
Recent Developments in GLADE
Abdur Rafay, Abhineet Dubey, Zhiyi Huang, Xin Zhang, Florin Rusu

Electrical Engineering and Computer Science, University of California Merced
arafay, adubey, zhuang29, xzhang45, frusu@ucmerced.edu

System Architecture
GLADE is a parallel Big Data processing system

Code
Generator

Comm
Manager

Coordinator

Query
Manager

Query
Manager

Code
Loader

Comm
Manager

Node
1

DataPath
Exec. Engine

Storage
Manager

GLA
Manager

GLA
Manager

Query
Manager

Code
Loader

Comm
Manager

Node
n

DataPath
Exec. Engine

Storage
Manager

GLA
Manager

...

Catalog

Shared-Nothing
supports scale-out VOLUME

•Massive heterogeneous data: data partitioning; parallel
execution; relational and array data model

•Extensible complex analytics: user code executed inside the
engine; enhanced UDA interface

•Architecture independence: multi-thread (shared memory and
shared disk) and inter-node (shared nothing) parallelism

Execution Engine

Chunk Router

Thread Pool

Storage Manager Execution Plan

Query
1

4

3

2

chunks

chunk

5
● chunk
● work unit

result

chunk
5

waypointsVELOCITY

•The storage manager is responsible for organizing data,
reading, and delivering the data to the execution engine.

•Execution Engine implements a series of relational operators
like SELECT, PROJECT, JOIN, AGGREGATE and a special
operator for the execution of arbitrary user code specified using
the GLA interface.

External File Support

External File

Create External Table

Create Table
Bulk Loader
(Load Table)

SCANRAW

SQL Query
ex: select query

SQL Query
ex: select query

Queries can be run without converting entire file into binary storage format

Bulk Loader loads the file data into table and query is run on this table

JSON or CSV

Tokenization and parsing of raw data
using multiple threads

SCANRAW Architecture

Read

Tokenize
Parse

Raw File

WriteTokenize

Tokenize

Parse

Parse

Execution Engine

DB

Text
Chunks
Buffer

Binary
Chunks
Buffer

Position
Buffer

Parse

Parse

Parse

Thread pool

Sketch

Sketch

Sketch

Install Script

Create metadata
& tables

Generate
maker.out

Install

packages

Compile
System
modules

Multi-Query Optimization
Structure of Query Planner

User

(Issue queries)

Query Parser

Parser: LEX/YACC

Query Optimizer

Cost based query optimization

Table cardinalities estimated by Flajolet - Martin algorithm

Generate intermediate plan with least cost and maximum

workload sharing, satisfying most queries in a single MQ

Iterate the plan on all unsatisfied queries in MQ

Additional JOINS are added to generate a graph

Query Compiler

GLADE plans are further converted to execution plan to run

over the nodes (Generation of GRAPH and WAYPOINT

files)

Output: Parse tree

(Attributes, Table names,

Query names for MQ)

Output: GLADE plans

(Simple tree for a single query and a graph

in the case of MQ)

Output: Execution plans

(Graph and Waypoint files for both type of queries)

SQL/MULTIQUERY

Query Planner

MULTIQUERY Example

MULTIQUERY

Query1:

SELECT c_acctbal

FROM customer, orders

WHERE c_custkey = o_custkey AND

 o_totalprice < 10000

Query2:

SELECT c_name

FROM lineitem, orders, customer, nation, region

WHERE l_orderkey = o_orderkey AND

 o_custkey = c_custkey AND

 c_nationkey = n_nationkey AND

 n_regionkey = r_regionkey AND

 r_regionkey = 1 AND o_orderkey < 10000

Query3:

SELECT n_name

FROM nation, region

WHERE n_regionkey = r_regionkey

Query4:

SELECT l_discount

FROM customer, orders, lineitem

WHERE c_custkey = o_custkey AND

 o_orderkey = l_orderkey AND

 c_name = 'Customer#000070919' AND

 l_quantity > 30 AND l_discount < 0.03

END

Multi-Query Planner

lineitem

orders

customer

nation region

⋈

⋈

⋈

⋈

⋈

⋈

Query2

Query1

Query4

Query3

Queries initially satisfied by the intermediate plan generated.

Queries satisfied after the iteration step is performed on the

intermediate plan, after the addition of more JOIN operators.

Abdur Rafay, Abhineet Dubey, Zhiyi Huang, Xin Zhang, Florin Rusu (EECS, University of California Merced)

