
Multidimensional Array Data Management

Florin Rusu
University of California Merced

frusu@ucmerced.edu

September 2, 2022

Abstract

Multidimensional arrays are a fundamental abstraction to represent data across
scientific domains ranging from astronomy to genetics, medicine, business intelligence,
and engineering. Arrays come under multiple shapes – from dense rasters to sparse data
cubes and tensors – and have been studied extensively across many computing domains.
In this survey, we provide a comprehensive guide for past, present, and future research
in array data management from a database perspective. Unlike previous surveys that
are limited to raster processing in the context of scientific data, we consider all types of
arrays—rasters, data cubes, and tensors. We identify and analyze the most important
research ideas on arrays proposed over time. We cover all data management aspects,
from array algebras and query languages to storage strategies, execution techniques, and
operator implementations. Moreover, we discuss which research ideas are adopted in
real systems and how are they integrated in complete data processing pipelines. Finally,
we compare arrays with the relational data model. The result is a thorough survey on
array data management that should be consulted by anyone interested in this research
topic—independent of experience level.

1 INTRODUCTION
Multidimensional arrays are one of the fundamental computing abstractions to represent
data across virtually all areas of science and engineering (Harris et al., 2020)—and beyond.
In science, spatio-temporal data acquired by sensors measuring environmental conditions
or generated by simulations of physical phenomena are represented as 3- or 4-D dense
arrays—also called rasters or grids. Concrete examples include spatial 3-D (x/y/z) arrays
of Earth subsurface voxels, 3-D (x/y/t) time series of X-ray and fMRI medical images, and
4-D (x/y/z/t) optical or radio telescope signals in astronomy (Baumann et al., 2021). In
business analytics, data cubes aggregate statistical measures such as the mean, variance,
and median across all the combinations of the values on a set of multiple – possibly
hierarchical – dimensions (Gray et al., 1996). For example, a retailer may want to compute

1

the monthly average volume of sales for every city and every product category. Unlike the
science rasters, the coordinates of a data cube do not necessarily have a strict ordering—
they are categorical, not ordinal. Moreover, many entries in the data cube can be empty,
resulting in a sparse array. In machine learning and artificial intelligence, highly-dimensional
models are defined over features extracted from text and image data. For example, the
text synthesis models applied in natural language processing consist of embeddings with
billions of features (Brown et al., 2020). These models are represented as 1-D vectors, 2-D
matrices, and their multidimensional tensor generalizations. Machine learning training and
prediction consist of a sequence of linear algebra operations between the model and the
training/testing data—also represented as tensors.
Due to their ubiquity, multidimensional arrays – rasters, data cubes, and tensors – have
been studied extensively across many areas of computer science—including compilers,
programming languages, scientific and high-performance computing, graphics, and databases.
With the exception of databases, the vast majority of these studies are focused on the
computational aspects of array processing—not the data management issues. Within the
database field, the first “call” to extend the unordered set-based relational model with
ordered rasters dates back to 1993 (Maier and Vance, 1993). Although rasters had initially
spurred research interest, they had been overshadowed by data cubes upon their introduction
in 1996 (Gray et al., 1996). However, the era of “Big Data” from the late 2000’s and early
2010’s has renewed the interest in raster and sparse ordered arrays. The main driver has
been the large volume of spatio-temporal data generated by scientific applications. This
has led to the creation of the SciDB array database (Cudre-Mauroux et al., 2009) as a
collaboration between data management researchers and astronomers fostered by the XLDB
suite of conferences. The success of deep neural network models in classifying objects from
images and text has brought the spotlight on tensor processing in the late 2010’s—which
continues by the time of this writing.
In this work, we survey the research on multidimensional array data management – including
rasters, data cubes, and tensors – from a database perspective. Thus, our focus is on work
published in database conferences and journals. However, we also include references to
relevant work from other computing domains whenever necessary. Our definitive goal is
to identify and analyze the most important research ideas on arrays proposed over time.
We cover the full spectrum of data management, from array algebras and query languages
to storage strategies, execution techniques, and operator implementations. Moreover, we
discuss which research ideas are adopted in real systems and how are they integrated in
complete data processing pipelines. Given that the unordered set-based relational data
model is dominant across databases, we compare the differences to arrays at every step in
the presentation.
The resulting survey aims to serve two main objectives. First, it summarizes concisely

2

the most relevant work on multidimensional array data management by identifying the
major research problems. Second, the survey organizes this material to provide an accurate
perspective on the state-of-the-art and future directions in array processing. To the best of
our knowledge, this is the first complete survey on array data management that includes
rasters, data cubes, and tensors. Previous surveys are limited to raster processing in the
context of scientific data. For example, the first survey on array storage and processing (Rusu
and Cheng, 2013) does not consider data cubes and tensors, while the latest survey (Baumann
et al., 2021) gives a thorough analytical and experimental comparison among several raster
systems. The VLDB 2021 tutorial on array DBMS (Zalipynis, 2021) discusses the design of
the ChronosDB system for external raster processing. Our perspective on multidimensional
array data management goes beyond science use cases and considers all types of arrays—
rasters, data cubes, and tensors.
This manuscript surveys a large body of work on multidimensional arrays published over
three decades and is organized as follows. We start with a theoretical formalization of arrays
and their categorization in Chapter 2. The defining operations for every type of array are
presented in Chapter 3. The next three chapters follow the architecture of a data processing
system—going top-down from the user interface to the execution internals. Array algebras
and query languages are introduced in Chapter 4. Array storage techniques are presented
in detail in Chapter 5. Execution strategies and array operators are discussed in Chapter 6.
The implementation of these ideas and their integration in real systems are analyzed in
Chapter 7. We conclude with a summary of the most relevant ideas and an outlook to
future directions on array data management in Chapter 8.

2 MULTIDIMENSIONAL ARRAYS

In this chapter, we provide a formalization for multidimensional arrays by clearly distin-
guishing between dimensions and attributes—the two components defining an array. We
follow with a classification of array types and a conceptual comparison between arrays – on
one side – and tensors, relations, and data cubes—on the other.

2.1 Arrays

A multidimensional array with N dimensions and M attributes – or N -dimensional array – is
defined by a set of dimensions D = {D1, . . . , DN } and a set of attributes A = {A1, . . . , AM }.
Every dimension Di, i ∈ {1, . . . , N}, is a finite ordered set over a discrete domain [li, ui]
that contains the integers between li and ui. For simplicity, we assume that li is always 1.
Every combination of dimension values, or indices, [i1, i2, . . . , iN], defines a cell. Cells have
the same scalar type, given by the set of attributes A. Dimensions and attributes define

3

the schema of the array. Based on these concepts, an array can be thought of as a function
defined over dimensions and taking value attribute tuples:

Array : [D1, D2, . . . , DN] 7−→ ⟨A1, A2, . . . , AM ⟩ (2.1)

This formalization corresponds to the definition of N -dimensional tensors (Kolda and Bader,
2009). It is different from multidimensional vectors, which do not differentiate between
dimensions and attributes. In the vector model (Salton et al., 1975), the array with N

dimensions and M attributes is represented as a vector with (N +M) dimensions/attributes.
The functional formalization of arrays also makes explicit the functional dependency between
dimensions and attributes specific to the relational data model (Codd, 1970), in which the
N dimensions form a key of the corresponding relation.

Example 2.1.1 (Arrays). Two 2-D arrays A,B<r:int,s:int>[i=1,3;j=1,4] with dimen-
sions i and j and two attributes r and s of integer type are depicted in Figure 2.1. This is
the notation to define arrays in SciDB’s AQL language (Maier, 2012; Lim et al., 2012). The
range of i is [1, 3], while the range of j is [1, 4]. The numbers in every non-empty cell are
the values of r and s, e.g., A[i = 1, j = 2] 7→ ⟨r = 2, s = 5⟩.

(7,1) (2,5) (6,3) (6,4)

(2,3) (6,8) (1,4) (8,3)

(2,1) (5,5) (3,5) (9,7)

i
j

[1]

[2]

[3]

[1] [2] [3] [4]

(a)

(7,1) (6,3)

(8,3)

(2,1) (5,5) (3,5)

i
j

[1]

[2]

[3]

[1] [2] [3] [4]

(b)

Figure 2.1: (a) Dense array A. (b) Sparse array B.

2.2 Array Types

There are two types of array data – dense and sparse – classified according to the number
of entries defined for the Array function. An example of each array type is depicted in
Figure 2.1. If Array is defined for every entry in the input domain, i.e., for each of the
|D1| ∗ |D2| ∗ · · · ∗ |DN | entries, then the array is considered dense, also known as grid or

4

multidimensional discrete data (MDD) (Furtado and Baumann, 1999). Grids contain values
in every cell.
Sparse arrays can be thought of as incomplete grids with missing cells. Intuitively, sparse
arrays are obtained by making the size of the domain for every dimension extremely large,
while providing values only for a limited number of cells. For example, consider the case
of dimensions defined over real-valued domains. Notice that it is also possible to go the
other direction—transform sparse arrays into grids. The idea is to condense multiple index
values across every dimension into a single scalar, such that all the cells contain at least
one value. However, this may result in cells that contain more than a single tuple, case in
which there are two alternatives—store the tuples with all – or a part – of their attributes
independently or create a single tuple that aggregates the multiple values across the merged
cell. This process is similar to histogram binning for data compression or approximation.
An intuitive way to understand the difference between dense and sparse arrays is to look at
the expression Array [d1, d2, . . . , dN]. In the case of a grid, this expression always returns
a valid cell containing data. That is not the case for sparse arrays. In a sparse array, it is
possible that the cell is empty and does not contain valid data, e.g., B[i = 1, j = 2] 7→ ⟨⟩ in
Figure 2.1 (b). As a result, the strategies to organize and store the two types of arrays are
quite different.

2.3 Array Dimensions

The dimensions of an array functionally determine the attributes in every array cell. Thus,
dropping any dimension – dimensionality reduction – results in the loss of the functional
property. The remaining dimensions define a domain having as many duplicates as the
size of the range of the eliminated dimension. In order to preserve the functional property
under dimensionality reduction, the original array has to be split or sliced into multiple
arrays with lower dimensionality. The number of these arrays is given by the range of the
eliminated dimension. For example, let us assume that we reduce the dimensionality of
Array by eliminating the first dimension D1. The result is u1 − l1 +1 arrays of dimensionality
N − 1 given by:

Arrayl1 : D2 × · · · × DN 7−→ (A1, A2, . . . , AM)
Arrayl1+1 : D2 × · · · × DN 7−→ (A1, A2, . . . , AM)
. . .

Arrayu1 : D2 × · · · × DN 7−→ (A1, A2, . . . , AM)

(2.2)

A concrete example of slicing the array A from Figure 2.1 along its first dimension i is
depicted in Figure 2.2.

5

(7,1) (2,5) (6,3) (6,4)

j

A
[1]

[1] [2] [3] [4]

(2,3) (6,8) (1,4) (8,3)

j [1] [2] [3] [4]

(2,1) (5,5) (3,5) (9,7)

j [1] [2] [3] [4]

A
[2]

A
[3]

(7,1) (2,5) (6,3) (6,4)

(2,3) (6,8) (1,4) (8,3)

(2,1) (5,5) (3,5) (9,7)

i
j

[1]

[2]

[3]

[1] [2] [3] [4]

Figure 2.2: Array slicing through dimensionality reduction.

Evaluating the expression Array [d1, d2, . . . , dN] requires two steps in the sliced represen-
tation. First, the d1 array has to be identified. Then, the expression Arrayd1 [d2, . . . , dN]
has to be evaluated instead. Dimensionality reduction can be generalized to any number of
dimensions. The result is multiple lower dimensionality arrays. Although the benefits of
such a slicing may not be clear immediately, there are classes of queries that benefit from
this representation.

2.4 Arrays and Relations

An array has multiple representations as a relation. We present these representations for
the two 2-D arrays A and B introduced in Example 2.1.1:
• Array as table T(i,j,r,s): The array dimensions and attributes become primitive

attributes of the table. There is a tuple for every valid cell in the array. The table
representation is optimal for the sparse array B since only the valid cells are included. In
the case of the dense array A, the indices are redundant across the tuples since a cell can
be identified based on its position.

• Array as set of row vectors RV(i,j[],r[],s[]): Dimension i becomes a primitive
attribute while dimension j and the array attributes r and s become composite vector
attributes of the table. There is a tuple for every row of the array. This eliminates the
redundancy in the representation of the row index—which is stored at most once. For
the dense array A, there is still redundancy on the column index j. This representation
corresponds to array slicing.

• Array as set of column vectors CV(i[],j,r[],s[]): This representation is identical to
row vectors, but applied to columns.

• Array as tuple ST(r[][],s[][]): The entire array is represented as a single tuple, with
every array attribute becoming an attribute of the relation. These relation attributes are

6

composite multidimensional arrays that maintain the dimensions of the original array.
However, the dimensions are included only in the composite attribute, not as relation
attributes. Positional indexing in the array is delegated to the composite attribute.

• Array as set of tiles TI(i_t,j_t,r_t[][],s_t[][]): The array is decomposed into a
set of identical sub-arrays – or tiles – that group contiguous blocks of cells. The tiles
are identified by their indices on the contracted dimensions, which become primitive
attributes of the table. The tiles are represented as a single tuple. Thus, the number of
tuples is equal to the number of tiles. This representation is a generalization of array as
tuple.

The main difference among these representations is the number of dimension indices that
are stored explicitly. At one extreme, we have array as table, which represents all the indices,
while at the other array as tuple, which represents only the array attributes. The other
representations implement various tradeoffs between the two. Array as table is the only
representation that conforms with the original relational data model (Codd, 1970). All the
other representations require support for attributes having a composite array data type
and corresponding functions, which are characteristics of object-relational databases such
as PostgreSQL (The PostgreSQL Development Team, 2020). If composite data types are
not supported, arrays can be mapped to binary large objects (BLOB), case in which the
database system provides only storage while the array manipulations are delegated to the
application.

To better understand the difference between arrays and relations, it is important to clarify
the distinction between dimensions and attributes. A relation can be viewed as an array
without dimensions, only with attributes. Thus, there is no ordering function that allows
the identification of a tuple based on dimensional indices. Going from relations to arrays, it
is required that dimension attributes form a key in the corresponding relation, i.e., there
is a functional dependence from the dimension attributes to all the other attributes in
the relation. Since a key is maximal, any attribute can be immediately transformed into
a dimension. Transforming dimensions into attributes is not that straightforward. To be
precise, converting a dimension into an attribute is equivalent to breaking the array property
and losing any ordering information. As such, any array can be viewed as a particular type
of relation organized along dimensions.

The expression Array [d1, d2, . . . , dN], where di ∈ [li, ui], makes sense for an array and is
uniquely determined. The same is true for a relation in which (d1, d2, . . . , dN) represents a
key. However, what distinguishes an array from a relation is that the array is organized
such that finding the entry Array [d1, d2, . . . , dN] can be done directly from the value of
the indices – the position – without looking at any other entries. This is not possible in a
relation since there is no correspondence between the indices and the actual position in the
physical representation. Consequently, the main difference between arrays and relations is

7

at the physical level since abstractly arrays are a particular type of relation.

2.5 Arrays and Tensors

From a data structure perspective, there is no difference between a multidimensional array
and a tensor. From a naming perspective, tensors are N-dimensional arrays with at least
three dimensions, N ≥ 3. Tensors are the mathematical generalization of 1-D vectors and
2-D matrices. A more subtle difference between the two constructs is related to the possible
attribute values and their semantics. In a multidimensional array, there is no relationship
between attributes both inside a cell, as well as across cells—they are independent. Generally,
tensors model a physical phenomenon or a simulation with implicit constraints. Thus, the
attributes are correlated and not all value combinations are valid—or possible. Moreover,
the attributes are coupled together through linear transformations expressed as algebra
operations, e.g., cross product or dot product. Overall, tensors enhance the multidimensional
array structure with constraints and operations, similar to how the object relational model
enriches the relational data model. Since our focus is on data management, we consider
multidimensional arrays and tensors equivalent in this work.

2.6 Arrays and Data Cubes

A data cube (Gray et al., 1996; Harinarayan et al., 1996) expands a relational table by
computing a set of aggregations over all the possible subspaces created from the combinations
of the attributes of such a table (Vassiliadis and Sellis, 1999). The attributes defining the
aggregation space are called dimensions, while the aggregates are called measures. The
measures are functionally dependent on the dimension values. With N dimensions and M

measures, we obtain an N -dimensional data cube. While this data cube seems identical to
an N -dimensional array, there are both conceptual and physical representation differences
between the two. They stem from the original application that led to their creation—on-line
analytical processing (OLAP) for data cubes (Chaudhuri and Dayal, 1997), respectively
science for arrays (Baumann, 1994).
Conceptually, the measures of the data cube are the result of aggregation queries that
join a fact table with one or more dimension tables. Thus, the data cube is obtained
by organizing and storing multiple query results. This can be done by following either
a relational representation (ROLAP) or a multidimensional representation (MOLAP).
As a result, both relational (Gray et al., 1996; Gyssens and Lakshmanan, 1997) and
multidimensional-oriented (Agrawal et al., 1997; Cabibbo and Torlone, 1998; Vassiliadis,
1998) models are proposed to conceptualize data cubes (Vassiliadis and Sellis, 1999; Pedersen
et al., 2001; Torlone, 2003). Additionally, data cubes are also modeled as statistical data

8

elements (Shoshani, 1997). In all the cases, however, no complete ordering relationship is
defined over the domain of dimensions because the values are categorical—not ordinal. This
precludes direct mapping of data cube models to index-based – or positional – accessible
multidimensional arrays. Nonetheless, measures can be directly accessed based on the
dimension values that functionally determine them. For arrays, this requires an intermediate
mapping to the dimension index. In conclusion, the difference between data cubes and arrays
can be summarized as the difference between hash-based and sort-based data structures.
While both of them provide point access, only sort-based data structures support efficient
range-based access. In fact, range is not even defined for categorical dimensions.

2.7 Summary

• Arrays, tensors, and data cubes are defined by a set of dimensions and a set of attributes—
known as values for tensors and measures for data cubes. The attributes are instantiated
for every valid combination of the dimensions.

• In the case of a dense array, all the dimension combinations are valid, while in a sparse
array, only a subset of combinations is valid.

• An array can be seen as a function from dimensions to attributes since there is a functional
dependency between the two.

• While arrays and tensors are conceptually identical, tensors can include constraints on
values based on their dimensions.

• An array can be represented as a relation with a composite key defined over the dimensions.
However, this still does not allow for positional access due to the unordered set property
of relations.

• Positional access is permitted in a data cube for equality – or point – conditions on
dimensions. In the case of an array, more general range conditions are supported.

3 MULTIDIMENSIONAL ARRAY OPERATIONS

Array processing is a common operation across multiple domains, including image processing,
scientific computing, and machine learning. This results in a multitude of array operation
types with different parameters and processing requirements. The common characteristic
across all these operations is indexing, which provides direct access to an array cell based
on its dimensions—or position. Concretely, the expression A[1, 2] identifies the cell on the
first row and second column in Figure 2.1a.
In this chapter, we categorize the most important classes of array operations from scientific
applications and linear algebra. These operations are subsequently formalized in array
algebras, used as drivers for designing optimized array storage methods, and implemented

9

as primitive operators in array processing systems.

3.1 Array Operations in Scientific Applications

The SS-DB benchmark (Cudre-Mauroux et al., 2010) is modeled based upon a real workflow
for processing astronomical images from the Sloan Digital Sky Survey (SDSS) (Szalay,
2008). Although application-specific, SS-DB includes a full spectrum of operations over
arrays representative across various scientific domains. SS-DB contains queries on 1-D arrays
(e.g., polygon boundaries), dense and sparse 2-D arrays (e.g., images and astrophysical
objects), and 3-D arrays (e.g., trajectories in space and time). The SS-DB benchmark defines
complex pipelines of composable array operators for observation extraction, grouping, and
querying. These pipelines are equivalent to the relational algebra trees that encode advanced
operations on tables. In the following, we present the benchmark pipelines and identify the
relevant array operations.

(7,1) (6,3)

(8,3)

(2,1) (5,5) (3,5)

i
j

[1]

[2]

[3]

[1] [2] [3] [4]

(a)

8 9

11

13 21 18

i
j

[1]

[2]

[3]

[1] [2] [3] [4]

shape

(2,1) (5,5) (3,5)

(b)

Figure 3.1: (a) B<r,s>[i=1,3;j=1,4]. (b) STENCIL(B, SUM(r+s), shape).

Observation extraction. Observations are extracted, i.e., “cooked”, from dense 2-D
grids/images based on a user-defined function (UDF) over cell values. Abstractly, cooking
corresponds to the labeling operation from image processing (O’Gorman et al., 2008). The
UDF is applied to every individual cell, while all the cells in an observation form a cluster
with a common property. In addition to the data corresponding to every cell, a series of
aggregated attributes are derived for the cluster. Observations are represented as sparse
2-D arrays in the same dimension domain as the grids they are extracted from.
Multiple array operations are performed during observation extraction. Filtering the cells
based on their value – or a function applied to the cell attributes – is equivalent to the
relational selection operator. Aggregation across multiple cells is identical to relational tuple
aggregation. However, the cells that are aggregated satisfy an adjacency relationship given as
a shape parameter. This corresponds to the stencil operator from scientific computing (Datta

10

et al., 2008; Maruyama et al., 2011) and the convolution from image processing (O’Gorman
et al., 2008; Lippmeier and Keller, 2011). As depicted in Figure 3.1, the stencil/convolution
is applied to every cell in the input array—shape centered on every cell, to be precise.
The most common case is when the output array has exactly the same shape as the input
array. In this case, the output shape is a single array cell and there is direct correspondence
between the origin cell in the input array and the output cell. The last operation required
by the extraction is a positional join between the original array and the observations.

Observation grouping. A group contains observations/clusters with centers close to
each other that are extracted from different grids. Closeness is specified through a distance
UDF rather than using a fixed shape. The group can be represented as an irregular array
computed based on a discretized version of the distance function. In order to compute the
group of a reference observation, a sequence of stencil operations are required, followed by
a positional join and an aggregation.

Queries. SS-DB queries consist of sequences of array operations, including selection based
on the cell attributes, stencil aggregations, and dimension translation. The stencil operations
differ in terms of the cells where they are invoked, the shape of the neighborhood, and the
aggregation function. A general characteristic across all the queries is that they operate on
a portion of the space—instead of the entire grid. This operation is known as subsampling
or range query. The size and position of the input subspace control the difficulty of the
query. Subsampling is a direct application of indexing since it selects cells based on their
position/dimensions.

3.2 Relational Operations

Since arrays are a particular type of relation in which the dimensions form a key, all the
operations in relational algebra are directly applicable to arrays. However, due to the storage
organization optimized for dimension – or index – access, operations on dimensions are more
efficient than operations on attributes. Arguably, a similar effect can be obtained with a set
of indexes layered on top of a relation. From this perspective, array operations can be seen as
relational operations optimized for a particular storage organization. This duality between
arrays and relations is evident when considering the correspondence between relational
algebra and the array operations in the SS-DB benchmark. Every operation from SS-DB has
an equivalent in relational algebra, except the stencil/convolution operator, which requires
the notion of proximity—inexistent on relations. However, distance-based operators such
as similarity join and self-join are relational extensions that have related semantics to the
stencil operation (Zhao et al., 2016). The main difference is that they are defined over a

11

continuous domain while the stencil is defined over discrete arrays.

3.3 Tensor Operations

Basic Linear Algebra Subprograms (BLAS) (Wikipedia, 2020) are the de facto specification
for tensor operations. BLAS classifies tensor operations at multiple levels based on the
dimensionality of the tensor operands. BLAS level 1 includes operations between 1-D
arrays, such as the dot product of two vectors. BLAS level 2 extends to matrix-vector
multiplication – an operation between a 2-D matrix and a 1-D vector – while BLAS level 3
is centered around the generalized matrix-matrix multiplication operation. In the space of
multidimensional tensors, matrix multiplication is a special form of tensor contraction (Shi
et al., 2016; Matthews, 2016; Springer and Bientinesi, 2018; Kim et al., 2019)—the most
general operation between two tensors proposed in BLAS level 4 (Springer and Yu, 2019).
In tensor contraction, for every index in the two input and the single output matrix, one
or more tensor dimensions are substituted. For example, the contraction of a 7-D tensor
by a 5-D tensor into a 6-D tensor corresponds to the substitution of a 4-D by 3-D and
a 3-D by 2-D tensor, respectively, with a 4-D by 2-D tensor—three common dimensions
are eliminated. Since this operation is mathematically equivalent to matrix multiplication
across multiple dimensions, tensor contraction is often implemented efficiently as extended
matrix multiplication (Matthews, 2016; Springer and Bientinesi, 2018).

Matrix multiplication. Consider the multiplication of two matrices A and B with
dimensions m × k and k × n, respectively. The result matrix C = A · B has dimensions
m × n. Its elements are computed as:

Cij =
k∑

p=1
Aip · Bpj , where 1 ≤ i ≤ m, 1 ≤ j ≤ n (3.1)

In order to obtain the element Cij of the result, the dot product between row i from A and
column j from B has to be computed. This access pattern is applied to every row-column
pair (i, j), which corresponds to a join on the common dimension followed by a summation.
While this relational mapping is possible, it is likely not optimal. Instead, given the ubiquity
across application domains, matrix multiplication is provided as a primitive operation in
BLAS libraries.

3.4 Data Cube Operations

Given the exhaustive nature of the data cube (Gray et al., 1996), in which the aggregates
of all the possible dimension combinations are materialized, the most common data cube

12

operation is to access a particular cell and extract the corresponding aggregate. This
indexing operation requires the specification of the value for every dimension. Otherwise,
the result includes all the values on the missing dimensions—which is not a problem because
this is also materialized. Range predicates on dimensions are not permitted because there
is no ordering among the categorical coordinates. Instead, a set of coordinates can be
specified by enumerating their values. These indexing variations are restricted instantiations
of subsampling.

3.5 Summary

• The most common array operations are indexing and subsampling. Indexing provides
direct access to a cell specified by its dimensions/coordinates. Subsampling provides
access to the cells in a subspace of the domain identified by the ranges on every dimension.

• The stencil/convolution is a ubiquitous array operation in scientific applications. The
stencil computes the aggregate value of a group of adjacent/neighboring cells. Its access
pattern is specified by a shape parameter, e.g., cross, hexagon, etc.

• Matrix multiplication and its extension to more than two dimensions – tensor contraction
– are the most general linear algebra operations. Their access pattern pairs every row
from one matrix with every column from the other.

• While most array operations can be written as SQL statements and sequences of relational
algebra operators, this may lead to unacceptable complexity and performance.

4 ALGEBRAS AND QUERY LANGUAGES FOR MUL-
TIDIMENSIONAL ARRAYS

When designing an array query language, the variety of array operation types across the
many application domains has to be considered. While several attempts have been made
over the years (Tomlin, 1990; Ritter et al., 1990; Baumann, 1999), to date, there is no
commonly accepted array query language similar to SQL. The common trend among the
proposed languages is to first identify an array algebra – a set of primitive operators that
can express as many array operations as possible – and then to design a query language
that resembles SQL on top of the identified operators—typically array extensions to SQL.
The challenge faced when identifying the primitive operators is the diversity of the array
operations introduced in Chapter 3. The standard solution is to allow for second-order
operators – operators that take user-defined functions as arguments – in the algebra. Writing
composite expressions of array algebra operator invocations is the first step in designing
a query language. Several attempts stop at this stage. Adding a more elevated syntax on
top of the pure algebra operator invocation is the next stage. To encourage adoption, the

13

proposed syntax is quite often a modification to SQL—if not simple extensions with new
keywords corresponding to the array algebra operators. In this more advanced scenario,
query execution requires mapping the higher-level language constructs into array algebra
operators, which represent the only implemented functions that can be executed. If multiple
mappings are possible – the case when multiple implementations for the same operator
are available or when the query expression permits it – the optimal mapping has to be
determined. This process corresponds to query optimization. In this chapter, we discuss in
detail the array query languages that received the most attention.

4.1 Array Query Language (AQL)

AQL (Libkin et al., 1996) is a declarative query language for multidimensional arrays that
treats arrays as functions from index sets to values, rather than as collection types. AQL
is based on the nested relational calculus with arrays (NRCA), which plays the same role
relational calculus and algebra play for the relational data model. Types and functions
represent primitives in NRCA. The types include booleans, natural numbers, tuples, finite
sets, and arrays defined over rectangular domains with indexes ranging over initial segments
of the natural numbers. Functions are defined from one type to another. The constructs
supported in NRCA not involving arrays are standard in nested relational calculus and
include functions, products, set constructs, ordering, nesting, and arithmetic operators for
natural numbers.
There are four basic array operators in NRCA:
• Define or tabulate an array
• Extract an array element at a given index
• Extract the dimensions of an array
• Convert an indexed set into an array
These array operators together with the standard constructs in the nested relational calculus
are sufficient to express any operation on multidimensional arrays, including mapping a
function to every element of the array, zipping multiple arrays together, i.e., positional
natural join, extracting a subsequence – not necessarily contiguous – from an array, reversing,
transposing, and projecting an array, and matrix multiplication. To simplify programming,
a series of derived constructs such as comprehensions, patterns, and blocks are also added as
operators in AQL—in a similar manner to the operators in extended relational algebra. This
allows for expressing array operations in a higher-level language that hides the user from
implementation details and is amenable to optimizations that would have to be implemented
explicitly by the programmer otherwise. The negative effect of this is a reduction in the
expressiveness of the operations that can be coded directly in the language. AQL addresses
this drawback by providing extensible support for integrating user code dynamically in the

14

language.
An implementation of AQL in the ML functional programming language (Milner et al., 1997;
Laboratory for Foundations of Computer Science at the University of Edinburgh, 2008)
is introduced in (Libkin et al., 1996). AQL constructs are supported as library functions
written in ML and made available as language operators. Queries are written as ML
programs invoking these operators on the input data. Thus, there is no higher-level query
language beyond the NRCA constructs. AQL takes advantage of the advanced programming
features, such as second-order functions, available in ML. This is the main feature used to
provide support for user-defined functions (UDF), thus, extensible and customizable array
processing. The operators are executed in full and intermediate results are materialized
after every invocation. Part of query execution, the AQL constructs go through a series of
transformations meant to generate an optimal execution plan that is eventually executed as
calls to routines in the AQL library. Notice, though, that this type of optimization does not
map a higher-level language to AQL—rather it rewrites a sequence of function invocations
optimally.

4.2 Array Manipulation Language (AML)

The Array Manipulation Language (AML) (Marathe and Salem, 2002) is an algebra
consisting of three operators that manipulate dense arrays. Every operator takes one or
more arrays as arguments and produces an array as result. All of the AML operators
take bit patterns as parameters. Patterns are not allowed to refer to array element values.
This restriction implies that the shape of the result of an AML operation can always
be determined without actually evaluating the operator, if the shapes of the operator’s
array arguments are known—the same is true for the schema of the result relation in
relational algebra. This property is useful when evaluating AML expressions since it implies
that the space required to implement an AML operation can be determined in advance.
AML expressions can be treated declaratively and can be subject to rewrite optimizations
according to equivalence rules between operators.
The AML algebra operators are presented in the following:
• SUB. Subsample is a unary operator that can delete data. The subsample operator takes

an array, a dimension number, and a bit pattern as parameters, and produces an array,
i.e., B = SUBi(P, A), where A is the array, P is the bit pattern, and i is the dimension.
SUB divides A into slabs along dimension i and then retains or discards the slabs based
on pattern P. If P[k] = 1, then slab k is retained, otherwise it is not. The retained slabs
are concatenated to produce the result array B. It can be shown that two subsequent
SUB applications to two different dimensions of the same array produce the same result
independent of their order, i.e., SUB is commutative across dimensions. The resulting

15

array can be inferred from the two bit patterns without the need to actually compute
the result of each individual SUB operation—property applied in query optimization.

• MERGE. Merge is a binary operator that combines two arrays defined over the same
domain. The merge operator takes as parameters two arrays, a dimension number, a
bit pattern, and a default value. It merges the two arrays to produce its result, i.e.,
C = MERGE i(P, A, B, δ), where A and B are the input arrays, P is the bit pattern,
and δ is a default value. Conceptually, MERGE divides both A and B into slabs along
dimension i. C is obtained by merging these slabs according to the pattern P. However,
because of shape mismatches between A and B or due to the particular pattern P,
some values in C may be undefined. δ is assigned to all such undefined values. It is
important to remark that MERGE can be used to increase the dimensionality of an
array. MERGE is commutative and associative when applied to the same dimension
with different patterns. The corresponding patterns can be easily determined. SUB and
MERGE can be reordered both when applied to the same dimension as well as when
applied to different dimensions. The corresponding patterns have to be determined from
the patterns in the original expression. Choosing the optimal rule to apply is handled in
query optimization.

• APPLY. Apply applies a user-defined function to an array to produce a new array. It
is written as B = APPLY (f, A, P0, P1, . . . , PN−1), where f is the function to be applied,
A is the array to apply it to, Pi’s are patterns, and N is A’s dimensionality. APPLY
makes the structural relationship between array cells f is applied to explicit through the
shape or pattern P, which can express the stencil/convolution operation (Figure 3.1). f
is required to be defined such that it maps sub-arrays of A of some fixed shape Df to
sub-arrays of B of some fixed shape Rf . APPLY applies f to some or all of the sub-arrays
of shape Df of A. The pattern arguments specify to which of the possible sub-arrays
of the input array A function f is applied. Pattern Pi selects the slabs in dimension i.
f is applied to the sub-array with origin at x only if x belongs to selected slabs in all
the N dimensions. Moreover, the sub-arrays to which f is applied to must be entirely
contained within A. The results of these applications are concatenated to generate B.
The arrangement of the resulting sub-arrays in B preserves the spatial arrangement of
the selected sub-arrays in A. Applying a function to every cell and to the entire array
are special instances of APPLY. The structural locality captured by APPLY can be used
to reduce the number of applications of f or to eliminate unnecessary portions of the
input array.

AML is designed starting from an image algebra that defines the most common operations
in image processing. AML defines only those operators that are amenable to declarative
optimization, which includes a sufficiently large class of image processing algorithms. With
singleton APPLYs, i.e., APPLY is defined for every array cell individually, AML encompasses

16

almost all the image processing algorithms. AML is a functional programming language in
which operators are nested as arguments to other upper-level operators to form queries.
Processing functions are also passed as functor arguments – second-order functions – to
operators, i.e., the function argument to APPLY. Query optimization involves simple
rewriting rules that replace combinations of algebra operators with other such combinations
deemed optimal. Thus, AML is more like an elevated execution plan description rather
than a declarative array query language. Another AML limitation is that it contains only
structural operators, i.e., operators that consider the indexes. While image processing
represents a large class of array manipulations, it is interesting to investigate how AML can
be extended to other array operations that are not originating from image processing.

4.3 Relational Array Mapping (RAM)

RAM (Ballegooij, 2004) is an array processing system built on top of the MonetDB (Idreos
et al., 2012) relational database. While RAM deals with dense arrays, SRAM (Cornacchia
et al., 2008) is targeted at sparse arrays commonly used in information retrieval applications.
Nonetheless, both systems employ similar array formalizations based on the comprehension
syntax, which represents arrays as functions defined over dimensions and taking primitive
type values. Dimensions are defined over continuous integer intervals starting at 0 for a
regular array shape—not necessarily symmetric, though. Array decomposition – an array
with composite type values is represented as a set of aligned arrays with primitive type
values – is default in RAM due to the columnar data representation in MonetDB. Since
the execution happens inside a relational database engine, array queries follow a sequence
of transformations that map arrays represented in the comprehension syntax to relational
operators through an intermediate array algebra stage. Although a series of rewriting rules
and optimizations are applied at each of these two steps, relying on the relational algebra
operators to map and process array operations introduces inefficiencies due to the impedance
mismatch in representation.
The RAM query language consists of methods to extract values from arrays and methods
to construct arrays. Value extraction is supported natively through array application
since arrays are functions that can be applied to index values in order to yield results.
Array construction is supported through a generative comprehension constructor and a
concatenation operator. There is no query language syntax defined for these functions. They
are exclusively theoretic notations expressed in comprehension syntax.
The RAM array algebra consists of six operators that implement the query language—create
arrays and extract values based on indexes only. The const operator fills a new array with
a constant value, whereas the grid operator creates an array with values taken from one of
the indexes. map, apply, and choice are induced operators that operate on cell values. map

17

creates a new array by applying a given function to one or multiple aligned arrays. apply
replaces the function in map with an array interpreted as a function from indexes to values.
choice is a combination of map and apply in which an array with boolean values selects the
elements of a newly created array from the elements of two arrays passed as arguments.
The aggregate operator applies an aggregate function to the array elements having the same
value for the first k indexes, resulting in an array with smaller dimensionality.
In addition to the RAM operators, the SRAM array algebra (Cornacchia et al., 2008)
introduces a series of structural operators. pivot permutes the dimensions of an array
according to an axis order permutation. rangeSel is the standard subsample operator,
which extracts a sub-array with the same dimensionality from an array passed as argument.
replicate generates an array with dimensionality N + 1 by replicating the original array a
specified number of times. topK is a specialized operator that works only for vectors and
creates an array with the indexes of the first K values in a specified order.
The mapping of the extended SRAM array algebra operators to relational operators is
presented in (Cornacchia et al., 2008). It is specific to the chosen relational representation of
arrays in MonetDB. Sparse arrays are stored as relations clustered and indexed based on the
array dimensions. The order is chosen arbitrarily as the lexicographical dimension order, i.e.,
the order in which dimensions are specified in the array definition. Only the cells with valid
values are stored explicitly. The mapping of apply as a series of joins followed by a projection
is presented as a canonical mapping for all the structural operators—pivot, rangeSel, and
replicate. map between two dense arrays corresponds to relational join followed by function
application. In the case of sparse arrays, the general form of outer join is used instead.
aggregate can be mapped into a standard group-by aggregate relational operator on the
dimensions, while topK does not have a relational equivalent. In addition to the mapping
rules from array algebra operators to relational operators, a series of simplification and
rewriting rules are also proposed. They form the basis of the query optimization process.

4.4 RasDaMan Query Language (RasQL)

The RasDaMan array algebra (Baumann et al., 1998; Baumann, 1999) conceptualizes
arrays as functions from rectangular domains to cell values, similar to AQL (Libkin et al.,
1996). The algebra contains three core constructs that can express every array operation
when composed together (Baumann, 1994). The execution of each of these constructs is
iteration-based and safe—it does not require recursion. While user-defined functions can be
integrated in the algebra, they are not fundamental. The authors advocate against their
use due to the complications they introduce in query optimization.
The three core constructs in the RasDaMan array algebra are:
• MARRAY. The array constructor MARRAY creates new arrays by indicating a spatial

18

domain and an expression that is evaluated for every cell position of the spatial domain.
An iteration variable bound to a spatial domain is available in the cell expression so that
a cell’s value can depend on its position.

• COND. The condenser COND takes the values of an array’s cells and combines them
through the operation provided – which has to be commutative and associative – thereby
obtaining a scalar value. An iterator variable is bound to the array spatial domain to
address cell values in the condensing expression.

• SORT. The array sorter SORT proceeds along a selected dimension to reorder the
corresponding hyper-slices. It rearranges a given array along a specified dimension
based on an order-generating function that associates a sequential position to each
(N-1)-dimensional hyper-slice, without changing its value set or the spatial domain.

While these three operators are minimal to make the array algebra complete, a series of
derived operators are added to the algebra to enhance usability. They include trimming and
slicing, operators induced by the underlying type of the array cells, and multiple aggregates
that are particular condenser instances. The result is an extended array algebra identical in
spirit to the extended relational algebra.
The RasDaMan array algebra is integrated in relational algebra and SQL following the array-
as-attribute approach (Misev and Baumann, 2014). This requires the extension of relational
operators with support to handle arrays. While extended projection is straightforward,
selection and join require that array expressions return boolean values. The integration
also requires the definition of operators that convert between arrays and relations. These
operators are NEST and UNNEST, originally introduced in (Jaeschke and Schek, 1982)
and refined in (Ozsoyoglu et al., 1987; Cao and Badia, 2007).
Having the proposed array algebra as a theoretical foundation, RasQL is a declarative query
language that extends SQL-92 with support for arrays. In RasQL, array expressions can
appear in the SELECT and WHERE clauses of a SQL query. Special language constructs
are introduced for the core array algebra operators – MARRAY, COND, and SORT – which
can then be integrated with standard SQL. However, following the SQL standard, arrays are
treated as a composite attribute type with a set of corresponding operators. Nonetheless,
RasQL is the first complete array query language that integrates both an algebra and a
higher-level declarative query language.

The generality of RasQL. (Baumann and Holsten, 2011) provide a comparison of AQL,
AML, (S)RAM, and RasQL. In all these models, arrays are conceptualized as functions
from hyper-rectangles to primitive or composite values. Array creation is specified using
either tabulation (RasQL) or comprehension (AQL and RAM). Operations are defined as
functionals, i.e., second-order functions taking other functions as parameters. While this
generates a small set of operators, a large part of the complexity is hidden in the functional

19

parameters. An important issue that has to be addressed is how many physical operators
to implement and make available through the language syntax? The answer varies from all
operators to only the operators in the algebra. (Baumann and Holsten, 2011) also show
that all the array algebras can be reduced to RasQL—both in array representation as well
as operations. This is primarily due to the equivalence between comprehensions and the
MARRAY operator for creating arrays—the comprehension syntax is the basis for AQL
and RAM. The equivalence between AML and RasQL is proven directly. Since it is valid in
both directions, AML and RasQL are equally expressive.

4.5 Science Query Language (SciQL)

SciQL (Kersten et al., 2011; Zhang et al., 2011) is the most comprehensive extension to
the SQL-2003 standard with support for arrays. It provides seamless integration of set,
sequence, and array semantics. The goal is to make minimal modifications to the SQL
syntax while allowing for maximum expressiveness in the array operations supported by the
language. It is heavily targeted at experienced SQL programmers. While this is considered
to be one of the most distinctive characteristics of SciQL from a database perspective, it
may also be a drawback given the reduced familiarity the science community has with SQL.
SciQL provides all the benefits of a declarative query language that isolates an abstract
data model from the physical data representation. Arrays are defined by specifying the
dimensions, their corresponding ranges, and the array cell content. Named dimensions allow
for direct indexing of the array elements. A default value is assigned to all the cells in the
array at declaration. Arrays can appear wherever tables are allowed in SQL statements. The
result of a query is an array only when the column list of a SELECT statement contains
dimensional expressions. The SQL iterator semantics associated with tables extends to
arrays, but iteration is confined to the cells whose values are not NULL. However, this may
be quite inefficient for operations that require array traversal in a particular order.
Array creation and modification statements follow entirely the syntax corresponding to
tables. The only difference is that dimensions have to be defined explicitly for arrays.
Converting arrays to tables can be done by simply selecting all the array cells without
specifying any dimensional expression. The reverse is not that straightforward since the
designated dimensions have to form a primary key in both representations. If the result of a
query is an array, it has to be specified explicitly in the SELECT clause. Cell selection and
array slicing are performed using the bracketed index syntax from C. The most specific array
operator introduced in SciQL is structural grouping—in fact, it is a syntactic representation
for the APPLY operator introduced in (Marathe and Salem, 2002). It consists in placing
a template at every position in the array and computing an aggregate for all the cells
in the neighborhood that are covered by the template. The result is an array with the

20

same dimensions. Two versions are proposed—with and without overlap. SciQL provides
extensibility through user-defined operators. They can be implemented using primitive
SciQL constructs – similar to stored procedures – or can be imported from an imperative
programming language such as C—similar to UDFs in relational databases. In addition to
multi-dimensional array operations, SciQL supports a large range of time-series operators.

4.6 SciDB Query Languages

SciDB (Stonebraker et al., 2011) is a shared-nothing parallel database system designed
specifically for array processing. SciDB queries can be written in two languages—Array
Functional Language (AFL) and Array Query Language (AQL). AFL is a functional language
in which the execution plan is expressed exactly in the same format as in AML (Marathe
and Salem, 2002). A slight difference is that the number of operators is larger than in AML.
The reason is that instances of APPLY that execute a specific operation are promoted
to stand-alone operators with their own name. We present AQL and its formal ArrayQL
algebra (Maier, 2012) in the following.

ArrayQL algebra. In ArrayQL, arrays are defined as 3-tuples of the form (box, valid,
content), where box represents the domain of the array with fixed bounds on all dimensions,
valid is a boolean map indicating which cells have valid values, and content is a function
providing the values for the array cells. ArrayQL is the first algebra that represents cell
validity explicitly. The benefit is that both dense and sparse arrays can be formalized within
the same algebra constructs.
Given the representation of an array as a 3-tuple, a new array is created by each operator,
with a corresponding new 3-tuple. Operators define mappings between the original 3-tuple
components and the new components. We present the most important operators defined in
the ArrayQL algebra in the following:
• SHIFT array origin to a new position by changing the domain of the array components

accordingly. It is useful when moving between coordinate systems.
• REBOX changes the dimension sizes. It can either clip or extend the array domain. REBOX

implements subsampling or range queries over dimensions, one of the most important
array operations.

• FILTER invalidates some array cells based on a content-only predicate. It is the direct
equivalent of selection from relational algebra.

• FILL transforms all the invalid cells to valid and assigns them a default value—it
transforms a sparse array into a dense one.

• APPLY applies a function to every valid cell of an array. Unlike the AML APPLY (Marathe
and Salem, 2002), the value of the output cell is a function of only the input cell – not

21

multiple adjacent cells – since no shape parameter is specified.
• COMBINE combines the content of two arrays having the same shape, but not necessarily

the same validity. The content of the new array is computed by a function over the
content of the argument arrays.

• REDUCE generates a reduced version of an array by aggregating over one or more dimen-
sions. Supported aggregate functions include the standard relational algebra and SQL
aggregates.

AQL. AQL is an array creation and query language based on ArrayQL algebra. It is
highly reminiscent of SQL and contains only two statements—CREATE ARRAY to create
arrays at the schema level and SELECT FROM to query arrays. ArrayQL queries take as input
arrays. The output can be either a new array – with dimensions specified explicitly in the
query as brackets – or a relation—without any ordering constraints. Ranges on dimensions
can be specified both for the input and the output arrays. In the case of input arrays, ranges
correspond to sub-arrays, while in the case of the result array, ranges implement the SHIFT
operator. If no ranges are provided, the complete dimension ranges of the input array(s) are
automatically inherited. Structural joins between two arrays are specified by enumerating the
arrays in the FROM clause and matching the dimension names. Overall, algebra operators are
mostly implemented through index mappings. However, not all ArrayQL algebra operators
are specified in the language. Moreover, not all the operations possible in the language by
means of intricate index mappings are part of ArrayQL algebra.

Array joins. Consider two N -dimensional arrays α and β given in the functional repre-
sentation (2.1):

α : {Dα = Dα
1 × · · · × Dα

N } 7−→ {Aα = (Aα
1 , . . . , Aα

M)}

β :
{

Dβ = Dβ
1 × · · · × Dβ

N

}
7−→

{
Aβ = (Aβ

1 , . . . , Aβ
M)
}

A join between arrays α and β, τ = α ▷◁P β, is written in AQL as: SELECT expression
INTO τ FROM α JOIN β ON P, where P is the join predicate, which consists of pairs of
attributes and/or dimensions from the two source arrays. The output is a new array
τ : Dτ 7−→ Aτ having the schema:

Dτ = Dα ∪ Dβ Aτ = Aα ∪ Aβ

in which both the dimensions and the attributes from the input schemas are merged.
Essentially, the result array has dimensionality equal to the sum of the dimensionality of
the input arrays and every cell contains the union of the attributes. It is important to notice
that the non-empty cells are given exclusively by the combination of non-empty cells in the

22

input arrays. An array outer join generates a valid cell as long as one input cell is valid.
As is the case with the relational cross product, the default array join is not of particular
practical importance since it pairs every cell from α with every cell from β.
(Duggan et al., 2015b) introduce a series of array equi-joins – dimension:dimension, at-
tribute:attribute, and attribute:dimension – for the case in which predicate P contains only
equality conditions. These joins have corresponding INNERDJOIN and INNEREJOIN operators
in the ArrayQL algebra. Out of the three types of array equi-join, dimension:dimension join
is specific to array databases while the others are instances of the relational join operator.
ChronosDB (Zalipynis, 2018) extends dimension:dimension joins to more than two arrays
based on a reducer function that derives the result cell from the input cells.
The array similarity join operator (Zhao et al., 2016) is a generalization of the dimen-
sion:dimension join to predicates other than equality. The join predicate between arrays α

and β is expressed by extending the AML APPLY operator (Marathe and Salem, 2002) with
a mapping function that assigns a unique cell Ψ in β to every cell Υ in α and applying the
shape/pattern to Ψ rather than Υ. The mapping function and similarity shape can encode
a large range of relationships between cells—including all the Lp norms and Hamming
distances. Moreover, the array similarity join supports uncommon discrete shapes such as
arrays with empty cells and non-symmetric arrays, which cannot be expressed as implicit
distance functions. (Xing and Agrawal, 2019) introduce the value similarity join operator as
a combination of dimensional equi-join and attribute similarity join. This operator outputs
cells that have identical indices and attribute values within the specified range ϵ.

4.7 Algebras for Domain Specific Data

AQUERY (Lerner and Shasha, 2003) uses the concept of “arrables”, i.e., ordered relational
tables and SQL queries extended with an ASSUMING ORDER clause to represent one-
dimensional time series data.
A blob-based approach where an algebra for the manipulation of irregular topological
structures is applied to the natural science domain is proposed in (Howe and Maier, 2004).
The ChronosDB array data model (Zalipynis, 2018) is an abstract representation for
geospatial data stored in raster file formats. It provides array mapping to a raster file that
is independent of the storage format and supports arrays partitioned across multiple files
distributed over the nodes of a cluster. This is achieved with a two-level structure consisting
of a user-level array mapped over a set of system-level subarrays corresponding to the
raster files. The array operations defined in ChronosDB include retiling, join, aggregation,
resampling, hyperslabbing, reshaping, and chunking. They are defined abstractly over the
user-level array and implemented concurrently over the distributed system-level subarrays.

23

SAVIME (Lustosa and Porto, 2019) defines the typed array data model (TAR), which
consists of two mapping functions – position mapping and data mapping – that translate
between data values and memory addresses. These mappings provide support for sparse
arrays, non-integer dimensions, heterogeneous memory layouts, and functional partial
dependencies with respect to dimensions—all of which are characteristics of simulation
data.
The array-based genomic data model (Horlova et al., 2020) defines a representation for
genomic data consisting of three dimensions – coordinate, sample, and signal – that provide
fast associative index access to the corresponding values. The operations defined in the
genomic data model include standard relational operators such as selection, projection,
grouping, join, union, and difference, and genomic-specific operators such as histogram,
cover, and map. These operators are classified as region preserving – no new regions are
created – and space-localized or space-rearranged. In a space-localized operation, every
region can be processed independently from all the other regions, while space-rearranged
operations require merging several input regions.
The statistical data transformation data model (SDTDM) (Song et al., 2021) is a hierarchical
model for the metadata associated with statistical operations. In SDTDM, metadata on
statistical operations are organized into hierarchical meta tables consisting of meta rows
and meta columns, which encode positional information. This allows for direct index access
to data. SDTA defines an algebra over meta tables. It includes operations derived from
relational algebra, such as selection, projection, aggregation, and join. Additionally, SDTA
defines order-preserving operations over meta rows and meta columns. These are aimed
at maintaining the ordering information through statistical transformations. The SDTL
language provides syntactic sugar shortcuts for composite operations derived from nested
SDTA operations.

4.8 Relational Algebra

The array representations as relations given in Section 2.4 can be divided into relational
mapping – array as table – and object-oriented mapping—all the other representations. In
the relational mapping, every array cell is represented explicitly as a tuple containing both
the indices as well as the values. Array operations are directly mapped into expressions
of relational algebra operators and SQL statements. However, SQL is not particularly
well-suited for array operations due to the lack of positional indexing. In the object-oriented
mapping, the original relational model is extended with a composite array data type
and corresponding operators. The array becomes an attribute of a larger relation. Array
operations are included in queries by making calls to the methods defined for the array
data type. The set of supported methods is extensible with user-defined functions. Queries

24

consist of a relational component and a non-relational component with expressions involving
array methods. Since method invocations are treated as black boxes, the optimization of
the non-relational part is mostly limited to the correct placement of the operators in the
query plan.

4.9 Tensor Algebras

Operations over multidimensional tensors – including contractions and derivatives – can
be written declaratively using index notations. In such a notation, an index variable is
assigned to every dimension. Variables that appear in a single tensor are called free and
their corresponding dimension is part of the result. Variables that are shared among tensors
correspond to dimensions that are eliminated through aggregation. The two most common
index notations are the Einstein notation and the Ricci notation. The matrix multiplication
C = A · B is written in these notations as:

Einstein: Aip · Bpj Ricci: Ai
p · Bp

j (4.1)

Although the two notations are syntactically quite similar – the Einstein notation uses
only lower indexes, while the Ricci notation uses both lower and upper indexes – they have
semantic differences. The most important difference is that the Ricci notation differentiates
between co- and contra-variant dimensions/indices and the Einstein notation does not. This
allows for element-wise operations – among others – to be expressible only with the Ricci
notation. Nonetheless, the Einstein notation is used more extensively – if not exclusively –
in programming languages due to its uniform index handling.

4.9.1 Relational Algebra Extensions and Generalizations

Since tensors can be represented as relations, operations over tensors – including the
Einstein notation – can be expressed in terms of relational algebra operators. This can
be achieved either through JOIN GROUP BY AGGREGATE statements or through language
extensions such as user-defined functions (UDF) and aggregates (UDA). The former requires
a pure relational array as table representation for tensors, while the later works on any
of the other array formats presented in Section 2.4. The initial solutions implemented in
MADLib (Hellerstein et al., 2012) and GLADE (Qin and Rusu, 2015) adopt the UDA
approach because of its flexibility and better performance. AC/DC (Khamis et al., 2018) –
on the other hand – uses the array as table representation and enhances its performance
through factorization, functional dependencies, and worst-case optimal join algorithms.
Given their reliance on SQL, these approaches are not aimed at defining a formal tensor
algebra.

25

In the following, we present in detail several tensor algebras that extend or generalize the
relational algebra. Each of them selects a relational array representation as a primitive data
structure and defines a set of operations – relational and matrix – over this primitive. In
many cases, the relational operators are second-order functions parametrized by matrix
operations.

Tensor-Relational Model (TRM). TRM (Kim and Candan, 2011; Kim and Candan,
2014) introduce a representation of unordered relations as two types of tensors—occurrence
tensor and value tensor. In the occurrence tensor, all the relation attributes become tensor
dimensions and the cell value – only 0 or 1 – indicates whether a tuple with the corresponding
attributes exists or not. The value tensor is the functional formalization of relations
as multidimensional arrays from keys (dimensions) to functionally dependent attributes
(Section 2.1). The standard relational operations – including selection, projection, Cartesian
product, join, and set-based operations – can be performed on the tensor representation with
minimal changes. Tensor decomposition is the only tensor-specific operation defined in TRM.
Its interaction with the relational algebra operators is carefully analyzed and rule-based
transformations to optimize complex expressions are designed. TRM is implemented with
the ArrayQL algebra operators (Maier, 2012), which process tensors as tiled chunks.

LARA. LARA (Hutchison et al., 2017) is a reduced algebra – consisting only of three
operators – that generalizes the operations and rules of both linear algebra and relational
algebra. LARA is a formalization of the concepts first introduced in (Kunft et al., 2016).
The only abstract data structure in LARA is the associative table, which corresponds to
the functional formalization of relations as multidimensional arrays (Section 2.1). The
associative table represents arrays by explicitly storing the mapping from dimensions to
attributes using the array as table representation (Section 2.4). The physical implementation
is using partitioned sorted maps, which require massive space in the case of dense arrays
since all the indices have to be materialized. This implementation is refined to a specialized
key-value data structure for linear algebra operations in LevelHeaded (Aberger et al.,
2018). The LARA operators are second-order functions parameterized by UDFs defined
over a restricted semiring structure—UDFs that are associative, commutative, and have
an identity/zero element. The three operators are Union (vertical concatenation), Join
(horizontal concatenation), and Ext (flatmap). They are applied to the keys/dimensions,
while the UDF is applied to the corresponding values. Matrix multiplication consists of
Join on the shared dimension with a multiply UDF followed by Union with a sum UDF.
For physical optimizations, the Sort operator – which sorts an associative table based on
its keys – is added to the algebra.

26

MATLANG. MATLANG (Brijder et al., 2019) is a query language for matrices built up
from basic linear algebra operations that are closed under composition. The only variables
in MATLANG are matrices, i.e., 2-D tensors, specified by a type definition for their
dimensions. The type associated with a matrix is either given at declaration or induced from
the expression operands. The type distinguishes among matrices, row/column vectors, and
scalars. The MATLANG operators are inherited from linear algebra. They include matrix
multiplication and transposition, the constant 1 vector and column vector diagonalization,
and the pointwise function application. These operators are composed into expressions – or
queries – that are evaluated over the set of matrices in the input schema. The expressive
power of MATLANG is similar to that of relational algebra with aggregates (Libkin et al.,
1996). This follows from the array as table representation given in Section 2.4. In order to
express more complicated matrix operations such as inverse and eigenvector decomposition,
MATLANG is extended with the inv and eigen operations.

Relational Matrix Algebra (RMA). RMA (Dolmatova et al., 2020) extends the
relational model with matrix operations performed exclusively on relations. RMA applies
the array as set of row vectors representation (Section 2.4) to a relation in order to construct
a corresponding matrix. This requires the specification of the row dimension – which has to
be a key attribute of the relation – and of the column attributes. Since the induced rows
are indexed based on the dimension index, the columns have to be sorted accordingly. The
order of the columns is given by the order of the attributes in the relation schema. Thus,
there has to be an attribute for every column of the matrix—resulting in explicit storage
of all the matrix indices. Essentially, matrices are constructed by sorting and generalized
projection—both of which are relational algebra operators. Moreover, they have an exact
relational representation. RMA supports all the matrix operations from the statistical
programming language R, implemented as function calls to an external library from the
MonetDB database. The result matrix is reversely mapped to a corresponding relation
based on the dimension and column attributes specified in the matrix constructor.

Tensor Relational Algebra (TRA). TRA (Yuan et al., 2021) is an extension of
classical relational algebra (Codd, 1970) that models tensors concisely as binary relations
from a vector encoding dimensions to the corresponding values represented as a tile. In
other words, TRA takes as its primitive abstraction the array as set of tiles representation
(Section 2.4) and defines closed operations over it. The tiled representation is the most
general tensor abstraction. Depending on the number of indices stored explicitly, the tiled
representation can be customized to any of the other tensor representations. The TRA
operations consist of second-order functions that have as arguments groups of tiles identified
based on their indices. For example, matrix multiplication is expressed in TRA as a Join
followed by an Aggregation. The Join operation pairs the tiles based on the common

27

dimension and computes a matrix multiply kernel function. The resulting 3-D tiles are
input to an Aggregation operator with a sum kernel function that sums up the values along
the common dimension to generate the result matrix. The important aspect here is that
join and aggregation are relational algebra operations extended with linear algebra kernels
that work on tiles. This allows for a direct integration of optimized numerical kernels such
as ScaLAPACK(Choi et al., 1992) into relational databases. The other operations in TRA
include ReKey, Filter, and Transform – which work only on dimensions – and Tile and
Concat—which alter the structure of the tiles by regrouping the indices.

4.9.2 Tensor Algebras for Machine Learning

The Einstein notation is adopted to express the linear algebra operations standard in machine
learning computations more abstractly. Optimized low-level kernels that implement these
abstractions for specific target architectures – such as GPU – are subsequently automatically
generated. Tensor Comprehensions (Vasilache et al., 2018) are a direct instantiation of
the Einstein notation as a domain-specific language in which index variables are defined
implicitly by using them in an expression. Their range is inferred automatically from the
tensors they are assigned to. The dimensions of the result tensor correspond to the index
variables on the left side of an expression. All the index variables that appear only on the
right side are assumed to be reduction dimensions. An extension of tensor comprehensions
that specifies the indices of the result tensor explicitly is used to define a tensor calculus
for automatic higher order differentiation in (Laue et al., 2020). These declarative tensor
algebras are integrated in ML libraries such as NumPy, TensorFlow, and PyTorch.
The applicability of LARA (Hutchison et al., 2017) and MATLANG (Brijder et al., 2019)
to express common ML problems is studied by (Barceló et al., 2019). They prove that the
Einstein notation/summation is supported by both LARA and MATLANG, convolution is
expressible only in LARA, and matrix inversion cannot be expressed in LARA when index
comparisons are not allowed.

4.10 Data Cube Algebras

Following the concepts and operations introduced in the relational model (Codd, 1970),
closed data cube models are proposed in (Agrawal et al., 1997) and (Vassiliadis, 1998)—
among others. These models provide a formal representation for data cubes and define
composable operations that generate a data cube as their result. The model introduced
in (Agrawal et al., 1997) treats dimensions and measures symmetrically, and supports
multiple hierarchies along every dimension. The model in (Vassiliadis, 1998) is based on the
notion of basic cubes as the storage element for the original data in a cube, and focuses on
the support of sequences of navigational operations. Both models include standard data

28

cube operations such as slicing and dicing, roll-up and drill-down, and navigation along
dimension hierarchies. Moreover, both models provide mappings to the relational model
and to a restricted form of multidimensional arrays. This restriction is imposed by the lack
of a complete order on dimensions, which precludes the application of range operations.
Nonetheless, selection – or restriction – on dimensions is possible with set membership
conditions. An alternative mapping from data cubes to multidimensional arrays – also
lacking complete ordering – is through intermediate relations (Vassiliadis, 1998).

4.11 Summary

• Arrays are modeled as functions from dimensions to attribute values. This allows for an
equivalent relational representation where the dimensions form a key. In SQL, arrays are
declared as table attributes.

• Array operators are defined as second-order functions with dimensional operands that
apply the functional argument to the attributes. In SQL, the array operators are
implemented as user-defined functions (UDF). Without sufficient knowledge of the UDF
processing, the integration of array operators in query optimization is difficult.

• The various algebras proposed in the literature share a set of similar single-array operators.
Moreover, they are semantically equivalent, RasQL and AML being the most general.

• Array join formalizations distinguish between dimensions and attributes. While attribute
joins are equivalent to relational joins, dimensional joins are defined based on discrete
shape predicates that encode the neighborhood relationship among cells.

• Tensor algebras extend relational algebra by defining matrix operations over a primitive
relational array representation. Matrix operations are embedded as functional parameters
into second-order relational operators. This allows seamless integration of optimized
linear algebra kernels into a relational processing engine.

5 MULTIDIMENSIONAL ARRAY STORAGE

In this chapter, we consider array storage in the following context. The size of the array
– |D1| ∗ |D2| ∗ · · · ∗ |DN | ∗ |sizeof (A1, A2, . . . , AM)| – is too large to fit entirely in memory.
However, it is possible to access the array elements based on their index. This is a major
departure from table – or relation – storage where tuples cannot be identified based on their
position. Nonetheless, the segment where a tuple is stored can be determined when data
partitioning methods (DeWitt and Gray, 1991) are applied. Thus, there is a connection
between data partitioning for parallel processing and array storage.
The array is organized on secondary storage into chunks – or partitions – that contain a
group of array cells (in Figure 5.1). Whenever an element from a chunk has to be read into

29

memory, the entire chunk is read—the I/O unit is the chunk, similar to the page for file
systems and the block/partition for relational databases, respectively. Moreover, chunks can
be allocated to different hosts or tasks for storage and concurrent processing. The optimal
chunking is dependent on the operations performed on the array. While some operators,
such as matrix multiplication, have static access patterns, the stencil operator applies a
shape-based aggregate to an array region, resulting in a highly-variable access to the array
cells. Based on these considerations, array chunking has to address the following questions:
• What is the optimal size of a chunk?
• What is the shape of the chunk?
• What is the mapping function from an array index to the corresponding chunk? The

mapping of a chunk to disk storage? To processes and processing nodes?
• How are the chunks allocated to processes and processing nodes?
• How are the cells organized inside the chunk?

(7,1) (2,5) (6,3) (6,4)

(2,3) (6,8) (1,4) (8,3)

(2,1) (5,5) (3,5) (9,7)

i
j

[1]

[2]

[3]

[1] [2] [3] [4]

task X task Y task Z

1 2 3 4

(a)

(7,1) (6,3)

(8,3)

(2,1) (5,5) (3,5)

i
j

[1]

[2]

[3]

[1] [2] [3] [4]

1 2

3

54

task X task Y task Z

(b)

Figure 5.1: Chunking for dense (a) and sparse (b) arrays.

5.1 Optimal Chunk Size

Let us consider B to be the chunk size. This is a global system parameter similar to the
block size in relational databases. Determining the optimal B value is the first question
array chunking has to address. In early work (Sarawagi and Stonebraker, 1994), it was
common to set B to the size of the file system page or the database block size, e.g., 4 to
64 KB. This strategy keeps the chunks tight without wasting space due to fragmentation.
It is also optimal when small portions of the array are retrieved by the majority of the
accesses, e.g., direct cell access based on the indexes or selective range queries. In more
recent work (Soroush et al., 2011; Cheng and Rusu, 2014; Papadopoulos et al., 2016), B is

30

set to much larger values, in the order of megabytes or even tens of megabytes. There are
two reasons for this significant increase. First, scanning larger continuous portions from
the disk up to these sizes does not take considerably longer—due to the logic implemented
in the disk controller. Repositioning the disk reading head for small requests remains the
bottleneck. Second, memory capacity has increased considerably, thus, allowing for more
data to be stored in memory. If a chunk is placed in contiguous memory segments – which
is the case for larger chunks – access is further improved.

5.2 Chunking Strategies

A chunking strategy specifies the size and shape of a chunk, as well as what array cells
are grouped together in the chunk. Different chunking strategies answer these questions in
different ways. We consider the most important strategies in the following. We start with
general strategies that can be applied equally to dense and sparse arrays. Then, we consider
more specific solutions.

5.2.1 Arbitrary Chunking

Arbitrary chunking is the most straightforward chunking strategy. It does not require any
mathematical formulation or any other kind of information. The main idea behind this
strategy is to group together in the same chunk cells that are close to each other. Closeness
is measured based on dimensions. A common simplification is to enforce that the shape
of the resulting chunks is a multi-dimensional hypercube aligned with the dimension axes.
Then, two questions have to be answered:
• Where to position the hyperplanes corresponding to every axis?
• Are the hyperplanes bounded or unbounded, i.e., do they cover the entire axis or only a

segment?
Based on the answers to these questions, three types of arbitrary chunking – depicted in
Figure 5.2 – are introduced.

Regular chunking. Regular chunking (Soroush et al., 2011) or aligned tiling (Furtado
and Baumann, 1999) divides every dimension into equal segments. The segments cover
the entire axis. The result is a set of identical hypercubes aligned with the axes. A chunk
corresponds to each such hypercube. In regular chunking, the number of hyperplanes on
every axis is chosen arbitrarily. In aligned tiling, it is chosen such that the resulting chunks
represent a uniform scaling down of the entire domain that fits in the allocated chunk size
B, i.e., the ratio between the chunk size and the domain size is identical on all dimensions.

31

(a) (b) (c)

Figure 5.2: Arbitrary chunking: (a) regular, (b) directional, and (c) sliced.

Example 5.2.1 (Regular chunking). Consider a 3-D grid of integers. The domain sizes along
the 3 dimensions are (7, 500, 7, 500, 20). Aligned tiling this dense array requires chunk sizes
that have the same ratio across all the dimensions. Thus, if we consider the constant ratio
to be 10, then the chunk shape is (750, 750, 2) and we get 1,000 chunks. Regular chunking
does not require the same ratio. For example, chunks with the shape (750, 375, 4) have
different ratios on every dimension.

Directional tiling. In directional tiling (Furtado and Baumann, 1999), every dimension
is treated independently. The position of the hyperplanes is given for every dimension.
Chunks are obtained at the intersection of the hyperplanes. They do not necessarily have
the same shape. While this results in chunks having different number of cells in the case
of dense arrays, for sparse arrays the chunks can be determined such that they contain
the same number of cells (Papadopoulos et al., 2016). Nonetheless, chunks are aligned and
irregular. Careful consideration is required for the cases when the volume of a chunk is
smaller than the maximum allowed volume B – merging is possible – and when the volume
is greater—further splitting is required. When any of these operations are applied, chunks
become nonaligned, i.e., the hyperplane is only a segment that does not cover the entire
axis domain.

Sliced chunking. A special case of arbitrary chunking corresponds to slicing a particular
dimension with hyperplanes at every position in its domain. The resulting hypercubes have
dimensionality N -1 and they can be chunked further, independently of each other. Any
processing that can be confined to a slice becomes simpler due to the reduced dimensionality.
Processing across multiple slices has to be decomposed into separate processing on every
slice—a loop over the slices. The default representation of multi-dimensional arrays in
general-purpose programming languages, e.g., C/C++ or Java, is based on slicing. Starting

32

with the most significant dimension, arrays of lower dimensionality are obtained by fixing
the value of the outer indexes. Due to the linear representation in memory, these arrays are
straightforward to generate. Problems appear when a lower-dimensional array has to be
obtained by fixing the value of an index that does not match the linearization order. In this
case, the lower-dimensional array has to be explicitly created by individually accessing every
element. Consider, for example, a C language 2-D matrix matrix[10][10] linearized in
standard row-major. Accessing the 3rd row is straightforward, i.e., matrix[2], but accessing
the 3rd column requires explicitly accessing every element.

Example 5.2.2 (Sliced chunking). If we consider the same setting as in Example 5.2.1, we
generate sliced chunks by treating each of the 20 points on the 3rd dimension separately.
We first generate 20 2-D arrays with size (7, 500, 7, 500). Then, we chunk each of them
individually.

5.2.2 Workload-based Chunking

The storage organization of an array is strongly dependent on the access patterns used to
access its cells—which are application and workload specific. Thus, there is no organization
that provides optimal performance for all possible queries. In the worst case, the entire array
has to be read from secondary storage in order to compute the result. This is equivalent to
a complete table scan in the relational model. In the best case, only the chunks containing
data relevant to the query at hand are read from storage. Given these two extremes, the
organization has to minimize the number of chunks read from storage for the majority
of queries in the workload. A second parameter that requires careful consideration when
deciding upon the chunking strategy is the size of the query result. It is likely that – in the
case of queries returning a large number of cells – the difference between strategies is not
that significant. However, when only a handful of cells are returned, the chunking strategy
plays an important role. This problem is closely related to the effectiveness of indexes in
relational databases.

Subsample access pattern. In (Furtado and Baumann, 1999), the authors identify a
set of frequent access patterns:
• Subsample multidimensional area with the same dimensionality. The result of such a

query is a hypercube having the same dimensionality as the original array. Splitting
the array into chunks across all the dimensions is the optimal strategy in this situation.
Notice that accessing the full array is a particular case of this access pattern.

• Section of lower dimensionality across a subset of dimensions. In this case, the query
result is typically a hypercube with a lower dimensionality. The storage organization
matching the section pattern provides optimal access in this case.

33

The authors propose a chunking strategy that takes the workload queries into account.
Based on the query log, the access frequency is measured for every hypercube of the array.
Hypercubes accessed frequently enough are designated areas of interest. Directional tiling
is directly applied by taking the sides of the areas of interest as the splitting hyperplanes
across every dimension. Further partitioning or merging may be required, as in directional
tiling. Merging is different due to the requirement that only tiles from the same area(s) of
interest can be put together. The objective is to put together as much data as possible from
a single area of interest and to minimize the number of tiles for a given area.

Overlap access pattern. In (Soroush et al., 2011), the authors provide more varied
access patterns in addition to range selection patterns across all – or a subset – of dimensions.
These diversified access patterns are:
• Structural join between two arrays. This operation requires combining data from the

same index position in two arrays having the same dimensionality. The straightforward –
and optimal – solution is to partition the arrays identically and – in the case of parallel
processing – store corresponding partitions on the same processing node.

• Overlap operations that access adjacent cells. If the accessed adjacent cells are confined
to a bounded region, the data can be replicated in every array chunk. This allows for
independent parallel processing of every chunk without communication across nodes. If
the number of adjacent cells is not bounded, merging and communication across chunks
are required—this is the more general solution.

The chunking strategies proposed by (Soroush et al., 2011) to handle these two access
patterns are variations on regular and directional tiling. The main idea is to apply two-level
regular or directional tiling. At the upper level, the chunk is determined as in any of these
strategies. Inside a chunk – the lower level – another chunking is executed using again one
of the regular or directional algorithms. The mini-chunks resulted at the lower level can be
accessed as a unit of processing—the I/O unit is still the upper level chunk. This strategy
is beneficial exactly when data from adjacent chunks are needed. Instead of moving the
entire chunk, only the overlapping mini-chunks have to be transferred.
The second chunking strategy proposed for overlapped processing requires replicating cells
across multiple chunks. This materialized view can be stored either with the main chunk or
separated. Additional space is used in both cases. The advantage of storing the materialized
view separated is that it can be read on demand, only when needed. Otherwise, it has to be
read whenever the chunk is read and this has the potential to incur significant overhead.
As a variation on the same idea, multiple concentric materialized views with increasing
radii can be created. The exterior materialized views include the interior ones. (Dong et al.,
2017) apply replication at chunk boundaries dynamically based on the specific processing
task. The replicated regions – known as ghost zones – are only transient in this case. They

34

are not materialized within or outside the chunk. Thus, they do not survive across tasks.

Query shape model. The approach taken in (Sarawagi and Stonebraker, 1994) is to
model all the observed access patterns as a probability distribution function (pdf) over
the shapes of the accesses—query shape model (Otoo et al., 2007). Essentially, accesses
are represented as N-dimensional hypercubes with a corresponding length on every di-
mension, i.e., (s1, s2, . . . , sN). While this is the most general form of access, notice that
it also encompasses degenerated patterns such as accessing a single cell or a hyperplane,
i.e., si = 1. A probability is assigned to every access pattern independent of the actual
occurring position in the array—the positions are assumed to be uniformly distributed
across the entire domain. Then, access patterns can be grouped into classes of the form
{[Pi, (si1 , si2 , . . . , siN)] |1 ≤ i ≤ K}, where K is the number of different hypercube shapes
and Pi is the probability corresponding to every class. In order to determine the optimal
chunking – only regular chunking is considered – an optimization formulation that minimizes
the number of blocks read from storage across all the classes is solved.

Example 5.2.3 (Query shape model). In this formulation, the only constraint is given by
the size of the storage block and the requirement that a chunk has to fit in a single block:

min(c1,c2,...,cN)

K∑
i=1

 N∏
j=1

⌈
sij

cj

⌉Pi

such that
N∏

i=1
ci ≤ B

|sizeof (A1, A2, . . . , AM)|

where (c1, c2, . . . , cN) is the shape of the regular chunk

(5.1)

The authors make the assumption that – independent of the relative position of the chunk
and the query hypercube – at most one additional chunk is read from storage for every
dimension—that is where the ceiling comes from in the objective function. Clearly, this
assumption is dependent on the actual position of the chunk – the shape of the chunk – and
what range query has to be answered—in some cases, two additional chunks have to be
read. What amplifies the error effect is the multiplication of the factors across dimensions,
while assuming dimensionality independence. Thus, the error becomes significantly higher if
the same error is made for all the dimensions of a given class—the higher the dimensionality
of the array, the higher the error. As a result, the solution of this formulation is only
approximate and can incur significant errors.

Example 5.2.4 (Expected query shape model). In this formulation, the authors modify the
objective function by observing that the assumption made in (Sarawagi and Stonebraker,
1994) on the number of chunks to be read is problematic:

35

min(c1,c2,...,cN)

K∑
i=1

 N∏
j=1

(
sij − 1

cj
+ 1

) (5.2)

The factors in this formulation represent the expected value of the number of chunks to be
read for every query class under the assumption that the position of the queries is uniformly
distributed over the entire array domain. Notice that the objective function takes real values
in this case. These values do not represent the exact number of chunks to be read from
storage for a given set of queries.

No matter which formulation we consider, it is not possible to compute a closed-form solution.
Since it is not feasible to search the entire solution space, i.e., |D1|∗|D2|∗· · ·∗|DN |, methods
to prune the space are required. The solution proposed in (Sarawagi and Stonebraker, 1994)
reduces the search space to shapes of the form (2y1 , 2y2 , . . . , 2yN) that are maximal, i.e.,∑N

i=1 yi =
⌈
log2

B
|sizeof (A1,A2,...,AM)|

⌉
, where yi, 1 ≤ i ≤ N , are positive integers. Essentially,

only hypercubes with side length of powers of 2 are considered that fill the maximum chunk
size with minimal waste. The search over such shapes is exhaustive. Once the optimal shape
with this restricted form is found, an additional search around the solution can be triggered
to find an even better solution that allows more general shapes. In (Otoo et al., 2007), the
exhaustive search at the first level is replaced with a greedy algorithm that starts with 0
lengths for all dimensions and then chooses optimally which dimension to increase at every
step. The computations required at each step are intricate and the authors do not show
what benefit this brings when compared to exhaustive search over the parameter space.
While the solution to the optimization problem is guaranteed to provide optimal chunking
under the given assumptions, it would be interesting to see how far is this from the best
solution. None of (Sarawagi and Stonebraker, 1994; Otoo et al., 2007) provide such results
or mention if other chunking strategies are better for practical query classes.

Independent attribute range model. The query workload can also be modeled through
the size of the ranges it accesses on every dimension. Instead of considering a hypercube as
the access unit, the query is decomposed into its corresponding segments on every dimension.
Thus, two 2-D query shapes {< 4, 4 >, < 4, 6 >} are part of two different pattern classes in
the query shape model, but they are part of the same class based on the first dimension D1.
In this case, the probability distribution is defined separately for every dimension. If the
distributions are assumed independent across dimensions, the model is called independent
attribute range model (Otoo et al., 2007).

Example 5.2.5 (Independent attribute range model). The optimization formulation for the
independent attribute range model is:

36

min(c1,c2,...,cN)

N∏
i=1

mi∑
j=1

(
sij − 1

ci
+ 1

)
Pij


such that

N∏
i=1

ci ≤ B

|sizeof (A1, A2, . . . , AM)|

where (c1, c2, . . . , cN) is the shape of the regular chunk
m1, m2, . . . , mN are the number of ranges on dimension i

sij is the jth range on dimension i

Pij is the probability of the jth range on dimension i

(5.3)

In this case, a closed-form formula can be computed if we give up the requirement that ci’s
have to be positive integers and we impose maximality in the sense defined for the query
shape model. The formula obtained using the Lagrange multiplier method gives us the ci’s:

ci = Āi

 B
|sizeof (A1,A2,...,AM)|∏N

i=1 Āi

 1
n

, where Āi =
mi∑
j=1

sij Pij − 1 (5.4)

In order to obtain the integral solution, i.e., positive integer values for ci’s, the authors
propose a method that rounds up some of the ci’s, while others are rounded down. By
carefully choosing the two partitions, the optimal integral solution is obtained.

5.2.3 Recursive Chunking

In recursive – or hierarchical – chunking, the starting point is a single chunk corresponding
to the entire array. The output is a set of chunks that form a directional tiling (Figure 5.2b)
of the original array. At each step in the process, an existing chunk – or chunks – are chosen
to be split. This can be done either by considering a query (Zhao et al., 2018) or a cost
function that ranks the chunks (Li et al., 2020). The chosen chunk can be split into any
number of additional chunks varying from 1 to 3N , where N is the array dimensionality. In
practice, a chunk is split into two chunks by first choosing a dimension and then a point
along the dimension. The coordinates on all the other dimensions stay the same. The choice
of the splitting dimension and the point differentiate between recursive chunking algorithms.
The splitting process is applied recursively – or iteratively – until a stopping criterion is
met. The most common such criterion considers the number of non-empty cells in every
resulting chunk—if the number of non-empty cells is below a threshold, the chunk is not
considered for further splitting. Figure 5.3 depicts the first, fourth, and final split in the
recursive chunking that produces the directional tiling in Figure 5.2b. A careful reader
immediately observes that this process is similar to how a kd-tree index is built.

37

1 2

(a)

1.1.1 1.1.2

2.1

2.2

1.2

(b)

1.1.1.1

1.1.2.1
2.1

1.1.1.2

2.21.1.2.2.1 1.1.2.2.2

1.2

(c)

Figure 5.3: Recursive chunking: (a) first split, (b) fourth split, and (c) final tiling.

Raw array chunking. The goal of raw array chunking (Zhao et al., 2018) is to infer
the chunks dynamically at runtime from the query workload. Instead of creating arbitrary
chunks during loading – which is time-consuming, delays the time-to-query, and may not
be optimal for the actual workload – chunks are built incrementally one query-at-a-time.
Given a subsample query, the relevant cells have to be identified, while minimizing the total
number of inspected cells. Raw array chunking is an incremental algorithm that builds an
evolving R-tree based on the queries executed by the system. The invariant of the algorithm
is that the set of chunks cover all the cells of the array at any time instant. Moreover, the
chunks are non-overlapping. However, the resulting chunks do not necessarily cover the
complete array. The central point of this algorithm is splitting a chunk that overlaps with
the query. A chunk is split in two cases. First, if there are a sufficiently large number of
cells in the chunk. In the second case, even when the number of cells is small, if the query
does not contain any cell, the chunk is split further. Raw array chunking always splits a
chunk into two chunks. This is done by selecting a single splitting dimension. The algorithm
enumerates over the query boundaries that intersect with the chunk bounding box and
chooses to split into those two chunks that have the minimum combined hyper-volume.
Rather than computing the hyper-volume from the query-generated chunks, the bounding
box of a chunk is derived only from the cells assigned to it. Chunks that cover a smaller
hyper-volume are more compact, thus the probability to contain relevant cells is higher.
As a result, it is likely that the resulting chunks do not completely cover the range of the
array dimensions. This is not a problem because the uncovered ranges do not contain valid
cells. Therefore, they are not part of any computation. Nonetheless, the management of
the chunk bounding boxes – the metadata – becomes more intricate since this is where the
operation scheduling is performed. For optimal performance, a balance has to be achieved
between the number of chunks and the array domain coverage.

38

RecPart. Given a distributed band-join query between two arrays, the RecPart algo-
rithm (Li et al., 2020) computes a recursive chunking that optimizes a composite objective
function consisting of two factors. The first factor is the number of cells that have to
be replicated across chunks, while the second is the overall size of chunks processed at a
computing node—load balancing. Similar to decision trees training in machine learning,
RecPart’s chunking is performed from the root, each time recursively splitting some chunk.
As RecPart splits chunks, cell replication is monotonically increasing, while large chunks
are broken up into smaller ones. Given the targeted objective, the rank function – used to
choose the best chunk to split and the splitting point – is the ratio between load balance
improvement and additional cell replication. This gives priority to chunks that do not
introduce replication through splitting. When a chunk becomes small enough that all cells
join with each other, then the chunk is not split any further. However, if the load induced
by that chunk is high, then a grid-style partitioning is applied internally for scheduling.
The rank function is evaluated over random samples, which can introduce serious errors for
sparse and skewed arrays. Moreover, sampling has to be also performed on the output of
the band-join.

5.2.4 Adaptive Rechunking

Chunking imposes a strict processing strategy for certain array operations that access
neighboring cells, such as subsample and similarity join. In such cases – depending on the
existing chunking – adjacent chunks have to be accessed to execute the operation. However,
with a different chunking, it may be the case that the operation can be performed for every
chunk independently—or by accessing a smaller number of adjacent chunks. Thus, a choice
is required—perform the operation based on the existing chunking or rechunk the arrays first
– the reshape and repart operations in SciDB (Cudre-Mauroux et al., 2009; Stonebraker
et al., 2011; Paradigm4, 2022a) – and then perform the operation? ChronosDB (Zalipynis,
2018) applies an heuristic to determine when to rechunk an array. Whenever the size of
a chunk becomes two times larger or smaller than a user-defined threshold, the entire
array is rechunked. A third alternative – possible for operations such as array similarity
join (Zhao et al., 2016) – is to overlap or fuse rechunking and the operation at the expense
of considerable increase in complexity. While the optimal choice depends on the relative cost
of the available alternatives, in practice the decision is largely binary. With the exception
of similarity joins – band-join (Li et al., 2020) included – which always perform rechunking,
the other operations preserve the existing chunking.

5.2.5 Update-optimized Chunking

The array fragment concept as a timestamped snapshot of a batch of updates is introduced
in (Papadopoulos et al., 2016). A fragment is a collection of array cells modified via write

39

operations. Rather than performing the updates in-place – as in the case of HDF5 (The
HDF5 Group, 2020) – the modified cells are grouped into fragments of fixed size. The order
of cells inside a fragment follows the order of dimensions in the chunk representation. The
shape of a fragment is given by the minimum bounding rectangle (MBR) that encompasses
it. Since fragments are built based on the order of the modification operations, overlapped
fragments can result. However, a cell always belongs to a single fragment. Update operations
are optimized because the modifications from a fragment are applied all at once. Moreover,
the consolidation between chunks and fragments is performed only when the array read
access becomes suboptimal due to a large number of fragments—array reads have to consider
both chunks and fragments.

5.3 Mapping Cells to Chunks

Independent of the actual chunking strategy, neighboring cells in the case of dense grids or
proximal points in sparse arrays – measured based on dimensions – are grouped together in
chunks. Moreover, the typical shape of a chunk is a hypercube aligned with the dimensions.
Whenever a cell or a range of cells have to be retrieved based on their index, the chunk(s)
containing the cell(s) have to be found first. This requires a mapping function from the cell
index to the corresponding chunk:

Map : D1 × D2 × · · · × DN 7−→ [1 . . . Zchunks] ,

where Zchunks is the total number of chunks
(5.5)

A chunk is identified by its position across all the chunks—chunks are linearized similarly to
how they are materialized on storage. The position is given as an index on a discrete axis.
The mapping function can be implicit – given by a closed-form formula – or explicit—stating
the corresponding position for every chunk.

5.3.1 Implicit Mapping

An implicit mapping requires a pre-determined order in which chunks are considered in
the dimension space, e.g., row-major or column-major for 2-D arrays. The order impacts
how chunks are accessed from storage—precisely, the order determines how long are the
sequential scans. An implicit mapping function requires regular chunks having the same
size and can be applied only to dense grids. When applied to sparse arrays, all the empty
cells have to be represented explicitly, e.g., NULLs, thus requiring additional storage space.

Example 5.3.1 (Implicit mapping). Consider the 3-D grid from Example 5.2.1, i.e., (7, 500, 7, 500, 20),
chunked into 1,000 regular tiles with shape (750, 750, 2). The mapping function used to lin-
earize the chunks considers the dimensions from the first to the third, with the index on the

40

third increasing the fastest, i.e., row-major extended to three dimensions. Thus, the order in
which chunks are stored follows the indexes as: [(1, 1, 1) , (1, 1, 2) , . . . , (1, 1, 10) , (1, 2, 1) , . . . , (1, 10, 10) , (2, 1, 1) , . . .].
In this case, the formula for the implicit mapping function is:

Mapimplicit(x, y, z) =
⌊

x

750

⌋
· 7, 500

750 · 20
2 +

⌊
y

750

⌋
· 20

2 +
⌈

z

2

⌉
(5.6)

Given an array index, it is straightforward to find the chunk that contains the corresponding
cell. For example, the cell corresponding to index (1111, 308, 7) is in chunk

⌊
1111
750

⌋
·100+

⌊
308
750

⌋
·

10 +
⌈

7
2

⌉
= 100 + 0 + 4 = 104. Identifying the chunks corresponding to a range/subsample

query is more intricate. Consider the range ([3, 000, 4, 000] , [1, 000, 7, 000] , [5, 11]). We have
to treat every dimension separately in order to identify the range of chunks covered by the
query interval. For dimension x, we have [4, 5]; for y, [1, 9]; and [3, 6] on z, respectively. To
find the chunks that overlap this range, we have to compute all the possible combinations of
indexes, i.e., 2·9·4 = 72. Thus, there are 72 chunks that have to be accessed in order to answer
this range query. Some of them are: [413, 414, 415, 416, . . . , 445, 446, . . . , 593, 594, 595, 596].
Since 1, 001 ·6, 001 ·7 = 42, 049, 007 cells are covered by the query – which fit into 38 compact
chunks – the effectiveness of the chunking scheme is poor for this range query—almost a
double number of chunks is accessed. While the effectiveness can be improved by reducing
the chunk size, this may impact the access speed negatively.

Intermediate mapping with regular chunking. An alternative approach is to first
partition the array into regular chunks using any of the methods presented previously.
The domain on every dimension is reduced from the original size to the number of chunks
along the dimension. Based on the original dimension ordering, a chunk corresponds to
every point in the new domain. A chunk is identified by its position along every dimension.
Given the new coordinate system, the mapping function is defined as a dimensionality
reduction transformation from the multidimensional coordinates of the chunk to an integral
position along a linear axis. This method is introducing an intermediate mapping from the
original domain to the chunk domain, in the same multidimensional space. Only then we
are mapping the chunks to the linear axis. Formally, this corresponds to two functions:

Mapchunk : D1 × D2 × · · · × DN 7−→ C1 × C2 × · · · × CN

Maplinear : C1 × C2 × · · · × CN 7−→ [1 . . . Zchunks] ,

where Ci, is the number of chunks along a dimension,

Zchunks = |C1| ∗ |C2| ∗ · · · ∗ |CN | is the number of chunks

(5.7)

While Mapchunk is straightforward to define, there are a variety of choices for Maplinear .
The most common choices are row-major (column-major), snake row-major (snake column-
major), and their extensions to multidimensional spaces.

41

Mapping functions based on space-filling curves are presented in (Jagadish, 1990). They are
defined recursively for a given domain size and do not have a simple closed-form formula.
Out of the three methods presented – Z-curve, Gray code, and Hilbert curve – it is shown
that Hilbert curve mapping provides the best performance for partial exact match selection
– slicing along one dimension – and range selections in 2-D space. The performance metric
used for the theoretical analysis is the number of runs of consecutive grid points, which is
equivalent to the number of non-consecutive disk blocks fetched. Lower values correspond
to a reduced number of disk seek jumps. This translates indirectly to continuous scans,
thus better disk I/O throughput. In addition to this metric, the total number of disk blocks
fetched and the size of the linear span for a given selection – the difference between the
maximum and minimum linear coordinate – are also used in the experimental evaluation.

Dimension ordering. An important question that requires attention in the case of
implicit mapping is the order in which to consider the dimensions when linearizing the
chunks on storage. Notice that the same number of chunks has to be accessed for a query no
matter what the order is. What is highly sensitive to the order, though, are the length of the
sequential scans and that of the seeks between chunks that are within query range. Longer
sequential scans and shorter seek jumps are better. The arbitrary – and most common
– solution is to use the order in which dimensions are specified in the array definition.
In (Sarawagi and Stonebraker, 1994), the authors provide an heuristic which orders the
dimensions based on the ratio of the number of chunks accessed on a dimension – across
the queries in the workload – and the number of chunks on that dimension. The dimension
with the largest ratio is the inner-most one. Intuitively, this corresponds to having the
dimensions with the largest accessed number of chunks in the inner loops of the traversing
order. Or, equivalently, execute the longer sequential scans more often—and the longer seek
jumps less frequent.

5.3.2 Explicit Mapping

An explicit mapping function bypasses the conversion to a chunk position and maps N-
dimensional hypercubes specified by their left-bottom and right-upper corners to the starting
position of the chunk on storage:

Mapexplicit : [Cl1 , Cu1] × · · · × [ClN , CuN] 7−→ [1 . . . Zdisk] ,

where Zdisk is the maximum storage index
(5.8)

In this case, finding the array cell corresponding to a given index requires identifying the
chunk which contains the index. Since the mapping function is represented explicitly, this
reduces to inspecting every entry in the function domain and checking inclusion. Building

42

a multidimensional index – such as an R-tree – over the hypercubes is an alternative to
reduce the number of entries inspected—at the expense of maintaining the index.

Example 5.3.2 (Explicit mapping). Let us consider a modification of the 3-D array used in
the previous examples. Instead of having a dense grid, consider the (7, 500, 7, 500) squares
positioned in a plane of size

(
106, 106). The resulting 20 2-D arrays – when considered

together over the
(
106, 106, 20

)
space – form a sparse array. One strategy to chunk the sparse

array is to slice each square out and chunk it using a dense strategy. Thus, if we use (750, 750)
rectangles as before, we obtain 2,000 chunks with 6 coordinates corresponding to every
chunk. They have the form [(x, y, z1) , (x + 750, y + 750, z1)] or, equivalently, [x, x + 750] ×
[y, y + 750] × [z1, z1]. An explicit mapping function stores the corresponding position on
storage for every such hypercube—without first mapping to the chunk position. While this
example is for a sparse array, notice that irregular chunking always requires the mapping
function to be represented explicitly.

5.4 Chunk Organization

Once array cell membership to chunk is determined, the next step is to organize the cells
inside the chunk. It is important to remember that the I/O unit is the chunk. Even if only
one cell is needed for a given task, the entire chunk has to be read from disk into memory.
While I/O is supposed to be the most time-consuming operation, memory access and CPU
processing are also relevant. Thus, it is important to also consider optimization strategies
for these operations.
Array cell organization inside a chunk can be viewed as another chunking problem—at lower
scale. Thus, recursive chunking can be applied. Everything discussed earlier applies directly
to the more confined space. The depth of the recursion can be decided during chunking.
In (Soroush et al., 2011), the authors set for a two-level recursion. The benefit of such a
strategy is again the reduction on the number of cells that are inspected in range queries.
Notice, though, that the I/O unit at the upper-most level remains the chunk.

5.4.1 Dense Chunks

The standard order in which cells are stored for dense grids is identical to the order in
which chunks are linearized on storage—same order for dimensions. While other dimension
orderings are possible, it is not clear what effect they have on query response time. However,
the most important criterion for dense grids is the storage reduction that can be obtained by
discarding the indexes corresponding to array cells inside a chunk. This technique is known
as dimension suppression (Stonebraker et al., 2011; Cheng and Rusu, 2014). It reduces
significantly the size of the chunk – for highly-dimensional grids – thus, the amount of

43

data that has to be read from storage. The only requirement for dimension suppression
to be applicable is the existence of an implicit mapping function from an index to the
corresponding cell inside the chunk—exactly the same idea as for chunk linearization.

5.4.2 Sparse Chunks

In the case of sparse arrays, it is not that clear how to store cells inside a chunk. The
simplest idea is to completely ignore the ordering and to process any query by scanning
all the cells. This is perfectly reasonable since checking if a cell has to be included in
the processing of a given query takes only a conditional if instruction. Given the purely
relational format of sparse array data, any indexing technique based on dimensions or
attributes – including bitmap indexing – is equally applicable. In particular, bitmap indexing
along dimensions (Wu et al., 2006) represents a secondary method to discard overlapping
chunks for range queries. The only effect of any indexing technique is reducing the number
of cells that have to be inspected—at the cost of building the index. As mentioned before,
the benefits are unclear.
In (Goil and Choudhary, 1997), the authors provide a complete overview on how to organize
cells inside a chunk for sparse arrays. They analyze the storage requirement of every
technique as a function of multiple parameters, such as dimensionality, density, and size
of the array cell. They also provide detailed analytical cost formulas for the time it takes
to answer point and range queries for each of the analyzed schemes. The storage schemes
presented in (Goil and Choudhary, 1997) are:
• Index-value pairs. This is the straightforward relational representation of sparse data.

Index-value pairs are known as the coordinate (COO) representation for sparse matrices
in BLAS libraries for linear algebra. The order of the pairs inside the chunk can be
arbitrary or it can follow the dimensions.

• Offset-value pairs. The same principle behind linearizing chunks on storage is applied to
linearizing array cells inside the chunk. While absolute coordinates have to be stored for
chunks, only the relative position in the chosen order is stored for array cells.

• Compressed sparse dimensions. In this representation, one of the dimensions is chosen as
the principal dimension. In the case of sparse 2-D tensors, we have compressed sparse row
(CSR) and compressed sparse column (CSC) format. The position of every non-empty
array cell is stored on this principal dimension in a 1-D vector. The cells are also stored
in a corresponding 1-D vector. For the remaining dimensions, the transition from one
index value to the next is recorded as positions in the 1-D vectors with indexes and array
cells, respectively. While the size of the first two vectors depends only on the number of
non-empty cells, the size of the last vector is equal to ∑N−1

j=1

(∏N−1
i=j |Di|

)
, where DN is

the principal dimension. Determining the ordering of the dimensions in order to minimize
the storage is quite straightforward. That is not the case for determining the principal

44

dimension.
• Sparse-dense split storage. Dimensions are split into dense and sparse. When the dimen-

sionality of the original array is reduced to the number of dense dimensions, the resulting
arrays – one for every combination of the sparse dimensions – are either dense or empty.
Empty arrays do not need to be stored at all. However, what have to be stored are the
indexes of the sparse dimensions for which there exist dense arrays.

• Bit-encoded sparse storage. Rather than storing the index of each dimension as a basic
numeric type, e.g., int or long, the minimum number of bits sufficient to represent
the cardinality of every dimension is used. This has the potential to result in storage
reduction—especially when chunking is used. Point queries benefit from this representa-
tion since index matching becomes a bit manipulation operation. However, answering
range queries becomes more intricate.

5.5 Mapping Chunks to Storage

Declustering (Moon and Saltz, 1998) studies how to distribute chunks across disks in a multi-
disk environment—shared-disk or shared-nothing architecture. The formal declustering
representation requires a function to be defined from the chunk linearization to the disk
domain:

Mapdisk : [1 . . . Zchunks] 7−→ [1 . . . HD] ,

where Zchunks is number of chunks, HD is number of disks
(5.9)

Mapdisk partitions the chunks over the available disks. The objective is to find mappings
that evenly distribute the chunks across all the available disks (Moon and Saltz, 1998).
This results in spreading the disk I/O evenly across disks, thus maximizing the overall
throughput. While this can be achieved on average, there will always be queries for which
more chunks – if not all – have to be read from the same disk, resulting in degraded I/O
performance.
In order to get access to a given array cell, two mappings have to be applied in sequence,
i.e., mapping composition. First, the chunk that contains the array cell has to be identified
using either Mapimplicit or Mapexplicit . Then, Mapdisk is applied on the result. The same
procedure is followed for range queries, with individual calls to Mapdisk for every chunk in
the overlapped region.

5.5.1 Data Partitioning Declustering

We introduce possible forms for Mapdisk that are immediate extensions from data partitioning
schemes in parallel databases (DeWitt and Gray, 1991). The main difference is that there is

45

no mapping from an array cell to a given chunk in data partitioning. Rather, the mapping
is from a tuple attribute to a chunk—if present at all.

Round-robin. The declustering mapping function for a chunk with index x is defined as:

Mapround-robin (x) = (x + c) mod HD + 1 (5.10)

where mod is the modulo operation and c is a constant that determines the index of the
disk to which the first chunk is assigned. The idea is to assign chunks sequentially to disks
based on their position in the linear order. The distance between two chunks assigned to
the same disk is HD. Each disk receives at least

⌊
Zchunks

HD

⌋
chunks. To make things concrete,

we consider an example with 9 chunks indexed 1 to 9 and 3 disks, i.e., HD = 3, indexed
1 to 3. The value of c is set to 1. Mapround-robin assigns chunks {2, 5, 8} to disk 1, chunks
{3, 6, 9} to disk 2, and chunks {1, 4, 7} to disk 3, respectively.

Range. In range-based mapping, the chunks are split into HD groups, every group
containing Zchunks

HD chunks—we assume that Zchunks is a multiple of HD. The difference from
round-robin is that the groups contain consecutive chunks, assigned by the mapping:

Maprange (x) =
⌈

x · HD
Zchunks

⌉
(5.11)

Following the example given in round-robin mapping, the chunks assigned to disk 1 are
{1, 2, 3}. Disk 2 is assigned chunks {4, 5, 6}, while disk 3, chunks {7, 8, 9}.

Hash or pseudo-random. The standard mapping function used in hash-based parti-
tioning is defined as:

Maphash (x) = [(a · x + b) mod P] mod HD + 1 (5.12)

where a and b are random numbers, while P is a large prime number. On average, the same
number of chunks are assigned to every disk. However, the chunks assigned to a disk depend
strictly on the parameters of the hash mapping. In the example with 9 chunks and 3 disks,
we consider a = 3, b = 2, and P = 13. With these parameters, chunks {8, 9} are assigned
to disk 1, chunks {4, 5, 6, 7} to disk 2, and chunks {1, 2, 3} to disk 3, respectively. In order
to enforce that chunks are uniformly distributed across disks – not in groups, as in this
example – a combination between round-robin and hash can be devised such that in every
run of HD chunks, every disk gets a chunk. Inside a run, chunks are randomly assigned to
disks, rather than following a fixed pattern.

46

5.5.2 Intermediate Mapping Declustering

Instead of assigning chunks to disks based on the linearization produced by the implicit or
the explicit mapping, the assignment can be done starting from the intermediate mapping
Mapchunk . In this case, the input to Mapdisk is the multidimensional coordinate in the chunk
space:

Mapdisk-chunk : C1 × C2 × · · · × CN 7−→ [1 . . . HD] (5.13)

where the symbols have the same meaning as defined previously. There are various forms
Mapdisk-chunk can take. In the following, we present the most common declustering methods
that use the intermediate mapping as introduced in (Moon and Saltz, 1998).

Disk modulo (DM). In the DM scheme, chunk [i1, i2, . . . , iN] is assigned to disk:

MapDM ([i1, i2, . . . , iN]) = (i1 + i2 + · · · + iN) mod HD + 1 (5.14)

Even though the assignment may seem simple, the DM mapping is known to be strictly
optimal – exactly the minimum number of chunks is read from every disk – for many
cases of partial match queries, including all partial match queries with only one unspecified
attribute (Moon and Saltz, 1998). However, DM does not scale for range queries as the
number of disks is increased. This limits drastically its applicability.

Fieldwise XOR (FX). The FX scheme replaces the summation operation in DM with
a bitwise XOR operation on the binary representation of the chunk coordinates. Chunk
[i1, i2, . . . , iN] is assigned to disk:

MapFX ([i1, i2, . . . , iN]) = (i1 ⊕ i2 ⊕ · · · ⊕ iN) mod HD + 1 (5.15)

where ij is the binary representations of index j in the chunk space. FX has similar
characteristics to DM—when the number of disks and the size of each dimension are a
power of two, FX is optimal for partial match queries. The scalability for range queries
remains problematic.

Cyclic. The cyclic allocation scheme introduced in (Prabhakar et al., 1998) is a general
declustering method for 2-D dense grids. Chunk [i1, i2] is assigned to disk:

Mapcyclic ([i1, i2]) = (H ∗ i1 + i2) mod HD + 1 (5.16)

where H is chosen to be relatively prime with HD. This results in separating proximal
chunks in both dimensions on different disks—neighboring chunks on the same row are
assigned to consecutive disks, while neighboring chunks on the same column are assigned
to disks having distance H apart. The condition that H and HD are relatively prime

47

guarantees that chunks are assigned to all the available disks before considering the same
disk again. It is straightforward to remark that DM is an instantiation of the cyclic allocation
scheme when H = 1. Given a value for HD, it is possible to create an entire class of cyclic
allocations that choose all the relatively prime values between 1 and HD for H—if HD is
prime, the number of classes is the largest. However, not all of the classes provide the same
performance. Identifying the best value for H requires a time-consuming exhaustive search.
Even if the search space is drastically reduced, a close to optimal value for H can be found
with high probability.
The scheme with the best performance that avoids the exhaustive search is based on
Fibonacci numbers (Prabhakar et al., 1998). Given a value for HD, H is chosen such
that H = F

(
F −1 (HD) − 1

)
, where F (x) is the closed-form equation for the xth Fibonacci

number obtained after solving the recursion—if HD is a Fibonacci number, H is the previous
Fibonacci number based on this equation. If HD is not a Fibonacci number and the resulting
H is not even relatively prime with HD, H is forced to be a relatively prime number with
HD by finding the closest such number to the result obtained from the equation.
There are two problems with this approach. First, it is limited to 2-D arrays. It is not clear
how to generalize it to higher multidimensional spaces and if the analysis holds in higher
dimensions. The second problem is the performance measure used in the paper. For a given
size, all the queries across the entire space are considered and their error is averaged. Then,
the errors are averaged again over all possible sizes. The problem is that the number of
queries is highly different across sizes and the maximum error is also highly dependent on
the query size. As a result, the impact an individual query error has on the overall error is
not uniform across all the query sizes.

5.5.3 Space-filling Curves

Another alternative to assign chunks to disks is based on the linearization provided by
space-filling curves, rather than by multidimensional chunk coordinates. A space filling curve
visits all the points in a multi-dimensional space exactly once and never crosses itself. In this
solution, chunks are first linearized using a space-filling curve that maps a multidimensional
space into a linear sequence, while preserving spatial proximity. Then, they are assigned to
disks in round-robin fashion. Unlike cyclic declustering – which enforces that neighboring
chunks on both dimensions are spread apart as far as possible – space-filling curves guarantee
this property only for a subset of the dimensions. Formally, chunk [i1, i2, . . . , iN] is assigned
to disk:

Mapspace ([i1, i2, . . . , iN]) = space (i1, i2, . . . , iN) mod HD + 1 (5.17)
where space is a space-filling curve—a complicated function at the border between implicit
and explicit mappings. Out of the many space-filling curves proposed in the literature, the
linearization based on Hilbert curves (Faloutsos and Bhagwat, 1993) is shown to provide the

48

best performance both for partial match, as well as range queries across multidimensional
spaces, when the number of disks is large.

5.5.4 Similarity-based Graph-theoretic Declustering

The main idea behind the previously presented declustering methods is to make sure
that neighboring chunks get assigned to different disks. This results in spreading the I/O
throughput across many disks in the case of queries that select spatially close regions,
thus improved execution time. The degree to which this goal is achieved is a property of
every method. The approach taken in the similarity-based methods presented in (Moon
et al., 1996; Liu and Shekhar, 1995) is to formulate declustering as a graph partitioning
problem. The graph is generated by creating a vertex for every chunk and creating an
edge for every pair of chunks—complete graph. The edges are weighted by the probability
that their adjacent vertices are accessed together by a query. Declustering corresponds
to a multi-way partitioning of the graph. Since the goal is to minimize response time by
maximizing parallelism in disk access, chunks – vertices in the graph – that are likely to
be accessed together should be assigned to different disks—separate convex components
in the graph. This problem is a variant of the Max-Cut problem, which is known to be
NP-complete. As a result, the similarity-based graph-theoretic methods for declustering are
heuristic algorithms for Max-Cut and its converse–the Min-Cut problem.

5.5.5 Block-cyclic Declustering

Instead of applying declustering to a full array, a different alternative is to partition the
array into multiple sub-arrays and then apply declustering for each sub-array separately.
The same or different declustering strategies can be applied for every sub-array. This
approach is known as block-cyclic declustering (Soroush et al., 2011). It splits an array
into regular blocks of chunks and declusters every block individually, e.g., with round-robin
partitioning. In certain cases, block-cyclic declustering spreads dense array regions more
evenly than one-level methods. Moreover, due to the compatibility with BLAS level 2 and
level 3 operations, block-cyclic declustering is the preferred representation for dense matrix
operations in ScaLAPACK (Choi et al., 1992).

5.6 Relational Chunking

Data partitioning (DeWitt and Gray, 1991) is the concept corresponding to array chunking
on relational data. While data partitioning represents the main strategy for parallel data
processing, it is also a simplified form of indexing. In a relational setting, the tuples of
a relation are split into multiple segments and assigned to different execution nodes for
processing. Since every process works on a smaller dataset, a speedup proportional to

49

the number of processing nodes can be obtained in optimal conditions. Moreover, some
segments can be ignored when executing certain types of queries. For example, in the case
of a range query, a segment that does not overlap with the range can be safely discarded.
The minimum and maximum value in the segment are necessary for this decision. They
represent the primitive index data.

There are three general data partitioning schemes. In round-robin partitioning, tuples
are assigned to segments sequentially based on their position in the database file. This
guarantees that all the segments have the same number of tuples—plus/minus one. In range
partitioning, the tuples having values in the same range are grouped together in a segment.
This can be done either by dividing the domain into equal size segments – equi-width – or
by having the same number of tuples in every segment—equi-depth. The last scheme – hash
partitioning – assigns tuples to segments based on the value of a random hash function
applied to the tuple. This guarantees that tuples with the same value are located in the
same segment. While the segment to which a tuple is assigned can be determined for every
scheme, only range partitioning groups tuples with consecutive values together. This is
exactly the goal of array chunking—assign neighboring cells to the same chunk. As such,
array chunking is equivalent to multidimensional range-based data partitioning across the
array dimensions (Cheng and Rusu, 2014).

5.7 Tensor Chunking

In the context of tensors, the most common chunking strategies are targeted at the matrix
multiplication primitive. Given the relatively simple – but complete – access pattern, in
which every row from one matrix is paired with every column from the other matrix,
the space of chunking alternatives is rather limited. This space is further constrained by
the dependency between the chunking of the two input matrices—which determines the
chunking of the result matrix. Specifically, in order to reduce the number of accessed cells,
the left matrix has to be stored in row-major format, while the right matrix in column-major
format. If that is not the case, rechunking is necessary—which requires expensive network
traffic in a distributed setting.

The chunking strategies for a matrix follow directly from the representation of an array as a
relation (Section 2.4). The most common strategies are row slice or row strip (Figure 5.2c),
column slice or column strip, and regular or tile (Figure 5.2a). These strategies are all
arbitrary chunking methods introduced in Section 5.2.1. Storing the entire matrix as a single
chunk – or single tuple – is also relevant in the context of matrix multiplication because
it is amenable to full replication – or broadcasting – which eliminates the requirement for
rechunking and, thus, can reduce network traffic.

50

5.7.1 Optimal Chunking for Linear Algebra Programs

The optimal chunking for a linear algebra program consisting of matrix operations over
a set of input matrices – which are pre-chunked at creation – depends upon the types of
operators and the available implementations. It requires finding the chunking type and
its corresponding parameters, e.g., the tile sizes, for every operator, such that the fastest
execution of the overall program is achieved.
Cost-based adaptive rechunking for linear algebra matrices is implemented in the BUDS
system (Gao et al., 2017). In this case, only four chunking strategies are allowed—exhaustive
sparse, row-sliced, column-sliced, and compressed dense. A storage format corresponds to
every form of chunking. Moreover, conversion procedures are defined between any two forms
of chunking. When a matrix is part of a linear algebra operation, the optimal chunking for
that operation is determined. If this is not the same as the storage chunking, a conversion is
executed as long as its cost is below the cost of performing the operation on the suboptimal
chunking. It is important to notice that this strategy does not consider the chunk shape
as a parameter since linear algebra operations are always performed on the complete
matrix—there is no subsampling for a matrix.
Optimal chunking is modeled as a graph annotation optimization problem in (Luo et al.,
2021). Operators are represented as vertices, while edges correspond to the matrix operands.
Vertices are annotated with the implementation of the operator and the format – or chunking
– of the result matrix. Edges are annotated with the rechunking transformation – if any –
applied to the associated matrix operand. An execution time cost function is assigned to
every annotation in the graph. The parameters of the cost function – including the number
of floating point operations, the network traffic in bytes, and the size of the intermediate
matrix operands – are estimated with a pre-trained regression model. The goal is to find
those annotations that minimize the overall cost of the graph. This can be done efficiently for
a tree-shaped graph – in time linear in the number of vertices – with a dynamic programming
algorithm—which can be extended to a general directed acyclic graph (DAG) at the expense
of an exponential increase in time complexity.
Other solutions that optimize the execution of linear algebra programs do not consider
the combination of chunk layout, operator implementation, and rechunking transformation
over the entire program. Cumulon (Huang et al., 2013) uses a fixed size tiled matrix layout
and automatically optimizes linear algebra programs in terms of operator implementations.
DMac (Yu et al., 2015) considers only the row/column strip and matrix as single tuple
chunking configurations. Based on the chunking of the input matrices, the transformations
required by every operator are determined based on the order and dependency among
operators. This is done independently for every operator. The implementation of an operator
is chosen based on the computed chunking using heuristics that define a holistic communi-
cation cost model. In SystemML (Boehm et al., 2016), the chunk layout is fixed for the base

51

matrices and is passed unchanged through the other linear algebra operators. MatFast (Yu
et al., 2017) introduces a cost model for matrix rechunking based on the required data
transfer. This cost model is used to determine the optimal chunking of a particular operator.
A linear algebra expression consisting of several operators is greedily optimized by tuning
the layout of every operator independently. The only supported layouts are row/column
strip and matrix as single tuple. DistME (Han et al., 2019) considers tiled chunking as a
generalization of all the other strategies for stand-alone matrix multiplication. The optimal
tile size is determined through exhaustive search such that the required communication is
minimized. The optimization space is limited to tiles having size a multiple of the basic tile
size.

5.7.2 Loop Tiling

While array chunking is static – the range on every dimension is fixed during processing –
tensors are often dynamically (re-)chunked based on the characteristics of the hardware
platform. This dynamic rechunking has been studied extensively in the compiler and high
performance computing (HPC) communities under the name loop tiling or blocking (Irigoin
and Triolet, 1988; Wolf, 1989; Renganarayana and Rajopadhye, 2008; Luo, 2020). The
goal of loop tiling is to generate optimal chunk sizes for the given memory capacity and
configuration in order to increase data locality and parallelism. The focus on memory access
and parallel processing are the main differences from array chunking.

Loop tiling is formulated as an optimization problem with the objective to determine the
optimal chunk size that results in the fastest execution under the constraints of cache
locality and access reuse (Wolf and Lam, 1991). Since the optimization problem cannot be
solved efficiently, heuristics are often applied (Dongarra and Schreiber, 1990). (Lowenthal,
2000) assigns different tile sizes to the CPUs in a multi-processor environment automatically.
The running time of the first few block operations is collected and used to decide the tile
size for the subsequent blocks. (Kisuki et al., 2000) extend this approach into an iterative
algorithm to choose the tile sizes, while (Nikolopoulos, 2004) uses different tile sizes for
single-thread and multi-thread execution to avoid cache conflicts between threads. (Jordan
et al., 2012) present a multi-objective optimization formulation designed to find the optimal
tile sizes and number of threads for a parallel linear algebra program. At compile time, a set
of candidate solutions is generated. The best solution is selected at runtime by considering
the execution context and the weight of the different terms in the objective. (Leung et al.,
2010) present an optimized tiling strategy that exploits the parallelism and data locality on
GPUs. (Li et al., 2019b) extend this approach with a batching engine, while (Kernert et al.,
2016) and (Hong et al., 2019) design adaptive tiling strategies for sparse matrices.

52

5.8 Data Cube Chunking

As discussed in Section 2.6, data cubes can be stored either in a multidimensional (MOLAP)
format or a relational (ROLAP) format. Consequently, the chunking strategies for arrays
apply to MOLAP, while relational data partitioning applies to ROLAP. In the case of
MOLAP, several aspects specific to data cubes have to be considered in chunking. The
first aspect is the categorical property of the dimensions. Since this precludes ordering,
the set of values assigned to a chunk has to be associated with every chunk—unlike the
range boundaries for numerical dimensions. Second, due to the heterogeneous structure of
some data cubes – consisting both of dense and sparse regions – a hybrid chunking strategy
is more appropriate. For example, dense regions of the cube are stored in dense chunks,
whereas the sparse regions are grouped together in sparse chunks. This strategy can be
extended further, such that the sparse regions are stored in their original relational format
and the measures are computed on-demand—as in the case of ROLAP. This hybrid storage
strategy is known as HOLAP (Chaudhuri et al., 2011).

5.9 Summary

• From the multitude of chunking strategies proposed in the literature – including arbitrary,
workload-driven, recursive, update-optimized, and adaptive – the most popular are regular
and sliced chunking, which are also among the simplest.

• Regular chunks are linearized on storage in row/column major order, snake row/column
major order, or with space-filling curves. The chunks can be subsequently partitioned/declustered
across multiple devices – disks or nodes in a cluster – based on round-robin, range, hash,
cyclic, or graph partitioning functions.

• Dimension suppression is the generally optimized layout for dense chunks, while for
sparse chunks, there are multiple compressed layouts—including COO, CSR, and CSC.

• Tensors/matrices are chunked using the regular or sliced strategy, resulting in three
common layouts—row strip, column strip, and tile.

6 MULTIDIMENSIONAL ARRAY PROCESSING
In this chapter, we study strategies and algorithms that implement the array algebra
primitives introduced in Chapter 4 over the chunked array storage presented in Chapter 5.
We focus on parallel processing techniques in a distributed array database having a shared-
nothing architecture over a cluster of workers – or nodes – each hosting an instance of the
query processing engine and having its local attached storage. This processing architecture
is depicted in Figure 6.1, which illustrates how the chunks of the sparse array in Figure 5.1b
are distributed across the three nodes X, Y, and Z.

53

The coordinator is the single query input point into the system. The coordinator stores
the system catalog and manages the nodes and their access to the catalog. The chunks of
an array are distributed – and possibly replicated – across all the workers, which share
access to a centralized system catalog that maintains information about active nodes, array
schemas, and chunk distribution. In order to determine the chunks required by a query and
their location, a multidimensional index – such as an R-tree (Guttman, 1984) – is built
over the chunk boundaries. The index provides the first level of pruning for the efficient
evaluation of dimensional indexing and subsampling queries. Access to the index and all the
other catalog data structures has to incur minimal overhead. Thus, the catalog is stored
in memory. The query optimizer – also resident on the coordinator – is responsible for
computing the optimal execution plan that minimizes the overall query processing time. The
parameters that are considered include the chunks transferred among nodes, the transfer
schedule, the chunk access plan, and the overlap between processing and communication.
Chunk metadata is the main source of data used to compute the execution plan.

ch
1

ch
4 ch

3
ch

5

Memory

Query
processor

ch
2

Memory

Query
processor

Memory

Query
processor

Catalog metadata

Query optimizer

Coordinator

chunks chunks

chunk
metadata

execution plan

Node X Node ZNode Y

Figure 6.1: Multidimensional array processing system architecture.

The query processor resident on every node implements algorithms for the array algebra

54

primitives. The defining characteristic of the primitives is that they operate on chunks of
variable dimensionality and size (Widmann and Baumann, 1998). The algorithms include
accessing the chunks from local storage and performing the computation corresponding to
the algebra operators. Additionally, the query processor contains a data transfer module
that moves chunks among nodes. The execution plan provided by the query optimizer
specifies the processing details and the communication strategy, which is overseen by the
coordinator.
(Duggan and Stonebraker, 2014) consider an elastic environment – specific to cloud comput-
ing – in which the number of worker nodes can increase at runtime proportionally with the
size of the arrays. As more chunks are appended to an array – for example, based on a time
dimension – more working nodes are added to the cluster. (Duggan and Stonebraker, 2014)
introduce the cyclic workload model consisting of three phases – data ingestion, rechunking,
and query processing – that are performed repeatedly. Rechunking is the main operation in
this model. It is performed when a sufficiently large number of chunks are ingested to require
the addition of nodes. In order to execute rechunking efficiently, incremental algorithms
that allocate the new chunks to the added nodes are devised. These algorithms are derived
from the declustering techniques presented in Section 5.5. In addition to transferring the
chunks to the assigned nodes, only the catalog at the coordinator has to be updated. Queries
are executed separately, as in a static environment. This is the setting we follow in the
presentation.

6.1 Array Processing Paradigms

In this section, we introduce several paradigms to implement the array algebra primitives.
These paradigms define a common chunk-based interface for all the primitives, which allows
for their composition into queries that implement complex array processing tasks. Since
some of the algebra primitives are second-order functions having a functional parameter,
the processing paradigms can also include an interface for the definition of the functional
parameter. We classify the paradigms based on this functional interface. At one end of the
spectrum, we have the UDF/UDO paradigm, which supports general functions without any
particular interface. Map-Reduce imposes a strict interface of three functions, while the
GLA paradigm defines a more extensive interface consisting of both required and optional
functions.

6.1.1 User-defined Functions (UDF) and Operators (UDO)

ArrayDB. ArrayDB (Marathe and Salem, 2002) implements the AML algebra (Sec-
tion 4.2), in which arbitrary UDFs are applied to arrays following a structured strategy.
AML execution plans pipeline chunks from the input array through operators and generate

55

results one chunk at a time by choosing the optimal result generation order. The execution
plan is an operator tree that contains an internal node for every SUB, MERGE, and APPLY
primitive, and a leaf node for the input array. The leaf node is a special instance of APPLY
that serves input chunks. Based on the catalog metadata, the nodes in the tree are annotated
with dimensionality and schema information. During query optimization, the original query
tree is transformed into an equivalent one that is more efficient to evaluate using a multi-step
top-down tree traversal heuristic. The cost measure is the number of UDF invocations in
the APPLY operators in the tree. The tree with the smallest number of UDF invocations –
which are treated as black boxes – is considered optimal. Since successive operators must
have compatible chunk shapes and generation orders, several rechunking operators are
added to the plan. This introduces a second round of query optimization that minimizes
the memory used by the operators. The position of the rechunking operators is determined
with a bottom-up dynamic programming algorithm. The optimal query plan is executed
bottom-up in a pipelined pull-based strategy anchored by calls to the GetNext(chunk)
iterator.

ArrayUDF. ArrayUDF (Dong et al., 2017) provides a generic implementation for the
second-order AML APPLY primitive that is parametrized with different functions for
the neighborhood cells, depending on their position relative to the center. In addition to
the generalization to multiple UDFs, these functions can be defined only on a subset of
the neighborhood and they are not restricted to simple aggregations. ArrayUDF uses the
stencil abstraction to define the UDFs corresponding to a pattern/shape. The execution
of a stencil is split across the array chunks, which are determined dynamically based on
the neighborhood shape. This is possible because ArrayUDF is targeted at a shared-disk
architecture in which the storage is separated from computation. In this architecture,
the nodes incur similar overhead to access all the chunks of an array since there is no
distinction between local and remote chunks. In order to allow for fully parallel execution
and eliminate communication altogether, cells at chunk boundaries are replicated into ghost
zones. Complex operations are decomposed into a sequence of stencils that are treated
independently. There are no inter-stencil optimizations since all the intermediate arrays are
materialized.

SciDB. SciDB (Cudre-Mauroux et al., 2009; Stonebraker et al., 2011) implements the
ArrayQL algebra primitives (Section 4.6) as UDFs and UDOs. UDFs are scalar functions
with cell arguments that return a single value as result. UDOs take one or more arrays as
arguments and produce a new array. In addition to the primitives provided by SciDB, the
user is given the possibility to implement other types of operators—structural or value-
based. A SciDB query execution plan consists of a series of successive UDFs and UDOs,
which are instances of the APPLY primitive with different functions as argument. APPLY

56

provides a standard pull-based interface with a GetNext(chunk) function that operates
over array chunks. The main idea behind the SciDB query execution is to identify segments
of successive operators that can be executed in pipelined fashion on a single node. These
operators are scheduled and executed on the nodes where the input chunks are stored. Unless
successive UDFs/UDOs are commutative, the structure of the query execution plan cannot
be altered. Thus, query optimization focuses on parallelizing individual UDF/UDO operators
and pipelining array chunks between operators. Whenever chunks have to be transferred
across nodes, this is done in a carefully coordinated process. After every processing step,
intermediate chunk statistics are gathered and used for the optimization and scheduling of
the next segment of operators. The optimization and scheduling are executed dynamically
at runtime.

