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1.	 Executive Summary
Data management technologies have, for decades, provided 
foundational capabilities for scientific computing. Just as 
storage, input/output (I/O), and data management have been 
fundamental to simulation-based science for many years, so 
too are capable data-management technologies key to the 
success of today’s scientific workflows utilizing data-intensive 
and machine learning (ML) techniques. The U.S. Department 
of Energy (DOE), Office of Science, Advanced Scientific 
Computing Research (ASCR) program has invested broadly 
in data management research focused on high-performance 
computing (HPC) systems, from parallel file systems that 
store data to application software that makes these systems 
more productive. Still, advances in technology combined with 
growing diversity of supported science strongly motivate 
continued investment in this area.

In January 2022, ASCR convened a workshop to identify 
priority research directions in data management for 
high-performance and scientific computing. Attendees 
were challenged to identify promising approaches that 
would support the breadth of the DOE mission, including 
the explosion of artificial intelligence (AI) uses and the 
growing needs of experimental and observational science. 
Technological and science drivers were identified and 
considered as they relate to key aspects of data management 
such as interfaces, architectural design, and FAIR (Findable, 
Accessible, Interoperable, and Reusable) principles. The 
thoughts of the workshop participants were distilled into a set 
of four priority research directions with the potential for high 
impact on DOE science.

High-productivity interfaces for accessing scientific 
data efficiently. A redesign of data access interfaces is 
critical for locating and accessing data in deep memory and 
storage hierarchies and across systems (e.g., memory, file 
systems, archives, online repositories, edge devices, and 
cloud storage). New interfaces are needed for enabling data 
management in complex AI workflows. Interfaces are also 
needed to capture user intent (e.g., metadata and provenance, 
data usage pattern) for optimizing workflows, performing 
automated data movement, and extracting important 
information from datasets.

Understanding the behavior of complex data 
management systems in DOE science. Understanding the 
behavior of complex data management systems, including 
user behavior, underlying hardware behavior, and associated 
compute and networking activities, is key to maximizing 

the reliability and performance of these systems. Through 
improved understanding we can eliminate application 
bottlenecks and unlock the potential of AI to enable the next 
generation of self-tuning data management services.

Rich metadata and provenance collection, management, 
search, and access. Metadata and provenance are critical for 
supporting the FAIR principles for reproducible science. R&D 
efforts are needed to enable management of the voluminous 
metadata inherent in modern science, to identify metadata and 
provenance that are effective for supporting FAIR principles, 
and to understand how to best collect and use metadata and 
provenance for improving data management systems and 
scientific discovery as a whole.

Reinventing data services for new applications, devices, 
and architectures. New science endeavors and approaches 
require specialization of how data are accessed, organized, and 
retained. New networking and storage devices, including ones 
with computational capabilities, merit revisiting data service 
design in order to maximally exploit these technologies. New 
architectures, including scenarios in which data lives across 
sites or across administrative domains or is generated at the 
edge, similarly place new requirements on data services. Co-
design of these services with scientists, hardware architects, 
and facility operators is needed to unlock the potential of data 
in these unique environments and ease porting to new ones.

In the future, scientific activities will encompass an increasingly 
broad range of domains and span both HPC resources 
and advanced scientific instruments. Scientists and facility 
operators working together to co-design data management 
architectures will ensure that we have the most capable and 
robust tools for managing these troves of valuable scientific 
results. Improvements in how we describe and structure this 
data will enable greater sharing of data than ever before and 
will facilitate automation of science with artificial intelligence.

2.	Background/Motivation
Since the early 2000s, the model of “the parallel file system 
is the data management system” has been dominant in high-
performance computing (HPC) facilities, with file systems such 
as Lustre and GPFS (now Spectrum Scale) being the trusted 
persistent store for science data near the platform. At the 
same time, outside of HPC platforms, various technologies 
have emerged, including GridFTP and data transfer nodes 
for moving data between sites, metadata catalogs such as 
iRODS for finding data across multiple locations, and many 
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different forms of data services (e.g., noSQL, document stores, 
streaming data services) catering to different use cases. While 
HPC storage research continued largely to focus on how to 
make best use of these parallel file systems, other communities 
moved in new directions.

In September 2018, the U.S. Department of Energy (DOE), 
Office of Science, Advanced Scientific Computing Research 
Program convened a workshop to identify key challenges 
and define research directions that will advance the field 
of storage systems and I/O over the next 5–7 years. The 
workshop participants concluded that addressing these 
combined challenges and opportunities requires tools and 
techniques that greatly extend traditional approaches and 
require new research directions. 

In the past few years, technologies have matured, the 
importance of artificial intelligence (AI) has become more 
obvious, and the needs of experimental and observational 
science have multiplied. Additionally, the recognition of the 
value of science data beyond its initial uses encourages us 
to embrace the challenge of enabling FAIR data principles 
(findability, accessibility, interoperability, and reusability) 

[Wilkinson, 2016][Wilkinson, 2019]. At the same time, the high 
performance, enormous capacity, and resiliency properties 
that have made HPC storage a success must not be sacrificed. 
All these factors motivate a re-examination of topics related 
to data management for DOE science.

3.	Priority Research Directions
Workshop discussions were organized into four research 
priorities: (1) High productivity interfaces for accessing 
scientific data efficiently, (2) Understanding the behavior of 
complex data management systems, (3) Rich metadata and 
provenance collection, management, search, and access, and 
(4) Reinventing data services for new applications, devices, 
and architectures. Each of these priorities is organized into 
a subsection below that contains a brief background to 
the research area, state of the art, and workshop findings. 
Each subsection also lists priority research directions in 
the respective area. Themes that crosscut multiple priority 
directions are discussed at the end of this section: AI for data 
management and data management for AI, co-design, and the 
FAIR principles.

Figure 1: Our workshop identified four priority research directions: (1) High productivity interfaces for accessing 
scientific data efficiently, (2) Understanding the behavior of complex data management systems, (3) Rich metadata and 
provenance collection, management, search, and access, and (4) Reinventing data services for new applications, devices, 
and architectures. We also identified three crosscutting topics: AI for data management and data management for AI, co-
design, and FAIR principles.
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3.1.	 Priority Research Direction 1: 
High-productivity interfaces 
for accessing scientific data 
efficiently

Background
A key need identified at the workshop was to scale up and 
scale out scientific data access to match the scaling of 
computational science applications. Industry has focused 
its data-scaling solutions on large collections of small and 
mostly independent (log or image) items. Scientific data, 
conversely, is generally highly interdependent and rich in 
not only current but also future connections. Data storage, 
transmission, and retrieval are of course a common need in 
all types of computing, but they are particularly critical in the 
HPC space where inefficient I/O is a significant impediment 
to efficient utilization of HPC resources. This situation has 
become even more critical as the modes of usage of scientific 
data have exploded with the advent of large-scale artificial 
intelligence/machine learning (AI/ML), real-time connection 
of experimental and computational instruments, and the 
integration of HPC into cloud-scale application environments.

To address this critical situation, we must rethink the user-
level abstractions and storage and I/O technologies used 
for scientific data. As we look forward to large and complex 
datasets being fed into larger and more complex workflows 
that contain ML, simulation, and even experimental control 
aspects, we observe that operations at the level of “read” and 
“write” are at an unsatisfyingly low level of abstraction for 
interacting with scientific data. As a result, modern scientific 
data management solutions have been forced into a number 
of challenging trade-offs. At the performance level, the POSIX 
tape-based access patterns give high performance only to 
specific read patterns. This serialization for performance 
forces libraries and end users to adopt data structure and 
metadata tagging on “write” that may be unclear, poorly 
maintainable, fragile, and even pathological for emerging 
access patterns, such as AI/ML training for digital twins.

Correspondingly, hardware technologies such as non-
volatile memory, object-based storage solutions, and 
converged network services are leading to new requirements 
and opportunities when optimizing data management. 
The evolutions in hardware, changing user needs, and 
revolutionary new scientific algorithms all underscore the 

need to rethink the fundamental interfaces for data storage, 
access, and management. 
Accordingly, we identified three core research needs for 
moving toward a new approach to scientific data management: 
achieving a deeper understanding of scalable search and access 
for massive scientific datasets, investigating the new interfaces 
required to optimize AI and mixed simulation–AI workflows, 
and better satisfying user intents to contextualize and optimize 
performance. The state of the art in data interfaces is deep and 
broad, and we provide a quick summary of some of the relevant 
examples later in this section. The key supporting conclusions 
from the basic needs discussions then follow to highlight areas 
that need fundamental research rather than broader adoption 
of existing technologies. These findings are then synthesized 
into a consensus on the three priority research directions at 
the end of the section.

State of the Art
The computing environment has become complex with many 
different interfaces that span the machine architecture. 
Currently, different low-level interfaces may be found for 
accessing data within the CPU, within the memory bus, or 
within other hardware elements such as SATA and NVMe. 
For software, this interface variety provides the potential 
for much more access sophistication than does a traditional 
generic interface. The newer specialized interface systems, 
including databases of all varieties and more specialized 
systems such as those developed for cloud-based data 
analytics, add further access advances. This report provides a 
brief survey of this vast landscape.

Low-level interfaces: At the lowest level in the hardware, 
modern systems may support DAX (direct access) [LKF, 
2014] as a way to accelerate hardware I/O paths. Others 
rely on NVMe devices [Coughlin, 2013] across the PCIe bus 
[Mayhew, 2003] for fast device access. Older technologies, 
such as SATA [Grimsrud, 2003], may host cheap devices 
but with strict performance limitations. Each of these low-
level interfaces, from DAX to SATA, offers faster access but 
for more limited devices and hardware support. Specialized 
software interfaces, such as SPDK [Yan, 2017] or PMDK [W. 
Wang, 2018], are needed to get full advantage of offered 
bandwidth. In general, NVMe devices currently dominate 
without much of the software able to take advantage fully of 
available bandwidth.

The next level up the stack provides a storage system 
interface that offers support for abstracting away the 
hardware specific characteristics to something meeting the 
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general POSIX interface. Examples include zfs [Rodeh, 2003], 
xfs [Wang, 1993], and ext4 [Mathur, 2007]. These interfaces 
are also used for container systems, since a container image is 
a file system in a file.

Above this are the storage systems typically used for HPC 
systems. These include traditional systems that primarily use a 
POSIX interface such as Lustre [Braam, 1999], SpectrumScale 
(GPFS) [Barkes, 1998], and OrangeFS [Bonnie, 2011]/PVFS2 
[Latham, 2004]. These are parallel storage systems focused 
on offering support for very large single files striped across 
many different storage targets to gain aggregate performance. 
Distributed storage systems, such as HDFS [Mackey, 2009], 
Ceph/RADOS [Weil, 2006], and WekaIO [Liran, 2018], focus 
on supporting simultaneous access to files from many 
locations simultaneously. The former systems tend to be 
write performance optimized, while the latter are more read 
performance optimized.

Newer systems have emerged that focus on niches, such as 
burst buffers, where reliability may be less critical since data will 
migrate off these devices shortly after being pushed there [Tang, 
2017]. BeeGFS [Heichler, 2014] offers a commercial grade system 
while GekkoFS [Vef, 2018] offers a more experimental system.

Rethinking the linear array of bytes model: Systems such 
as MadFS [Lu, 2009] and OceanStor [Huawei, 2018] are further 
rethinking the storage stack. MadFS builds on the ideas of 
GekoFS but uses a distributed key-value store for metadata and a 
node-level storage system, such as zfs, to store the data blocks.

Key-value stores and object stores in general include systems 
such as MDHIM [Greenburg, 2015], DAOS [Lofstead, 2016], and 
pMEMCPY [Logan, 2021]. The cloud interface has largely settled 
on S3 [Amazon, 2006] given the early dominance of Amazon’s 
cloud platform. More exotic systems, such as Labios [Kougkas, 
2019], may use a different access system. In this case, a label/tag 
is added to an I/O request that the system can then schedule to 
best manage I/O performance overall.

