006.

[49] F. Pennecchi and L. Callegaro, “Between the mean and the median: the Lp

estimator,” Metrologia, vol. 43, no. 3, pp. 213–219, 2006.

[50] R. M. Price and D. G. Bonett, “Estimating the variance of the sample median,” J.
Statistical Computation and Simulation, vol. 68, no. 3, pp. 295–305, 2001.

[51] F. Rusu and A. Dobra, “Pseudo-random number generation for sketch-based
estimations,” ACM Transactions on Database Systems, vol. 32, no. 2, 2007.

[52] F. Rusu and A. Dobra, “Statistical analysis of sketch estimators,” Proc. ACM
SIGMOD, 2007.

[53] L. Sachs, “Applied Statistics – A Handbook of Techniques,” Springer-Verlag, 1984.

[54] J. Shao, “Mathematical Statistics,” Springer-Verlag, 1999.

[55] C. Sun, D. Agrawal, and A. El Abbadi, “Selectivity estimation for spatial joins with
geometric selections,” Proc. Int’l Conf. EDBT, 2002.

[56] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker, “Load
shedding in a data stream manager,” Proc. 29th Int’l Conf. Very Large Data Bases
(VLDB), 2003.

[57] N. Thaper, S. Guha, P. Indyk, and N. Koudas, “Dynamic multidimensional
histograms,” Proc. ACM SIGMOD, 2002.

[58] M. Thorup and Y. Zhang, “Tabulation based 4-universal hashing with applications to
second moment estimation,” Proc. ACM SODA, 2004.

[59] M. Wegman and J. Carter, “New hash functions and their use in authentication and
set equality,” Journal of Computer and System Sciences, vol. 3, no. 22, pp. 265–279,
1981.

172

http://www.math.siu.edu/olive/ppmedci.pdf
http://www.math.siu.edu/olive/ppmedci.pdf

BIOGRAPHICAL SKETCH

Florin Rusu received his Ph.D. in Computer Science from the University of Florida.

He worked under the supervision of Dr. Alin Dobra as a member of the Database Center.

Florin Rusu is originally from the city of Cluj-Napoca, in the historical region of

Transylvania, Romania. Florin received his Bachelor of Engineering degree in 2004 from

the Technical University of Cluj-Napoca, Faculty of Automation and Computer Science,

under the supervision of Prof. Sergiu Nedevschi.

Florin has research interests in the area of approximate query processing for databases

and data streaming, data warehouses, and database system design and implementation.

173

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Contributions
	1.2 Outline

	2 PRELIMINARIES
	2.1 Problem Formulation
	2.2 Sketches
	2.3 Confidence Bounds
	2.3.1 Distribution-Independent Confidence Bounds
	2.3.2 Distribution-Dependent Confidence Bounds
	2.3.3 Mean Estimator
	2.3.4 Median Estimator
	2.3.5 Mean vs Median
	2.3.6 Median of Means Estimator
	2.3.7 Minimum Estimator

	3 PSEUDO-RANDOM SCHEMES FOR SKETCHES
	3.1 Generating Schemes
	3.1.1 Problem Definition
	3.1.2 Orthogonal Arrays
	3.1.3 Abstract Algebra
	3.1.4 Bose-Chaudhuri-Hocquenghem Scheme (BCH)
	3.1.5 Extended Hamming 3-Wise Scheme (EH3)
	3.1.6 Reed-Muller Scheme
	3.1.7 Polynomials over Primes Scheme
	3.1.8 Toeplitz Matrices Scheme
	3.1.9 Tabulation Based Schemes
	3.1.10 Performance Evaluation

	3.2 Size of Join using AGMS Sketches
	3.2.1 Variance for BCH5
	3.2.2 Variance for BCH3
	3.2.3 Variance for EH3
	3.2.4 Empirical Evaluation

	3.3 Conclusions

	4 SKETCHING SAMPLED DATA STREAMS
	4.1 Sampling
	4.1.1 Generic Sampling
	4.1.2 Bernoulli Sampling
	4.1.3 Sampling with Replacement

	4.2 Sketches
	4.3 Sketches over Samples
	4.3.1 Generic Sampling
	4.3.2 Bernoulli Sampling
	4.3.3 Sampling with Replacement
	4.3.4 Discussion

	4.4 Experimental Evaluation
	4.5 Conclusions

	5 STATISTICAL ANALYSIS OF SKETCHES
	5.1 Sketches
	5.1.1 Basic AGMS Sketches
	5.1.2 Fast-AGMS Sketches
	5.1.3 Fast-Count Sketches
	5.1.4 Count-Min Sketches
	5.1.5 Comparison

	5.2 Statistical Analysis of Sketch Estimators
	5.2.1 Basic AGMS Sketches
	5.2.2 Fast-AGMS Sketches
	5.2.3 Count-Min Sketches
	5.2.4 Fast-Count Sketches

	5.3 Empirical Evaluation
	5.3.1 Testbed and Methodology
	5.3.2 Results
	5.3.3 Discussion

	5.4 Conclusions

	6 SKETCHES FOR INTERVAL DATA
	6.1 Sketch Applications
	6.1.1 Size of Spatial Joins
	6.1.2 Selectivity Estimation for Building Dynamic Histograms

	6.2 Problem Formulation
	6.3 Dyadic Mapping (DMAP)
	6.3.1 Dyadic Intervals
	6.3.2 Dyadic Mapping Method
	6.3.3 Algorithm DMAP COUNTS

	6.4 Fast Range-Summable Generating Schemes
	6.4.1 Scheme BCH3
	6.4.2 Scheme EH3
	6.4.3 Four-Wise Independent Schemes
	6.4.4 Scheme RM7
	6.4.5 Approximate Four-Wise Independent Schemes
	6.4.6 Empirical Evaluation

	6.5 Fast Range-Summation Method
	6.6 Experimental Results
	6.7 Discussion
	6.8 Conclusions

	7 CONCLUSIONS
	REFERENCES
	BIOGRAPHICAL SKETCH