6.1.2 Map-Reduce

The multidimensional data processing system Titan (Chang et al., 1997) and its successor
T2 (Chang et al., 1998) introduce the Map-Reduce paradigm as a generic parallel architecture
to implement the array algebra primitives using a unified interface. Later, Map-Reduce has
been popularized by Google for highly parallel/distributed computing (Dean and Ghemawat,
2008). Map-Reduce applies the following second-order functions to input chunks in order to
produce the result chunks:
• Transform: transform input chunk cells into items. This function is performed concurrently

by the nodes.
• Map: map the transformed items to output chunk cells. The coordinator assigns cells

to output chunks and determines the node storing the chunk. The nodes transfer data
among themselves directly.

• Reduce: aggregate all the items mapped to the same cell to compute the output value.
This function is performed concurrently.

The defining characteristic of Map-Reduce is customization—Transform, Map, and Reduce
can be parametrized with any processing function. If the required functions are not already
available, the user has the ability to implement them by following a well-defined interface.
When the functional parameters passed to the Map-Reduce interface are associative decom-
posable, i.e., commutative and associative, both distributive and algebraic, the input and
output chunks can be efficiently processed in parallel and in any order.
Hadoop (Hadoop Development Team, 2020) and Spark (Zaharia et al., 2010) are public im-
plementations of the Map-Reduce paradigm for customizable tasks over arbitrary formatted
datasets—not only multidimensional arrays. The chunking provided by these systems does
not follow the semantics of array chunking, in which adjacent cells are grouped together in
order to achieve data locality. As a result, array chunking has to be implemented as the ini-
tial step of any computation—which is expensive and unnecessary. Moreover, the processing

57

strategy in these systems is batch-oriented and does not readily support range predicates on
dimensions. These shortcomings have led to the development of array-optimized extensions
in Hadoop and Spark. SciHadoop (Buck et al., 2011) introduces primitive array chunking
and the dimension subsampling primitive in Hadoop. SIDR (Buck et al., 2012) decouples
the sequential Hadoop execution of Map and Reduce into separate asynchronous tasks for
every result chunk. Spangle (Kim et al., 2021) extends Spark with array chunking, and
bitmasks and bitwise operations that encode valid cells in sparse arrays. Spangle supports
both array algebra primitives as well as linear algebra operations on matrices, implemented
using the Spark functionality. Overall, these extensions to Hadoop and Spark require a
significant engineering effort to embed standard array techniques into Map-Reduce imple-
mentations targeted at unordered key-value data collections. However, the contributions to
multidimensional array data management are rather limited.

6.1.3 Generalized Linear Aggregates (GLA)

The GLA interface for massively parallel data aggregation is introduced in the GLADE
system (Cheng et al., 2012) and extended to multidimensional array processing in EXTAS-
CID (Cheng and Rusu, 2014). A GLA is an associative-decomposable aggregate interface
consisting of four user-defined functions – Init, Accumulate, Merge, and Finalize – that
process array cells independently before combining their partial states into the final result.
The semantic of these functions is similar to the Map-Reduce paradigm. Init corresponds
to Transform, Accumulate to Map, while the compound Merge and Finalize to Reduce.
Additionally, GLAs are enhanced with functions specific to array operations. BeginChunk
is invoked before the cells inside a chunk are processed. EndChunk is similar to BeginChunk,
invoked after processing the chunk cells instead. These two functions operate at chunk
granularity. They are the places where side-effect operations are executed. For example,
array cells can be sorted according to a dimension that makes the processing more efficient
in BeginChunk. In EndChunk, data that are part of the GLA state and do not require further
merging can be materialized to disk—resulting in significant reduction in memory usage.
The difference between Init and BeginChunk, and Terminate and EndChunk, respectively,
is that BeginChunk and EndChunk can be invoked multiple times for the same GLA, once
for every chunk. This is because GLAs are used across chunks. Merging is invoked in two
places. LocalMerge puts together local GLAs created on the same processing node, while
RemoteMerge is invoked for GLAs computed at different nodes. This distinction provides
optimization opportunities depending on the chunking strategy—when chunks corresponding
to the same array are stored on the same node, only LocalMerge is required. Terminate is
called after all the GLAs are merged together in order to finalize the computation, while
LocalTerminate is invoked locally after the GLAs at a processing node are merged.
(Cheng and Rusu, 2014) show how all the primitives in the ArrayQL algebra can be expressed

58

in terms of functions from the GLA interface. They even provide a mapping for the more
complex AML APPLY operator—which is not optimally supported in Map-Reduce. It is
important to notice that not all the interface methods have to be implemented for every
array algebra primitive. Overall, while GLAs are similar in spirit to Map-Reduce since
they provide a unified interface to express array operations, they are more generalizable.
Moreover, they also integrate organically with relational data.

6.2 Array Operators

In this section, we present algorithms for the array algebra primitives introduced in Chapter 4.
We focus on the primitives that require data processing beyond the catalog metadata
stored at the coordinator. These include SUBSAMPLE, FILTER, APPLY, REDUCE, and
JOIN. Their corresponding relational algebra operators are selection, projection, group by
aggregation, and join, respectively.

6.2.1 Indexing on Dimensions (SUBSAMPLE)

Subsampling – or positional indexing on dimensions – can take multiple forms depending on
the type of indexing – point or range – and the number of dimensions it is applied to—all
or a subset. In the most selective case, there is a point predicate on every dimension, which
requires access to a single chunk. Dimensions without conditions – which include their entire
range – lead to the inclusion of all the chunks in the corresponding hyperplane to the result.
Subsampling is implemented as an index scan operator based on chunking (Section 5.2).
The goal is to access from storage only the chunks that overlap with the range predicate.
In a subsequent refinement step – applied to the accessed chunks – only the cells within
the range predicate are extracted. Since the execution time is dominated by the number of
accessed chunks, the optimization strategies are targeted at designing effective chunking
methods—which are discussed extensively in Chapter 5.

6.2.2 Filter on Attributes (FILTER)

Since the array is chunked and organized based on dimensions, filters on attribute values
require inspecting all the chunks. This operations corresponds to a full sequential scan. In
the worst case, all the array data have to be accessed. However, if columnar storage is used
for the attributes (Papadopoulos et al., 2016), the amount of data read from storage can
be reduced—only the required attributes are read. The number of accessed chunks can
be further reduced by storing the minimum and maximum value – the range – of each
attribute across chunks (Cheng and Rusu, 2014). While the range can be large since the
attribute values are not clustered, reductions are possible for certain range queries. Another
alternative is to build an unclustered index that stores the chunks where every distinct value

59

of the attribute appears (Blanas et al., 2014). However, this solution requires additional
space for storing the index and additional time to access the index prior to the data—as
with any index structure.
COMPASS (Xing and Agrawal, 2018) partitions the cells of a chunk based on the value of
an attribute. This results in buckets that group cells with close values together—instead of
adjacent cells. Every bucket stores the dimensional indices of the assigned cells together
with the residual attribute values normalized to the lower bucket boundary. Given the
unknown cell assignment to buckets, the indices have to be stored explicitly for every cell.
Dimension suppression is not possible anymore. The COMPASS storage layout is essentially
combining dimension chunking with attribute range-based partitioning in order to optimize
queries with selections on both dimensions and attributes. However, improvements are
limited only to the case when the range on dimensions matches exactly chunk boundaries
and an attribute selection is present.

6.2.3 Aggregation (APPLY + REDUCE)

Unlike relational aggregation – which groups tuples based on their value – array aggregations
are structural—they group array cells based on their positional relationship. The structural
relationship is encoded as a shape/pattern argument to the APPLY primitive that is
evaluated for every cell in the array and results in an array with the same size. This is
different from relational aggregation, which generally results in a smaller table. The values
in the new array are obtained by performing the REDUCE primitive over the cells covered
by the shape. (Wang et al., 2014) classify structural aggregations based on the shape into
grid, sliding, hierarchical, and circular, while (Choi et al., 2019) define top-k aggregates
over overlapped and disjoint subarrays.
There are two approaches to perform structural aggregations over chunked arrays. The first
approach uses overlapped chunking (Section 5.2.2) in order to confine the computation
to a single chunk and avoid data transfer. The main benefit is that all the chunks can be
processed concurrently without any synchronization—aggregation becomes trivially parallel.
The requirement is that the shape parameters for all the queries are known beforehand
since the shapes are used to perform chunking. Additionally, overlapped chunking increases
storage because of cell replication. ArrayStore (Soroush et al., 2011) and ArrayUDF (Dong
et al., 2017) – among others – implement this strategy.
The second strategy for structural aggregation is characteristic to the GLA processing
paradigm presented in Section 6.1.3. It consists of two stages. During local aggregation,
all the cells that are internal to a chunk are processed in parallel. The cells at chunk
boundaries require access to cells from other chunk(s). These are handled in the merging
stage by transferring them to the same node. Merging can also be performed concurrently

60

across chunks. Further optimizations are possible for reduce functions that are associative-
decomposable since they are insensitive to the execution order. Compared to overlapped
chunking, the merged strategy is independent of chunking and the shape parameter, thus,
more general. Moreover, the overhead incurred by data transfer can be overlapped with the
aggregate computation.

6.2.4 Joins (JOIN)

Structural – or dimension:dimension – joins (Section 4.6) are specific only to array databases
because the chunking of the arrays is used to optimize data transfer among nodes and local
processing at a node. The other types of array joins require value-based repartitioning,
which is standard for relational joins. As such, we focus on algorithms for structural array
equi-joins and their generalization to shape-based similarity join.

Structural join. The standard algorithm to implement array equi-join is a special form
of nested-loop join operating at chunk level (Algorithm 3 in (Soroush et al., 2011)). The join
iterates over chunks of the outer array α. For every chunk, it looks up the corresponding
chunks in the inner array β, retrieves them all, and joins the outer chunk with every of the
inner chunks in turn. The join between two chunks is itself implemented as nested loops
iterating over chunk cells. If the cells in the chunks are sorted according to dimensions, the
optimal merge join algorithm can be executed instead.
The structural join algorithm can be readily implemented in a distributed array database.
Once the joining cells are determined for an outer chunk – or all the outer chunks – the
node identifies their location by querying the catalog on the coordinator. A message is sent
to the corresponding node for every chunk and, when the chunk is received, the output
cells in the output array τ are computed. While the degree of parallelism across nodes is
maximized, there are several problems with such an asynchronous decentralized approach.
Although every node aims to minimize the amount of transferred data – it behaves locally
optimal – there is no guarantee that the overall data are minimized. In fact, this is very
unlikely since nodes do not coordinate at all. As a consequence, the actual data transfer
can be severely imbalanced due to the contention for network bandwidth. In the extreme
case, all the nodes in the cluster send/receive data to/from the same node. Load-balancing
beyond what is achievable with a uniform chunk distribution to nodes is not considered at
all in structural join.
(Baumann and Merticariu, 2015) propose an alternative in which the joining chunks across
the two arrays are grouped into components that are processed as a single unit. The
components are computed as an Euler circuit in a bipartite graph, in which chunks are the
vertices and edges correspond to joins. Every component is assigned to a node for processing.
The node requests the chunks – which can belong to any of the two arrays – following a

61

sequential order that guarantees that result cells are incrementally produced and chunks are
minimally accessed. The benefit of this solution is that it reduces the amount of transferred
data by moving a chunk only once—in some cases, multiple transfers are still necessary.
The drawback is the decrease in the number of tasks executed concurrently, from one for
every chunk in the outer array to one for every component. The overall impact of these
changes to structural join depends on the initial chunking of the two input arrays.

Map-Reduce join. In the structural join algorithm, the computation is executed exclu-
sively at nodes storing chunks from the outer array α. Unless these chunks are distributed
across the entire cluster, there are nodes that do not participate in join processing. Moreover,
if chunk distribution is not even, there is load imbalance. Map-Reduce join (Blanas et al.,
2010) – as a direct extension of distributed Grace hash join (Dewitt et al., 1990) – guarantees
that all the nodes in the cluster participate in join processing. Load-balancing is enforced at
runtime through dynamic assignment of chunks to nodes. The tradeoff to achieve these two
goals is network traffic. Map-Reduce join is far from network-optimal because it transfers
the complete arrays over the network.
Map-Reduce join works as follows. The result array is divided into logical non-overlapping
chunks, i.e., join units. These are computed from the schema of the result array—specified
by the user, or inferred by the system in some restricted situations. Join units are computed
at the coordinator and sent to all the nodes storing data from arrays α and β, or they are
encoded directly into the Map hash function. Every node partitions the cells it stores over
the join units. This is done concurrently across all the nodes. Cells in array α are assigned
to a single join unit. Cells in array β are assigned either to a single join unit – for equi-join –
or they can be replicated in several units—for similarity join. The data alignment phase, i.e.,
shuffling, transmits all the partitions belonging to the same join unit to a single node for
the computation of the result τ . In the case of distributed hash join, the assignment of join
units to nodes is static and uniform. In Map-Reduce join, tasks are assigned dynamically at
runtime to better adapt to the processing capacity of the nodes, resulting in more adaptive
load-balancing.

Shuffle join. In structural join, every node minimizes its local data receiving, while
Map-Reduce join ignores communication completely. Shuffle join (Duggan et al., 2015b)
aims to minimize the overall data transfer imposed by the execution of an array equi-join,
while guaranteeing some form of load-balancing. It extends upon the track join minimal
network traffic distributed hash algorithms introduced in (Polychroniou et al., 2014). The
main idea is to consider the assignment of join units to nodes as a global optimization
problem and solve it after all the nodes finish their local partitioning. The amount of
data each node has in a join unit is the principal decision variable. Several algorithms are

62

considered, including a simple minimum bandwidth greedy heuristic that assigns a join
unit to the node storing the largest portion of cells in the unit; a tabu search algorithm
that incorporates load-balancing into the minimum bandwidth heuristic; and an integer
programming formulation that optimizes the end-to-end execution time. The proposed
analytical cost model has the inherent limitation that communication and computation
cannot be overlapped across the join units assigned to the same node. Moreover, the
order in which a node has to send its partitions is not computed—it is arbitrary. A global
synchronization mechanism that enforces a single node to transmit data to a destination
at any time instant is deployed in order to prevent network congestion. However, this can
have the negative effect of stalling nodes.

Structural Map-Reduce Shuffle Array similarity
Targeted join general equi-join equi-join general
Data transfer locally optimal suboptimal globally optimal globally optimal
Network congestion ignored ignored runtime optimal scheduling
Load-balancing ignored runtime reactive static optimized static optimized
Processing nodes store one of α or β all all store α or β

Repartitioning not required complete complete not required
Replication minimally required suboptimal suboptimal minimally required

Table 6.1: Comparison of array join algorithms.

Array similarity join. (Zhao et al., 2016) design a parallel algorithm for the shape-based
array similarity join operator introduced in Section 4.6. This algorithm is an optimized struc-
tural join that minimizes the overall data transfer and network congestion while providing
load-balancing across the nodes that store array chunks. The algorithm has two stages—
optimization and execution. In the optimization phase, the algorithm computes an optimal
execution plan for every worker node. The plan consists of three components—transfer
graph, transfer schedule, and data access plan. Finding the optimal plan is challenging
because it involves solving a complex non-linear optimization problem. The proposed so-
lution decomposes the original optimization problem into three separate sub-problems –
one for every plan component – and solves them independently using graph-based heuristic
algorithms. At query execution, the algorithm overlaps I/O – disk and network – with join
computation at chunk granularity. Network transfer and local disk I/O are each handled by
a separate thread. The join between two chunks is executed in a separate worker thread.
The algorithm is configured with a pool of worker threads, allocated based on the number
of CPU cores available in the system. This allows for several pairs of chunks to be joined
concurrently. All the threads – I/O and workers – execute asynchronously and coordinate
through message passing.

63

(Li et al., 2020) introduce a shuffle-based algorithm for band-joins, which are a restricted
form of array similarity joins with symmetric shapes. Since the input arrays are not grid-
partitioned – or chunked – the join requires a complete data shuffle, similar to Map-Reduce
join. The algorithm applies a recursive partitioning scheme based on the band parameter and
using samples from the input arrays. This partitioning allows for a finer-grained replication
of the array cells across nodes, which results in less data transfer compared to standard
grid chunking.

Join algorithm comparison. Table 6.1 summarizes the properties of the array join
algorithms. Structural and similarity join are the most general of these algorithms. Map-
Reduce and shuffle join are in the same family of equi-join algorithms. Extensions to array
similarity join and other types of joins are possible, however, they incur costly modifications.
Shuffle join is the only algorithm that aims to minimize the overall data transfer. Map-
Reduce join incurs heavy all-to-all communication, while structural join targets only local
optimizations at every node. Network congestion is addressed only by shuffle join through a
runtime global synchronization mechanism that gives writing access on a link to a single
sender. Load-balancing is supported as a runtime reactive process in Map-Reduce join. The
approach in shuffle join is to embed load-balancing into the data transfer scheduling. Thus,
only Map-Reduce and shuffle join include all the nodes – not only the ones storing the join
arguments – in the processing. Since they do not consider the initial chunking, Map-Reduce
and shuffle join require complete data repartitioning and mapping to the output array space.
As a result, repartitioning incurs unnecessary data replication. The array similarity join
operator extends the benefits of the other algorithms by minimizing the overall transfer
and network congestion while providing load-balancing across the nodes that store data,
but without completely repartitioning and replicating the arrays.

6.3 Advanced Array Processing Techniques

In this section, we present advanced processing techniques for array data. These techniques
build upon the general processing paradigms and the algorithms implementing the array
primitives. We discuss materialized views, versioning, provenance, and uncertainty—all of
which are current research topics in data management and databases.

6.3.1 Views

(Zhao et al., 2017) introduce the concept of materialized array views defined over complex
shape-based similarity join aggregate queries. Since shape-based array similarity join is
a generalization of array equi-join and distance-based similarity join, materialized array
views cover an extensive class of array algebra operations. With regard to SQL, array

64

views include the class of join views with standard aggregates. The incremental array
view maintenance is considered under batch updates to the base arrays. Batch updates
are essential for amortizing the cost of network communication and synchronization in a
distributed environment. There are two primary challenges posed by incremental array
view maintenance under batch updates. The first challenge is identifying the cells in the
base arrays that are involved in the maintenance computation and the cells that require
update in the array view. The second challenge is due to the distributed nature of array
databases. Given the current distribution of the arrays and the view, the challenge is to find
the optimal strategy – data transfer and computation balancing – to integrate the updates
into the view.
(Zhao et al., 2017) model distributed array view maintenance as an optimization formula-
tion that computes the optimal plan to update the view. The optimization continuously
repartitions the array and the view based on a window of past batch updates. In the long
run, repartitioning improves view maintenance time by grouping relevant portions of the
array and the view and by distributing join computation across the cluster. Meanwhile,
repartitioning does not incur additional time because it takes advantage of the communi-
cation required in view maintenance. Since the optimization cannot be solved efficiently,
the formulation is decomposed into three separate stages – differential view computation,
view chunk reassignment, and array chunk reassignment – that are solved independently by
effective cost-based heuristics. The materialized views are integrated in optimizing similarity
join queries using an analytical cost model that chooses the best alternative between a
complete similarity join and a differential query on the view.

6.3.2 Versioning

The idea behind versioning is the requirement to never modify the array in place. Every
modification has to generate another version of the original array. Some of the versions
are given names, while the majority are identified based on a sequential identifier assigned
automatically by the system. Maintaining versions allows for novel time travel queries. These
queries retrieve a particular version of the array at a given instance in time or return the
transformations data go through across a subset of the versions. Abstractly, array versioning
corresponds to adding a new time dimension to the original array, while time travel queries
are either slice or range queries along the time dimension.
An array versioning system has to address several problems. The first – and most important
– is how to minimize the storage space occupied by the versions? The naive solution to
materialize every version independently results in storage proportional with the number of
versions. The observation allowing for improved solutions is that new versions modify only
a small portion of the array. Thus, materializing only the modifications has the potential
to save significant storage. Alternatively, a delta array that contains only the difference

65

between the base array and a version can be generated. The second question is which version
to materialize? Under the assumption that the newest version is queried more frequently,
the newest version should be materialized. To reduce the number of previous versions that
have to be re-encoded based on every new version, older versions are maintained as the
difference from the immediately successive version. This way, a chain of delta versions in
which version one is materialized as the difference from version two, version two as the
difference from version three, and so on, results. When versions are maintained as deltas,
answering time travel queries is more complicated since heavier computation – combining
deltas with a materialized version – is required. Thus, efficiently answering time travel
queries with deltas is the third versioning problem to consider.

Three solutions for maintaining and querying versioned arrays are built on top of SciDB.
All of them consider the simplified problem of versioning single-valued arrays with regular
chunking. The main idea is to store a single materialized version of a chunk and all its
deltas inside the same chunk.

(Seering et al., 2012) study how to optimally encode a series of consecutive versions given
at once under the assumption that queries across all the versions are equally probable—
materializing the last version is not optimal in this case. The goal is to determine which
versions to materialize and based on which materialized version to create deltas for the
non-materialized versions. The problem is formulated as a graph having versions as vertices.
Edges represent deltas from one version to another and are annotated with the storage
required by the delta. The optimal version to materialize and the sequence of deltas are
computed as the minimum spanning tree of the resulting graph—where the root corresponds
to the materialized version.

(Soroush and Balazinska, 2013) and (Xing et al., 2018) consider a scenario where versions
of the same array are created incrementally, one after another. The assumption is that the
most recent version is queried more frequently than the previous ones and the probability
of querying a version decreases with its age. Thus, the most recent version is materialized
and every other version is stored as a delta from the immediately successive version. When
a new version is created, only the second newest version has to be delta encoded from the
newly created version. The storage space required by the versions is reduced by delta and
run-length compression applied at chunk level. The execution time increases with the age
of the queried version since a larger number of deltas have to be merged. (Soroush and
Balazinska, 2013) introduce skip links – delta encodings between non-consecutive similar
versions – that are built lazily while evaluating queries. Only skip links to the most recent
version are considered and only when querying an old version. Skip links are also used to
provide faster approximate answers to other non-similar time travel queries.

66

6.3.3 Provenance

Scientific processing consists of workflows of operators that take as input arrays, apply
multiple transformations, and generate an output array. Given an output cell, it is common
to ask what are the cells in the input arrays on which the output cell depends? Or the
inverse equivalent query, what are the output cells that depend on a given input cell? To
complicate the problem further, these types of queries can be asked for any pair of operators
in the workflow, not necessarily the source and the result arrays. To answer these queries
after the workflow is processed – without entirely re-executing it – lineage data have to be
stored for every operator in the workflow—in both directions. If such data are generated at
cell level for all the arrays in the workflow, the amount of additional space may be larger
than the original data. Also, it is not guaranteed that answering the provenance queries is
going to be faster than re-executing the workflow. Determining which data to materialize
and which to recompute is the fundamental question in array provenance.

SubZero (Wu et al., 2013) is a prototype system for managing array provenance data. It is
based on the idea of region lineage as an intermediate level to generate and store lineage
data based on locality. SubZero introduces a lineage API that allows developers to expose
lineage data from UDFs through mapping functions. Given a workflow consisting of a series
of operators, SubZero uses an optimization framework to select the optimal strategy to
generate lineage data for a given workload. Multiple strategies to generate lineage data are
considered for every operator and their corresponding cost. SubZero can record and store
the lineage data at workflow runtime or it can decide that it is more efficient to re-execute
the workflow, case in which the lineage data are generated only during the execution of the
provenance query—after answering the query, the provenance data are discarded.

Every operator in the workflow can support multiple types of lineage data. Black-box lineage
data record only the input and output arrays of every operator together with the execution
parameters. Cell-level lineage records pairs of (input, output) array cells, where the output
cell is dependent on the input cell. An input/output cell can be part of many pairs. Region
lineage is similar to cell-level at a coarser granularity—all-to-all cell-level lineage applies
between every cell in the input region and every cell in the output region. Multiple strategies
to generate and store the region lineage data are presented. Operators can implement one or
more strategies. In full lineage, all the region pairs are stored explicitly. In mapping lineage,
only two mapping functions – forward and backward – have to be specified for an operator.
Every function specifies the output coordinates as a function of the input cell coordinates.
The functions do not depend on cell content. They are structural array primitives. No
lineage data are stored in this case. At query time, the lineage can be computed for every
cell based on the coordinates.

67

6.3.4 Uncertainty

Uncertainty can manifest in array databases in two different ways—value uncertainty and
position uncertainty (Peng and Diao, 2015). Value uncertainty corresponds to the situation
when the value of an attribute is modeled by a probability density function, and is an
immediate extension of probabilistic databases. Position uncertainty applies to dimensions.
In this case, the indices of a cell are uncertain. They are modeled by a multidimensional
probability density function. Essentially, the values at a particular index combination
can belong to multiple cells—identified by different indices. From a chunking perspective,
position uncertainty implies cell replication across chunks. Moreover, value uncertainty is a
direct consequence of position uncertainty. The inclusion of uncertainty in the structure and
content of an array requires defining the semantics of the array primitives over probability
density functions and designing efficient algorithms to evaluate the uncertainty-enhanced
primitives.
(Ge and Zdonik, 2010) assume that the values of an array attribute are drawn from an
unknown probability density function. They also assume that the values exhibit positional
correlation, which means that neighboring cells are more likely to have similar values. The
proposed A∗-tree is designed to capture these positional correlations in a hierarchical tree
structure similar to a quad-tree index. The leaves of the tree contain the cell values in
the array, while the intermediate nodes encode the correlation among the corresponding
children nodes. The nodes in the first intermediate level encode correlations among adjacent
cells. The nodes at higher levels capture the correlation among cells that are farther apart.
A∗-tree supports the efficient execution of reduce and structural join array algebra primitives
through Monte Carlo sampling (Ge et al., 2011), which can be performed top-down from
the root of the tree by applying aggressive pruning.
(Peng and Diao, 2015) define the possible range of an array cell as the subarray within the
bounds of which the cumulative probability to find the cell is approximately one. The range
on a dimension is determined as a constant number of standard deviations from the position
of the cell. Based on the possible range associated with every cell, probabilistic subsampling
and structural join operators are defined. They both take a threshold parameter as input
argument and include a cell in the result if its probability at a location that overlaps with the
range predicate is larger than the threshold. This change requires the transformation of set
membership operations from the original primitives into range overlap checks in probabilistic
subsampling and structural join. The standard solution to handle range overlapping is
boundary cell replication across chunks. (Peng and Diao, 2015) introduce a variant that
replicates only the cells having large positional variance according to their probability
density function. In order to support efficient structural joins, an index is built over the cell
range overlap of the inner array. This allows fast identification of the relevant cell pairs in
the inner loop of the nested loop join algorithm—which becomes indexed nested loop join.

68

6.4 In-situ Array Processing

Dense arrays – or grids – generated by scientific applications are stored in raster files with
a self-describing format, which makes them queryable, portable, and sharable. A raster file
can contain one or more arrays, each with its own chunking. There are multiple popular
raster file formats, including FITS (The FITS Support Office, 2022), GeoTIFF (Open
Geospatial Consortium, 2022), HDF5 (The HDF5 Group, 2020), and netCDF (UniData,
2022). Every format is accompanied by a corresponding I/O library that provides access to
the arrays at chunk granularity. The access is done programmatically through function calls
that identify the chunks based on their dimensions. More advanced libraries that implement
a large range of array algebra primitives are either integrated with the access libraries or
built on top of them. Two such advanced libraries are netCDF Operators (NCO) (The
netCDF Development Team, 2022) and Geospatial Data Abstraction Library (GDAL) (The
GDAL Development Team, 2022)—which supports more than 100 different raster formats
and implements primitives on a general intermediate array representation.

The goal of in-situ array processing is to access data directly in the raster file format—
without loading in the array database. This can be achieved by integrating the raster I/O
libraries within the array scan operators. The new bridge operators produce chunks by
retrieving the corresponding data from the file and mapping to the in-memory format of
the array database—known to all the other operators. This is the approach taken by (Wang
et al., 2013a) who implement a subsampling scan operator that maps complex dimensional
range predicates into I/O library calls. In subsequent work, (Wang et al., 2014) push the
execution of structural – or chunk-level – aggregates to the scan operator. SDS/Q (Blanas
et al., 2014) introduces an index scan operator for cell value filters based on an external
bitmap index. ArrayBridge (Xing et al., 2018) implements both a scan and a save operator
that converts SciDB chunks to HDF5 files. The save operator allows for the creation of
multiple versions of an array under modification operations and the execution of time
travel queries—which are pushed to the scan operator. Data Vaults (Ivanova et al., 2012)
implement just-in-time loading and caching to preserve the converted arrays inside the
MonetDB database. (Zhao et al., 2018) design a distributed caching layer on top of raster
files to speed up access to frequently queried cells. The chunking in the cache is based on
the workload and can be different from the one in the raw files. In summary, the purpose of
all these solutions is to reduce the number of raster file accesses and minimize the number
of chunks passed to the upstream array primitives.

A more advanced form of in-situ processing performs array operations by invoking the
already existing functions in some of the raster file libraries. This approach is taken by
ChronosDB (Zalipynis, 2018), which delegates the complete execution of array operations
to the NCO and GDAL libraries. The main limitation of these libraries is the single-node

69

single-file architecture without support for array chunking and distributed processing.
ChronosDB addresses these shortcomings by implementing a coordinator that manages
the invocation of local library instances running on the cluster nodes. Upon receiving a
command – that has the same syntax as the corresponding library function – the coordinator
forwards it to the nodes, which perform it on their local files. However, since the files are
chunks of a distributed logical array, the local outputs of the command have to be composed
to generate the complete result. This composition introduces two problems. First, the
operations required may be different from the original library function. Thus, in order
to implement the distributed version, the composition required by every function has to
be determined. The composition can be quite different from the original command and
may not even be available as a library function—case in which additional logic has to be
implemented. The second problem is that the composition requires data transfer among
nodes, which has to be newly added on top of the raster library. In addition to these issues,
ChronosDB has to create a unified catalog with chunk metadata over the raster files. This
requires the identification of the files that store subarrays – or chunks – from the same
logical array and, subsequently, dimension alignment and rechunking. Since these operations
are performed in-situ on the raster file, the user has to manually copy the files to the nodes.
Consequently, converting a single-node raster library into a distributed version requires
significant effort that goes well beyond invoking separate instances of the same function at
every node.

6.5 Relational Array Processing

The standard approach to support array processing inside a database is to integrate arrays
in the relational data model. Given the multiple representations of arrays as relations –
introduced in Section 2.4 – several processing strategies are possible. In the case of array
as table representation, the array primitives can be mapped directly to relational algebra
operators and SQL. However, the mapping can result in complex sequences of operators
that are both unintuitive and inefficient. The reason for this is the complete reliance on
relational operators, which leads to the inability of applying array-specific optimizations.
The processing strategies for the other representations depend on the availability of a
composite array data type and corresponding operators. When these are supported, array
operations can be included in queries as direct function calls. This leads to mixed queries
that consist of relational operators and array primitives. Since the optimizations across the
two types of operators are mostly limited to the placement of the array primitives within
the relational execution plan, achieving the best performance is challenging. When the
composite data type is unavailable, arrays are encoded as binary large objects (BLOB),
which are processed exclusively through external user-defined functions (UDF). These can

70

reside inside the database or at the application level. In the first case, the optimizations are
minimal since UDFs are treated as black boxes by the query optimizer. For the later, the
database provides only storage while the application has to implement all the necessary
array processing—including optimizations across primitives.

