
GLADE: A Highly-Scalable Architecture-Independent Framework for
Efficient Analytics

FLORIN RUSU
Email: frusu@ucmerced.edu, Web: http://faculty.ucmerced.edu/frusu

GLA – Generalized Linear Aggregates

Requirements
1. Natural to specify and implement. The main idea is to provide a very clean abstraction to the user with
little or no unnecessary details.

2. Declarative with respect to parallelism/distribution. The user should not be burdened with any decisions
on parallel execution, including synchronization, amount of parallelism, communication between various
nodes.

3. Independence of data representation and I/O. The user should not be burdened with details of how data
is made available (disk, memory, cache, etc.), and how data is represented. From user’s point of view the
data should look like simple tuples but the framework should have the freedom to select more suitable
representations.

4. Allow natural non-relational behavior. A major critique of relational databases is that they are too rigid.
Everything must be a tuple or a relation. As long as GLAs are not required to feed data into other operators,
it is desirable to allow them to produce non-relational results.

5. Have hand-written code performance. Specifically, we want the GLAs to allow very efficient computation,
comparable with the best code that can be written. Ideally, no performance penalty is incurred by this
abstraction.

Abstract Data Type (ADT)
State

An implicit assumption is that the state is manageable in size. An explicit assumption is that the part of
the state that is writable is private. This is crucial since we want to unburden the user from the use of
synchronization primitives.

Core API

• Initialize. This acts as a constructor and initializes the state to reflect the fact that no data has been
incorporated.

• AddItem(Tuple t). A function that updates the state with the data in one tuple. This function has to be
commutative. In other words, the same state should be obtained irrespective of the order of incorporating
the tuples.

• AddState(GLA other). A function that incorporates the other state into the current state. The other
GLA is destroyed at the end of the operation. The operation has to be equivalent to performing AddItem
for all the tuples incorporated in other state. The operation is required to be commutative and associative.
This is effectively a way to merge two GLAs into one.

Migration API

• Serialize specifies how the state of the GLA can be transformed into a compact binary representation.
• Deserialize specifies how to re-construct the GLA from the binary representation.

Result Extraction API

The GLAs are allowed to have any extraction API if the user code is the final destination. If the GLAs are
used in contexts where a single value is needed, the method Finalize is defined. If multiple tuples are allowed,
e.g., when the GLA result is piped into other operators, an iterator interface is supported.

Formalization

(GLA) = (D,S,F ,+,⊕, S0)
• D is the universe of tuples and defines the type of tuple the GLA can process.
• S is a set of possible states; informally, the states are data that the GLA has to maintain.
• F is a function from states to results; this function allows extraction of results from the GLA.
• + : S ⋆D → S allows tuples to be incorporated into state.
• ⊕ : S ⋆ S → S allows combination of states.
• S0 is the null element with respect to ⊕.
• + and ⊕ are commutative and associative. The commutativity and associativity of the two operations is
crucial for the correctness of the system.

The connection between the formalization and the GLA API is:
• S0 is the state created by Initialize
• + is implemented by AddItem
• ⊕ is implemented by AddState
• F(S) corresponds to Finalize

Higher-Order Functions
GLA Concatenation: Given G1, . . . ,Gn, n GLA types, the concatenation G1|| . . . ||Gn is a GLA that has
as state the concatenation of the states of the n parts, the + and ⊕ operations the successive application of
the corresponding +s and ⊕s for each GLA. It can be easily seen that the resulting concatenation is indeed a
GLA since the resulting + and ⊕ are commutative and associative.

Filter+GLA: Given a GLA G and a filtering condition σ(t), a new GLA G′ that incorporates only tuples
that satisfy the predicate σ. Operation + for the new GLA performs the old + if σ(t) is true and nothing
otherwise. It is easy to see that this results in a commutative +. Operation ⊕ is unchanged.

Transform+GLA: A similar idea to filtering is to allow arbitrary transformations of the tuple before passing
it as an argument to the + function. As long as the transformation is a deterministic function from tuples to
sets of tuples (without side effects or memory), the new operation +, that first applies the transformation and
then calls the old + for each resulting tuple, is commutative.

Join+GLA: Given a GLA G and a tuple set T , a new GLA G′ that works on tuples formed by joining
input tuples with tuples from T can be obtained by defining the new + as the joining operation followed by
the old +. Operation ⊕ remains the same. The hash table that allows the efficient joining can be sent as the
constant state to the GLA. Since tuples can be joined independently, the new + is commutative.

Generic GROUP BY: Given a grouping function g(t) and a GLA G, a GROUP BY GLA can be obtained by
setting the state as a mapping between groups and states of GLAs of type G. Operation + first determines the
group using g(t) and looks for the corresponding GLA Gg(t). If no such GLA exists, it creates one (using S0 of
G). The state of the new or existing GLA is updated using its + operation and tuple t. Operation ⊕ traverses
the groups of the second GROUP BY GLA while looking up for the corresponding group in the first GLA. The
two sub-GLAs are merged using their ⊕ operation.

GLADE – GLA Distributed Engine

�����

���

����� �����

��� ���

���

���
	

���������	�
��

������������

���������������

��������	�
��

��

	

�����

���

����� �����

��� ���

���

���
�

���������	�
��

������������

���������������

��������	�
��

��

�

�����

���

����� �����

��� ���

���

���
�

���������	�
��

������������

���������������

����������	�
��

��
�

���
	

���
�

���

���������������

�������	�
��

DataPath
1. When a new query arrives in the system, the code to be executed is first generated, then compiled and
loaded into the execution engine. Essentially, the waypoints are configured with the code to execute for the
new query.

