
Database Parameter Server

Chengjie Qin
University of California, Merced
cqin3@ucmerced.edu

Florin Rusu
University of California, Merced
frusu@ucmerced.edu

Abstract

In this work, we propose Database Parameter Server, a database-centric solution
to handle big models. The main idea is to offload the model to secondary storage
and leverage database techniques for efficient model training. The model is rep-
resented as a table rather than as an array attribute. This distinction in model rep-
resentation changes fundamentally how in-database analytics is carried out. By a
thorough analysis of popular tasks used in practice, we identify dot-product as the
most critical operator in gradient-based model training. Our main contribution is
a parallel dot-product physical database operator optimized to execute secondary
storage dot-products effectively. Compared to standard database join operators,
the proposed dot-product operator is able to produce results in both blocking and
non-blocking fashion, which is required for batch and online training, respectively.
In this paper, we discuss the design decisions and several optimizations.

1 Big Models

The model size in Big Data analytics tasks has grown extensively over the years, due to the wide
application of models whose size grows proportionally to the number of users, e.g., recommendation
systems based on low-rank matrix factorization models. This big model trend has stimulated the
creation of specialized training systems such as Parameter Sever which partition the model across
the memory of an entire array of servers. These distributed memory solutions do not make adequate
use of system resources, e.g., they do not use local secondary storage, and they incur a prohibitive
cost—affordable only to large corporations. On the database front, the existing analytics solutions,
e.g., MADlib, Bismarck, and GLADE, fail to support big models due to limitations in their original
design—while the training data can be stored and processed from secondary storage, the model is
always assumed to fit in memory. The solution we propose – Database Parameter Server – is an
in-database analytics platform that can process both training data and models stored on secondary
storage, e.g., disk and SSD.

2 Model Representation

Existing in-database analytics solutions use two tables to store the training data and
model: Data(dimension INTEGER[], value DOUBLE[], label INTEGER) and
Model(model DOUBLE[]), respectively. Table Data stores the value corresponding to each
non-empty dimension in the feature vector and the label for every point in the dataset. The explicit
representation of the dimensions is required since the data are sparse—there are only a few dimen-
sions with non-zero values in each point. The model is stored in table Model as a single tuple with
array type. However, model is a dense array with an entry corresponding to each dimension in the
feature vector. This is the reason why the dimensions do not have to be represented explicitly any-
more. While this solution works adequately for models with a relatively large number of features,
e.g., thousands in PostgreSQL, it fails to scale to big models.

1



In this work, we propose to represent the model with a relational formalism. The Model table is
represented as Model(dimension INTEGER, value DOUBLE). In this representation, each
dimension in the model ends-up being a tuple in the Model table—stored on secondary storage.
Having this relational representation allows for arbitrary large models since databases are optimized
for secondary storage processing. This change in model representation, however, disables existing
User-Defined Function (UDF) and User-Defined Aggregate (UDA) computation methodology to
perform gradient computation and model updates. This is because UDF and UDA can process only
a single tuple at a time. They cannot work over a table as a whole. We propose novel methods to
efficiently support these operations in the new model representation.

3 Dot-Product Operator

After carefully examining several popular models, we find that – regardless of what numerical
method is used for training – the most data-intensive operation is the dot-product between a point
in the training dataset and the model. For example, the gradient computation of a logistic regres-
sion model in Eq. (1) requires dot-products between the model ~w and every point ~xi in the training
dataset. ~yi is the label associated with the point. When the model fits in memory, this quantity
can be easily computed by calling a customized dot-product UDF which takes the point dimension
and value arrays, and the model array as parameters, e.g., dot-product(Data.dimension,
Data.value, Model.model). However, this is impossible for the new representation in
which the model is decomposed across several tuples processed independently.

∑
i

e−yi ~w·~xi

1 + e−yi ~w·~xi
(−yi · ~xi) (1)

We design and implement a novel parallel dot-product physical database operator targeted specifi-
cally at in-database big model analytics. The operator takes advantage of the fact that the training
data are sparse, while the model is dense. It works efficiently with big models and is able to produce
results in a non-blocking fashion, which allows for use in online learning algorithms.

Dot-Product

I/O requests I/O requests 

Reorder

DataModel

(a)

Non-zero dimension Zero dimension

Reorder

(b)

Figure 1: (a) Dot-Product operator. (b) Reorder I/O requests to Data table.

The architecture of the dot-product operator is depicted in Figure 1a. Every tuple in Data has to
access the non-zero dimensions of the model. Since the model does not fit entirely in memory,
this requires secondary storage access. The access pattern is determined entirely by the non-zero
dimensions in each training point. If the points are processed in their original order, this has the
potential to result in inefficient access to the model dimensions. The most important feature of the
proposed dot-product operator is that it reorders the data points in batches to optimize the secondary
storage accesses to the model. This process is depicted in Figure 1b. Since computing the optimal
Data order is NP-complete, we use locality sensitive hashing (LSH) to achieve a good-enough
order in a short amount of time.

Our main contributions can be summarized as follows. We propose a novel model representation
for big model in-database analytics. We design and implement an in-database dot-product operator
for the new model representation. We propose several optimizations to effectively reduce the I/O
overhead over massive dot-products.

2


	Big Models
	Model Representation
	Dot-Product Operator