(S)RAM. (S)RAM (Ballegooij, 2004; Cornacchia et al., 2008) implement the (S)RAM
array algebra (Section 4.3) on top of the MonetDB/X100 relational database system (Idreos
et al., 2012; Boncz et al., 2005) using the array as table representation. The array algebra
primitives are mapped into relational algebra expressions containing selection, join, group
by, and other relational algebra operators. The execution is purely relational. The benefit of
such an approach is that an existing system – MonetDB in this case – is used for processing.
No system has to be rebuilt from scratch. The disadvantage is that the mapping is not
always optimal due to the impedance mismatch between relations and arrays. RAM is
further extended to a parallel setting in (Ballegooij et al., 2005). Two rules – partitioning
and aggregation – that allow array-specific query decomposition as an extension of the
relational set semantics are introduced. Partitioning allows for sub-arrays of the same array
to be evaluated in parallel whenever there is no dependency between cells. Aggregation
allows for commutative and associative functions over arrays to be evaluated concurrently.

6.6 Tensor Processing

Optimized matrix multiplication implementations follow the approach pioneered by Goto
and van de Geijn (Goto and Geijn, 2008; Goto and Geijn, 2009). The logical operations
involved in this approach are matrix partitioning, sub-matrix packing, and the invocation
of highly-optimized multiplication kernels. The input matrices A and B, as well as the
result matrix C, are successively partitioned into sub-matrices labeled Ai, Bj , and Cp

that fit into the various levels of the cache hierarchy. The sub-matrices Ai and Bj are
packed – or copied – into temporary buffers in a special storage format that facilitates
vectorization and memory locality. The size of these sub-matrices is determined by cache
blocking parameters, such that Ai is resident in the L2 cache while Bj is retained in the L3
cache. These sub-matrices are then fed into an optimized inner kernel that performs the
actual matrix multiplication operation. In the BLIS approach (Zee and Geijn, 2015), the
sub-matrices are further partitioned according to register block sizes, such that a pair of
input blocks fit into L1 cache while the result Cp is stored in CPU registers.

6.6.1 Distributed Matrix Multiplication

The three-stage approach can be extended to large-scale matrix multiplication in a dis-
tributed environment (Choi et al., 1992; Thomas and Kumar, 2018). In this case, the

71

three stages of the process are repartitioning the input matrices among tasks (matrix
repartition), performing local matrix multiplication within each task (local multiplication),
and aggregating the intermediate results of local matrix multiplication (matrix aggregation).
Since the number of operations in local multiplication is the same, the challenge is reducing
the communication overhead that occurs in matrix repartition and aggregation. There are
methods that perform communication only in the repartition stage (Boehm et al., 2016),
methods that incur most of their communication in aggregation (Gu et al., 2017), methods
that have high overall communication while minimizing memory usage (Seo et al., 2010; Yu
et al., 2015; Yu et al., 2017), and methods that optimize across both communication and
memory usage (Han et al., 2019). Among these methods, three algorithms stand out.
In broadcast matrix multiplication, matrix A is chunked into row strips while matrix B is
fully replicated across all the cluster nodes. This allows for the computation of the result
matrix C in a single step, without the need for aggregation. Matrix C has the same chunking
as A. Broadcast matrix multiplication requires that at least a row from the larger matrix
and the entire smaller matrix fit in memory.
In cross product matrix multiplication, matrix A is chunked into column strips while
matrix B is chunked into row strips. The multiplication between a column strip and its
corresponding row strip generates only a partial aggregate of the result cell. In order to
compute the complete result, a subset of the partial aggregates equal in size to the result
matrix has to be replicated across all the cluster nodes. However, this does not result in
having result matrix C fully replicated across all the cluster nodes—C is generated chunked
into column strips, just as A.
Replicated matrix multiplication – known as 3D matrix multiplication (Agarwal et al., 1995)
– reduces the amount of data transferred during matrix aggregation by replicating the input
matrices A and B – which are chunked as tiles – multiple times in the matrix repartitioning
stage. A is replicated J times, where J is the number of tiles along dimension j in B, while
B is replicated I times, where I is the number of tiles along dimension i in A. The result
matrix C is replicated P times, where P is the number of tiles along dimension p in A

and B, respectively. The allocation of the replicated tiles to nodes is controlled by their
contribution to the result matrix tiles. The optimal allocation has to consider the overall
communication across the repartitioning and aggregation stages (Jankov et al., 2021). These
three methods for distributed matrix multiplication are implemented in some shape by all
the tensor processing systems.

Cumulon. Cumulon (Huang et al., 2013) considers the multiplication of tiled matrices
stored in a distributed file system. The multiplication consists only of local multiplication
and matrix aggregation. It is assumed that the matrices are properly partitioned, thus,
there is no need for matrix repartition. In local multiplication, all the intersecting pairs of

72

tiles from the two matrices are multiplied following the 3D matrix multiplication algorithm.
This is done by reading a pair of tiles from the distributed file system, performing the
multiplication using the JBLAS library, and writing the intermediate result tile back to the
distributed file system. In matrix aggregation, all the intermediate tiles that contribute to a
result cell are read and aggregated to produce the final result. Reading and writing from/to
the distributed file system may require network data transfer. Cumulon optimizes for the
minimum number of processing nodes that can perform a matrix multiplication within a
given time budget. For this, it considers both the execution time of an in-memory matrix
multiplication task – constrained by the memory capacity – as well as the network transfer
time required by a node. Estimates for these quantities are derived from simulation with
different matrix sizes and tiling factors. The optimal number of nodes is found using a search
algorithm that considers values between easy-to-determine lower and upper bounds. Overall,
the main characteristic of Cumulon is that it considers a dynamic cloud environment in
which the number of processing nodes can be assigned at runtime.

DMac. DMac (Yu et al., 2015) optimizes the execution of a chain of matrix multiplication
and transpose operations. Matrix repartition is necessary to convert between row and column
strip chunking, and for broadcasting a matrix to all the processing nodes. Repartitioning
can be performed at every operation in the chain and incurs an afferent communication
cost. DMac aims to minimize the overall communication cost across the entire chain of
operations. This corresponds to finding the optimal chunking across the entire chain. DMac
introduces two heuristics that traverse the chain of operations in order and make local
partitioning decisions based on the previous operations in the chain. The cost of local
matrix multiplication is not included in the optimization. Moreover, since full rows and
columns belong to the same chunk, the result matrix is directly obtained without further
aggregation. The main limitations of DMac are the reduced chunking strategies with fixed
sizes, the simple communication cost model that depends only on the matrix size, and the
suboptimal local matrix multiplication kernels. Nonetheless, DMac is the first attempt that
includes repartitioning in the optimization of a chain of matrix operations.

SystemML. SystemML (Boehm et al., 2016) optimizes the implementation of every
matrix operator independently—or a small group of operators fused into a compound
operator (Boehm et al., 2018). The core of SystemML is a hybrid sparsity-aware fixed block
size matrix library – with square blocks of 1000 × 1000 cells – which operates on the entire
matrix on a single node, or blocks of a matrix in a distributed setting. The matrix library
provides seven matrix multiplication physical operators requiring different degrees of data
repartitioning and network communication. The best operator for a given task is selected
based on memory estimates, data, and cluster characteristics. While matrix repartitioning
is avoided as much as possible, this is not done with a principled cost-based solution since

73

data transfer is not considered in the selection. The reason for this approach is the reliance
on a multi-level distributed cache buffer pool that stores matrices in-memory, evicts them
when necessary, and handles data exchange among processing nodes transparently. For a
chain of matrix multiplications, SystemML exploits the associativity property and orders
the multiplications in a way that avoids large intermediate results. Moreover, if a sparse
matrix is involved in the multiplication, the result cells are computed only for the non-zero
entries.

MatFast. MatFast (Yu et al., 2017) estimates the sparsity of intermediate matrices in
order to minimize the memory usage and communication cost of a chain of sparse matrix
multiplications. For this, the optimizer uses data dependency among matrices, dynamic
cost-based analysis, and rule-based heuristics to determine how to partition the input and
intermediate matrices. The sparsity of a matrix multiplication is estimated by sampling rows
and columns from the two matrices and computing the number of non-zero entries in their
outer product. In the case of a chain, the multiplication that results in the sparsest matrix is
performed first. Then, the process is repeated until a single matrix is obtained. The intuition
behind this approach is that sparser matrices are smaller and result in less data transfer.
The assignment of the partitioning scheme to every matrix in the chain is done using a cost
model that considers the network traffic required to repartition a matrix. The cost model is
based on the size of the matrix, which corresponds to sparsity for sparse matrices. The cost
model is integrated in a greedy plan generator that assigns the partitioning to a matrix in
the chain starting from the result matrix, following with the intermediate multiplications,
and ending with the input matrices. This planning applies repartitioning closer to the input
matrices since their cost can be estimated more accurately. Although MatFast supports
tile-based partitioning, the cost model is defined only for row/column strip and matrix as
single tuple chunking. Thus, tile-based matrix multiplication is not considered in processing.

DistME. DistME (Han et al., 2019) performs distributed multiplication of tile-based par-
titioned matrices in a cloud setting where the number of processing nodes is variable. Given
a number of nodes, DistME determines the maximum size of the tile-based chunks that can
be multiplied in the available memory. Then, the two matrices are repartitioned accordingly
in a preprocessing step executed before the multiplication is performed. Multiplication
starts with the repartitioned matrices and proceeds by pairing the corresponding tiles,
which are locally multiplied with an optimized BLAS GPU kernel. Since the GPU memory
is limited, additional repartitioning is required. Moreover, the execution of the GPU kernels
is streamed in order to reduce data transfer. This results in optimal performance for matrix
multiplication.

74

TRA. TRA (Yuan et al., 2021) defines a set of equivalence rules for kernel function
composition and repartitioning applied to the physical operators in the tensor algebra.
There are four physical operators in TRA—two for repartitioning, broadcast and shuffle,
and two for local tensor operations, multiplication and aggregation. The equivalence rules
provide mappings among combinations of these operators. However, TRA does not provide
an enumeration algorithm for the generation of the equivalent mappings. The execution
cost of an expression of operators is assessed with a cost model that measures only the
data transferred over the network, which corresponds to the cardinality of the tensor. This
is appropriate only for dense tensors. The computation of an operation is not included in
the cost model because operations are executed through functions from optimized kernel
libraries. These functions have the same execution cost when performed on tensors with
the same dimensionality. Thus, the only relevant decision for performance is whether to
shuffle or broadcast a tensor. The TRA cost model is enhanced with terms corresponding
to execution in subsequent work by the same authors (Jankov et al., 2021). In this case,
tiled matrix multiplication is also considered in addition to broadcast and shuffle. The
enhanced cost model takes as input the distribution of the tiles across the cluster nodes and
performs a pilot run over the tile dimensions in order to compute the cost of each matrix
multiplication algorithm. The execution plan corresponding to the minimum cost solution
is determined with a heuristic algorithm that assigns pairs of relevant tiles greedily to the
computing nodes.

6.6.2 Compressed Sparse Linear Algebra

Matrix compression is implemented in SystemML (Elgohary et al., 2016) in order to
reduce the size of the tiled matrices that have to be transferred among the processing
nodes. Compression is applied to every partition of the matrix independently only if all
the operations the matrix is part of can be performed on the compressed matrix. The set
of operations is limited to element-wise operations and matrix-vector multiplication, and
does not include the general matrix multiplication. Moreover, only the input matrices are
compressed—not the intermediates. Matrix compression is a combination between lossless
compression techniques such as dictionary coding, run-length encoding, and offset-list
encoding, and sparse matrix formats such as COO, CSR, and CSC. The compression
method is applied independently to a single column or a group of correlated columns. The
optimal method is selected based on the format and sparsity of the data (Sommer et al.,
2019). An alternative row oriented compression scheme derived from the Lempel-Ziv-Welch
(LZW) algorithm is introduced in (Li et al., 2019a), which has a higher compression ratio
for wide short matrices.

75

6.7 Data Cube Processing

The data cube processing algorithms proposed in the literature can be classified into four
main categories based on the format they use to compute and store the data cube. Relational-
OLAP (ROLAP) algorithms use relational operators and standard SQL to compute the data
cube, and materialized views for storage. Multidimensional-OLAP (MOLAP) methods use
multidimensional arrays for storage and access to the aggregates. Graph-based algorithms
employ specialized tree-like graph data structures. Finally, integrated algorithms compute
the data cube while compressing the aggregates at the same time. Out of these four
classes, ROLAP algorithms are the most common because of their direct application of
relational processing—which allows for their immediate integration with a standard database.
(Morfonios et al., 2007) provide a comprehensive survey of the ROLAP algorithms. Several
of these algorithms (Wang et al., 2013b; Nandi et al., 2012; Milo and Altshuler, 2016) are
extended to the parallel/distributed Map-Reduce framework by maximizing the degree of
parallelism used for the computation of overlapping cuboids while minimizing the amount
of transferred data.

Given our focus on multidimensional arrays, we present here only the concepts behind the
MOLAP algorithms. MOLAP stores the base data from which the data cube is computed
– as well as the data cube – as multidimensional arrays, where the measure values are
determined by the position of the cell in the dimension space. The cube construction
algorithms generate smaller dimensionality arrays from the base array by slicing along all
the possible combinations of dimensions and aggregating the measure values along the
eliminated dimension(s). A naive implementation of this approach considers each of the
exponential number of dimension combinations – or cuboids – separately and always starts
from the base data. Optimized algorithms overlap the computation of multiple cuboids
in a single pass over the base data and reuse the higher dimensionality cuboids in the
computation of the lower dimensionality ones. The Multi-Way Array algorithm (Zhao et al.,
1997) works on a base data array regularly chunked and generates all the cuboids that make
the data cube in a single scan over the chunks of the base array. This requires simultaneously
loading a significant number of the base array chunks in memory. The Multi-Way Array
algorithm introduces several optimizations to reduce the amount of required memory. These
optimizations target the order in which to scan the base array chunks and the identification
of the most suitable cuboid from which to derive a lower dimensional cuboid—multiple
choices are possible since the cuboids form a lattice. The MM-Cubing algorithm (Shao
et al., 2004) reduces the memory usage of Multi-Way Array by identifying and computing
only the high density cuboid cells—the iceberg cells. Thus, MM-Cubing is optimized for
skewed high-dimensional data.

76

6.8 Summary

• The traditional architecture for multidimensional array processing is a shared-nothing
cluster consisting of a coordinator and multiple worker nodes. The chunks of the array
are distributed across the nodes and processed concurrently. Optimizations are targeted
at minimizing the network traffic among the worker nodes.

• The array processing paradigms have a two-level functional programming structure. The
top level is an execution framework that implements a determined workflow consisting
of higher level functions – or functionals – that take actual processing operations – or
functions – as arguments. The bottom level consists of an application programming
interface (API) for implementing concrete array operations as UDFs. Functionals execute
operations by invoking the UDF arguments using the fixed API. Map-Reduce and GLA
are the most common functional array processing paradigms.

• The implementation of array algebra operators is characterized by handling the neighbor-
ing chunks resulted from the range-based partitioning along the array dimensions. The
array similarity join operator, which generalizes shape-based neighborhood relationships,
is the most illustrative example of this type of processing.

• In-situ processing is an important requirement for scientific array data because of the
extensive use of specialized data formats and the breadth of the corresponding processing
libraries. As illustrated by ChronosDB, the challenge of in-situ processing consists in
efficiently composing primitive functions into complex workflows that implement general
array operations.

• It is recommended to implement tensor operations as wrappers over linear algebra
functions from highly optimized libraries. In the case of matrix multiplication, this is best
achieved with tiled or block chunking. The efficient execution of linear algebra expressions
containing chains of matrix multiplications requires the rechunking of intermediate
results—which becomes the main objective to optimize. The TRA system achieves this
goal with a rechunking optimizer and 3D replication matrix multiplication.

7 MULTIDIMENSIONAL ARRAY SYSTEMS
A recent survey (Baumann et al., 2021) aggregates the most important array technologies and
categorizes their implementation in real systems. However, its reach is limited since it does
not include tensor and data cube systems. In this chapter, we start from the categorization
introduced in (Baumann et al., 2021) and extend it with the missing parts. We present full-
stack array databases, raster extensions to relational databases, tensor processing systems,
and OLAP data cubes. We focus our attention on functional systems that are available for
use, are under consistent development, and provide reasonable documentation to understand
how they implement the defining array concepts. This excludes from discussion unmaintained

77

prototypes and undocumented systems without open-source code—which is the case for
most of the Map-Reduce prototypes and the distributed tensor processing systems.

7.1 Array Databases

Array database systems are characterized by an array algebra and query language in which
the array operations are declaratively specified, an execution engine that implements the
algebra operators and an eventual query optimizer that selects among multiple operator
implementations, and a chunk-based storage manager. Additionally, concurrent multi-user
operation with transactional support and an access control mechanism provide the complete
functionality of a relational database. In this section, we present four systems that implement
these requirements at different levels of completeness starting from scratch, while in the
subsequent section we introduce alternatives that start from a full-fledge relational database
and enhance it with multidimensional array support.

RasDaMan. RasDaMan (“Raster Data Manager”) (RasDaMan Development Team, 2022)
is the pioneer array database, which is at version 10.0 as of this writing. RasDaMan is
available both as open-source in a community edition as well as a more extensive commercial
enterprise version with dedicated support. According to the developers, the source code in
the two versions is identical. Queries can be submitted to RasDaMan both from a command
line interface as well as through connection APIs from multiple programming languages,
including C++, Java, Python, and R. Moreover, RasDaMan is integrated in a RESTful web
server for geographical (geo) services.
RasDaMan supports dense multidimensional arrays of arbitrary size, dimension, and struc-
ture through the declarative query language RasQL (Section 4.4) paired with internal
execution, storage, and query optimization. RasQL supports a wide range of array op-
erations, including dimensional transformations, geometric mappings, clipping, scaling,
concatenation, cross product, and grouped aggregations. Additionally, RasQL supports IN-
SERT/DELETE/UPDATE modification operations on arrays and CREATE/DROP/ALTER
operations on collections. Conceptually, arrays are defined as types consisting of a spatial
domain for dimensions and a subtype for cells. An array type can be encapsulated into a
set supertype that includes a specification for empty cells. This is how sparse arrays are
declared in RasQL. Concrete instances of an array type are created as tuples of a collection
having a set supertype. The collection is the equivalent of the table in relational databases.
Physically, arrays are chunked using the arbitrary strategies presented in Section 5.2.1 and
stored either as files in the operating system or BLOBS in a PostgreSQL database. In the
former case, chunk metadata – which takes the form of a multidimensional index – is stored
in an embedded SQLite database, while in the latter, it is stored together with the data

78

in PostgreSQL. RasDaMan also provides direct external array access to a variety of file
formats through the GDAL library (The GDAL Development Team, 2022). Moreover, the
arrays resulted from RasQL queries can be exported to different file formats for display in
visualization and web applications.
The RasDaMan engine (Baumann et al., 1998) includes all the components of a standard
relational DBMS. The query parser transforms a RasQL query into an execution tree of
array algebra operators. The query optimizer transforms the query tree into a more efficient
execution plan based on algebraic query rewriting rules and chunk layout information. The
goal is to access only the necessary chunks and find the optimal order in which to process the
chunks. The execution engine has a materialized architecture in which the array operators
are invoked through function calls that take as input chunks and produce output chunks.
Since chunks are processed in a streaming fashion, this strategy minimizes memory usage.
Moreover, chunks can be processed concurrently by separate threads—as long as there
is no dependency among them. Extensive implementation details for chunk processing in
RasDaMan are presented in (Widmann and Baumann, 1998). RasDaMan does not provide
intra-query distributed processing of arrays chunked across multiple nodes—a RasQL query
is executed entirely at a single node. Nonetheless, multiple RasQL queries can be processed
concurrently across a federation of peer RasDaMan servers that fully replicate their array
storage. However, this configuration has to be set up manually by an administrator.
Overall, RasDaMan is a complete database system for dense arrays—or rasters. It provides
an extensive set of functional and user features, including a large variety of operations over
raster data in different formats, programming interfaces, management utilities, and web
access. The lack of optimal support for sparse arrays and distributed processing are some of
the most important limitations in RasDaMan. Moreover, while linear algebra operations can
be expressed as RasQL grouping aggregations, their implementation is not fully optimized.

SciDB. SciDB (Paradigm4, 2022a) is a parallel database with a shared-nothing archi-
tecture initiated as the technological solution to process the high-resolution sky images
acquired by the Large Synoptic Survey Telescope (LSST). This direction has been completely
abandoned by now as the focus of SciDB has become drug discovery and precision medicine.
Currently, SciDB is the computing platform of the REVEAL suite of medical applications
commercialized by the Paradigm4 company. Since workflow management and reproducibility
are paramount in medicine, SciDB includes a complex multi-versioning control system with
no in-place data updates. As of this writing, SciDB is available both as open-source in
a community edition as well as a more extensive commercial enterprise version. Unlike
RasDaMan, the enterprise edition includes considerably more features (Paradigm4, 2022b)
and is at least two releases ahead—version 21.8 for enterprise compared to version 19.11 for
community. Queries can be submitted to SciDB using the command line interface iquery

79

client. The commercial REVEAL platform also provides Python and R connection APIs.
Queries have to be expressed in the Array Functional Language (AFL), which consists
of function compositions that allow for coding complex features. The declarative Array
Query Language (AQL) (Section 4.6) is only under experimental development since its
functionality is completely subsumed by AFL.
While SciDB supports sparse arrays as a special encoding of dense arrays, its storage layer
is highly optimized for dense arrays. The storage layer includes array decomposition, chunk
overlapping, and uses chunk compression. Array decomposition consists in splitting an array
with multiple values in a cell into separate arrays with a single value in every cell. This is a
generalization of the column-stores ideas to arrays. Chunk overlapping consists in storing
the same array cells in multiple chunks to increase the level of parallelism in execution.
Immediate drawbacks of this include increased storage and more complex management.
Several compression techniques are extended from column-stores, including null suppression,
run-length encoding (RLE), subtraction from an average value, and delta encoding. They
are applied on a chunk-by-chunk basis, with different chunks possibly compressed differently.
SciDB does not have any built-in operators. Instead, all its operators are implemented as
UDFs. Some operators are provided with the system while the user is given the freedom to
implement any other operators using the extension features provided by UDFs. Extensibility
in SciDB follows the pattern introduced in PostgreSQL (The PostgreSQL Development
Team, 2020). A user can add to the system: user-defined data types (UDT); scalar user-
defined functions (UDF) taking arguments user-defined types and returning a single value;
user-defined aggregates (UDA), which allow special aggregate computation for the newly
defined types, expressed as a group of functions invoked according to a well-established
pattern; and user-defined operators (UDO) taking arrays as arguments and producing an
array as the result. The SciDB operators can be divided into several classes: structural,
e.g., slice, subsample, reshape, concatenate, cross-product, join, etc.; value-based, e.g., filter,
aggregate, apply, project, etc.; statistical, e.g., bernoulli, kendall, pearson, quantile, etc.; and
linear algebra, e.g., gemm, gesvd, spgemm, etc. The linear algebra operators are wrappers
over the optimized ScaLAPACK implementations (ScaLAPACK Development Team, 2022).
Additionally, a large variety of statistical functions applied in biology and medicine are also
available. However, many of these are included only in the commercial enterprise edition.
While both RasDaMan and SciDB implement the chunked array model, only SciDB supports
parallel chunk processing across computing nodes. RasDaMan executes a query entirely at
a single node. Thus, it has limited scalability. SciDB includes a larger variety of statistical
and optimized linear algebra operators. However, RasDaMan supports a considerably larger
number of array/raster formats. Data loading in SciDB is a serious bottleneck as it requires
two steps. First, an array is ingested as a 1-D vector. Second, the vector is repartitioned into
the corresponding multidimensional array. The RasDaMan community edition is feature

80

complete compared to its enterprise version. This is not the case for SciDB, whose community
edition is rather unmaintained.

Ophidia. Ophidia (CMCC Foundation, 2022b) is an open-source parallel framework for
processing multidimensional arrays. It is targeted at scientific applications that process
heterogeneous data and require intensive analysis. Ophidia provides a native API written
in C, exposed also as a Python interface (CMCC Foundation, 2022a). The API consists of
standard array operators, including indexing, subsampling, rechunking, and aggregation,
statistical primitives imported from various libraries such as the GNU Scientific Library
(GSL), and import/export functions from/to various data formats, including FITS, NetCDF,
JSON, and HTML. New operators can be added to the API as long as they follow a template
implementation. The array operators can be invoked independently or combined in composite
workflows defined as JSON objects. Similar to a query execution tree made of relational
operators, a workflow specifies the dependencies and the arrays passed among operators.
Additionally, workflows can include control flow primitives such as branches and loops. This
brings workflows closer to an imperative interface instead of a declarative query language.
Ophidia splits the dimensions of an array into explicit and implicit. Only the explicit
dimensions are used for chunking. The implicit dimensions impact the rendering of the cells
inside a chunk. A separate chunk is created for every combination of the explicit dimensions’
values, which are used as the key for node assignment and parallel processing. Since Ophidia
does not support stencil operations, this chunking does not impact processing negatively.
However, in order to reduce the number of chunks, the number of non-empty cells on the
explicit dimensions has to be small. This implies that explicit dimensions are sparse, while
implicit dimensions are dense. This insight is specific to data cubes, where is applied to
minimize the number of materialized cuboids. As such, Ophidia can be viewed as a data
cube system for scientific data.

TileDB. TileDB (TileDB, Inc., 2022a) is an open-source embedded array storage library
with support for both dense and sparse arrays. TileDB’s goal is to be the equivalent of
sqlite for array databases. It has a native C++ API exposed through a variety of other
programming languages, including Python, R, Java, and Go. TileDB provides efficient
array storage with zero-copy access in multiple formats—in file systems and cloud object
stores. At the application level, TileDB is integrated with geospatial libraries such as GDAL,
distributed computing frameworks such as Spark, and relational databases such as MariaDB.
A user can interact with TileDB only through its functional API (TileDB, Inc., 2022b). There
is no support for function composition in declarative queries. Moreover, the only operation
provided by the API is range selection – or subsampling – on dimensions. Although this
functionality is quite limited, the update-optimized chunking (Section 5.2.5) implemented

81

by TileDB is its defining feature. It allows for the efficient execution of time travel queries
over a sequence of array versions as well as highly concurrent read/write array access. This
type of processing is not transparently supported by any other system or library.

7.2 Relational Array Systems

In this section, we present two relational databases that provide specialized support for
arrays and raster data through object-relational extensions such as user-defined data
types (UDT) and user-defined functions (UDF). Both of these systems implement storage
optimizations for dense arrays in the form of index suppression and chunking. They also
have a deep integration with the GDAL library (The GDAL Development Team, 2022),
which implements a large variety of functions on many raster file formats.

PostgreSQL arrays & PostGIS rasters. PostgreSQL (The PostgreSQL Development
Team, 2020) supports variable-length dense multidimensional arrays as table attributes.
The array type is a collection of elements having the same base type. Array attributes
can be referred in SQL queries exactly as any other attributes. The main operations on
arrays are indexing and a series of structural functions such as containment, append, and
concatenation. None of the array algebra operators introduced in Section 4.6 are built-in.
Function unnest is of particular relevance because it expands an array attribute into a
relation with a tuple for every element in the array. The layout of the array on storage is
row-major—without chunking. Consequently, the array functions take the complete array as
an argument. Since functions are treated as black boxes by the optimizer, no optimizations
are applied during query execution.
PostGIS (The PostGIS Development Team, 2022), the spatial PostgreSQL package, provides
extensive support for rasters – or dense arrays – by integrating the GDAL library. The
raster2pgsql data loader is at the core of PostGIS. It converts rasters from any of the
formats supported by GDAL to the internal PostgreSQL representation and loads them
as tuples into a table. Chunking can be applied during loading, case in which every chunk
becomes a separate tuple. The type of the raster attribute is a special user-defined data
type specified using the object-relational PostgreSQL extension mechanism. In order to
take advantage of chunking in subsampling queries, a spatial index has to be built on the
raster column after loading. The only solution to include raster attributes in SQL queries is
through functions. PostGIS includes an extensive set of raster functions, which are wrappers
over the corresponding GDAL functions. The arguments to the GDAL functions are passed
as string expressions in the wrappers. Overall, the PostGIS approach is a SQL frontend for
GDAL functions, where cross-function optimizations are not possible due to the PostgreSQL
execution mechanism.

82

Oracle Spatial GeoRaster. Multidimensional arrays are supported in Oracle through
the GeoRaster feature (Oracle, 2022b) available in the Oracle Spatial package. GeoRaster
manages the storage and processing of both the array metadata – as an XML document –
and the array cells—as a GeoRaster table consisting of a spatial extent attribute for the
dimensions and a BLOB attribute for the values. A raster is chunked into regular chunks –
or blocks – that are stored as the tuples of a GeoRaster table. Incomplete chunks are padded.
The maximum size of a chunk is 4 GB, which can be compressed using the JPEG algorithm.
Sparse arrays are supported through bitmap masks indicating the non-empty cells, which are
associated with every chunk. In the case of a completely empty chunk, no BLOB is associated
with the spatial extent. Rasters can be grouped into pyramids of different sizes and degrees
of resolution through resampling and interpolation operations. A pyramid is treated as a
composite object with the individual rasters identified by their resolution level. GeoRaster
provides an extended set of array algebra operators, including polygon subsampling, stencil-
based interpolation, and pyramid construction. These operators are formalized in a raster
algebra language that is an extension to Oracle PL/SQL. This combination allows the
specification of raster analyses as closed algebraic expressions of raster operators. The
operators are exposed both as functions in PL/SQL queries and directly through their
native Java API. Some of the operators have parallel chunk- and cell-based implementations.
GeoRaster is fully integrated with the GDAL library and provides concurrent batch loading
and exporting to the supported raster file formats. Overall, GeoRaster is a complete solution
for raster processing inside a relational database using object-relational extensions—with
their corresponding advantages and limitations.

7.3 Tensor Systems

The BLAS operations (Wikipedia, 2020) introduced in Section 3.3 are widely implemented
in linear algebra libraries optimized for various computing architectures. Examples of
such libraries include the Intel Math Kernel Library (MKL) (Wikipedia, 2022b) optimized
for Intel CPUs, the cuBLAS library (NVIDIA, 2022) optimized for NVIDIA GPUs, and
the ScaLAPACK library (ScaLAPACK Development Team, 2022) for parallel distributed
memory architectures. These libraries contain a large variety of operations, making their
complete reimplementation virtually impossible. They also provide bindings from many
programming languages, including C/C++, Python, R, and Julia. Finally, the linear algebra
kernels provided by these libraries are highly optimized through an extensive development
cycle. Given the significant amount of effort necessary to replicate the functionality and
performance of these libraries, the reasonable approach is to integrate the existing kernels
in higher-level systems. This is exactly the approach taken by data analytics systems such
as MADlib and SystemML, and deep learning frameworks such as PyTorch, TensorFlow,

83

and Apache MXNet. While all these systems include tensors in their API, the underlying
implementation is inherited from a tensor library. In the following, we discuss the integration
in more detail and present the NumPy array library, which has become the standard API
for tensor operations.

