Solid State Drive (SSD)

Solid State Drive (SSD): The data is stored on interconnected flash memory chips. The chips can be installed on a PCI Express (PCIe) card. (I/O Bandwidth: 3254.94 MB/s)

Hard Disk Drive (HDD): A metal platter with a magnetic coating that stores your data, a read/write head on an arm accesses the data while the platters are spinning. (I/O Bandwidth: 907.75 MB/s)

Benefits of the SSD:
- Super low latency: Zero seeking time
- Very fast read and write speeds

Data Partitioning

Chunks are both the I/O and processing units.
- **Structure:** A chunk is composed of columns connected by address pointers.
- **Metadata:** Each chunk contains the minimum and maximum values for each column.

Storage System Architecture

Pull Based Model
- The computation drives all data movement
- No natural way to coordinate data requests
- Lose CPU cycles due to memory access latency

Push Based Model
- Data flow drives the computation
- Redundant memory access since many data are dropped
- Endless memory access until all requests are satisfied

Asynchronous Multi-Threading

- The schema and chunk list are generated from metadata and passed as input to scheduler.
- Multiple worker threads are assigned with messages and sent to execution units.

Caching

- Cache layer stores chunk-column for the upcoming queries to reduce disk I/O.
- Cache is organized like a 2D array: [ChunkID][ColID].
- The cache capacity is maintained by an eviction mechanism.

Push Based Prefetching Model

- Batch queries
- Merge requests
- Read without interval

Results

Loading Size Adjustment for SSD

I/O Requests

Execution Time with HD

Last Reading Request with HD

Execution Time with SSD

Last Reading Request with SSD

Contributions

- Design a cache layer to take advantage of the high bandwidth of SSD and minimize the amount of I/O access.
- Introduce a push-based prefetching model that can dynamically read chunks in an optimal order to maximize the I/O throughput.
- The push-based prefetching mechanism allows multiple queries merge the requests for the same chunk, in order to share the I/O access.
- The push-based prefetching mechanism reduces the total read time of batch queries processing.