Moving from serial to parallel and federated: HPC has 
a long history of work that addresses the shared file pointer 
problem of POSIX. POSIX I/O provides the traditional I/O 
interface to read and write data from/to files. However, it is 
traditionally designed for files to be accessed serially–it lacks 
support for multiple processes/ranks writing data concurrently. 
Thus, HPC applications that use POSIX I/O have to explicitly 
address how to store distributed data structures and avoid 
contention issues. In general, using POSIX I/O directly in HPC 
applications is considered cumbersome. The MPI-IO interface 

provides an API for concurrent access to a file. Collective 
functions allow multiple MPI ranks to participate in a function 
call. Ranks can describe access to non-overlapping regions of 
the file, and the underlying MPI library performs the actual I/O 
and coordinates access to the file.
Sophisticated libraries and data management frameworks such 
as ADIOS [Lofstead, 2008], HDF5 [Folk, 2011], and PnetCDF 
[Li, 2003] provide features to store distributed data structures 
to files. They provide collective function calls that are used 
to describe the decomposition of data among MPI ranks. In 
addition, they provide custom self-describing file formats 
to store data. Different libraries differ in the design of their 
abstractions and data formats. HDF5 provides a hierarchical 
data format in which raw data is written into HDF datasets, 
and datasets can further be grouped into HDF groups. It 
supports the MPI-IO interface for concurrent access to a 
HDF5 file. An HDF5 file is represented on a file system as a 
single file. However, its Virtual Object Layer (VOL) [HDFGroup, 
2012] allows storing data in a different format so that users 
can use the HDF5 abstraction with the option of storing data 
in a different format. ADIOS provides a publish-subscribe 
interface for reading and writing distributed “variables,” 
which are typically used to represent science quantities such 
as temperature and velocity. Its pub-sub interface allows 
data to be written to files or streamed in-memory to other 
processes or streamed over the wide-area network. Like HDF5, 
this is a pluggable interface. An ADIOS file is a container; it is 
represented by a directory on the file system consisting of raw 
data and metadata files. PnetCDF is a 64-bit extension to the 
NetCDF3 [Rew, 1990] API/format widely used in the climate 
community. Maximum backwards compatibility and similarity 
was the goal imposing some limitations, such as adding a new 
variable to an existing file is expensive, while support for “no 
value present” offers a way to avoid consistency issues when 
data is absent. NetCDF4 [Rew, 2006] is built on HDF5 to 
achieve similar goals.

Using object as a fundamental construct: While file 
systems manage data using a hierarchy of files, object stores 
store data as objects that are identified by unique identifiers. 
Popular object-storage based file systems used in HPC centers 
include the Ceph storage system and the Lustre file system. 
For Ceph, the RADOS layer can be exposed as a native object 
store, whereas with Lustre, the object storage is hidden behind 
the POSIX API. With the advent of non-volatile memory 
(NVM), interfaces such as Intel’s DAOS have emerged to 
provide an asynchronous key-value store on top of commodity 
NVM. UNITY provides a data storage abstraction that places 
the entire memory hierarchy, including both traditionally 
separated memory- and file-based data storage, into one 
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storage continuum using a publish/subscribe model based on 
objects [Jones, 2017]. Research-oriented tools such as Hermes 
[Kougkas, 2018], DataElevator [Dong, 2016], and UniViStor 
[T.  Wang, 2018] provide a transparent way to utilize the tiered 
storage hierarchy on modern supercomputers that consists 
of system memory, local and remote NVM devices, parallel file 
systems, and tape devices. Proactive Data Containers (PDC) 
[Byna, 2018] provides an object-centric API that supports 
asynchronous and transparent data movement in memory 
and storage hierarchy [Tang, 2018][Mu, 2020]. Complicating 
this strictly stacked memory/storage hierarchy is accelerator-
specialized memory/storage, such as GPU memory. Interfaces 
such as NVIDIA GPUDirect Storage (GDS) [Ravi, 2020] are 
opening up these memory tiers for more direct access with 
the greater storage hierarchy and are becoming increasingly 
important as the use of accelerators continues to expand. 
With the growing popularity of cloud computing, systems such 
as Amazon’s S3 and interfaces such as Kubernetes [Mcluckie, 
2014] have emerged to provide automated provisioning, 
deployment, and scaling of applications. For portable execution 
of applications on a variety of platforms and infrastructures, 
container technologies such as Singularity [Kurtzer, 2017] and 
Docker [Turnbull, 2014] are being used by science teams.

Contextualizing data: Database technologies provide a 
highly structured way to store and retrieve data. Relational 
databases are used to design a schema to store and associate 
data and objects. Access to data is provided through the 
Structured Query Language (SQL) [Chamberlin, 1974], a 
declarative language designed for querying and modifying 
database systems. No-SQL (Not Only SQL) databases are 
used for storing larger objects that are unsuitable for 
expressing in a relational schema. The development of No-
SQL databases was pushed by the ability to relax consistency 
and tolerate having parts of the total database be unavailable 
and still generate an acceptable result. Systems such as 
Cassandra [Hewitt, 2010] focus on a fixed set of columns 
representing common values with an essentially limitless set 
of additional columns that optionally contain other data—in 
effect, a set of explicit, valued tags on rows that can offer 
more information but cannot be used for optimized data 
selection (i.e., searching by these columns requires a table 
scan). MongoDB [MongoDB, 2009] offers a way to store 
documents alongside a set of standardized attributes more 
easily than a traditional RDBMS. 

In-memory distributed data stores such as Redis [Kakola, 
1996] focus on accelerated access patterns using a key-value 
structure. Key-value stores, in general, offer a way to have 
a large data store that is more resilient to failures in the 

namespace hierarchy. With a hierarchical namespace, failures in 
servers that host metadata toward the root may block access 
to data lower in that part of the hierarchy. With a key-value 
store, simply the portion of the key space hosted by that server 
will be unavailable. Locking similarly is localized.

Interfacing with various analysis tools and in-memory 
tools: Tools and ecosystems built around the R [Venabels, 
2000] and Python [Sanner, 1999] programming languages 
are used heavily for data analysis and visualization. Traditional 
interfaces include managing data in comma-separated values 
(CSV) format, whereas modern interfaces include tools such 
as Pandas [McKinney, 2011] and dataframes [Embley, 1980] 
that provide a tabular-like interface to data. Pandas provides 
a dataframe-driven object interface to data and can interface 
with a variety of storage formats that includes CSV files and 
SQL databases. Apache Arrow [Apache Arrow] defines a 
language-independent columnar memory format that can be 
used as an intermediate format for interoperability between 
several tools and storage formats. Jupyter [Perez, 2007] 
notebooks are increasingly being used in the DOE community 
and national laboratories for reproducible analysis of data in 
spite of how fragile they are for this purpose [J. Wang, 2020].

More feature-rich and scalable tools for analysis include the 
Map-Reduce framework for parallel processing of big data, 
and frameworks such as Apache Kafka [Kreps, 2011] offer 
a message-queue style interface intended for widespread 
distribution rather than persistent storage. Unlike storage 
systems with consistency guarantees, Kafka and similar systems 
offer only best effort, which is sufficient for their target 
environments. Use of these kinds of systems when data delivery 
must be guaranteed is currently not advised, limiting their 
applicability in many important HPC workloads [Wu, 2009].

Workshop Findings
The workshop discussion covered many areas of scientific 
interfaces.  Participants noted several key themes around 
scientific data interfaces, including changing application 
types, difficulty mingling scientific data models with legacy 
I/O interfaces, emerging challenges in using modern storage 
hierarchies, and more complex and performance-critical 
application couplings.  

Expanded roles for HPC: Participants noted that applications 
are diversifying from traditional simulation and modeling 
methods toward complex workflows involving unstructured 
data, machine learning, and higher-level programming models. 
These pose challenges because they are often incompatible 
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with each other and with traditional programming techniques. 
New applications that combine, for example, high-performance 
numerical simulation (e.g., for climate modeling) with 
record-oriented datasets (e.g., for population modeling) 
stored in databases would mix data access interfaces and 
create programming complexities. Researchers desire to 
rapidly integrate datasets, software libraries, and algorithmic 
techniques but are stymied by poor support for new 
techniques in HPC environments. 

New scientific interfaces are needed to continue development 
of capabilities that bring HPC closer to users and scientific 
instruments. Currently, HPC systems are heavily isolated from 
external data sources and sinks, but this situation is changing 
as new distributed systems are being developed that support 
the security protocols required.  This implies that application 
developers face additional interface challenges. Emerging 
scientific instruments will be capable of generating data at 
rates that outpace computer hardware performance gains, 
necessitating a careful strategy of filtering, compression, 
feature extraction, and so on that will be common across 
many application types.  Participants discussed how better 
scientific interfaces and reusable capabilities could accelerate 
the integration of HPC with advanced scientific instruments, 
improving the utility of both systems. More generally, edge 
computing applications that connect HPC sites to devices and 
users outside the HPC complex could benefit from improved 
interfaces, as non-traditional data access models such as 
streams, subscriptions, and novel human-computer interfaces 
challenge existing capabilities. 

Relegating POSIX: The POSIX interface is used to move 
memory-resident data to and from persistent storage 
hardware. Participants noted, however, that the changing 
hardware environment poses challenges to this familiar two-
mode model. Modern systems consist of a complex hierarchy, 
including accelerator devices and associated memory, 
traditional RAM, node-local high-capacity storage devices, 
parallel file systems with varying performance capabilities, 
and archival tape storage. Developing portable, efficient 
applications against all of these system features is currently 
impossible. Participants suggested that unified programming 
interfaces, declarative data approaches, advanced runtimes, 
and workflow systems could be applied to improve this 
situation. Such efforts are seen as critical because exascale 
and post-exascale systems may become increasingly 
reconfigurable, able to be specialized to particular scientific 
learning tasks, and hardware will become more diversified, 
with rapid changes and dynamic deployment roadmaps.

The default approach provided by HPC vendors is the 
traditional POSIX interface for accessing disk-resident 
data. Participants noted, however, that this model has 
many limitations for research today. Its consistency model, 
impossible to get around, does not always enable the best 
behavior for large-scale computing. Its metadata model 
is also often a performance bottleneck, while not being 
extensible enough for modern metadata goals such as FAIR. 
Thus, higher-level third-party libraries are brought in, but 
often there are gaps and incompatibilities when application 
data models interact with the high-level models provided by 
the libraries. Similarly, databases (SQL or otherwise) face 
challenges in HPC contexts for many reasons and result in 
similar programming challenges.

Elevating data lifecycle: The relationship of application 
teams with data is changing, and new conventions are 
becoming the norm. Providing one’s data along with one’s 
written publication has become standard practice in scientific 
research. An implication of machine learning is that the 
purpose of data may be more for machine consumption than 
human consumption, or some combination thereof. Traditional 
computational studies commonly had simple patterns from 
creation to analysis and publication. Today, the lifecycle of data 
is becoming more complex, with additional stages of reuse, 
sharing, learning, and validation. In modern scientific campaigns, 
data moves across an expanding scope of community and 
custom tools, in which downstream reuse by other users 
and systems is becoming more critical, and the end goals of 
publication and reporting may be secondary to such a team.  

FAIR as the new paradigm: The increased importance of the 
data lifecycle and the expanded roles of HPC are underscoring 
the increasing importance of FAIR (findable, accessible, 
interoperable, and reusable) [Wilkinson, 2016] conventions. 
Participants noted that there is limited support for these 
features in vendor-supplied filesystems; thus, databases and 
other systems must be integrated into the data ecosystem 
to provide these features. Such metadata can also inform 
automated systems about the intended purpose of datasets 
and thus how to best access and modify them in the future. 
These capabilities are needed in light of overall computer 
system complexity but are intractable using the default systems 
of today. Participants described how advanced metadata 
capabilities (e.g., search, sharing, reproducibility, annotations) 
will be critical for data-driven studies going forward. FAIR is 
particularly critical for AI consumers of data [Fagnan, 2019], 
and the AI-for-science process will require and may generate 
large volumes of high-quality, well-curated scientific data.
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Co-design: Participants discussed that co-design is needed to 
span necessary high-level data model capabilities, while enabling 
users to accurately specify what operations the underlying 
system should perform. A variety of low-level capabilities could 
be brought to bear on scientific problems, including native 
support for indexing, key-value databases, and coordination and 
consistency features. Co-design is needed to explore how high-
level patterns can utilize these capabilities without unnecessary 
overheads and programming complexities.  