2. Once the storage manager starts to produce chunks for the new query, they are routed to waypoints based
on the query execution plan.

3. If there are available work units in the system, a chunk and the task selected by its current waypoint are
sent to a work unit for execution.

4. When the work unit finishes a task, it is returned to the pool and the chunk is routed to the next waypoint.

Shared-Memory
1. When a chunk needs to be pro-
cessed, the GLA Waypoint extracts
a GLA state from the list and passes
it together with the chunk to a work
unit. The task executed by the work
unit is to call AddItem for each tu-
ple such that the GLA is updated
with all the tuples in the chunk. If
no GLA state is passed with the
task, a new GLA is created and ini-
tialized (Initialize) inside the task,
such that a GLA is always sent back
to the GLA Waypoint.

2. When all the chunks are processed,
the list of GLA states has to be
merged. Notice that the maximum
number of GLA states that can be
created is bounded by the number
of work units in the system. The
merging of two GLA states is done
by another task that calls AddState
on the two states.

3. In the end, Finalize is called on the
last state inside another task sub-
mitted to a work unit.

Shared-Nothing
1. The coordinator generates the code to be executed at each way-
point in the DataPath execution plan. A single execution plan
is used for all the workers.

2. The coordinator creates an aggregation tree connecting all the
workers. The tree is used for in-network aggregation of the
GLAs.

3. The execution plan, the code, and the aggregation tree informa-
tion are broadcasted to all the workers.

4. Once the worker configures itself with the execution plan and
loads the code, it starts to compute the GLA for its local data.
This happens exactly in the same manner as for GLADE Shared-
Memory.

5. When a worker completes the computation of the local GLA,
it first communicates this to the coordinator—the coordinator
uses this information to monitor how the execution evolves. If
the worker is a leaf, it sends the serialized GLA to its parent in
the aggregation tree immediately.

6. A non-leaf node has one more step to execute. It needs to
aggregate the local GLA with the GLAs of its children. For
this, it first deserializes the external GLAs and then executes
another round of AddState functions. In the end, it sends the
combined GLA to the parent.

7. The worker at the root of the aggregation tree calls the function
Finalize before sending the final GLA to the coordinator who
passes it further to the client who sent the job.

Code Snippet

template<class ElemType, class ResultType>
class GLA Average : public GLA {
private:

// this is the state data for the GLA
unsigned long count;
ResultType sum;
ResultType result;
bool done;

public:
GLA Average() : count(0), sum(0),
result(0), done(false) { }
GLA Average(unsigned long count,
ResultType sum) :
count(count), sum(sum),
result(0), done(false) { }

void AddItem(ElemType& val) {
count += 1;
sum += val;

}
void AddState(GLA Average& other) {
count += other.count;
sum += other.sum;

}

void Finalize() {
if (count > 0) {
result = sum / count;

}
done = false;

}
bool GetNext(ResultType& where) {
if (done == false) {
where = result;
done = true;
return true;

}
else {
return false;

}
}
ARCHIVER SIMPLE DEFINITION()

};

Experimental Results

Data: 155 million tuples, 20GB

CREATE TABLE UserVisits (
sourceIP VARCHAR(16),
destURL VARCHAR(100),
visitDate DATE,
adRevenue FLOAT,
userAgent VARCHAR(64),
countryCode VARCHAR(3),
languageCode VARCHAR(6),
searchWord VARCHAR(32),
duration INT);

Server: 48 AMD Opteron cores at 1.9GHz; 256GB memory;
76 hard-disks connected through 3 RAID controllers for a total
maximum bandwidth of 3GB/s; Ubuntu 10.04 SMP Server with
kernel version 2.6.32-26; one instance of UserVisits (20GB) is
loaded on each disk for a total maximum of 1.3TB.

Cluster: 17 nodes; 4 AMD Opteron cores at 2.4GHz; 4GB
memory; single disk with a bandwidth of 50MB/s; Ubuntu 7.4
Server with kernel version 2.6.20-16; one instance of UserVisits
(20GB) on each node; coordinator runs on a separate node.

Average: computes the average time a user spends on a web page

� � � � �� �� �� ��

�

�

��

��

��

��

��

��

��

	
����

�����������

�
��

�
��
�
�
�
�
�
�
�
�

� � � � ��

�

�

�

��

��

��

��	
��	

�����������	�

�
��

	
��
�
	
�
�
�
�
�
�

Group By: computes the ad revenue generated by a user across all the visited web pages

� � � � �� �� �� ��

�

��

��

��

��

���

���

���

�	
����

�

������

�
��

�
�
�
�
�

�
�
�
�

� � � � ��

�

��

��

��

��

��

��

	
�����

��������������

�
��

�
��
�
�
�
�
�
�
�
�

K-Means: calculates the five most representative (5 centers) ad revenues

� � � � �� �� �� ��

�

�

��

��

��

��

��

��

	
�����������������������������

�����������

�
��

�
�
�
�
!
�
�
�
�
"

� � � � ��

�

�

�

��

��

��

��	
�����
���
����
��
����
������

������������

�
��

��

�
�
�
�

Top-K: determines the users who generated the largest one hundred (top-100) ad revenues on a single visit

� � � � �� �� �� ��

�

��

��

��

��

��

��

	
��

�
�
�������

	
��

�
��
�
�
�

�
�
�
�

� � � � ��

�

�

��

��

��

��

��

��

	
��

�
�
����������

	
��

�
��
�
�
�

�
�
�
�

