
Scalable HOGWILD! for Big Models

Chengjie Qin
University of California Merced
cqin3@ucmerced.edu

Martin Torres
University of California Merced
mtorres58@ucmerced.edu

Florin Rusu
University of California Merced
frusu@ucmerced.edu

Abstract

Existing data analytics systems have approached predictive model training exclu-
sively from a data-parallel perspective. Data examples are partitioned to multi-
ple workers and training is executed concurrently over different partitions, under
various synchronization policies that emphasize speedup or convergence. Since
models with millions and even billions of features become increasingly common
nowadays, model management becomes an equally important task for effective
training. In this paper, we present a general framework for parallelizing stochas-
tic optimization algorithms over massive models that cannot fit in memory. We
extend the lock-free HOGWILD!-family of algorithms to disk-resident models by
vertically partitioning the model offline and asynchronously updating the result-
ing partitions online. Unlike HOGWILD!, concurrent requests to the common
model are minimized by a preemptive push-based sharing mechanism that re-
duces both the number of disk accesses as well as the cache coherency messages
between workers. Extensive experimental results for three widespread analytics
tasks on real and synthetic datasets show that the proposed framework achieves
similar convergence to HOGWILD!, while being the only scalable solution to
disk-resident models.

1 Big Model Problem

Due to the explosive growth in data acquisition, the current trend is to devise prediction models
with an ever-increasing number of features, i.e., big models. For example, Google has reported
models with billions of features for predicting ad click-through rates as early as 2013. Big models
also appear in recommender systems. Spotify applies Low-rank Matrix Factorization (LMF) for 24
million users and 20 million songs, which leads to 4.4 billion features at a relatively small rank of
100.

Since HOGWILD! is an in-memory algorithm, it cannot handle these big models – models that go
beyond the available memory of the system – directly. Parameter Server is an indirect approach
that resorts to distributed shared memory. The big model is partitioned across several servers, with
each server storing a sufficiently small model partition that fits in its local memory. Model updates
are processed in two HOGWILD! stages. Each client copies a portion of the model over which it
executes HOGWILD! on its training data—training data are partitioned across clients. The updated
model is then pushed to the servers asynchronously, following the HOGWILD! paradigm. In addi-
tion to the complexity incurred by model partitioning and replication across servers, the limitations
of Parameter Server are the expensive price in hardware and network traffic.

1

2 Scalable HOGWILD!

In this work, we investigate parallel stochastic optimization methods over big models that cannot
fit in memory. Specifically, we focus on designing a scalable HOGWILD! algorithm. Our setting
is a single multi-core server with attached storage (Figure 1). There is a worker thread associated
with each core in the system. The training data as well as the model are stored on disk and moved
into memory only when accessed. Training data are partitioned into partitions that are accessed and
processed as a unit. Several partitions are processed concurrently by multiple worker threads—data-
parallel processing. While access to the training data follows a well-behaved sequential pattern, the
access to the model is unpredictable and random. Moreover, there are many model accesses for each
training example—the number of non-zero entries in the example. In many cases, this number is
several orders of magnitude larger than the number of examples. Thus, the challenge in handling
big models is how to efficiently schedule access to the model. In the worst case, each model access
may require a disk access. This condition is worsened in data-parallel processing by the fact that
multiple model accesses are made concurrently by the worker threads—model-parallel processing.

We design a scalable model and data-parallel framework for parallelizing stochastic optimization
algorithms over big models. At a high-level, our approach targets the main source that impacts
performance – the massive number of concurrent model accesses – with two classical database
processing techniques—vertical partitioning and model access sharing.

 1 2 3 4

1
5 6

1

3 9
4

5

2

3 16
1 9 7

2 8 5

4 63

3 84
1

Disk

(x⃗12
)X

W

 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4

Partition 1 Partition 2

Model Index:

1.9

Model Value:

1.2 1.0 0.65 0.7 0.82

1 2 3 4 5 6

1 2 3 4 5 6

Data Index:

1.9 1.2 1.0 0.65 0.7 0.82

3

Zero Value Indices

Correlated Indices

Non-Zero Value Indices w⃗

 1 2 3 4 5 6

2 3 5
5 1 1
9 2

4 7 4

 1 2 3 4 5 6

Partition 3

(x⃗31
)

(x⃗33
)

(x⃗32
)

(x⃗11
)

(x⃗13
)

(x⃗14
)

(x⃗21
)

(x⃗24
)

(x⃗23
)

6

1

(x⃗34
)

(x⃗22
)

Figure 1: High-level approach of the scalable HOGWILD! framework for big models.

The model is vertically partitioned offline based on the concept of “feature occurrence” – we say a
feature “occurs” when it has a non-zero value in a training example – such that features that co-occur
together require a single model access. Feature co-occurrence is a common characteristic of big
models in many analytics tasks. It is important to notice that feature co-occurrence is fundamentally
different from the feature correlation that standard feature engineering processes try to eliminate.
In feature engineering, correlation between features is measured by coefficients such as Pearson’s
coefficient instead of co-occurrence. In this work, we are interested exclusively in what features
co-appear together.

During online training, access sharing is maximized at several stages in the processing hierarchy
in order to reduce the number of disk-level model accesses. The data examples inside a chunk are
logically partitioned according to the model partitions generated offline. The goal of this stage is to
cluster together accesses to model features even across examples—vertical partitioning achieves this
only for the features that co-occur in the same example. In order to guarantee that access sharing
occurs across partitions, we introduce a novel push-based mechanism to enforce sharing by vertical
traversals of the example data and partial dot-product materialization. Workers preemptively push
the features they acquire to all the other threads asynchronously.

Our contributions can be summarized as follows. We design a scalable model and data-parallel
framework for parallelizing stochastic optimization algorithms over big models. We formalize
model partitioning as vertical partitioning and design a scalable frequency-based model vertical par-
titioning algorithm. We devise an asynchronous method to traverse vertically the training examples
in all the data partitions according to the model partitions generated offline. We design a push-based
model sharing mechanism for incremental gradient computation based on partial dot-products.

2

	Big Model Problem
	Scalable HOGWILD!