The future of HPC systems is likely to be highly dynamic. 
Scientific applications teams will need appropriate tools to 
manage sudden changes in computing capabilities as well as 
scientific project goals. Scientific data interfaces anchor the 
programmer to the computing environment and will need to 
become more flexible to enable the dynamic computational 
investigations and data explorations that will generate insights 
and breakthroughs in large-scale scientific problems. The 
fraction of software written by scientific teams continues to 
shrink, and a range of community tools must be brought in 
to manipulate, integrate, analyze, and learn from data. Rapid 
prototyping applications will be possible only if improved data 
interfaces make these couplings low-effort and efficient.  

Employing helpful abstractions and models: Another 
challenge is the underlying data models. In many cases these 
models evolve over time and are kept for compatibility. 
However, creating data models supporting the particular use 
cases and automatic transformation between models (and 
representations) can improve the way data is used.

The same is true for the metadata. In many cases no metadata 
models or ontologies are available, or they are very domain 
or application specific. Improving collection and usage of 
metadata will greatly benefit from common ontologies.

Expanding the notion of “data center.” In current HPC 
systems, data is often an afterthought and managed by the user. 
Changing this model, by putting data and data management 
center stage, will lead to the design of HPC systems around the 
data itself, rather than the (legacy) applications that are/have 
been dominating the HPC space. Transforming the HPC centers 
into true “data centers” and providing the necessary tooling 
to work with the data have a great potential to accelerate new 
discoveries. Future data centers could help advance science 
by providing their user community with “data fusion” in/for 
multimodel simulations, by adding content-based addressing 
instead of traditional location-based addressing, by automatically 
managing seamless data movement, and by providing data 
versioning/lineage on a selectively chosen granularity.

Summary of Priority Research Direction 1
High-productivity interfaces for accessing scientific data 
efficiently:

1.	 How can application developers search and access 
important information seamlessly in massive amounts of 
scientific data?

2.	 What changes are needed to existing I/O application 
programming interfaces (APIs) to enable complex AI 
workflows?

3.	 What are effective interfaces and abstractions for 
capturing user intent for optimizing data management?

A redesign of data access interfaces is critically important 
to locate and to access data in deep memory and storage 
hierarchies and across systems (e.g., memory, file systems, 
archives, online repositories, edge devices, and cloud 

Figure 2. Our workshop noted 
several key themes around scientific 
data interfaces, including changing 
application types, difficulty mingling 
scientific data models with legacy I/O 
interfaces, emerging challenges in using 
modern storage hierarchies, and more 
complex and performance-critical 
application couplings. The above figure 
illustrates three research areas that 
were identified as core needs in order 
to move toward a new approach to 
scientific data management.
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storage). New interfaces are needed for enabling data 
management in complex AI workflows. Interfaces are 
also needed to capture user intent (e.g., metadata and 
provenance, data usage pattern) for optimizing workflows, 
performing automated data movement, and extracting 
important information from datasets.

3.2.	Priority Research Direction 2: 
Understanding the behavior 
of complex data management 
systems in DOE science

Background
Advancements in data management and storage 
technology are not possible without first establishing 
a firm foundation for observing and understanding I/O 
behavior. This is true not only for computer science 
researchers but also for end users, facility operators, and 
any practitioner of data-intensive scientific computing. 
Extraction, storage, and analysis of I/O instrumentation 
enable these stakeholders to measure performance changes, 
identify root causes, make better use of resources, and 
interpret performance in a broader system context.
Understanding I/O behavior is an active field of research with 
a successful track record in improving scientific productivity, 

but much work remains. Scientific workloads are diversifying to 
leverage new runtime systems and computational techniques 
(e.g., AI, workflows, and big data) while the systems themselves 
are growing in scale and complexity (e.g., additional storage 
hierarchy layers and new services) to meet the demand. At 
the same time, the community is facing pressure to more 
effectively extract actionable results from instrumentation in 
practice with minimal effort. These factors and others present 
an array of challenges and opportunities for DOE research.

State of the Art
Understanding I/O is a broad topic that encompasses 
many aspects of scientific data management. We begin 
our summary of the state of the art by surveying the 
storage technologies that we need to understand from 
two perspectives: directional data movement and layers 
of software. We then consider crosscutting, purpose-
built methodologies and resources that can be used to 
enhance our understanding of those technologies.

Direction of data movement. 
Data movement in HPC systems can be conceptualized 
in two dimensions as illustrated on the left-hand side of 
Figure 3. Vertical data movement refers to movement 
of data within a node using locally attached storage 
resources (fine grained) or remote storage resources 
(coarse grained). Horizontal data movement refers to 
movement of data across nodes within a single platform 
(fine grained) or across platforms (coarse grained)

Figure 3: A high-level taxonomy of HPC storage infrastructure in terms of directional data 
movement and layers of software.  Exemplar state-of-the-art technologies are shown in orange.
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Vertical fine-grained data movement is driven by the need 
to effectively harness emerging hardware, including NVMe, 
persistent memory, and computational storage, whereas 
vertical coarse-grained data movement is driven by the need 
to simplify usage of complex storage systems. Horizontal fine-
grained data movement is driven by the need to transfer data 
between workflow components, whereas horizontal coarse-
grained data movement is used to federate datasets and 
resources that span HPC facilities [da Silva, 2021].

Data management involves methods for efficient data access 
to and from the storage system, but it also includes any data 
movement within modern scientific workflows. With data 
staging, I/O-intensive coupled applications can run in steps, 
exchanging large amounts of data between each step without 
saving all steps to permanent storage. This is the case, for 
example, for a visualization and analysis application running 
in parallel with a simulation. Similarly, scientific instruments 
can generate a large volume of data at high velocity in parallel 
with digital twins or analysis that must parse the data during 
the experiment or before the next experiment (e.g., the Korea 
Superconducting Tokamak Advanced Research (KSTAR) 
fusion reactor [R. Wang, 2020] ). Industry software, such as 
Apache Flink [Katsifodimos, 2016], has been designed to offer 
continuous streaming eliminating periodic import and query 
execution in order to perform analytics in a real-time fashion. 
Similarly, numerous current I/O libraries designed for HPC are 
able to offer streaming for various applications (e.g., ADIOS 
[Kube, 2021], MPIStream [Peng, 2014], Decaf [Dreherand, 
2017], Henson [Morozov, 2016]).

Layers of software. The right side of Figure 3 
conceptualizes HPC storage technologies in terms of layers 
of software used by applications to store and retrieve their 
data. The application layer includes a growing diversity of 
runtime systems. In previous decades, HPC applications were 
dominated by message passing (e.g., MPI) and node-level 
parallelism (e.g., OpenMP), but today’s application portfolio 
has expanded to leverage breakthroughs in machine learning 
and data analytics. This diversity of applications is in turn 
supported by a rich ecosystem of middleware and file formats 
that simplify organization of and access to scientific data. 
The middleware components use distributed data services 
that enable high-performance concurrent access to a 
collection of distributed storage devices. The complete data 
management lifecycle includes not only archival systems for 
data stewardship but also cloud storage resources that allow 
scientists to bring additional computing resources to bear on 
their problems.

Crosscutting technologies for better 
understanding

Instrumentation and profiling. A rich ecosystem of 
computational instrumentation and profiling tools is routinely 
used to extract as much productivity as possible from 
constrained computational resources. Examples include parallel 
application instrumentation tools such as Tau [Shende, 2006], 
Pin [Luk, 2005], HPCToolkit [Adhianto, 2010], and Score-P 
[Knüpfer, 2012]; node-level tools such as nvprof [NVIDIA, 2022], 
Intel VTune and other tools from the Intel PAT suite [Intel, 2022; 
and platform-wide system data tools such as LDMS [Agelastos, 
2014]. Most of these include some degree of I/O instrumentation 
support, but the community often turns to purpose-built 
I/O instrumentation tools such as Darshan [Carns, 2011] and 
Recorder [C. Wang, 2020] to understand HPC I/O behavior 
in depth. Darshan is a transparent modular tool for capturing 
concise summaries of I/O behavior. Recorder is a multilevel I/O 
tracing tool that captures I/O access in fine detail.

Specific platforms, storage systems, and frameworks may 
also provide in-depth but less generalizable instrumentation 
capabilities. For example, the Lustre LMT tool [LMT, 2022] can 
be used to understand file-system-level detail. In recent years 
storage vendors have also provided proprietary tools that 
have advanced features but do not necessarily interoperate 
easily with open-source tools. Middleware libraries may 
provide capabilities such as ADIOS’s Skel [Logan, 2012] to 
understand middleware usage and reconstruct workloads 
for further study. Modular APIs such as the HDF5 VOL 
[Byna, 2020] interface have also opened up opportunities to 
interpose new instrumentation methods. Emerging machine 
learning frameworks provide capabilities such as TensorBoard 
[Tensorboard, 2022] as well, although they are not well 
integrated with HPC platform tool chains at this time.

Analysis of instrumentation data. Once data has been 
collected, analysis and visualization tools are needed to derive 
intuitive findings from the data. Each of the instrumentation 
and profiling tools described above includes at least some 
limited capabilities in this area. Additional tools can be layered 
on top of collected data for advanced functionality such as 
interactive trace navigation (e.g., DXT explorer [Bez, 2021]), 
platform-level context (e.g., TOKIO [Lockwood, 2018]), 
clustering and comparison of workloads (e.g., Gauge [Del 
Rosario, 2020]), and nested workflow behavior (e.g., IOBAT 
[IOBAT, 2022]). In addition to tool development, research 
activities have included methodologies for analysis of I/O data 
using graph techniques [Dai, 2016] and statistical learning 
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and ML modeling [Isakov, 2020][Costa, 2021][Patel, 2019]
[Madireddy 2018][Agarwal, 2019][Xie 2021].

Active benchmarking and probing. In addition to observing 
I/O behavior, one often wishes to be able to reproduce I/O 
behavior in a controlled fashion for “what if” investigations. 
The state of the art in this area involves a variety of synthetic 
benchmarks such as ior [Hedges, 2005] and fio [fio, 2022], 
API-specific benchmarks such as h5bench [Tonglin, 2021], 
AI-oriented benchmarks such as dlio [Devarajan, 2021] and 
mlperf [Reddi, 2020], and application proxies such as MACSio 
[Dickson, 2016]. The Wemul [Chowdhury, 2020] framework 
provides a system for reproducing broader workflow I/O 
patterns. Any of these benchmarks could also be harnessed for 
use in recurring regression tests or probes of system behavior 
to observe platform variability over time [Lockwood, 2018].

Data repositories. The final piece for understanding I/O-
related work is the ability to archive characterization data 
for later use. Such data could be leveraged to understand 
platform trends, apply new analysis techniques to existing 
data, or enable research by teams that do not have direct 
platform access. Examples of existing public repositories 
include the SNIA traces [SNIA, 2022], the anonymized 
Darshan data repository [ALCF, 2013], and large-scale disk 
health monitoring data [Lu, 2020]. Active effort is also 
under way in methods for standardizing data, such as the 
Common Workflow Language project for workflow systems 
[Crusoe, 2021]. Recent FAIR initiatives have focused on 
how to effectively share scientific data [Wilkinson, 2016], 
but advancements in that space can often equally apply to 

computer science data and computational workflows [Goble, 
2020]. As in other fields, privacy and security concerns often 
dictate data repository functionality.

Workshop Findings
The recognition that workflows, not individual jobs, ultimately 
drive scientific discovery expands the scope of understanding 
data movement and I/O performance. The state of the art in 
tools that reflect this workflow-oriented view has not caught 
up, and significant effort is required to solve the “data fusion” 
challenge of multiple connecting job-level insights into a 
holistic end-to-end view of data movement. For example, in 
order to minimize runtime overhead, application profiling 
tools often rely on summary statistics rather than real-time 
tracing, while system-level tools often generate time series 
data since they do not have insight into the boundaries 
between distinct user workloads.  Workflow composition 
is fundamentally heterogeneous in time, however, and 
reconciling point-in-time or aggregated statistics application 
with time-resolved system statistics, especially amid the 
backdrop of large, eventually consistent systems, requires 
new approaches.

The nature of data movement is also aggravating an 
innate tension between simplifying data management and 
understanding data movement. In complex, tiered storage 
hierarchies, the goal of data management systems is to hide 
the underlying complexity to the greatest extent possible 
and ensure that users’ data is in the right place at the right 
time. Achieving this requires the system itself to move data 

Figure 4: Analysis of instrumentation data: this conceptual figure shows how analysis and visualization methods can be used 
to navigate and link platform-level workloads, workflow or domain-level workloads, and application-level workloads. Different 
perspectives on the same data set may be necessary for different stakeholders or use cases. Figure credits: Isakov et al. [Isakov, 
2020] (left), Del Rosario et al. [Del Rosario, 2020] (middle), Awtrey et al. [Awtrey, 2021] (right).
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transparently, making it difficult or impossible to understand 
where data accesses are originating, what data paths are at play, 
and how these factors are affecting the perceived performance. 
Bridging this gap—simplified data management without 
compromising the intuitiveness of performance—remains a 
difficult challenge.

Another obstacle to better understanding of workflows is the 
limited ways in which users can express their full workflow. 
HPC has long provided imperative primitives to launching 
individual jobs, but such approaches limit system’s ability 
to optimize data movement and management because the 
system is largely reactive to imperative operations and, at 
best, must guess about the most optimal data placement 
or I/O path for the next imperative statement. Providing 
declarative, intent-based means to express workflow 
construction would enable new end-to-end optimizations that 
the storage system could employ and would provide much 
better interpretability of the optimizations it makes. Intent-
based workflow specification also enables I/O researchers to 
better understand user needs as workflows change without 
having to guess the goals of different imperative data 
management operations on any given system.

Even if these challenges—obtaining unambiguous, quantitative 
data across an entire workflow and being able to effectively 
combine the data—were overcome, such rich data generates 
better understanding only when combined with expert 
knowledge in what such data means. Translating that 
understanding into actionable steps for improvement is a step 
beyond, and deriving such actionable insights from data is 
currently heavily reliant on humans in the loop. In addition to 
the obvious fact that I/O expertise is in short supply relative 
to demand, such human experts’ efforts are often trapped 
in boutique solutions developed for specific communities or 
systems. This challenge only gets worse as storage systems and 
workflows generate more telemetry data, underscoring the 
need to develop more human-scalable ways to connect rich 
data sources to actionable outcomes.

Summary of Priority Research Direction 2
Understanding the behavior of complex data management 
systems in DOE science

Key Questions:

1.	 How can disparate information from multiple sources 
regarding data management activities be fused into 
useful knowledge?

2.	 In what ways can people and software leverage this 
knowledge to improve the reliability and performance of 
data management systems?

Understanding the behavior of complex data management 
systems, including user behavior, underlying hardware behavior, 
and associated compute and networking activities, is key to 
maximizing the reliability and performance of these systems. 
Through improved understanding we can eliminate application 
bottlenecks and unlock the potential of AI to enable the next 
generation of self-tuning data management services.

3.3.	 Priority Research Direction 3: 
Rich metadata and provenance 
collection, management, search, 
and access

Background
Occasionally the terms metadata and provenance are 
conflated in the research community (e.g., because 
provenance information is certainly metadata), and so we find 
it useful to distinguish between them in our discussion.

Metadata, or data about data, can describe logistics data 
(e.g., file names, dates, format), access permissions, scientific 
content (e.g., variables, grid information, atomic coordinates), 
data useful for discovery (keywords, attribution, location, 
etc.), data describing the production of datasets from 
simulations and experiments (environment metadata), 
and much more. Metadata can take various forms (e.g., 
singular objects or key value pairs) and can be organized in 
community-accepted schemas and or in files themselves with 
self-describing formats such as HDF5 and netCDF. Although 
not a recommended practice, metadata is sometimes 
embedded directly into filenames.  Metadata schemas can 
themselves be formally described by ontologies: collections 
of definitions, logical rules about their application and 
organization, and formal constraints on those rules.

Provenance in computer science is defined as the record 
of data lineage and software processes operating on 
the data that enable interpretation, validation, and 
reproduction of results [Miles, 2007][Freire, 2008].
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[Pouchard, 2020].  Provenance is the organized, systematic 
record that includes metadata associated with datasets 
in an experiment, their relationship to data and to each 
other, and the use of metadata schemas and ontologies. 
Provenance of data and software is crucial to the study of 
computational workflows that often orchestrate scientific 
and computational experiments and is an integral part of 
workflow management systems.  

The workshop participants discussed “metadata management 
support to support the FAIR principles” and “capturing and 
using provenance” topics in two breakout sessions each. 

State of the Art 
FAIR principles: The FAIR guiding principles [Wilkinson, 
2016][Wilkinson, 2019] heavily rely on metadata and 
provenance and emphasize machine actionability in the 
itemized list of concepts and practical recommendations for 
data management and stewardship. Many communities—in 
particular the research data management communities within 
campus libraries and data centers—have embraced FAIR by 
developing numerous tools, repositories, and protocols to 
help make data FAIR. In spite of this abundance of research, 
few data-intensive tools exist that address issues specific to 

high-performance computing. In HPC contexts, enormous 
volumes of data and metadata are collected by new high-
resolution instruments and sensors in DOE facilities and at 
computing edges, while streaming and in situ applications 
produce extremely heterogeneous data at unprecedented 
rates. Nevertheless, the FAIR principles remain useful to 
guide the development of data management, storage, and 
stewardship tools for applications to ensure the automatic 
capture, storage, organization, discoverability, and reuse of 
data and metadata produced in DOE-funded research. The 
application of FAIR principles to the needs and requirements 
of DOE scientific research and the development of new 
tools to ensure support of FAIR at scale is crucial to future 
scientific discovery. FAIR for Research Software (FAIR4RS) 
emphasizes quality metadata for software findability, 
interoperability, and reuse [Katz, 2021]. In addition, the 
application of FAIR to scientific AI has begun, but it is still 
in its infancy and requires new research to explore the 
applicability of FAIR concepts and the development of FAIR-
minded frameworks, practices, and benchmarks customized 
to AI. Figure 5 shows various software, tools, and libraries 
used to support FAIR principles.

Capture

Storage

Access

Publish

Metadata Provenance AI Models Labels

FIle formats Databases Provenance Links Indexes

Array I/O Querying APIs

Figure 5. Software and tools related to capturing, storing, and accessing of 
metadata and provenance to support compliance with FAIR principles.
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Rich metadata and metadata ontologies. Traditional file 
system metadata is insufficient to support FAIR principles in 
scientific applications. HPC storage libraries, such as HDF5, 
ADIOS, and NetCDF, allow users to describe dimensions of data 
and attributes to provide scientific and logistic context for data 
objects. Different scientific domains further propose their data 
models or formats with rich metadata integrated, such as RO-
Crate for Research Object Crate [Carragáin, 2019]; NeXus for 
neutron, x-ray, and muon science [Konnecke, 2015]; ROOT and 
Fair4HEP for high energy physics [ROOT][FAIR4HEP]; MASplus 
for magnetic fusion energy programs [MASplus]; Casacore for 
radio astronomy data processing [Casacore]; and EFFIS for 
high-fidelity coupled simulations [Suchyta, 2022]. Because of 
the large number of rich metadata dialects, Interoperability 
becomes a key challenge for operating data from different 
platforms. Systems such  as DataFed [Stansberry, 2019] and 
ScienceCapsule [Ghoshal, 2021] were proposed to provide a 
federated data management system across domains.

Metadata data model. Various data models have been 
used to manage the rich metadata needed for complex data 
management tasks. Relational databases are widely used for 
both traditional parallel file systems (e.g., PVFS [Carns, 2000]) 
and domain-specific scientific data management tools (e.g., 
Metacat [Jones, 2001]). NoSQL data models used in IndexFS 
[Ren, 2014] and HopsFS [Niazi, 2017] have been introduced 
to address the scalability issues. Storage systems built on 
graph-based models, such as QMDS [Ames, 2013], GraphMeta 
[Dai, 2016], and LiFS [Ames, 2005], have been investigated 
to model metadata in a more flexible manner. Customized 
models, such as DataStates [Nicolae, 2020], further allow users 
to tag datasets to facilitate data management tasks. As the 

Interoperability among data models or formats becomes an 
issue, standard vocabulary and formats such as Apache Parquet 
[Parquet], Apache Arrow [Arrow], and Damsel [Koziol, 2014] 
have been introduced to bridge multiple metadata schemas. 

Metadata scalability. Scalability of metadata management 
is a long-lasting research topic. Building distributed metadata 
services compatible with POSIX semantics is a major research 
theme; examples are Ceph CRUSH [Weil, 2006], IndexFS [Ren, 
2014], DeltaFS [Zheng, 2015], and GIGA+ [Patil, 2011]. 
 
Capturing and using provenance are critical steps of 
implementing FAIR principles in scientific computing. A 
large body of provenance-related studies and systems exists. 
As shown in Figure 6, we categorize and summarize these 
systems based on the life cycle of provenance data, in other 
words how provenance metadata is modeled, tracked, used, 
stored, and disseminated.

Provenance data model. The W3C PROV [Missier, 2013a] 
is currently the most commonly used provenance standard 
(developed based on the Open Provenance Model [Moreau, 
2008]). It contains a set of recommendations, such as data 
abstractions, schemas, ontology, and representations. More 
specific provenance data models designed based on these 
standards are also widely seen, such as PAV [Ciccarese, 2013], 
PROV-AI [Azevedo, 2020], D-PROV [Missier, 2013b], and PROV-
IO [Han, 2022].

Provenance tracking/collection. Provenance is built based 
on runtime information such as how data was accessed by 
applications or users and how applications executed. Such 

Figure 6: A taxonomy of provenance data collection and usage life-cycle. taxonomy
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metadata need to be tracked and collected at runtime. Many 
scientific workflow platforms [Amstutz, 2022], such as Kepler/
Komadu [Suriarachchi, 2015], Pegasus [Deelman, 2015], 
Makeflow [Albrecht, 2012], Galaxy, ProvLake [Azevedo, 2020], 
and  ScienceCapsule [Ghoshal, 2021], support automatic 
provenance extraction and management. Although workflow-
based provenance management is effective, it is often limited 
to a single environment and lacks the ability to integrate 
provenance across multiple systems. The general-purpose 
provenance systems, such as CDE [Guo, 2011], PASS [Reddy, 
2006], and ProTracer [Ma, 2016], probe standardized system 
calls to transparently track program executions and build 
provenance based on them. One can collect provenance across 
systems in this way; for instance, PROV-IO [Han, 2022] probes 
both POSIX and high-level HDF5 I/O calls to collect provenance 
across layers. However, how to connect the collected low-
level system events with high-level domain applications is 
still a challenge. Providing programmable APIs to users to 
manually add important provenance metadata sometimes 
becomes necessary. Containers, such as Singularity/Apptainer 
[Apptainer] or Docker [Turnbull, 2014], provide a unique 
opportunity for scientific reproducibility. Frameworks such as 
Binder [binder], WholeTale [wholetale], and Sci-unit [sciunit] 
track provenance data at the container level to help scientists 
connect low-level events and high-level container-based 
workflows to reproduce experimental results. 

