
Lightning-Fast, Dirt-Cheap Parallel Stochastic
Gradient Descent for Big Data in GLADE

Chengjie Qin
University of California, Merced
cqin3@ucmerced.edu

Florin Rusu
University of California, Merced
frusu@ucmerced.edu

Abstract

Stochastic gradient descent is a general technique to solve a large class of con-
vex optimization problems arising in many machine learning tasks. GLADE is a
parallel infrastructure for Big Data Analytics providing a generic task specifica-
tion interface. We present a scalable and efficient parallel solution for stochastic
gradient descent in GLADE. Empirical evidence confirms that our solution is lim-
ited only by the physical hardware characteristics, uses effectively the available
resources, and achieves maximum scalability. As a concrete example, we are able
to find the optimal low-rank factorization of a sparse 1 million X 1 million matrix
with 10 billion non-empty cells in 80 seconds on a $30,000 9-node cluster.

1 Parallel stochastic gradient descent

Consider the following optimization problem with a linearly separable objective function:
minw∈Rd

∑N
i=1 f (w, zi) in which a d-dimensional vector w ∈ Rd, d ≥ 1 has to be found such

that the objective function is minimized. The constants zi, 1 ≤ i ≤ N correspond to tuples in a
database table. Essentially, each term in the objective function corresponding to a tuple zi can be
viewed as a separate function fi(w) = f (w, zi).

Gradient descent is an iterative method. The main idea is to start from an arbitrary vector w(0) and
then to determine iteratively new vectors w(k+1) such that the objective function at each iteration
decreases, i.e., f(w(k+1)) > f(w(k)). w(k+1) is determined by moving in the opposite direction
to the gradient or subgradient of function f . Formally, this can be written as: w(k+1) = w(k) −
αk∇fη(k)

(
w(k)

)
where αk ≥ 0 is the step size and∇fη(k)(w) is the approximation to the gradient

∇f(w) based on a single term fη(k)(w) at iteration k, respectively. Taking steps based on the
tuple-based approximation instead of the actual gradient is the characteristic property of stochastic
gradient descent (SGD). Typically, αk → 0 as k →∞ and η(k) ∈ {1, . . . , N} represents a random
permutation, i.e., all fi have to be considered before any term is repeated. Convergence to a global
optimal solution is theoretically guaranteed when

∑N
i=1 fi(w) is convex.

In parallel SGD, the tuples zi, 1 ≤ i ≤ N are partitioned into multiple groups. A partial model – the
vector w – is computed independently for each data partition. The optimal model is then obtained
by merging the partial models together. Averaging is the standard method to merge models in
parallel SGD computation. The components of the partialw vectors are pair-wise averaged, possibly
weighted on the number of examples, in order to obtain the optimal w vector. An alternative is to
average the gradients instead of the models and then to compute w based on the resulting gradient.

2 GLADE

GLADE is a parallel data processing system executing any computation specified as a Generalized
Linear Aggregate (GLA) using a merge-oriented strategy supported by a push-based storage man-

1

ager that drives the execution. Essentially, GLADE provides an infrastructure abstraction for parallel
processing that decouples the algorithm from the runtime execution. The algorithm has to be speci-
fied in terms of a clean interface, while the runtime takes care of all the execution details including
data management, memory management, and scheduling. Figure 1 depicts the stages of the GLADE
execution strategy expressed in terms of the GLA interface abstraction. The GLA interface extends
the common UDAs implemented in every major RDBMS to parallel chunk-at-a-time or vectorized
execution. Intuitively, GLAs are objects corresponding to the state of the aggregate upon which the
methods in the GLA interface are invoked following a well-defined pattern.

ResultRemote
Merge

Term

Accumulate
Begin
Chunk

End
Chunk

Local
Term

Accumulate
Begin
Chunk

End
Chunk

Local
Merge

Chunk1

Chunkr

GLA
1

Node1

GLA
2

GLA
k GLA

GLA
i

GLA
j

GLA
1

GLA

Accumulate
Begin
Chunk

End
Chunk

Local
Term

Accumulate
Begin
Chunk

End
Chunk

Local
Merge

Chunk1

Chunks

GLA
1

GLA
2

GLA
l GLA

GLA
p

GLA
q

GLA
n

Noden

Figure 1: GLADE architecture: chunk-at-a-time merge-oriented parallel processing.

3 SGD in GLADE

Two GLAs are required to implement SGD in GLADE—one for computing the optimal model
(SGD GLA) and one for computing the objective function (Loss GLA). All the action happens
in SGD GLA where the optimal model is computed. The state of SGD GLA contains the model
w(k), initialized either with the original starting point w(0) for the first iteration or with the model
computed at the previous iteration w(k−1). For each tuple in the chunk, the approximation to the
gradient∇f(w) is computed and the model is updated accordingly in Accumulate. Since multiple
chunks are processed in parallel, Merge is called after all the chunks are processed to combine
together the partial models in the resulting GLAs. The two versions of Merge – local and remote
– allow for different merging strategies. Once the complete model is computed, it is post-processed
for the subsequent iteration in Terminate.

The order in which tuples are processed to update the model in Accumulate determines the SGD
convergence rate. Typically, random orders not correlated with the tuple values provide better con-
vergence. In GLADE, multiple levels of randomization are embedded in the execution strategy.
Randomization across processing nodes is realized at data loading. It is a one time process that
randomly partitions data across nodes. The order in which each data partition is traversed is non-
deterministic from one iteration to another due to the intrinsic execution mechanism. Even more, the
order is also quasi-random and impossible to determine prior to runtime. As a result, randomization
is embedded implicitly in GLADE and it does not require special consideration.

Scalable I/O-Bound Parallel Incremental Gradient Descent for Big Data Analytics in GLADE by
Qin and Rusu contains a more detailed presentation of the issues encountered when implementing
SGD in GLADE. It also provides experimental results that support the claim made in the abstract.
We argue that the SGD implementation in GLADE is the fastest available and it is the only scalable
to the largest datasets without breaking the bank.

2

	Parallel stochastic gradient descent
	GLADE
	SGD in GLADE