BLAS library wrappers. The common approach to integrate BLAS library functions
into a tensor processing system is to encapsulate them into a wrapper. The wrapper performs
two tasks—translation between the data representations corresponding to tensor processing
and the BLAS library, and function invocation. First, the tensor operands are mapped into
the BLAS library data structures. Then, the BLAS function is executed. Finally, the result
is mapped back to the data structures in the tensor system. For this process to be efficient,
the overhead of data translation has to be minimized—which can be quite challenging. This
is the reason why dual solutions consisting of a wrapper and a limited reimplementation are
proposed. The wrapper provides generality by supporting the invocation of any function
from the BLAS library while the reimplementation avoids data translation, which can result
in better performance. This approach is taken by the MADlib (MADlib Development Team,
2022) and RMA (Dolmatova et al., 2020) libraries for in-database analytics. A subset of the
linear algebra operations are implemented both as standalone UDFs – in MADlib – or a
sequence of MonetDB low-level operators – in RMA – as well as wrappers to functions from
the Eigen library (Eigen Development Team, 2010) – in MADlib – or Intel MKL—in RMA.
AIDA (D’silva et al., 2018), which integrates MonetDB and NumPy (NumPy Development
Team, 2022), exploits the use of C arrays as internal data structures in both systems.
This allows for sharing the same memory space and passing pointers to arrays as function
arguments—which eliminates data translation.

NumPy, xarray, and Dask. NumPy (Harris et al., 2020) is the primary array program-
ming library in the Python programming language. What makes NumPy so extensively
used are the breadth and depth of its API. The API includes a tremendous variety of
array processing functions, ranging from multiple types of indexing, value-based selection,
vectorization, broadcasting, and reductions to reshaping, concatenating, padding, searching,
sorting, and counting on arrays. Additionally, NumPy implements an extensive set of linear
algebra and statistical operations—CPU-accelerated by the OpenBLAS and Intel MKL
libraries. Moreover, NumPy can read and write arrays from/to different file formats. All
this functionality is integrated into an intuitive API that closely mimics a mathematical
formalism. The NumPy API is adopted by other specialized array libraries, including
PyData/Sparse for sparse arrays, CuPy for GPU-optimized arrays, Dask for distributed
arrays, and xarray for labeled arrays. To facilitate interoperability among libraries, NumPy
provides protocols that allow these specialized arrays to be passed as arguments to NumPy
functions. In turn, NumPy dispatches the operations to the corresponding library based on

84

the type of the arguments. This allows programmers to port their code across platforms
with minimal modifications.
NumPy arrays are the data structure at the core of the library. A NumPy array consists of
a pointer to a contiguous memory region and associated metadata to interpret the data
stored there. The metadata include the shape, the cell data type, and the strides. They
correspond to the main components of a multidimensional array. The shape defines the
dimensions of the array while the cell data type defines the array attributes. The strides
specify the physical layout of the array in memory as the number of bytes at which the
next cell on every dimension is located. The strides depend on the cell data type size.
Since the stride on a dimension is constant, only row- and column-major chunking – and
their multidimensional extensions – are supported. Overall, NumPy arrays are a standard
in-memory multidimensional array implementation.
The xarray library (Hoyer and Hamman, 2017) decorates NumPy arrays with labels in the
form of dimensions, coordinates, and attributes. These labels are explicitly assigned to the
corresponding elements in the array definition. While dimensions and attributes have a direct
correspondent, coordinates are aliases for values on the range of a dimension. The labels
can be integrated in NumPy expressions by replacing the positional indexing with a more
intuitive named notation. This notation is a direct extension of the pandas library relational
API to multidimensional arrays. While a pandas.DataFrame is a collection of vectors –
or series – aligned based on their position, an xarray.Dataset is a collection of NumPy
arrays aligned along their shared dimensions. The xarray.Dataset allows for the creation
of multidimensional arrays with cells having a composite data type by grouping NumPy
arrays that share all their dimensions. This corresponds to slicing the composite array into
a group of identical arrays, with one basic array for every attribute. At the implementation
level, xarray builds a map from labels to NumPy arrays and transparently converts the
named notation to NumPy API function calls (NumPy Development Team, 2022). Thus,
it extensively reuses the NumPy functionality. At the I/O level, the similarity between
the xarray.Dataset and the NetCDF file format allows for the direct memory mapping
of a NetCDF file to an in-memory xarray.Dataset object. Overall, the xarray.Dataset
follows closely our definition of multidimensional arrays from Section 2.1. The labels allow
the creation of named array algebra queries that go beyond the indexed expressions from
NumPy.
A Dask Array (The Dask Development Team, 2022) consists of multiple NumPy arrays
arranged into a grid. The individual NumPy arrays represent the physical chunks of the
complete Dask array. The Dask library manages the storage, location, and processing of
the chunks. It supports streamed execution on CPU and GPU – in which chunks are
processed one at a time in order to reduce memory usage – and distributed processing
across multiple computing nodes. The Dask library API inherits the NumPy API while

85

adapting the implementation to chunk-based processing, which can be performed in parallel.
While much of the NumPy API is implemented, the linear algebra functions are the most
notable omission to date. Additionally, the API includes functions to rechunk and reshape
an array. The chunks are identified by their index combination and are organized into a
Dask graph for processing. Moreover, chunks can have overlapped boundaries. Overall, Dask
arrays are a scalable extension of NumPy arrays with an almost identical interface. They
come the closest to a Python array database.

7.4 Data Cube Systems

A comprehensive list of commercial and open source OLAP databases – as well as their
detailed comparison – is available online (Wikipedia, 2022a). Three of these systems –
Oracle Essbase, IBM Cognos, and Apache Kylin – provide comprehensive data cube support.
Although these three systems are classified as MOLAP, the input data are stored either
in flat files or relational tables. Since only the data cube aggregates are materialized as
multidimensional chunked arrays, the more appropriate category for these systems is Hybrid
OLAP—or HOLAP. As a comparison, Pentaho Mondrian (Pentaho, 2022) stores both the
input data and the data cube in relational tables. Thus, it is purely ROLAP. While SQL is
heavily used to build the data cube over relational data, access to the cube cells and cuboids
is expressed in the MultiDimensional eXpressions (MDX) query language (Whitehorn et al.,
2005) developed at Microsoft and adopted extensively in OLAP servers. With the exception
of Apache Kylin and a few other open source systems, all the other OLAP servers support
MDX as their user API. For execution, MDX is mapped either to SQL or positional access
to the data cube cells. In the following, we present more details on the three data cube
systems introduced above.

Oracle Essbase. The Oracle Essbase multidimensional database (Oracle, 2022a) allows
the user to specify dense and sparse dimensions when defining a data cube. The sparse
dimensions are used to chunk the data cube. A dense chunk – or block – is created for every
combination of the sparse dimensions for which there exists at least one non-empty cell. A
good partitioning of the dimensions into dense and sparse groups results in a small number
of chunks with as few empty cells as possible. The cells of a chunk are linearized in the order
in which the dimensions are defined. A chunk is fully expanded in memory when processed
while being compressed when materialized on secondary storage. Accessing a data cube cell
is a two-stage process. First, the chunk containing the cell is identified based on the values
of the sparse dimensions. This is efficiently achieved with a multidimensional index over the
sparse dimensions. Second, the cell is directly accessed in the chunk – which is completely
loaded in memory – by indexing along the dense dimensions. Only point access to the data

86

cube cells is possible—no range access is supported. The computation of the data cube is
specified in a scripting language – or rules file – that defines the measures corresponding to
a data cell and what source data they are derived from. Supported data sources include flat
files, relational tables, and spreadsheets. By default, data cube computation is serial, thus,
inefficient.

IBM Cognos. The IBM Cognos Dynamic Cubes (Beryoza et al., 2015) are an in-memory
middleware that builds and provides efficient access to a data cube using the MDX language.
The data cube is defined over a star schema relational database following the referential
integrity constraints embedded in such a schema. This requires only the identification of
the fact table—the dimensions are derived from the referential integrity constraints. Cognos
Data Cubes maximize the portion of the data cube that is cached in memory based on the
cube definition and the user access patterns—which are closely logged and monitored. Cells
that are not cached are automatically computed on-demand by running queries against the
underlying database. Upon startup, the data cube is built bottom-up until the memory
capacity is exhausted. Given that the data cube is memory resident and is not materialized
to secondary storage, the access is based on the dimension values used as the key in a hash
table. This allows for the pruning of empty cells, which impacts positively the memory
utilization. Moreover, dimension based access simplifies cache management. Since data
cube building is mapped as SQL queries, parallel execution is delegated to the multi-query
processing capabilities of the underlying database.

Apache Kylin. Kylin (Kylin Development Team, 2022) is an open-source project that
supports the distributed building and querying of data cubes. As of version 4.0, a cube
is built over relational data extracted from a database – or flat files – using the Spark
framework. The cuboids making the data cube are stored as separate columnar Parquet files,
which can be queried independently using Spark SQL. The first step in the workflow requires
the definition of the data cube model as a star schema consisting of a fact table and several
lookup tables connected by key/foreign-key relationships. The dimensions and measures of
the data cube are selected from the attributes in these tables. In order to reduce the number
of computed – and stored – cuboids, dimensions can be split into aggregation groups and
classified as mandatory or joint. This is equivalent to partitioning the overall dimension
space into smaller sub-spaces and selecting only a subset for evaluation. Kylin also provides
a cube planner advisor that recommends the most relevant cuboids to build based on their
estimated size and query frequency. Once the data cube model is complete, the cuboids
are built concurrently in an optimized Spark application that shares computation among
connected cuboids and reuses the already computed cuboids whenever possible. By storing
every cuboid as a separate Parquet file, Kylin implements a form of chunking that allows

87

direct access to the relevant dimensions. This is done in a relational SQL syntax with
SparkSQL.

7.5 Summary

• RasDaMan and SciDB are the only two full-stack array databases that have all the
components of a database—from an array query language to chunk-based storage. While
RasDaMan is optimized for single machine, SciDB has a scalable distributed architecture.

• TileDB aims to become an embedded array database similar to sqlite. The update-
optimized storage layer and support for time-travel queries based on multi-versioned
updates are its distinguishing features. However, TileDB uses the NumPy API to specify
operations on arrays instead of a declarative query language.

• Rasters are integrated in relational databases such as PostgreSQL and Oracle through
storage optimizations and external function invocation to generic libraries such as GDAL.
The query expressiveness of this approach is limited by the SQL support for function
composition. Since sparse arrays map to relations naturally, multidimensional indexes
are sufficient to achieve reasonable efficiency.

• The NumPy API is the accepted notation to abstractly express linear algebra operations
over tensors. It provides the desired separation between the mathematical specification
and the target architecture—be it (multi-) CPU, GPU, or a distributed cluster.

• Most of the OLAP data cube systems fall under the category of HOLAP because they
use the multidimensional representation only for the cube—which is built over data
extracted from relational tables. In order to minimize the cube building time and storage
space, the dimensions are split based on density, resulting in many low-dimensional
cuboids instead of a single high-dimensional cube.

8 FUTURE DIRECTIONS

In this work, we survey the research on multidimensional array data management from
a database perspective. Unlike previous surveys that are limited to raster processing in
the context of scientific data (Rusu and Cheng, 2013; Baumann et al., 2021; Zalipynis,
2021), our perspective on multidimensional array data management considers all types
of arrays—rasters, data cubes, and tensors. We identify and analyze the most important
research ideas on arrays proposed over time. We cover all data management aspects, from
array algebras and query languages to storage strategies, execution techniques, and operator
implementations. Moreover, we discuss which research ideas are adopted in real systems
and how are they integrated in complete data processing pipelines. We also compare the
differences between arrays and the unordered set-based relational data model at every step

88

in the presentation. Up to this point, the survey summarizes concisely the most relevant
work on multidimensional array data management and organizes the material to provide an
accurate perspective on the state-of-the-art in array processing. In this chapter, we provide
several suggestions for future work in the field following the organization of the manuscript.

Array algebras and query languages. Although no array algebra and query language
have gained general acceptance to date, there are proposals that have become the de-facto
standard for every type of array. RasQL (Misev and Baumann, 2014) lies at the foundation
of the SQL/MDA standard for querying raster data through SQL. While SQL/MDA follows
the RasDaMan approach of integrating rasters as table attributes, it does not include an
exhaustive set of raster operations. The GDAL library (The GDAL Development Team,
2022) represents a good starting point in this direction. However, the effective integration of
GDAL into SQL/MDA requires further research. The MDX query language (Whitehorn et
al., 2005) – which provides direct access to data cube cells and cuboids – is used extensively
in OLAP servers. Its formalization as a standard for data cube navigation is the natural next
step. NumPy (Harris et al., 2020) defines a complete API for tensor operations, including
linear algebra and many other operators. Nonetheless, its array data structures are primitive.
They do not have support for chunking and partitioning. In order to scale the NumPy API
to large distributed infrastructures, these issues have to be carefully addressed. The Tensor
Relational Algebra (Yuan et al., 2021), which models tensors concisely as binary relations
from dimensions to valued tiles, is a first step in that direction. However, its applicability is
limited due to the reduced set of supported operations. Moreover, the optimization space is
constrained by two communication patterns.
While the existing solutions are targeted at a specific array type – raster, data cube, or
tensor – and address the integration with the relational data model, a fundamental question
that remains unanswered is how to design a generic data model and query language that
encompass these specializations? Furthermore, how to include other data structures – such
as polygons, hierarchies, and graphs – that can be represented as multidimensional arrays?
One could argue that the relational data model already satisfies these requirements. The
major problem is that the corresponding relational expressions are not practical and do not
have efficient implementations. Hybrid data models and polystores (Duggan et al., 2015a;
Alotaibi et al., 2019; Koutsoukos et al., 2021) are recent alternatives that address these
shortcomings with a layered abstraction that maps to any of the underlying data structures.
Further work is needed in order to assess their generality and evaluate their performance.

Array storage. Chunking is the defining characteristic of array data management. As
such, it has received extensive attention in the database literature, as illustrated in Chapter 5.
However, the vast majority of the work focuses on optimally chunking persistent arrays

89

for a single class of operations—most commonly, dimension subsampling. Sequences of
linear algebra operations, which are specific to machine learning workloads, make chunking
considerably more complicated because they generate intermediate tensors. In this case,
chunking becomes a dynamic problem that has to be solved independently for every
expression at runtime. The optimal chunking depends both on the sequence of operations
as well as the input tensors—including their dimensions and cell density. Since this problem
is related to database query optimization – albeit more complicated because it requires the
simultaneous identification of the operators and the chunking – the initial solutions proposed
in the literature follow a relational database approach. They are based on similar data
synopses and cost models. However, these do not capture well the intrinsic dimensionality
of tensors and the characteristics of tensor operations. Consequently, specialized solutions
tailored at multidimensional tensors have to be devised. These include novel dimension-aware
data statistics and chunk-based cost models.

The use of heterogeneous architectures consisting of a diverse set of computing devices –
such as CPU, GPU, TPU, and FPGA – has become more common—especially in raster
processing and machine learning applications. Since memory capacity and hierarchy vary
significantly from device to device, the optimal chunking has to be adapted to every
configuration. This includes the chunking of the base arrays as well as that of intermediate
arrays. Similar to relational databases – where the format of a table is abstracted out – the
chunking of an array has to be separated from its definition. This separation allows the user
to focus on the logical array operations while the system can automate and optimize the
physical implementation details. For something like this to be feasible, the user has to at
least specify the target architecture. The system has to provide optimized implementations
as well as rechunking routines for every architecture. The rechunking includes both packing
and unpacking functions for converting between different array formats. While this entire
process can be automated, we also anticipate the need for “chunking advisors” that enhance
the existing tuning advisors from relational databases in order to keep the user in the loop.

Array processing. The development of novel array processing techniques is largely
driven by domain-specific applications. This has started with raster images in different
science domains and has continued with materialized data cubes in business analytics and
tensor processing in machine learning and AI. Given the extensive use of multidimensional
arrays as a representation formalism, we see this trend to continue. However, going forward,
the tools developed by domain experts have to be better integrated with data management
capabilities in order to reduce the amount of work replication. The common approach of
adding functionality to a data management system is not sustainable, as illustrated by the
development of in-situ processing techniques. To address this issue, foundational work on
designing generic interfaces that allow the conceptual composition of various libraries is

90

further needed. The NumPy API (NumPy Development Team, 2022) is a good initial step
in this direction.

Array systems. None of the existing array data management systems fully supports
all three types of arrays—rasters, data cubes, and tensors. Systems are optimized for a
specific array type and may provide some functionality for the others. While this approach
is perfectly motivated by manageable complexity and better performance, the design of a
generic multidimensional array data management system remains an intriguing topic to
explore.

91

References
Aberger, C., A. Lamb, K. Olukotun, and C. Re. 2018. “LevelHeaded: A Unified Engine

for Business Intelligence and Linear Algebra Querying”. In: Proceedings of 2018 IEEE
ICDE International Conference on Data Engineering. 449–460.

Agarwal, R. C., S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. 1995. “A Three-
dimensional Approach to Parallel Matrix Multiplication”. IBM Journal of Research and
Development. 39(5): 575–582.

Agrawal, R., A. Gupta, and S. Sarawagi. 1997. “Modeling Multidimensional Databases”.
In: Proceedings of 1997 IEEE ICDE International Conference on Data Engineering.
232–243.

Alotaibi, R., D. Bursztyn, A. Deutsch, I. Manolescu, and S. Zampetakis. 2019. “Towards
Scalable Hybrid Stores: Constraint-Based Rewriting to the Rescue”. In: Proceedings of
2019 ACM SIGMOD International Conference on Management of Data. 1660–1677.

Ballegooij, A. van, R. Cornacchia, A. P. de Vries, and M. Kersten. 2005. “Distribution Rules
for Array Database Queries”. In: Proceedings of 2005 DEXA International Conference
on Database and Expert Systems Applications. 55–64.

Ballegooij, A. R. van. 2004. “RAM: A Multidimensional Array DBMS”. In: Proceedings of
2004 EDBT Extended Database Technology Workshops. 154–165.

Barceló, P., N. Higuera, J. Pérez, and B. Subercaseaux. 2019. “Expressiveness of Matrix and
Tensor Query Languages in Terms of ML Operators”. In: Proceedings of 2019 DEEM
International Workshop on Data Management for End-to-End Machine Learning.

Baumann, P., A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. 1998. “The Multi-
dimensional Database System RasDaMan”. In: Proceedings of 1998 ACM SIGMOD
International Conference on Management of Data. 575–577.

Baumann, P. 1994. “On the Management of Multi-Dimensional Discrete Data”. VLDB
Journal (VLDBJ). 4(3): 401–444.

Baumann, P. 1999. “A Database Array Algebra for Spatio-Temporal Data and Beyond”. In:
Proceedings of 1999 NGITS International Workshop on Next Generation Information
Technologies and Systems. 76–93.

Baumann, P. and S. Holsten. 2011. “A Comparative Analysis of Array Models for Databases”.
In: Proceedings of 2011 FGIT-DTA/BSBT. 80–89.

Baumann, P. and V. Merticariu. 2015. “On the Efficient Evaluation of Array Joins”. In:
Proceedings of 2015 IEEE BIG DATA International Conference on Big Data. 2046–2055.

Baumann, P., D. Misev, V. Merticariu, and B. P. Huu. 2021. “Array Databases: Concepts,
Standards, Implementations”. Journal of Big Data. 8(1).

Beryoza, D., M. Campbell, C. Cardorelle, T. Creasey, D. Cushing, V. D. Silva, S. David,
A. Hagleitner, I. Henderson, D. Howell, I. Kozine, P. Prieto, P. Thompson, J. Vazquez,
and Y. Zhang. 2015. IBM Cognos Dynamic Cubes. IBM Redbooks.

92

Blanas, S., J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. 2010. “A
Comparison of Join Algorithms for Log Processing in MapReduce”. In: Proceedings of
2010 ACM SIGMOD International Conference on Management of Data. 975–986.

Blanas, S., K. Wu, S. Byna, B. Dong, and A. Shoshani. 2014. “Parallel Data Analysis
Directly on Scientific File Formats”. In: Proceedings of 2014 ACM SIGMOD International
Conference on Management of Data. 385–396.

Boehm, M., M. W. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M. Manshadi, N. Pansare,
B. Reinwald, F. R. Reiss, P. Sen, A. C. Surve, and S. Tatikonda. 2016. “SystemML:
Declarative Machine Learning on Spark”. PVLDB. 9(13): 1425–1436.

Boehm, M., B. Reinwald, D. Hutchison, P. Sen, A. V. Evfimievski, and N. Pansare. 2018.
“On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML”.
PVLDB. 11(12): 1755–1768.

Boncz, P., M. Zukowski, and N. Nes. 2005. “MonetDB/X100: Hyper-Pipelining Query
Execution”. In: Proceedings of 2005 CIDR Conference on Innovative Database Research.
225–237.

Brijder, R., F. Geerts, J. V. D. Bussche, and T. Weerwag. 2019. “On the Expressive Power
of Query Languages for Matrices”. ACM Transactions on Database Systems (TODS).
44(4).

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I.
Sutskever, and D. Amodei. 2020. “Language Models are Few-Shot Learners”. CoRR.
arXiv:2005.14165.

Buck, J., N. Watkins, G. Levin, A. Crume, K. Ioannidou, S. Brandt, C. Maltzahn, and
N. Polyzotis. 2012. “SIDR: Efficient Structure-Aware Intelligent Data Routing in Sci-
Hadoop”. Tech. rep. No. UCSC-TR-SOE-12-08. UC Santa Cruz.

Buck, J. B., N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N. Polyzotis, and S. Brandt.
2011. “SciHadoop: Array-based Query Processing in Hadoop”. In: Proceedings of 2011
SC International Conference for High Performance Computing, Networking, Storage
and Analysis. 66:1–66:11.

Cabibbo, L. and R. Torlone. 1998. “A Logical Approach to Multidimensional Databases”.
In: Proceedings of 1998 EDBT Extended Database Technology Workshops. 183–197.

Cao, B. and A. Badia. 2007. “SQL Query Optimization Through Nested Relational Algebra”.
ACM Transactions on Database Systems (TODS). 32(3).

Chang, C., A. Acharya, A. Sussman, and J. H. Saltz. 1998. “T2: A Customizable Parallel
Database for Multi-Dimensional Data”. SIGMOD Rec. 27(1): 58–66.

93

Chang, C., B. Moon, A. Acharya, C. Shock, A. Sussman, and J. H. Saltz. 1997. “Titan:
A High-Performance Remote Sensing Database”. In: Proceedings of 1997 IEEE ICDE
International Conference on Data Engineering. 375–384.

Chaudhuri, S. and U. Dayal. 1997. “An Overview of Data Warehousing and OLAP Technol-
ogy”. ACM SIGMOD Record. 26(1): 65–74.

Chaudhuri, S., U. Dayal, and V. Narasayya. 2011. “An Overview of Business Intelligence
Technology”. Commun. ACM. 54(8): 88–98.

Cheng, Y., C. Qin, and F. Rusu. 2012. “GLADE: Big Data Analytics Made Easy”. In:
Proceedings of 2012 ACM SIGMOD International Conference on Management of Data.
697–700.

Cheng, Y. and F. Rusu. 2014. “Formal Representation of the SS-DB Benchmark and
Experimental Evaluation in EXTASCID”. Distributed and Parallel Databases.

Choi, D., C.-S. Park, and Y. D. Chung. 2019. “Progressive Top-k Subarray Query Processing
in Array Databases”. PVLDB. 12(9): 989–1001.

Choi, J., J. J. Dongarra, R. Pozo, and D. W. Walker. 1992. “ScaLAPACK: A Scalable Linear
Algebra Library for Distributed Memory Concurrent Computers”. In: Proceedings of
1992 Symposium on the Frontiers of Massively Parallel Computation. 120–127.

CMCC Foundation. 2022a. “Ophidia Big Data Code Repository”. https://github.com/
OphidiaBigData. [Online; accessed May 2022].

CMCC Foundation. 2022b. “Ophidia Project”. https://ophidia.cmcc.it/. [Online; accessed
May 2022].

Codd, E. 1970. “A Relational Model for Large Shared Data Banks”. Comm. ACM. 13(6):
377–387.

Cornacchia, R., S. Héman, M. Zukowski, A. P. de Vries, and P. Boncz. 2008. “Flexible and
Efficient IR using Array Databases”. VLDB Journal (VLDBJ). 17: 151–168.

Cudre-Mauroux, P., H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush, P. Velikhov,
D. L. Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier, S. Madden, J. Patel,
M. Stonebraker, and S. Zdonik. 2009. “A Demonstration of SciDB: A Science-Oriented
DBMS”. PVLDB. 2(2): 1534–1537.

Cudre-Mauroux, P., H. Kimura, K.-T. Lim, J. Rogers, S. Madden, M. Stonebraker, S. B.
Zdonik, and P. G. Brown. 2010. “SS-DB: A Standard Science DBMS Benchmark”.
http://www.xldb.org/science-benchmark/. [Online; accessed July 2020].

D’silva, J. V., F. De Moor, and B. Kemme. 2018. “AIDA: Abstraction for Advanced
in-Database Analytics”. PVLDB. 11(11): 1400–1413.

Datta, K., M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf,
and K. Yelick. 2008. “Stencil Computation Optimization and Auto-tuning on State-of-
the-art Multicore Architectures”. In: Proceedings of 2008 SC International Conference
for High Performance Computing, Networking, Storage and Analysis. 1–12.

94

https://github.com/OphidiaBigData
https://github.com/OphidiaBigData
https://ophidia.cmcc.it/
http://www.xldb.org/science-benchmark/

Dean, J. and S. Ghemawat. 2008. “MapReduce: Simplified Data Processing on Large
Clusters”. Commun. ACM. 51(1): 107–113.

Dewitt, D. J., S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. .-. Hsiao, and R.
Rasmussen. 1990. “The Gamma Database Machine Project”. IEEE Transactions on
Knowledge and Data Engineering (TKDE). 2(1): 44–62.

DeWitt, D. J. and J. Gray. 1991. “Parallel Database Systems: The Future of Database
Processing or a Passing Fad?” SIGMOD Rec. 19.

Dolmatova, O., N. Augsten, and M. H. Böhlen. 2020. “A Relational Matrix Algebra
and Its Implementation in a Column Store”. In: Proceedings of 2020 ACM SIGMOD
International Conference on Management of Data. 2573–2587.

Dong, B., K. Wu, S. Byna, J. Liu, W. Zhao, and F. Rusu. 2017. “ArrayUDF: User-Defined
Scientific Data Analysis on Arrays”. In: Proceedings of 2017 ACM HPDC International
Symposium on High-Performance Parallel and Distributed Computing.

Dongarra, J. and R. Schreiber. 1990. “Automatic Blocking of Nested Loops”. Tech. rep.
University of Tennessee.

Duggan, J., A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S. Madden,
D. Maier, T. Mattson, and S. Zdonik. 2015a. “The BigDAWG Polystore System”. ACM
SIGMOD Record. 44(2): 11–16.

Duggan, J., O. Papaemmanouil, L. Battle, and M. Stonebraker. 2015b. “Skew-Aware Join
Optimization for Array Databases”. In: Proceedings of 2015 ACM SIGMOD International
Conference on Management of Data. 123–135.

Duggan, J. and M. Stonebraker. 2014. “Incremental Elasticity for Array Databases”. In:
Proceedings of 2014 ACM SIGMOD International Conference on Management of Data.
409–420.

Eigen Development Team. 2010. “Eigen”. http://eigen.tuxfamily.org. [Online; accessed
March 2022].

Elgohary, A., M. Boehm, P. J. Haas, F. R. Reiss, and B. Reinwald. 2016. “Compressed
Linear Algebra for Large-Scale Machine Learning”. PVLDB. 9(12): 960–971.

Faloutsos, C. and P. Bhagwat. 1993. “Declustering Using Fractals”. In: Proceedings of 1993
International Conference on Parallel and Distributed Information Systems. 18–25.

Furtado, P. and P. Baumann. 1999. “Storage of Multidimensional Arrays Based on Arbi-
trary Tiling”. In: Proceedings of 1999 IEEE ICDE International Conference on Data
Engineering. 480–489.

Gao, Z. J., S. Luo, L. L. Perez, and C. Jermaine. 2017. “The BUDS Language for Distributed
Bayesian Machine Learning”. In: Proceedings of 2017 ACM SIGMOD International
Conference on Management of Data. 961–976.

Ge, T., D. Grabiner, and S. Zdonik. 2011. “Monte Carlo Query Processing of Uncertain
Multidimensional Array Data”. In: Proceedings of 2011 IEEE ICDE International
Conference on Data Engineering. 936–947.

95

http://eigen.tuxfamily.org

Ge, T. and S. Zdonik. 2010. “A*-Tree: A Structure for Storage and Modeling of Uncertain
Multidimensional Arrays”. PVLDB. 3(1): 964–974.

Goil, S. and A. N. Choudhary. 1997. “Sparse Data Storage Schemes for Multidimensional
Data for OLAP and Data Mining”. Tech. rep. No. CPDC-TR-9801-005. Northwestern
University.

Goto, K. and R. van de Geijn. 2008. “Anatomy of High-performance Matrix Multiplication”.
ACM Transactions on Mathematical Software (TOMS). 34(3).

Goto, K. and R. van de Geijn. 2009. “High-performance Implementation of the Level-3
BLAS”. ACM Transactions on Mathematical Software (TOMS). 35(1).

Gray, J., A. Bosworth, A. Layman, and H. Pirahesh. 1996. “Data Cube: A Relational Ag-
gregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total”. In: Proceedings
of 1996 IEEE ICDE International Conference on Data Engineering. 152–159.

Gu, R., Y. Tang, C. Tian, H. Zhou, G. Li, X. Zheng, and Y. Huang. 2017. “Improving
Execution Concurrency of Large-Scale Matrix Multiplication on Distributed Data-
Parallel Platforms”. IEEE Transactions on Parallel and Distributed Systems (TPDS).
28(9): 2539–2552.

Guttman, A. 1984. “R-trees: A Dynamic Index Structure for Spatial Searching”. In: Pro-
ceedings of 1984 ACM SIGMOD International Conference on Management of Data.
47–57.

Gyssens, M. and L. V. Lakshmanan. 1997. “A Foundation for Multi-Dimensional Databases”.
In: Proceedings of 1997 VLDB International Conference on Very Large Data Bases.
106–115.

Hadoop Development Team. 2020. “Hadoop”. http://hadoop.apache.org/. [Online; accessed
July 2020].

Han, D., Y.-M. Nam, J. Lee, K. Park, H. Kim, and M.-S. Kim. 2019. “DistME: A Fast and
Elastic Distributed Matrix Computation Engine using GPUs”. In: Proceedings of 2019
ACM SIGMOD International Conference on Management of Data. 759–774.

Harinarayan, V., A. Rajaraman, and J. D. Ullman. 1996. “Implementing Data Cubes
Efficiently”. In: Proceedings of 1996 ACM SIGMOD International Conference on Man-
agement of Data. 205–216.

Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van
Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gerard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant. 2020. “Array Programming with NumPy”. Nature. 585(7825): 357–362.

Hellerstein, J. M., C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng,
C. Welton, X. Feng, K. Li, and A. Kumar. 2012. “The MADlib Analytics Library: Or
MAD Skills, the SQL”. PVLDB. 5(12): 1700–1711.

96

http://hadoop.apache.org/

Hong, C., A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayappan. 2019. “Adap-
tive Sparse Tiling for Sparse Matrix Multiplication”. In: Proceedings of 2019 PPoPP
Symposium on Principles and Practice of Parallel Programming. 300–314.

Horlova, O., A. Kaitoua, and S. Ceri. 2020. “Array-based Data Management for Genomics”.
In: Proceedings of 2020 IEEE ICDE International Conference on Data Engineering.
109–120.

Howe, B. and D. Maier. 2004. “Algebraic Manipulation of Scientific Datasets”. In: Proceedings
of 2004 VLDB International Conference on Very Large Data Bases. 924–935.

Hoyer, S. and J. Hamman. 2017. “xarray: N-D labeled Arrays and Datasets in Python”.
Journal of Open Research Software. 5(1).

Huang, B., S. Babu, and J. Yang. 2013. “Cumulon: Optimizing Statistical Data Analysis
in the Cloud”. In: Proceedings of 2013 ACM SIGMOD International Conference on
Management of Data. 1–12.

Hutchison, D., B. Howe, and D. Suciu. 2017. “LaraDB: A Minimalist Kernel for Linear and
Relational Algebra Computation”. In: Proceedings of 2017 ACM SIGMOD BeyondMR
Workshop on Algorithms and Systems for MapReduce and Beyond.

Idreos, S., F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L. Kersten. 2012.
“MonetDB: Two Decades of Research in Column-Oriented Database Architectures”.
IEEE Data Eng. Bull. 35(1): 40–45.

Irigoin, F. and R. Triolet. 1988. “Supernode Partitioning”. In: Proceedings of 1988 ACM
POPL Symposium on Principles of Programming Languages. 319–329.

Ivanova, M., M. L. Kersten, and S. Manegold. 2012. “Data Vaults: A Symbiosis between
Database Technology and Scientific File Repositories”. In: Proceedings of 2012 SSDBM
International Conference on Scientific and Statistical Database Management. 485–494.

Jaeschke, G. and H. J. Schek. 1982. “Remarks on the Algebra of Non First Normal Form
Relations”. In: Proceedings of 1982 PODS Symposium on Principles of Database Systems.
124–138.

Jagadish, H. 1990. “Linear Clustering of Objects with Multiple Attributes”. In: Proceedings
of 1990 ACM SIGMOD International Conference on Management of Data. 332–342.

Jankov, D., B. Yuan, S. Luo, and C. Jermaine. 2021. “Distributed Numerical and Machine
Learning Computations via Two-Phase Execution of Aggregated Join Trees”. PVLDB.
14(7): 1228–1240.

Jordan, H., P. Thoman, J. Durillo, S. Pellegrini, P. Gschwandtner, T. Fahringer, and H.
Moritsch. 2012. “A Multi-objective Auto-tuning Framework for Parallel Codes”. In:
Proceedings of 2012 SC International Conference for High Performance Computing,
Networking, Storage and Analysis. 10:1–10:12.

Kernert, D., W. Lehner, and F. Kohler. 2016. “Topology-aware Optimization of Big Sparse
Matrices and Matrix Multiplications on Main-memory Systems”. In: Proceedings of
2016 IEEE ICDE International Conference on Data Engineering. 823–834.

97

Kersten, M. L., Y. Zhang, M. Ivanova, and N. Nes. 2011. “SciQL, A Query Language
for Science Applications”. In: Proceedings of 2011 AD EDBT/ICDT Array Databases
Workshop. 1–12.

Khamis, M. A., H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. 2018. “AC/DC:
In-Database Learning Thunderstruck”. In: Proceedings of 2018 DEEM International
Workshop on Data Management for End-to-End Machine Learning.

Kim, J., A. Sukumaran-Rajam, V. Thumma, S. Krishnamoorthy, A. Panyala, L. Pouchet,
A. Rountev, and P. Sadayappan. 2019. “A Code Generator for High-Performance
Tensor Contractions on GPUs”. In: Proceedings of 2019 IEEE/ACM CGO International
Symposium on Code Generation and Optimization. 85–95.

Kim, M. and K. S. Candan. 2011. “Approximate Tensor Decomposition within a Tensor-
Relational Algebraic Framework”. In: Proceedings of 2011 ACM CIKM International
Conference on Information and Knowledge Management. 1737–1742.

Kim, M. and K. S. Candan. 2014. “Efficient Static and Dynamic In-Database Tensor
Decompositions on Chunk-Based Array Stores”. In: Proceedings of 2014 ACM CIKM
International Conference on Information and Knowledge Management. 969–978.

Kim, S., B. Kim, and B. Moon. 2021. “Spangle: A Distributed In-Memory Processing System
for Large-Scale Arrays”. In: Proceedings of 2021 IEEE ICDE International Conference
on Data Engineering. 1799–1810.

Kisuki, T., P. M. W. Knijnenburg, and M. F. P. O’Boyle. 2000. “Combined Selection of
Tile Sizes and Unroll Factors Using Iterative Compilation”. In: Proceedings of 2000
PACT International Conference on Parallel Architectures and Compilation Techniques.
237–248.

Kolda, T. G. and B. W. Bader. 2009. “Tensor Decompositions and Applications”. SIAM
Rev. 51(3): 455–500.

Koutsoukos, D., S. Nakandala, K. Karanasos, K. Saur, G. Alonso, and M. Interlandi. 2021.
“Tensors: An Abstraction for General Data Processing”. PVLDB. 14(10): 1797–1804.

Kunft, A., A. Alexandrov, A. Katsifodimos, and V. Markl. 2016. “Bridging the Gap:
Towards Optimization across Linear and Relational Algebra”. In: Proceedings of 2016
ACM SIGMOD BeyondMR Workshop on Algorithms and Systems for MapReduce and
Beyond.

Kylin Development Team. 2022. “Kylin”. https://kylin.apache.org/. [Online; accessed April
2022].

Laboratory for Foundations of Computer Science at the University of Edinburgh. 2008.
“The Standard ML Language”. http://www.lfcs.inf.ed.ac.uk/software/ML/. [Online;
accessed November 2021].

Laue, S., M. Mitterreiter, and J. Giesen. 2020. “A Simple and Efficient Tensor Calculus”.
In: Proceedings of 2020 AAAI Conference on Artificial Intelligence. 4527–4534.

98

https://kylin.apache.org/
http://www.lfcs.inf.ed.ac.uk/software/ML/

Lerner, A. and D. Shasha. 2003. “AQuery: Query Language for Ordered Data, Optimization
Techniques, and Experiments”. In: Proceedings of 2003 VLDB International Conference
on Very Large Data Bases. 345–356.

Leung, A., N. Vasilache, B. Meister, M. Baskaran, D. Wohlford, C. Bastoul, and R. Lethin.
2010. “A Mapping Path for Multi-GPGPU Accelerated Computers from a Portable High
Level Programming Abstraction”. In: Proceedings of 2010 Workshop on General-Purpose
Computation on Graphics Processing Units. 51–61.

Li, F., L. Chen, Y. Zeng, A. Kumar, X. Wu, J. F. Naughton, and J. M. Patel. 2019a.
“Tuple-Oriented Compression for Large-Scale Mini-Batch Stochastic Gradient Descent”.
In: Proceedings of 2019 ACM SIGMOD International Conference on Management of
Data. 1517–1534.

Li, R., W. Gatterbauer, and M. Riedewald. 2020. “Near-Optimal Distributed Band-Joins
through Recursive Partitioning”. In: Proceedings of 2020 ACM SIGMOD International
Conference on Management of Data. 2375–2390.

Li, X., Y. Liang, S. Yan, L. Jia, and Y. Li. 2019b. “A Coordinated Tiling and Batching
Framework for Efficient GEMM on GPUs”. In: Proceedings of 2019 PPoPP Symposium
on Principles and Practice of Parallel Programming. 229–241.

Libkin, L., R. Machlin, and L. Wong. 1996. “A Query Language for Multidimensional
Arrays: Design, Implementation, and Optimization Techniques”. In: Proceedings of 1996
ACM SIGMOD International Conference on Management of Data. 228–239.

Lim, K.-T., D. Maier, J. Becla, M. Kersten, Y. Zhang, and M. Stonebraker. 2012. “Array
QL Syntax”. http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL-Draft-4.pdf.
[Online; accessed July 2020].

Lippmeier, B. and G. Keller. 2011. “Efficient Parallel Stencil Convolution in Haskell”. In:
Proceedings of 2011 Haskell ACM Symposium on Haskell. 59–70.

Liu, D.-R. and S. Shekhar. 1995. “A Similarity Graph-based Approach to Declustering
Problems and Its Application towards Parallelizing Grid Files”. In: Proceedings of 1995
IEEE ICDE International Conference on Data Engineering. 373–381.

Lowenthal, D. K. 2000. “Accurately Selecting Block Size at Runtime in Pipelined Parallel
Programs”. Int. J. Parallel Program. 28(3): 245–274.

Luo, S. 2020. Automatic Matrix Format Exploration for Large Scale Linear Algebra, Ph.D.
Thesis. Rice University.

Luo, S., D. Jankov, B. Yuan, and C. Jermaine. 2021. “Automatic Optimization of Matrix
Implementations for Distributed Machine Learning and Linear Algebra”. In: Proceedings
of 2021 ACM SIGMOD International Conference on Management of Data. 1222–1234.

Lustosa, H. and F. Porto. 2019. “SAVIME: A Multidimensional System for the Analysis
and Visualization of Simulation Data”. CoRR. arXiv:1903.02949v2.

MADlib Development Team. 2022. “MADlib”. https://madlib.apache.org/. [Online; accessed
May 2022].

99

http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL-Draft-4.pdf
https://madlib.apache.org/

Maier, D. 2012. “ArrayQL Algebra: version 3”. http://www.xldb.org/wp-content/uploads/
2012/09/ArrayQL_Algebra_v3+.pdf. [Online; accessed July 2020].

Maier, D. and B. Vance. 1993. “A Call to Order”. In: Proceedings of 1993 PODS Symposium
on Principles of Database Systems. 1–16.

Marathe, A. P. and K. Salem. 2002. “Query Processing Techniques for Arrays”. VLDB
Journal (VLDBJ). 11(1): 68–91.

Maruyama, N., T. Nomura, K. Sato, and S. Matsuoka. 2011. “Physis: An Implicitly Parallel
Programming Model for Stencil Computations on Large-Scale GPU-Accelerated Super-
computers”. In: Proceedings of 2011 SC International Conference for High Performance
Computing, Networking, Storage and Analysis. 11:1–11:12.

Matthews, D. A. 2016. “High-Performance Tensor Contraction without Transposition”.
CoRR. arXiv:1607.00291v4.

Milner, R., M. Tofte, R. Harper, and D. MacQueen. 1997. The Definition of Standard ML
(revised). MIT Press.

Milo, T. and E. Altshuler. 2016. “An Efficient MapReduce Cube Algorithm for Varied Data
Distributions”. In: Proceedings of 2016 ACM SIGMOD International Conference on
Management of Data. 1151–1165.

Misev, D. and P. Baumann. 2014. “Extending the SQL Array Concept to Support Scientific
Analytics”. In: Proceedings of 2014 SSDBM International Conference on Scientific and
Statistical Database Management.

Moon, B., A. Acharya, and J. Saltz. 1996. “Study of Scalable Declustering Algorithms for
Parallel Grid Files”. In: Proceedings of 1996 Parallel Processing Symposium. 434–440.

Moon, B. and J. H. Saltz. 1998. “Scalability Analysis of Declustering Methods for Multidi-
mensional Range Queries”. IEEE Transactions on Knowledge and Data Engineering
(TKDE). 10(2): 310–327.

Morfonios, K., S. Konakas, Y. Ioannidis, and N. Kotsis. 2007. “ROLAP Implementations of
the Data Cube”. ACM Comput. Surv. 39(4).

Nandi, A., C. Yu, P. Bohannon, and R. Ramakrishnan. 2012. “Data Cube Materialization
and Mining over MapReduce”. IEEE Transactions on Knowledge and Data Engineering
(TKDE). 24(10): 1747–1759.

Nikolopoulos, D. 2004. “Dynamic Tiling for Effective Use of Shared Caches on Multithreaded
Processors”. International Journal of High Performance Computing and Networking.
2(1): 22–35.

NumPy Development Team. 2022. “NumPy”. https://numpy.org/. [Online; accessed March
2022].

NVIDIA. 2022. “cuBLAS”. https://docs.nvidia.com/cuda/cublas/. [Online; accessed March
2022].

O’Gorman, L., M. J. Sammon, and M. Seul. 2008. Practical Algorithms for Image Analysis,
2nd edition. Cambridge University Press.

100

http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL_Algebra_v3+.pdf
http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL_Algebra_v3+.pdf
https://numpy.org/
https://docs.nvidia.com/cuda/cublas/

Open Geospatial Consortium. 2022. “GeoTIFF Standard”. https://www.ogc.org/standards/
geotiff. [Online; accessed February 2022].

Oracle. 2022a. “Essbase”. https://docs.oracle.com/en/database/other-databases/essbase/
index.html. [Online; accessed April 2022].

Oracle. 2022b. “Spatial GeoRaster”. https://docs.oracle.com/en/database/oracle/oracle-
database/21/geors/index.html. [Online; accessed May 2022].

Otoo, E. J., D. Rotem, and S. Seshadri. 2007. “Optimal Chunking of Large Multidimensional
Arrays for Data Warehousing”. In: Proceedings of 2007 ACM DOLAP International
Workshop on Data Warehousing and OLAP. 25–32.

Ozsoyoglu, G., Z. M. Ozsoyoglu, and V. Matos. 1987. “Extending Relational Algebra
and Relational Calculus with Set-valued Attributes and Aggregate Functions”. ACM
Transactions on Database Systems (TODS). 12(4): 566–592.

Papadopoulos, S., K. Datta, S. Madden, and T. G. Mattson. 2016. “The TileDB Array
Data Storage Manager”. PVLDB. 10(4): 349–360.

Paradigm4. 2022a. “SciDB”. https://github.com/Paradigm4/SciDB. [Online; accessed May
2022].

Paradigm4. 2022b. “SciDB Documentation”. https://paradigm4.atlassian.net/wiki/spaces/
scidb/overview?homepageId=2694289094. [Online; accessed May 2022].

Pedersen, T. B., C. S. Jensen, and C. E. Dyreson. 2001. “A Foundation for Capturing and
Querying Complex Multidimensional Data”. Information Systems. 26(5): 383–423.

Peng, L. and Y. Diao. 2015. “Supporting Data Uncertainty in Array Databases”. In:
Proceedings of 2015 ACM SIGMOD International Conference on Management of Data.
545–560.

Pentaho. 2022. “Mondrian OLAP Server”. https://mondrian.pentaho.com/documentation/
index.php. [Online; accessed April 2022].

Polychroniou, O., R. Sen, and K. A. Ross. 2014. “Track Join: Distributed Joins with Minimal
Network Traffic”. In: Proceedings of 2014 ACM SIGMOD International Conference on
Management of Data. 1483–1494.

Prabhakar, S., K. Abdel-Ghaffar, D. Agrawal, and A. E. Abbadi. 1998. “Cyclic Allocation of
Two-Dimensional Data”. In: Proceedings of 1998 IEEE ICDE International Conference
on Data Engineering. 94–101.

Qin, C. and F. Rusu. 2015. “Speculative Approximations for Terascale Distributed Gradient
Descent Optimization”. In: Proceedings of 2015 ACM SIGMOD DanaC Workshop on
Data Analytics in the Cloud.

RasDaMan Development Team. 2022. “RasDaMan”. http : / / rasdaman . org/. [Online;
accessed April 2022].

Renganarayana, L. and S. Rajopadhye. 2008. “Positivity, Posynomials and Tile Size Selec-
tion”. In: Proceedings of 2008 ACM/IEEE SC Conference on Supercomputing.

101

https://www.ogc.org/standards/geotiff
https://www.ogc.org/standards/geotiff
https://docs.oracle.com/en/database/other-databases/essbase/index.html
https://docs.oracle.com/en/database/other-databases/essbase/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/geors/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/geors/index.html
https://github.com/Paradigm4/SciDB
https://paradigm4.atlassian.net/wiki/spaces/scidb/overview?homepageId=2694289094
https://paradigm4.atlassian.net/wiki/spaces/scidb/overview?homepageId=2694289094
https://mondrian.pentaho.com/documentation/index.php
https://mondrian.pentaho.com/documentation/index.php
http://rasdaman.org/

Ritter, G., J. Wilson, and J. Davidson. 1990. “Image Algebra: An Overview”. Computer
Vision, Graphics, and Image Processing. 49(1): 297–331.

Rusu, F. and Y. Cheng. 2013. “A Survey on Array Storage, Query Languages, and Systems”.
CoRR. arXiv:1302.0103.

Salton, G., A. Wong, and C. S. Yang. 1975. “A Vector Space Model for Automatic Indexing”.
Commun. ACM. 18(11): 613–620.

Sarawagi, S. and M. Stonebraker. 1994. “Efficient Organization of Large Multidimen-
sional Arrays”. In: Proceedings of 1994 IEEE ICDE International Conference on Data
Engineering. 328–336.

ScaLAPACK Development Team. 2022. “Scalable Linear Algebra PACKage (ScaLAPACK)”.
http://www.netlib.org/scalapack/. [Online; accessed March 2022].

Seering, A., P. Cudre-Mauroux, S. Madden, and M. Stonebraker. 2012. “Efficient Versioning
for Scientific Array Databases”. In: Proceedings of 2012 IEEE ICDE International
Conference on Data Engineering. 1013–1024.

Seo, S., E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng. 2010. “HAMA: An Efficient
Matrix Computation with the MapReduce Framework”. In: Proceedings of 2010 IEEE
CLOUDCOM International Conference on Cloud Computing Technology and Science.
721–726.

Shao, Z., J. Han, and D. Xin. 2004. “MM-Cubing: Computing Iceberg Cubes by Factoriz-
ing the Lattice Space”. In: Proceedings of 2004 SSDBM International Conference on
Scientific and Statistical Database Management.

Shi, Y., U. N. Niranjan, A. Anandkumar, and C. Cecka. 2016. “Tensor Contractions with
Extended BLAS Kernels on CPU and GPU”. CoRR. arXiv:1606.05696.

Shoshani, A. 1997. “OLAP and Statistical Databases: Similarities and Differences”. In:
Proceedings of 1997 PODS Symposium on Principles of Database Systems. 185–196.

Sommer, J., M. Boehm, A. V. Evfimievski, B. Reinwald, and P. J. Haas. 2019. “MNC:
Structure-Exploiting Sparsity Estimation for Matrix Expressions”. In: Proceedings of
2019 ACM SIGMOD International Conference on Management of Data. 1607–1623.

Song, J., H. V. Jagadish, and G. Alter. 2021. “SDTA: An Algebra for Statistical Data
Transformation”. In: Proceedings of 2021 SSDBM International Conference on Scientific
and Statistical Database Management. 109–120.

Soroush, E. and M. Balazinska. 2013. “Time Travel in a Scientific Array Database”. In:
Proceedings of 2013 IEEE ICDE International Conference on Data Engineering.

Soroush, E., M. Balazinska, and D. L. Wang. 2011. “ArrayStore: A Storage Manager for Com-
plex Parallel Array Processing”. In: Proceedings of 2011 ACM SIGMOD International
Conference on Management of Data. 253–264.

Springer, P. and P. Bientinesi. 2018. “Design of a High-Performance GEMM-like Tensor–
Tensor Multiplication”. ACM Transactions on Mathematical Software (TOMS). 44(3).

102

http://www.netlib.org/scalapack/

Springer, P. and C.-H. Yu. 2019. “cuTENSOR: High-Performance CUDA Tensor Primitives”.
https://developer.nvidia.com/cutensor. [Online; accessed September 2020].

Stonebraker, M., P. Brown, A. Poliakov, and S. Raman. 2011. “The Architecture of SciDB”.
In: Proceedings of 2011 SSDBM International Conference on Scientific and Statistical
Database Management. 1–16.

Szalay, A. S. 2008. “The Sloan Digital Sky Survey and Beyond”. SIGMOD Rec. 37(2):
61–66.

The Dask Development Team. 2022. “Dask Arrays”. https://docs.dask.org/en/latest/array.
html. [Online; accessed May 2022].

The FITS Support Office. 2022. “Flexible Image Transport System (FITS)”. https://fits.
gsfc.nasa.gov/fits_home.html. [Online; accessed February 2022].

The GDAL Development Team. 2022. “Geospatial Data Abstraction Library (GDAL)”.
https://gdal.org/. [Online; accessed February 2022].

The HDF5 Group. 2020. “HDF5”. http://www.hdfgroup.org/HDF5/. [Online; accessed
July 2020].

The netCDF Development Team. 2022. “netCDF Operators (NCO)”. http://nco.sourceforge.
net/. [Online; accessed February 2022].

The PostGIS Development Team. 2022. “PostGIS Raster Data Management and Appli-
cations”. http://postgis.net/docs/manual-dev/using_raster_dataman.html. [Online;
accessed May 2022].

The PostgreSQL Development Team. 2020. “PostgreSQL”. http://www.postgresql.org/.
[Online; accessed July 2020].

Thomas, A. and A. Kumar. 2018. “A Comparative Evaluation of Systems for Scalable
Linear Algebra-based Analytics”. PVLDB. 11(13): 2168–2182.

TileDB, Inc. 2022a. “TileDB”. https://github.com/TileDB-Inc. [Online; accessed May
2022].

TileDB, Inc. 2022b. “TileDB Documentation”. https://docs.tiledb.com/. [Online; accessed
May 2022].

Tomlin, C. D. 1990. Geographic Information Systems and Cartographic Modelling. Prentice
Hall.

Torlone, R. 2003. “Multidimensional Databases”. In: IGI Global. Chap. Conceptual Multi-
dimensional Models.

UniData. 2022. “Network Common Data Form (NetCDF)”. https://www.unidata.ucar.edu/
software/netcdf/. [Online; accessed February 2022].

Vasilache, N., O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S. Moses, S. Verdoolaege,
A. Adams, and A. Cohen. 2018. “Tensor Comprehensions: Framework-Agnostic High-
Performance Machine Learning Abstractions”. CoRR. arXiv:1802.04730.

103

https://developer.nvidia.com/cutensor
https://docs.dask.org/en/latest/array.html
https://docs.dask.org/en/latest/array.html
https://fits.gsfc.nasa.gov/fits_home.html
https://fits.gsfc.nasa.gov/fits_home.html
https://gdal.org/
http://www.hdfgroup.org/HDF5/
http://nco.sourceforge.net/
http://nco.sourceforge.net/
http://postgis.net/docs/manual-dev/using_raster_dataman.html
http://www.postgresql.org/
https://github.com/TileDB-Inc
https://docs.tiledb.com/
https://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/

Vassiliadis, P. 1998. “Modeling Multidimensional Databases, Cubes and Cube Operations”.
In: Proceedings of 1998 SSDBM International Conference on Scientific and Statistical
Database Management. 53–62.

Vassiliadis, P. and T. Sellis. 1999. “A Survey of Logical Models for OLAP Databases”. ACM
SIGMOD Record. 28(4): 64–69.

Wang, Y., A. Nandi, and G. Agrawal. 2014. “SAGA: Array Storage as a DB with Support
for Structural Aggregations”. In: Proceedings of 2014 SSDBM International Conference
on Scientific and Statistical Database Management.

Wang, Y., Y. Su, and G. Agrawal. 2013a. “Supporting a Light-Weight Data Manage-
ment Layer over HDF5”. In: Proceedings of 2013 IEEE/ACM CCGRID International
Symposium on Cluster, Cloud and Grid Computing. 335–342.

Wang, Z., Y. Chu, K. Tan, D. Agrawal, A. E. Abbadi, and X. Xu. 2013b. “Scalable Data
Cube Analysis over Big Data”. CoRR. arXiv:1311.5663.

Whitehorn, M., R. Zare, and M. Pasumansky. 2005. Fast Track to MDX. Springer-Verlag.
Widmann, N. and P. Baumann. 1998. “Efficient Execution of Operations in a DBMS for

Multidimensional Arrays”. In: Proceedings of 1998 SSDBM International Conference on
Scientific and Statistical Database Management. 155–165.

Wikipedia. 2020. “Basic Linear Algebra Subprograms”. https://en.wikipedia.org/wiki/
Basic_Linear_Algebra_Subprograms. [Online; accessed September 2020].

Wikipedia. 2022a. “Comparison of OLAP Servers”. https : / / en . wikipedia . org / wiki /
Comparison_of_OLAP_servers. [Online; accessed April 2022].

Wikipedia. 2022b. “Math Kernel Library”. https://en.wikipedia.org/wiki/Math_Kernel_
Library. [Online; accessed March 2022].

Wolf, M. 1989. “More Iteration Space Tiling”. In: Proceedings of 1989 ACM/IEEE SC
Conference on Supercomputing. 655–664.

Wolf, M. E. and M. S. Lam. 1991. “A Data Locality Optimizing Algorithm”. In: Proceedings
of 1991 ACM SIGPLAN PLDI Conference on Programming Language Design and
Implementation. 30–44.

Wu, E., S. Madden, and M. Stonebraker. 2013. “SubZero: A Fine-Grained Lineage System
for Scientific Databases”. In: Proceedings of 2013 IEEE ICDE International Conference
on Data Engineering.

Wu, K., E. J. Otoo, and A. Shoshani. 2006. “Optimizing Bitmap Indices with Efficient
Compression”. ACM Transactions on Database Systems (TODS). 31(1): 1–38.

Xing, H. and G. Agrawal. 2018. “COMPASS: Compact Array Storage with Value Index”.
In: Proceedings of 2018 SSDBM International Conference on Scientific and Statistical
Database Management.

Xing, H. and G. Agrawal. 2019. “Accelerating Array Joining with Integrated Value-Index”.
In: Proceedings of 2019 SSDBM International Conference on Scientific and Statistical
Database Management. 145–156.

104

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/Comparison_of_OLAP_servers
https://en.wikipedia.org/wiki/Comparison_of_OLAP_servers
https://en.wikipedia.org/wiki/Math_Kernel_Library
https://en.wikipedia.org/wiki/Math_Kernel_Library

Xing, H., S. Floratos, S. Blanas, S. Byna, Prabhat, K. Wu, and P. Brown. 2018. “ArrayBridge:
Interweaving Declarative Array Processing in SciDB with Imperative HDF5-Based
Programs”. In: Proceedings of 2018 IEEE ICDE International Conference on Data
Engineering. 977–988.

Yu, L., Y. Shao, and B. Cui. 2015. “Exploiting Matrix Dependency for Efficient Distributed
Matrix Computation”. In: Proceedings of 2015 ACM SIGMOD International Conference
on Management of Data. 93–105.

Yu, Y., M. Tang, W. G. Aref, Q. M. Malluhi, M. M. Abbas, and M. Ouzzani. 2017. “In-
Memory Distributed Matrix Computation Processing and Optimization”. In: Proceedings
of 2017 IEEE ICDE International Conference on Data Engineering. 1047–1058.

Yuan, B., D. Jankov, J. Zou, Y. Tang, D. Bourgeois, and C. Jermaine. 2021. “Tensor
Relational Algebra for Distributed Machine Learning System Design”. PVLDB. 14(8):
1338–1350.

Zaharia, M., M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. 2010. “Spark: Cluster
Computing with Working Sets”. In: Proceedings of 2010 USENIX HotCloud Conference
on Hot Topics in Cloud Computing.

Zalipynis, R. A. R. 2018. “ChronosDB: Distributed, File Based, Geospatial Array DBMS”.
PVLDB. 11(10): 1247–1261.

Zalipynis, R. A. R. 2021. “Array DBMS: Past, Present, and (near) Future”. PVLDB. 14(12):
3186–3189.

Zee, F. van and R. van de Geijn. 2015. “BLIS: A Framework for Rapidly Instantiating
BLAS Functionality”. ACM Transactions on Mathematical Software (TOMS). 41(3).

Zhang, Y., M. Kersten, M. Ivanova, and N. Nes. 2011. “SciQL: Bridging the Gap be-
tween Science and Relational DBMS”. In: Proceedings of 2011 IDEAS Symposium on
International Database Engineering and Applications. 124–133.

Zhao, W., F. Rusu, B. Dong, and K. Wu. 2016. “Similarity Join over Array Data”. In:
Proceedings of 2016 ACM SIGMOD International Conference on Management of Data.
2007–2022.

Zhao, W., F. Rusu, B. Dong, K. Wu, A. Y. Q. Ho, and P. Nugent. 2018. “Distributed
Caching for Processing Raw Arrays”. In: Proceedings of 2018 SSDBM International
Conference on Scientific and Statistical Database Management.

Zhao, W., F. Rusu, B. Dong, K. Wu, and P. Nugent. 2017. “Incremental View Maintenance
over Array Data”. In: Proceedings of 2017 ACM SIGMOD International Conference on
Management of Data. 139–154.

Zhao, Y., P. M. Deshpande, and J. F. Naughton. 1997. “An Array-Based Algorithm for
Simultaneous Multidimensional Aggregates”. In: Proceedings of 1997 ACM SIGMOD
International Conference on Management of Data. 159–170.

105

	INTRODUCTION
	MULTIDIMENSIONAL ARRAYS
	Arrays
	Array Types
	Array Dimensions
	Arrays and Relations
	Arrays and Tensors
	Arrays and Data Cubes
	Summary

	MULTIDIMENSIONAL ARRAY OPERATIONS
	Array Operations in Scientific Applications
	Relational Operations
	Tensor Operations
	Data Cube Operations
	Summary

	ALGEBRAS AND QUERY LANGUAGES FOR MULTIDIMENSIONAL ARRAYS
	Array Query Language (AQL)
	Array Manipulation Language (AML)
	Relational Array Mapping (RAM)
	RasDaMan Query Language (RasQL)
	Science Query Language (SciQL)
	SciDB Query Languages
	Algebras for Domain Specific Data
	Relational Algebra
	Tensor Algebras
	Data Cube Algebras
	Summary

	MULTIDIMENSIONAL ARRAY STORAGE
	Optimal Chunk Size
	Chunking Strategies
	Mapping Cells to Chunks
	Chunk Organization
	Mapping Chunks to Storage
	Relational Chunking
	Tensor Chunking
	Data Cube Chunking
	Summary

	MULTIDIMENSIONAL ARRAY PROCESSING
	Array Processing Paradigms
	Array Operators
	Advanced Array Processing Techniques
	In-situ Array Processing
	Relational Array Processing
	Tensor Processing
	Data Cube Processing
	Summary

	MULTIDIMENSIONAL ARRAY SYSTEMS
	Array Databases
	Relational Array Systems
	Tensor Systems
	Data Cube Systems
	Summary

	FUTURE DIRECTIONS
	References