Provenance usage. Provenance has been investigated and 
used for a variety of purposes across different communities 
for many years. For example, Buneman et al. derive provenance 
in relational databases for understanding the dependencies 
between materialized views and table updates [Buneman, 2001]; 
Muniswamy-Reddy et al. intercept system calls via customized 
kernel modules to capture data dependencies in the OS kernel  
[Reddy, 2006]; Alvaro et al. use provenance to guide fault 
injection to improve fault-tolerance protocols [Alvaro, 2015]; 
and Simmhan et al. propose a publish-subscribe architecture for 
computing the provenance of sensor data [Simmhan, 2006]. 
Provenance is also widely used in intrusion detection in security 
domains [Pasquier, 2018][Bates, 2015][Ma, 2016]. More recently, 
Azevedo et al. used IBM ProvLake [Azevedo, 2020], and Wozniak 
et al. developed Braid-DB [Wozniak, 2021] to capture the data 
lineage across programs in AI workflows, using provenance to 
detect the performance anomaly in workflow executions and 
optimize their performance [Kelly, 2020], [Thavasimani, 2019]; 
Han et al. capture I/O related provenance for understanding 
the lineage of data products and configuration dependencies 
[Han, 2022]. Such diverse usages reflect the great potential 
of leveraging metadata and provenance for managing FAIR-
compliant scientific data at scale.

 Provenance storage. The collected provenance data needs 
to be properly stored for future usage. Typically provenance 
is stored in SQL databases [Gehani, 2012], RDF storage 
[Han, 2022][Dividino, 2009], or graph databases [Dai, 2017]
[Gehani, 2012][Dai, 2014][Dai, 2018]. The key factor is the 
scalability of the underneath storage layers, especially for 
large-scale HPC environments. Another important factor for 
storing provenance is security. To ensure provenance can 
be trusted, researchers propose to store provenance using 
blockchain technology to avoid tampering with the provenance 
[Neisse, 2017]; others leverage new trustworthy computing 
infrastructure (e.g., Intel’s SGX and AMD’s SEV) to redesign the 
provenance storage systems in HPC [Prowell, 2021]. 

Provenance dissemination. The provenance data needs to 
be effectively disseminated to users for both exploitation and 
exploration. Visualization is one way to enable both purposes 
and has been integrated into many provenance systems, 
such as VisTrails [Callahan, 2006], Orbiter [Macko, 2011], 
SPADE GraphViz [Gehani, 2012], Probe-it [Rio, 2007], and 
ZOOM UserViews [Biton, 2007]. In addition to visualization, 
programmable query interfaces based on SQL, graph query 
languages, or RDF query languages are widely used. Provenance 
retrieval APIs, such as Disclosed Provenance API [Reddy, 2009], 
Core Provenance Library (CPL) [Macko, 2012], and IPAPI 
[Carata, 2013], are seen in existing provenance frameworks as 
complementary to domain scientists.

Workshop Findings
Storage and I/O technologies have traditionally focused on 
efficient data storage and access. Given that history, metadata 
usage long was limited to descriptions of data components, 
such as the name of a data object or a file or access restrictions. 
Self-describing file formats allowed storing and providing more 
descriptions about data objects. For instance, HDF5 and NetCDF 
allow describing dimensions of data and attributes to provide 
scientific and logistic context for data objects. More recently, 
lookaside solutions powered by relational and “NoSQL” database 
technologies have made it possible to create and associate 
arbitrary annotations; they also decouple metadata from data, 
enabling more straightforward discoverability and reuse.
Data provenance is one of several crucial resources to ensure 
the trustworthiness of data. Provenance has several benefits, 
including strategies to optimize data movement, avoid 
reinvention of wheels in scientific exploration, and identify 
sources and users of data. Despite these benefits for scientific 
data, collection and utilization of provenance have been sparse 
or limited to specific scientific repositories. Undocumented 
changes to data are common and can lead to false conclusions 
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in science [Hills, 2015]. As HPC resources are increasingly 
used to act on experimental, observational, and sensor data, 
provenance gathering and use throughout the data life cycle 
become a requirement. 

The workshop participants discussed many aspects of metadata 
and provenance, including the variability and ambiguity in 
standards, the diversity of use cases and the need for clear 
definitions, the vision of building scalable infrastructure and 
runtime for rich metadata and provenance, and the roles of 
individuals and communities in addressing the challenges. The 
key findings are organized as follows.

Standardization and specifications. A few well-known 
concepts exist for guiding the description, collection and usage 
of metadata and provenance (e.g., FAIR principles [Wilkinson, 
2016] and W3C PROV models and ontologies [Moreau, 2013]
[Lebo, 2013]). Unfortunately, the interpretation and adoption of 
these concepts vary across fields and communities, limiting the 
potential benefits to the scientific communities in general. This 
diversity is largely due to the inherent ambiguity in the high-level 
definitions as well as the complexity of HPC ecosystems. For 
example, it is straightforward to assign a unique ID to static data 
(e.g., DOI numbers or an URL) to support the findability principle 
in FAIR, but it is unclear how to associate a persistent ID around 
dynamic data or in situ data streams. Similarly, reusability may 
encompass  a broad spectrum of topics including repeatability, 
reproducibility, and repurposing, all of which are context-sensitive 
and may imply different levels of metadata or provenance 
information  (e.g., data formats, workflow parameters, library 
dependencies). Clearly needed is a common vocabulary that 
concretizes the high-level concepts and enables effective 
communication and sharing across communities.
 
Usage of metadata and provenance. The importance of 
metadata and provenance has been well recognized across 
communities, and diverse use cases have been demonstrated 
to varying degrees (e.g., lineage-based fault injection in 
databases, capturing of hyperparameters in ML or AI 
workflows [Souza, 2019b] described earlier). Nevertheless, 
the individual use cases and the associated solutions tend to 
be application-specific and thus cannot be easily translated 
to enable FAIR-compliant usage of scientific data in general. 
Because of the variety of data and metadata that could be 
generated from HPC ecosystems, it is difficult for most 
domain scientists today to specify precisely what specific 
metadata or provenance information is needed or how it may 
help. Such ambiguity limits the adoption and usage of existing 
metadata and provenance solutions, which in turn makes 
clarifying the ambiguity and addressing real scientific needs 

difficult. Consequently, the explosion in data and metadata 
generation is outpacing what one human or team can hope to 
process or interpret, despite the large set of tools described 
in the preceding subsection. Therefore, methodologies are 
desired that can clarify the ambiguity, bridge the semantic 
gaps across fields and communities, and enable precise 
definition and measurement of heterogeneous use cases.  

Scalable infrastructure and runtime support. The 
explosion of data heterogeneity and data sizes, coupled 
with an increasing speed of accumulation, has resulted in a 
corresponding explosion of the metadata and provenance 
information necessary to keep up with the data. Consequently, 
a scalable infrastructure and runtime support is needed that 
can efficiently handle not only the storage of metadata and 
provenance information, but also a variety of complex queries 
that can extract meaningful insight from that information. In 
this context, the workshop attendees identified a need for 
better organization and distributed indexing, which natively 
favors concurrent access, both for reading and writing. This 
aspect is linked with managing the volume of metadata and 
provenance information (pruning, frequency of capture and 
granularity, aggregation and summaries), consistent exposure 
(persistent identifiers), and trust (curation). Starting from 
this foundation, a simple yet flexible query support that 
leverages declarative, extensible, and self-explaining aspects of 
metadata/provenance and the relationships between them is 
critical at application-level. Furthermore, given that users are 
overwhelmed with the data itself, metadata and provenance 
need to avoid becoming a burden. Hence, its automated 
capture, monitoring of performance overhead vs. usefulness, 
and autotuning are desired. 

Human factors and cross-community collaboration. Clear 
roles and collaboration are critical to support the creation and 
distribution of FAIR-compliant data. For example, the metadata 
and provenance needed for achieving Interoperability heavily 
depend on specific system characteristics and use cases across 
facilities and scientific communities. Collective efforts are thus 
essential to establish a common vocabulary and enable FAIRness 
at scale. Also, similar to data security (which relies on metadata 
and provenance), metadata and provenance should be exposed 
only to the right people. In other words, security policies (e.g., 
authentication, authorization, access control) must be specified 
and enforced for metadata and provenance, processes involving 
both technical (e.g., auditing mechanisms) and nontechnical 
(e.g., ethics) perspectives. These topics are increasingly 
important because more and more scientific data today is 
generated or consumed beyond a single HPC center (e.g., across 
institutions and cloud or edge sites) and shared globally. 
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Summary
The explosion in data generation has been accompanied 
by one in metadata generation. Mature parallel file storage 
systems (and much research I/O software) are optimized for 
bulk data output, but I/O patterns of accessing metadata are 
typically random and small and often start with a query. Data 
provenance, namely, the lineage of data in its life cycle, plays 
a critical role in providing integrity of data and reproducibility 
of scientific results. In the age of artificial intelligence helping 
numerous fields of science in extracting patterns in large 
amounts of data, trustworthy data is essential. The emergence 
of the FAIR principles has highlighted a growing need for 
managing metadata and provenance in a principled manner. 
Rich metadata and provenance adhering to agreed-upon 
semantic standards can speed up discoverability of data and 
hence the process of scientific discovery. 

New and enhanced methods are needed for capturing, storing, 
searching, and accessing machine readable and actionable 
metadata. R&D efforts are needed to develop standards, 
tools, and technologies to support more capable metadata 
management: improving findability of data, searching massive 
amounts of heterogeneous metadata, increasing the value 
of data using metadata, maintaining relationships among 
data objects and datasets from different data sources, and 
maintaining metadata even when the data is no longer available 
(or the creators of that data no longer directly manage it).

Research and software development are needed to drive 
advanced provenance capabilities in computational science, 
such as documentation of the lineage of data lifecycle and 
workflows, annotation of relationships across datasets 
within a repository and across multiple repositories across 
institutional boundaries, storage of vast amounts of 
provenance metadata using efficient data structures, searches 
for the stored provenance metadata, use of provenance 
information for various optimizations, and automatic 
generation of ontologies using AI technologies.

Summary of Priority Research Directions 3
Rich metadata and provenance collection, management, search, 
and access

Key Questions:

1.	 What metadata and provenance are needed to support 
FAIR principles?

2.	 How do we support collection, storage, and search of rich 
metadata and provenance?

3.	 How can we use rich metadata and provenance for 
optimizing data management?

Metadata and provenance are critical for supporting the FAIR 
principles for reproducible science. R&D efforts are needed to 
enable management of the voluminous metadata inherent in 
modern science, to identify metadata and provenance that are 
effective for supporting FAIR principles, and to understand how 
to best collect and use metadata and provenance for improving 
data management systems and scientific discovery as a whole.

3.4.	Priority Research Direction 4: 
Reinventing data services for 
new applications, devices, and 
architectures

Background
Data management architectures and services encompass 
the hardware and software that together provide data 
management to scientific workflows: storage and networking 
devices, file systems, databases, object stores, and others. 
Successful architectural and service designs enable productive 
interactions with data while simultaneously making best use 
of the capabilities of the hardware resources. To this end, 
data management architectures and services must account 
for both the variety of applications of HPC systems and 
the intricacies of cutting-edge HPC hardware. HPC data 
management architectures and services have not rapidly 
adapted to new workloads including AI and experimental 
data analysis, nor is it clear that new technologies such 
as SmartNICs and computational storage can be readily 
incorporated into their designs.

The workshop participants discussed this topic in two breakout 
sessions, with additional conversations occurring in related 
breakout sessions. 

State of the Art
Cloud and HPC. HPC clouds are becoming an alternative 
to on-premise clusters for executing scientific applications 
[GoogleCloud][Azure][AWS][IBMCloud]. Outside HPC, ongoing 
work is aiming to better understand how to deploy applications 
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to the public cloud in a cost-effective manner [Netto, 2019]
[Mahgoub, 2020], but a better understanding of both HPC 
workflows that are eligible for public cloud deployment and how 
existing research applies to them is lacking.

Storage Interfaces. HPC storage interfaces such as HDF5 
[Folk, 2011], ADIOS [Liu, 2014], PnetCDF [Li, 2003], Zarr [Zarr, 
2021], and MPI-IO [Thakur, 1999] hide differences in backend 
storage and provide data structures that HPC tooling is 
compatible with but does not naturally translate to block and 
object cloud storage.

HPC storage stacks. Bespoke solutions, while efficient, make 
it difficult to provide general solutions for cloud, in-memory 
processing, and disaggregated or other architectures. Projects 
such as the Mochi storage microservice ecosystem [Ross, 
2020] aim to design building blocks for storage stacks, an 
approach that can reduce development time and encourage 
innovation in the form of reconfigurable storage stacks.

Emerging storage technologies. Storage devices have 
gained richer interfaces and capabilities, including zoned 
namespaces [Bjørling, 2021] and embedded functions in the 
form of key-value stores [Pitchumani, 2020] or more general 
computational storage [SNIA, 2021]; but understanding the 
value that these devices can add for scientific applications 
is an open problem, and adding support for these devices in 
HPC storage stacks could be a significant undertaking that 
requires community effort.

Indexing technologies. Handling massive amounts of data 
efficiently is shaping up as one of the cornerstones of exascale 
computing. At these scales, data scans are to be avoided at 

all costs, and recent works have focused on the development 
of data indexes or other auxiliary data structures that can be 
used to efficiently navigate massive datasets and guarantee low 
query latencies. FastQuery [Chou, 2011] creates bitmap indices 
in a parallel postprocessing stage, and DeltaFS [Zheng, 2018] 
partitions and indexes data in situ, as it is written to storage.

New hardware interconnects. CXL [CXL] looks to become 
the state of the art for commodity system interconnects for 
high-performance environments including data centers. It 
subsumes Gen-Z [Gen-Z]—the main competing standard—
and provides for resource pooling and memory coherence 
at high data rates. Beyond the scope of a single system, 
Ethernet—the most prevalent open network interconnect— 
is being standardized for 1.6 Tbps links [Ethernet].

In-network/memory/storage computing.  In-network 
computing [NetCompute, 2018] is an emerging computing 
paradigm that leverages programmable network hardware 
– switches as well as NICs. The state of the art for current 
switch products (e.g., the Tofino line from Intel or Trident 
from Broadcom) involves packet processing at 10 Tbps and 
above, and the next generation of designs is intended to 
double that. Techniques are being developed for network-
wide programming of such a fabric [Sultana, 2021]. 

Figure 7: Evolution of SSD architectures that do away with the on-device 
firmware Flash Translation Layer, from Open-Channel SSDs to NVMe Zoned 
Namespaces, or ZNS. Early Open-Channel architectures relegated all flash 
translation layer (FTL) functionality to the host, making software development 
and upkeep difficult. The newest ZNS architecture strikes a balance between 
an application-friendly interface and granular data management that allows 
for lower capacity costs and predictable performance. Source: Flash Memory 
Summit, 2019.
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Commercial products also exist for processing-in-memory 
[Ghose, 2019], building on the ideas of computational RAM 
[CRAM], and are being adapted for in-storage computing 
[Ruan, 2019], for which commercial products also exist. As 
with in-network computing, techniques are being developed 
to aid with optimizing the placement of computing tasks in 
relation to the data being processed. Recent commercial 
storage systems also are beginning to provide interfaces and 
support for near- and in-storage processing [Computational 
Storage, 2022] (referred to as active storage or computational 
storage) —a desired capability that initially was proposed and 
demonstrated in the context of in situ data analytics for HPC 
workflows almost a decade ago [Tiwari, 2013][Kang, 2013].

Ecosystem for big data processing. During several 
sessions, participants referenced the ecosystem of big data 
processing tools—several of which were developed at cloud 
companies—that are being used, or could be useful, in HPC 
environments. This ecosystem includes Apache products for 
analyzing structured data [Apache Arrow], for MapReduce-
style computing jobs [Apache Hadoop], for storing huge 
tables [Apache Iceberg], and for distributed stream 
processing [Apache Kafka]. Severless computing [Castro, 
2019] is the cloud-based nomenclature for what in HPC 
would be regarded as comprehensive middleware for storage 
and compute. The momentum of serverless computing is 
evidenced by its commercial uptake and the variety of open 
frameworks that implement the paradigm—the primary two 
being Apache OpenWhisk, which enables users to perform 
functions in response to events [Apache OpenWhisk], and 
OpenFaaS, which enables developers to deploy event-driven 
functions and microservices to Kubernetes without repetitive 
coding [OpenFaaS]. Researchers have started exploring the 
targeting of HPC jobs to public cloud services [Roy, 2022].

Metadata and reproducibility of research. Attendees 
in several of the breakouts expressed an interest in FAIR 
principles, workflows, and tools [Ghoshal, 2021]. One project 
mentioned was FAIR4HEP, a state-of-the-art initiative related 
to FAIR, HEP, and AI models [FAIR4HEP]. This is a point 
of connection with rich metadata and provenance (S.3.3), 
and data services will likely need adaptation to capture the 
metadata and provenance necessary to enable FAIR.

I/O performance modeling, prediction, and control. 
The scale and complexity of storage and processing 
systems used in HPC involve I/O access patterns that 
are still being understood [Patel, 2019][Patel, 2020]. To 
avoid the suboptimal use of I/O leading to congestion and 
bottlenecks, researchers have proposed various schemes, 

including: abstraction interfaces [Costa, 2021][Ghoshal, 
2017], inference of data movement [Shin, 2019], autotuning 
by relying on genetic algorithms [Behzad, 2013], explainable 
AI models [Isakov, 2020], and paradigm-specific workload 
characterization for serverless [Roy, 2021].

Co-design of hardware and services. By offering 
unprecedented programmability, emerging computational 
devices force us to rethink the storage architecture and 
services holistically. Co-designing the hardware and software 
stack becomes essential to harness the power. For example, 
Microsoft co-designs host networking with SmartNICs and 
achieves scalable network in the Azure cloud [Firestone, 
2018]; the Alibaba pushdowns table scans across database 
engines, file systems, and device drivers to computational 
storage and enables scalable cloud-native OLTP services [Cao, 
2020]; and most recently, the processing of large-scale graph 
neural networks has been accelerated via computational SSDs, 
outperforming GPU-based solutions multiple times [Miryeong, 
2022]. These advances have demonstrated promising co-design 
opportunities at scale. However, understanding the potentials 
and achieving the anticipated benefits in the HPC context 
remain an open challenge due to the different system stacks 
and scientific needs.

Workshop Findings

Metadata instastructure with data life-cycle and query 
support. With increasing complexity and variety of data, 
dealing with the explosion of data sizes alone is not enough. 
Needed in addition is a scalable metadata infrastructure that 
exposes an easy way to index, search, and query large data. 
Starting from questions such as what metadata to capture 
(namespaces, labels, content and structural properties, 
intent and constraints), the attendees noted a need for data 
life-cycle and query support that addresses aspects such as 
storage abstractions that facilitate easy and/or automated 
extraction of metadata, efficient indexing that avoids scanning 
the whole data/metadata, rich semantic/ontological queries 
that complement simple filtering/aggregation queries, tracking 
of the dataflow and provenance, and optimizing of data 
location, layout, and representation based on metadata.

Heterogeneous storage and emerging devices. HPC 
systems continuously add new layers of heterogeneous 
memories and storage devices that can be exploited both 
locally on compute nodes and remotely through dedicated 
I/O servers. In this space, not enough effort has been made 
to unify data management across these layers and simplify 
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access for users. Specifically, the attendees noted the need for 
capabilities such as auto-tiering, data placement and caching, 
dynamic provisioning, control interfaces and synergies with 
the metadata infrastructure. Furthermore, emerging devices 
such as persistent memory blur the line between memory and 
storage, thus introducing the need for unified access models 
(e.g., reconcile memory-oriented APIs vs storage-oriented 
APIs) and hardware customization.

Near-data processing capabilities. With increasingly 
complex data preprocessing and metadata queries, the 
latency of transferring the data and metadata close to the 
compute elements becomes prohibitively expensive. In this 
context, the attendees noted the need to exploit compute-
in-storage and compute-in-network/edge to move compute 
tasks closer to the data, both for data preprocessing and for 
metadata query processing. Especially important are aspects 
such as multitenancy and fairness and how to encapsulate 
compute tasks, deploy compute tasks uniformly, and handle 
different degrees of compute capabilities close to the data.

Data management and streaming for workflows.  
Data is increasingly in motion, serving the producer-
consumer patterns of workflows with complex task 
dependencies. In this case, traditional storage repositories 
(parallel file systems, object stores) are often the 
common denominator across systems. While convenient 
to use, they do not meet the requirements of workflows 
(performance, scalability, resilience). The attendees noted 
the need for specialized profiling/tuning, specialized data 
services that can handle streaming data efficiently and 
can adapt to both local and global task patterns, synergies 
between workflow-specific and generic data services, 
and coupled vs. separate metadata management.

Convergence with high-level data management 
(databases and beyond). Despite rapidly evolving data 
management requirements, most HPC storage efforts are 
still centered on POSIX and other low-level I/O-oriented data 
access models (object stores, key-value pairs). Traditional 
databases (e.g., SQL) are heavyweight and not intended for 
deployment at HPC scales. Cloud technologies including 
noSQL databases can scale to meet HPC needs, but they 
were developed for a different environment (e.g., TCP/IP) and 
workloads (e.g., Internet commerce). Convergent data services 
are needed that combine needed database capabilities for 
DOE science applications, that embody the scalability of cloud 
solutions, and that can leverage the emerging technologies 
present in exascale platforms and beyond. In particular, 
the attendees noted a need to rethink the current storage 

abstractions such that they naturally couple a fine-grained data 
distribution across heterogeneous low-level building blocks 
with a scalable metadata infrastructure that allows efficient 
indexing and query support.

Disaggregated storage. With increasing heterogeneity of 
convergent HPC, big data, and AI workloads, it is becoming 
increasingly harder to design a balanced storage stack 
that serves all types of I/O access patterns efficiently while 
remaining affordable. In this regard, disaggregated storage 
is a promising solution to improve resource utilization and 
reduce costs. At the same time, this introduces an entirely 
new set of challenges: need for stricter data protection and 
security (in particular, fine-grained access control to individual 
data structures and objects), trustless design without 
compromising I/O performance, efficient remote access that 
complements near-data processing capabilities, fairness and 
interference mitigation under multitenancy, and adaptability 
to I/O access patterns.

Monitoring, performance analysis, and adaptability.  
The complexity of the storage stack (an entire hierarchy of 
node-local memories and storage devices, remote repositories) 
makes it infeasible for applications to keep relying on trial-
and-error I/O performance tuning. This problem is amplified 
by changing I/O patterns during runtime. The attendees noted 
a need for better monitoring and performance analysis tools 
that provide insight into both the individual behavior of storage 
tiers and the complex interactions between them. Starting from 
these tools, a new generation of flexible storage services is 
needed that is composable (providing the basic building blocks 
to construct a customized stack) and capable of reconfiguring 
itself on the fly to efficiently address changing I/O patterns and 
data requirements.

Unified cloud/HPC storage stack. Cloud computing has 
the potential to allow for rapid development and deployment 
of HPC applications by making virtual clusters available on-
demand. To leverage this platform, however, we need to 
close the semantic gap between cloud and HPC storage 
architectures. While cloud resources are virtually abundant 
and allow for composing reconfigurable storage systems, cloud 
APIs are not designed for HPC programmers. Therefore, the 
attendees noted a need to develop backend interfaces that 
allow for portability between cloud block and object storage 
and structured HPC data formats; a need for understanding the 
cost-benefit of moving resource-intensive applications from 
on-premise environments to public cloud platforms; and a need 
to identify whether new data abstractions are required for 
improved performance, compatibility, and cost.
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Summary of Priority Research Direction 4
Reinventing data services for new applications, devices, and 
architectures

Key Question:

1.	 Using a co-design approach, how do we create specialized 
data services leveraging emerging device technologies to 
enable revolutionary breakthroughs across the breadth of 
DOE science?

New science endeavors and approaches require specialization 
of how data is accessed, organized, and retained. New 
networking and storage devices, including ones with 
computational capabilities, merit revisiting data service design 
to maximally exploit these technologies. New architectures, 
including scenarios in which data lives across sites or  across 
administrative domains or is generated at the edge, similarly 
place new requirements on data services. Co-design of these 
services with scientists, hardware architects, and facility 
operators is needed to unlock the potential of data in these 
unique environments and ease porting to new ones

3.5.	Crosscutting themes 

AI for data management and data management 
for AI. ​
The use of AI and ML technologies to extract insights from 
massive scientific datasets has been steadily increasing over 
the past years. This integration between data management and 
AI is bi-directional (e.g., in workflows [da Silva, 2021]). The first 
direction is to apply AI and ML techniques for the optimization 
of existing data processing pipelines and workflows. Examples 
include the design of data partitioning and placement 
strategies, indexes, and statistical cardinality estimators using 
ML techniques such as regression and autoregressive models, 
embeddings, and deep neural networks. Although these 
models can be trained exclusively from the data, they require 
the acquisition/generation of extensive query workloads when 
the model features include query clauses. For example, a 
cardinality estimation model that uses selection predicates 
as features requires selection queries for training. While this 
is relatively simple to do for certain querying tasks, an entire 
logging framework has to be developed in the case of complex 
workflows. Reinforcement learning methods are another class 

of AI techniques applied to data storage decisions and for 
computing the join/correlation among different datasets. The 
generation of the training dataset is even more complicated in 
this case because learning the reward function requires both a 
large number of examples and diverse examples.

The second integration direction consists in the design of 
efficient data processing techniques to support the training and 
prediction of massive ML models having billions of parameters 
and hyperparameters. Examples of such large models include 
convolutional deep neural nets for image classification and 
embedding models for text synthesis. Although ML processing 
extensively uses linear algebra operations, which are a staple 
of scientific computing, their integration in complex workflows 
poses new challenges. These can be addressed by extending 
the database query processing techniques specific to out-
of-memory and distributed settings. These techniques are 
integrated into declarative languages that handle query 
optimization transparently through relational-linear algebras.

Overall, R&D efforts are needed to support both integration 
directions, AI for data management and data management for 
AI. These efforts are crosscutting across the four identified 
priority research directions. The I/O APIs that enable complex 
AI workflows on modern HPC and edge systems with complex 
memory hierarchies and heterogeneous accelerators have to 
be redesigned. More effective schedulers and data movement 
tools are needed for using computation, memory, and storage 
resources efficiently to perform training and inference. Novel 
AI analysis methods are useful for understanding the behavior 
of data movement and for optimizing data management 
services and architectures. Research is also needed to use AI 
methods to analyze massive metadata and provenance that 
can lead to identifying or recommending relevant datasets 
and information to scientists. Achieving these goals also 
requires the development of representative benchmarks for 
complex AI workflows [da Silva, 2021].

Co-design. 
Co-design is defined as the process of jointly designing 
interoperating components of a computer system—in 
particular, applications, algorithms, programming models, and 
system software, as well as the hardware on which they run and 
the facilities they run in [DOE, 2022]. Data has a preeminent 
role within any HPC contribution to discovery in the modern 
scientific environment: if data analysis is not considered 
as critical to science as calculation, HPC’s contributions to 
scientific discovery will be severely curtailed. It follows that 
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the management and storage of scientific data touch on an 
especially broad segment of HPC practitioners. By mutually 
addressing issues in a cooperative manner, co-design avoids 
many pitfalls associated with insufficient context. HPC is rapidly 
evolving, and no single community (e.g., domain science end 
users, system software developers, facility staff, vendor R&D 
staff) can offer general advancements without involving the 
other affected communities. Co-design is needed to span the 
breadth of data issues and concerns associated with scientific 
data management.
 
For instance, the workshop attendees noted that co-design 
is necessary in the development of high-level data model 
capabilities. Without sufficient representation from varied 
communities within HPC, it is difficult for a single HPC group 
to accurately specify what operations the underlying system 
should perform. Co-design is needed to explore how high-
level patterns can utilize these capabilities on emerging 
hardware architectures and storage technologies. On the 
software side, library maintainers must adapt to efficiently 
use more complex storage hierarchies without unnecessary 
overheads and programming complexities. On the hardware 
side, optimizations could be made to support the numerically 
oriented access patterns common in scientific computing. 
Both sides must contend with the differences in consistency 
requirements between scientific and enterprise computing.
 
A second example may be found in HPC’s unprecedented 
programmability. Emerging computational devices force us to 
rethink the storage architecture and services holistically. Co-
designing the hardware and software stack becomes essential 
to harness the power. The rapidly evolving HPC landscape 
has demonstrated promising co-design opportunities at 
scale. However, understanding the potentials and achieving 
the anticipated benefits in the HPC context remain an open 
challenge due to the different system stacks and scientific 
needs.  Unifying these stacks is an important part of the goal of 
HPC-cloud convergence, which remains on the 10-year horizon.  
 
New science endeavors and approaches require specialization 
of how distributed data are accessed, organized, and retained. 
New networking and storage devices, including ones with 
computational capabilities, merit revisiting data service design 
to maximally exploit these technologies. New architectures, 
including scenarios in which data lives across sites and across 
administrative domains or is generated at the edge, similarly 
place new requirements on data services. Co-design of these 
services with scientists, hardware architects, and facility 
operators is needed to unlock the potential of data in these 
unique environments and ease porting to new ones. Research 

is needed to determine how best to disaggregate, view, 
modify, and manage large, collaborative datasets.   

FAIR. 
For scientific data to be reusable efficiently, the FAIR 
principles provide guidelines for collecting various types 
of metadata and provenance. These principles crosscut 
in all four thrusts discussed at the workshop that require 
interfaces, standardization efforts, and metadata services. 

The “High-productivity interfaces” section suggests that 
advanced metadata capabilities (e.g., search, sharing, 
reproducibility, annotations) will be critical for data-
driven studies. Interfaces for collecting metadata, such as 
annotations, attributes, descriptions of the data, and intent 
of the users for producing or accessing data, are required. 
The Interfaces section also suggests that FAIR is particularly 
critical for AI consumers of data [Fagnan, 2019] and the AI-
for-science processes.

Provenance of the data life cycle that may go beyond the current 
requirements of the FAIR principles is potentially useful for 
understanding and optimizing data management systems and 
AI processes. A few recent studies have provided interfaces and 
standards for collecting and managing provenance data with the 
goal of improving I/O performance [Li, 2019][Murugan, 2022]
[Han, 2022]. IBM has been recently working on the ProvLake 
[Souza, 2019a][Souza, 2019b] effort that proposes a standard 
for collecting AI parameters that can be used for optimizing AI 
model development. Further efforts are needed to standardize 
these interfaces for collection and management of provenance 
for optimizing data management systems.

Overall, the increased size and complexity of metadata and 
provenance require efficient management, search, and access 
of FAIR-compliant data. In addition to plain compliance with the 
FAIR principles, metrics and methods are required for finding 
data that a scientist desires among data repositories. Scientists 
may need interfaces for accessing specific data objects or 
parts of large data variables that match given conditions. These 
features require standardization of FAIR metadata interfaces, 
storage, and benchmarks for evaluation of FAIR compliance. 
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4.	Summary/Conclusion

Future scientific activities will encompass an increasingly 
broad range of domains and span both HPC resources and 
advanced scientific instruments. Significant new directions 
in hardware architectures are leading to more complex and 
heterogeneous environments. Design decisions made long ago 
for a much different environment and a decidedly different 
workload are no longer appropriate for the full scope of today’s 
requirements. This report finds that key advances are needed in 
the following areas:

•	 High-productivity interfaces for accessing scientific data 
efficiently

•	 Understanding of the behavior of complex data 
management systems in DOE science

•	 Rich metadata and provenance collection, management, 
search, and access

•	 Reinventing of data services for new applications, devices, 
and architectures

The report findings recommend R&D efforts to support 
advances in each of these topics. Scientists and facility operators 
working together to co-design data management architectures 
will ensure that we have the most capable and robust tools for 
managing these troves of valuable scientific results. By improving 
how we describe and structure and access this data, we will 
enable greater sharing of data than ever before and facilitate 
automation of science with artificial intelligence.
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5.	Acronym glossary

ADIOS
Adaptable IO System. ADIOS provides a simple, flexible way for scientists to describe the data in their 
code that may need to be written, read, or processed outside of the running simulation.

AI
Artificial Intelligence. Artificial intelligence is intelligence demonstrated by machines, as opposed to the 
natural intelligence displayed by animals including humans.

API
Application programming interface. Syntax and semantics for invoking services from within an executing 
application.

ASCR

The Advanced Scientific Computing Research (ASCR) Program within the Department of Energy Office 
of Science is a program with the mission to discover, develop, and deploy computational and networking 
capability to analyze, model, simulate and predict complex phenomena important to the Department of 
Energy and the advancement of science.

BB See Burst Buffer.

Burst-Buffer
The Burst Buffer is an intermediate, high-speed layer of storage that is positioned between the application 
and the parallel file system (PFS), absorbing the bulk data produced by the application at a rate a hundred 
times higher than the PFS, while seamlessly draining the data to the PFS in the background.

Checkpoint
A snapshot of the state of a process that is sufficient to allow the process to resume execution from the 
point the checkpoint was recorded.

Co-design
Co-design refers to a computer system design process where scientific problem requirements influence 
architecture design and technology and constraints inform formulation and design of algorithms and 
software.

Co-locate
Co-locate refers to the placement of multiple services which exist in different enclaves, on a single node. 
One reason for co-location is to minimize data movement.

Consistent
Guarantees that data accesses within a multi-layered memory hierarchy provide a compatible view of the 
data free of contradictions.

COW

Copy-on-Write. An optimization for consistency. Copy-on-write is the name given to the policy that 
whenever a task attempts to make a change to the shared information, it should first create a separate 
(private) copy of that information to prevent its changes from becoming visible to all the other tasks. If 
this policy is enforced by the operating system kernel, then the fact of being given a reference to shared 
information rather than a private copy can be transparent to all tasks, whether they need to modify the 
information or not.

CSV
A comma-separated values file is a delimited text file that uses a comma to separate values. Each line of 
the file is a data record. Each record consists of one or more fields, separated by commas.

DAX
Direct Access. The facility of retrieving data immediately from any part of a computer file, without having 
to read the file from the beginning.
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Digital twins
 A digital twin is a virtual representation that serves as the real-time digital counterpart of a physical 
object or process.

DOE The United States Department of Energy. 

DOI A digital object identifier is a persistent identifier or handle used to uniquely identify various objects.

DRAM
Dynamic Random Access Memory. A high performance RAM which requires a periodic refresh. Generally, 
DRAM has favorable latency and bandwidth characteristics but unfavorable power consumption 
characteristics. DRAM is volatile.

FAIR

Findable, Accessible, Interoperable, and Reusable. A set of data management principles defined in 
[Wilkinson, 2016]. For data to be Findable, it should satisfy: (F1) (meta)data are assigned a globally unique 
and persistent identifier; (F2) data are described with rich metadata (defined by R1 below); (F3). metadata 
clearly and explicitly include the identifier of the data it describes; (F4). (meta)data are registered 
or indexed in a searchable resource For data to be Accessible, it should satisfy: (A1). (meta)data are 
retrievable by their identifier using a standardized communications protocol. The protocol is open, free, 
and universally implementable; The protocol allows for an authentication and authorization procedure, 
where necessary; (A2) metadata are accessible, even when the data are no longer available. For data to 
be Interoperable, it should satisfy: (I1) (meta)data use a formal, accessible, shared, and broadly applicable 
language for knowledge representation; (I2) (meta)data use vocabularies that follow FAIR principles; 
(I3) (meta)data include qualified references to other (meta)data. For data to be Reusable, it should 
satisfy: (R1) meta(data) are richly described with a plurality of accurate and relevant attributes; (meta)
data are released with a clear and accessible data usage license; (meta)data are associated with detailed 
provenance; (meta)data meet domain-relevant community standards.

GPFS
General Parallel File System. A proprietary PFS developed by IBM. Recently, IBM has rebranded GPFS as an 
element of their Spectrum Scale suite of software.

GPU
Graphics Processing Unit. A GPU may be used together with a CPU to accelerate scientific and analytical 
workloads.

HDD
Hard Disk Drive. A storage device designed around a rotating media platter coated with magnetic 
material. The platters are paired with magnetic heads on a moving actuator arm. (see also SSD).

HDF
Hierarchical Data Format (HDF) is a set of file formats (HDF4, HDF5) designed to store and organize large 
amounts of data.

HPC High Performance Computing.

In situ

A phrase that translates roughly to “in it’s original place” or “in position”. An ASCR Funding Opportunity 
Announcement targeted at Scientific Data Management (Lab_14_1043), defined in situ to include: “the 
reduction, analysis and visualization, occurring in parallel with the simulation, either on the same nodes 
or on specially designated nodes. A key aspect of in situ processing is that data are intelligently reduced, 
analyzed, transformed and indexed while they are still in memory and before being written to disk or 
transferred over networks.” 

Inter-process Involving two or more processes where each process is an executing program.
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Interface Syntax and semantics for invoking services from within an executing application.

IO Input/Output. Data movement up and down the Memory Hierarchy Layers (MHL).

iRODS
Integrated Rule-Oriented Data System (iRODS) is open source data management software with the goals 
of data virtualization, data discovery, data workflows, and secure collaboration.

Isolation
In distributed systems, (isolation) is the property that defines how/when the changes made by one 
operation (or entity) become visible to other concurrent operations (or entities). Isolation is a key 
consideration in the security of federated systems.

Job
A job comprises a collection of related, potentially interacting enclaves executing on a partition of a 
machine. A job may also interact with enclaves that are not considered part of the job, such as service 
enclaves.

KVS

Key Value Store. A system designed for storing, retrieving, and managing associative arrays, a data 
structure more commonly known today as a dictionary or hash. Dictionaries contain a collection of 
objects, or records, which in turn have many different fields within them, each containing data. These 
records are stored and retrieved using a key that uniquely identifies the record, and is used to quickly find 
the data within the database. (Contrast with relational database.)

Map-reduce

Map-Reduce is a programming model and an associated implementation for processing and generating 
big data sets with a parallel, distributed algorithm on a cluster. A Map-Reduce program is composed of a 
map procedure, which performs filtering and sorting, and a reduce method, which performs a summary 
operation.

Metadata Data providing information about one or more aspects of the data.

ML
Machine Learning. Machine Learning is a field of science devoted to understanding and building methods 
that ‘learn’, that is, methods that leverage data to improve performance on some set of tasks. It is seen as 
a part of artificial intelligence.

MPI-IO
MPI-IO is a portable interface defined by the Message Passing Interface (MPI) Forum in order to perform 
parallel I/O operations within distributed memory programs, leveraging MPI key concepts such as 
communicators, datatypes, and collective operations.

MSSD Management and Storage of Scientific Data.

NetCDF
NetCDF is a set of software libraries and self-describing, machine-independent data formats that support 
the creation, access, and sharing of array-oriented scientific data.

Node

From the hardware perspective, a node is the building block in a parallel machine; it usually consists of 
a processor or multiprocessor, memory, an interface to the interconnect and, optionally, a local disk. 
In cases where a single node contains multiple processing units (e.g., multiple cores), the node may be 
divided into multiple virtual nodes to permit co-location.

noSQL
Not Only SQL. NoSQL is an approach to database management that can accommodate a wide variety 
of data models that are non-relational (e.g., key-value, document, columnar and graph formats) and 
generally do not use SQL.
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NVM Non-volatile Memory. (See also NVRAM.)

NVMe
Non-Volatile Memory Express. A standard hardware interface for solid state drives (SSDs) that uses the 
PCI Express (PCIe) bus. 

NVRAM
Non-volatile Random Access Memory. A type of non-volatile memory that allows for data to be accessed 
quickly in any random order.

Open source Software that is available to users in source form and can be used and modified freely.

OS Operating system.

OSR Operating system and Runtime system.

P2P
Peer-to-Peer communications. Peers are equally privileged, equipotent participants in the application. 
Peers are both suppliers and consumers of resources, in contrast to the traditional client-server model in 
which the consumption and supply of resources is divided.

PCIe
Peripheral Component Interconnect Express. PCIe is an interface standard for connecting high-speed 
components.

Persistence
Any method or apparatus for efficiently storing data structures such that they can continue to be 
caccessed using memory instructions or memory APIs even after the end of the process that created or 
last modified them. (Note: persistence does not imply consistency.)

PFS
Parallel File System. A high performance file system utilizing block-based devices and POSIX file semantics. 
Examples include Lustre, GPFS, PVFS, and so on.

POSIX
Portable Operating System Interface. POSIX is a family of standards specified by the IEEE Computer 
Society for maintaining compatibility between operating systems. POSIX was introduced in 1988.

Provenance Provenance is the chronology of the ownership, custody or location of a data object. 

Publish/
Subscribe

Publish/Subscribe is a messaging pattern where senders of messages, called publishers, do not send the 
messages directly to specific receivers, called subscribers. Instead, published messages are characterized 
into classes, without knowledge of what, if any, subscribers there may be. Similarly, subscribers express 
interest in one or more classes, and only receive messages that are of interest, without knowledge of 
what, if any, publishers there are.

RAM
Random Access Memory. A type of memory that allows for data to be accessed quickly in any random 
order.

RDF
Resource Description Framewoark. a model for encoding semantic relationships between items of data so 
that these relationships can be interpreted computationally.

RDMA
Remote Direct Memory Access (RMA) is a direct memory access from the memory of one computer 
into that of another without involving either one’s operating system. This permits high-throughput, low-
latency networking, which is especially useful in massively parallel computers.
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SAS
Serial Attached SCSI. A high-performance interface for block-based devices. SAS implementations 
typically outperform SCSI and SATA. (See also SCSI, SATA).

SATA Serial ATA. A mid-level performance interface for block-based devices. (See also SAS, SCSI).

SCSI
Small Computer System Interface. A low-level performance parallel interface standard used by personal 
computers. (See also SAS, SATA).

SQL
Structured Query Language. SQL is a standardized programming language that is used to manage 
relational databases and perform various operations on the data in them.

SSD

Solid State Disk. A storage device compatible with traditional disks comprised of moving parts, but built 
with integrated circuits instead. SSDs typically offer improved latency and access time performance. 
However, they are roughly six to ten times more expensive per unit of storage than traditional hard-disk 
drives (see also HDD).

SmartNIC
Smart Network Interface Card. A SmartNIC is a programmable accelerator that makes data center 
networking, security and storage efficient and flexible. SmartNICs offload from server CPUs an expanding 
array of jobs required to manage modern distributed applications.

URL
Uniform Resource Locator. A URL, colloquially termed a web address, is a reference to a web resource 
that specifies its location on a computer network and a mechanism for retrieving it. 

Zero copy
Operations in which the CPU does not perform the task of copying data from one memory area to 
another. This is most often used to save on processing power and memory use when sending files over a 
network.
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7.	 Workshop Agenda

Day 1 (January 24)

Time Topic

12:00 - 12:15 Opening Remarks (Hal Finkel, ASCR)

12:15 - 12:45 Introduction and Logistics (Organizing Committee) - Terry Jones

12:45 - 1:30 Keynote - Giri Prakash

1:30 - 3:00

Panel: Workflows (Moderator: Kathryn Mohror)

●	 Lavanya Ramakrishnan
●	 Dan Laney
●	 Rafael Ferreira da Silva
●	 Philip Davis
●	 Tom Peterka
●	 Ewa Deelman

3:00 - 3:15 Break

3:15 - 4:15

Breakouts 
1.	 Understanding the overlap between traditional storage systems and I/O (SSIO) efforts and data 

management
a.	 Session leads: Carlos Maltzahn, Lance Evans
b.	 Note takers: Burlen Loring 

2.	 Data management support for AI and complex workflows
a.	 Session leads: Rafael Ferreira da Silva, Lavanya Ramakrishnan
b.	 Note takers: Hariharan Devarajan, Ana Gainaru

3.	 Novel architectures for scientific data (Data warehouses, lakes, cloud, and reconfigurable storage)
a.	 Session leads: Sarp Oral, John Shalf
b.	 Note takers: Kevin Harms, Glenn Lockwood

4:15 - 5:00 Readouts / Summary
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Day 2 (January 25)

Time Topic

12:00 - 12:05 Opening Remarks and Logistics

12:05 - 12:50 Keynote - Pandis Ippokratis

12:50 - 2:00

Panel: Database technologies for scientific applications (Moderator: Rob Ross)

●	 Ioan Raicu
●	 Jay Lofstead
●	 Lee Ward
●	 John Wu
●	 Spyros Blanas

2:00 - 2:05 Break

2:05 - 3:00

Breakouts, First Session
1.	 Storage-system architecture design 

a.	 Session leads: Rob Ross, Sudarsun Kannan
b.	 Note takers: Galen Shipman, Nik Sultana 

2.	 Capturing and using provenance information in data life cycle
a.	 Session leads: Aaron Brewster Katie Knight
b.	 Note takers: Phil Carns, Justin Wozniak

3.	 AI for data management
a.	 Session leads: Devesh Tiwari, Wahid Bhimji
b.	 Note takers: Sandeep Madireddy, Murali Emani

3:00 - 3:15 Break

3:15 - 4:15

Breakouts, Second Session
1.	 Interfaces for accessing scientific data

a.	 Session leads: Suren Byna, Johann Lambardi
b.	 Note taker: Gerd Heber, John Shalf

2.	 Data management and storage needs of scientific applications
a.	 Session leads: Jay Lofstead, Antonino Tumeo
b.	 Note taker: Marshall McDonnell 

3.	 Understanding application data movement and management 
a.	 Session leads: Phil Carns, Glenn Lockwood
b.	 Note taker: Dong Dai, Kathryn Mohror, Rob Ross

4:15 - 5:00 Readouts / Summary (Breakouts, First Session)
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Day 3 (January 27)

Time Topic

12:00 - 12:05 Opening Remarks and Logistics

12:05 - 12:50 Keynote - Deb Agarwal

12:50 - 2:00

Panel: Metadata and provenance management (Moderator: Suren Byna)

●	 Katie Knight
●	 Yong Chen
●	 Patrick Widener
●	 Kjiersten Fagnan 
●	 Galen Shipman 

2:00 - 2:05 Break

2:05 - 2:50 Readouts / Summary (Breakouts, Day 2, Second Session)

2:50 - 3:45

Breakouts 
1.	 Data management co-design for edge and HPC applications

a.	 Session leads: John Wu, Terry Jones
b.	 Note takers: Glenn Lockwood

2.	 Data management support for AI and complex workflows
a.	 Session leads: Scott Klasky, George Amvrosiadis
b.	 Note takers: Huihuo Zheng, Burlen Loring

3.	 Metadata management infrastructure to support FAIR principles
a.	 Session leads: Kjiersten Fagnan, Line Pouchard
b.	 Note takers: Bogdan Nicole

4.	 Interfaces for accessing scientific data
a.	 Session leads: Rob Ross, Justin Wozniak
b.	 Note takers: Hariharan Devarajan

3:45 - 4:00 Break

4:00 - 5:00 Readouts / Summary
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