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Q-error – the standard metric for quantifying the error of individual cardinality estimates – has been widely

adopted as a surrogate for query plan optimality in recent work on learning-based cardinality estimation.

However, the only result connecting Q-error with plan optimality is an upper-bound on the cost of the worst

possible query plan computed from a set of cardinality estimates—there is no connection between Q-error and

the real plans generated by standard query optimizers. Therefore, in order to identify sub-optimal query plans,

we propose a learning-based method having as its main feature a novel measure called L1-error. Similar to

Q-error, L1-error requires complete knowledge of true cardinalities and estimates for all the sub-plans of a

query plan. Unlike Q-error, which considers the estimates independently, L1-error is defined as a permutation

distance between true cardinalities and estimates for all the sub-plans having the same number of joins.

Moreover, L1-error takes into account errors relative to the magnitude of their cardinalities and gives larger

weight to small multi-way joins. Our experimental results confirm that, when L1-error is integrated into a

standard decision tree classifier, it leads to the accurate identification of sub-optimal plans across four different

benchmarks. This accuracy can be further improved by combining L1-error with Q-error into a composite

feature that can be computed without overhead from the same data.
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1 INTRODUCTION
Q-error is the standard metric for quantifying the error of individual cardinality estimates [33]. It

is defined formally as the maximum quotient between the estimated and true cardinalities, thereby

equally penalizing both overestimations and underestimations. Q-error is widely adopted in recent

work on learning-based cardinality estimation methods [4, 8, 19, 21, 44] as a surrogate for the

quality of query execution plans, which is measured by P-error—the ratio between the cost of the

selected and optimal query plans [11]. However, the only theoretical result connecting the two

is a worst-case upper-bound [33] stating that the cost of a query plan computed with estimates

having a maximum Q-error of𝑄 is at most𝑄4
times larger than the cost of the plan computed with

true cardinalities—which is assumed to be optimal. Given only estimated and true cardinalities, the
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bound provides a rough idea of how bad the worst possible query plan could be. Then, it is obvious

that for small values of the Q-error, the gap between the worst and optimal plan is relatively small.

Since real query optimizers aim to identify the optimal plan – not the worst – we investigate

how useful is the Q-error in assessing the optimality of a query plan based solely on cardinality

estimates. For this, we compute the optimal plan using true cardinalities while the database plan

is derived using PostgreSQL estimates. These two sets of values are fed into an exhaustive plan

enumeration algorithm over a search space consisting of plans with arbitrary structure—including

left-deep and bushy. The cost of a plan is computed using the cost function defined in Eq. (1), which

is introduced in [25]. This cost function considers both hash and index nested loop joins.
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Fig. 1. P-error and Q-error are computed for all 113 JOB queries. Queries are grouped by complexity: 45
Simple with 4-9 joins, 53 Moderate with 10-19 joins, and 15 Complex with 20-28 joins.

As shown in Figure 1, which displays P-error as a function of the Q-error for the queries in the

JOB benchmark [26], there is no observable relationship between the two beyond the worst-case

upper bound. First, a large number of simple and moderate queries have optimal plans – P-error

close to 1 – even though they exhibit large variation on the Q-error—more than six orders of

magnitude (1). No matter if the Q-error is 10 or 10
7
, an optimal plan can be selected using the

same cardinality estimates. Second, we intuitively expect that Q-error is somewhat correlated with

P-error—as the Q-error increases, so does the P-error. This happens only for a limited number

of complex queries (2). These cases imply the selection of sub-optimal plans with different join

orders. Third, the results include queries for which the relationship between Q-error and P-error

is reversed (3). The P-error of a query is larger than the P-error of another query even though

its Q-error is smaller. This type of inversion shows that the relationship between the two errors

is not even monotonic. Finally, since the plans selected by the optimizer are far away from the

worst-case, we argue that Q-error falls short as an indicator for the sub-optimality of query plans.

Therefore, we need to consider alternative metrics that focus on the real query plans generated by

an optimizer rather than the worst-case plan.

Problem. Given a query plan generated by an optimizer based on a set of cardinality estimates,

our goal is to determine if it is sub-optimal. Even though we consider general cost functions that

include physical operator details, our understanding of sub-optimality is mostly with respect to the
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join order. We define sub-optimality in terms of P-error: a plan with a cost at least 𝑐 times larger

than the cost of the plan computed with true cardinalities, where 𝑐 is a user-defined parameter, is

considered sub-optimal. Therefore, we make the implicit assumption that true cardinalities generate

the optimal plan. Identical to Q-error computation, sub-optimal plans are identified outside of the

runtime query optimization process and they require complete knowledge of true cardinalities and

estimates.

High-level approach. We propose a learning-based method for the sub-optimal plan identifi-

cation problem. We treat identification as binary classification, where plans with a cost at least 𝑐

times larger than the optimal are considered sub-optimal—the other plans are optimal. The focus

of our work is on finding the best features for the classifier—not on designing a new classifier. To

this end, we employ standard decision trees. The classifier is trained on a workload of query plans

correctly labeled and is expected to accurately predict sub-optimal plans from a testing dataset.

L1-error. The main contribution of this work is the design of the L1-error feature for sub-

optimal plan classification. Similar to Q-error, L1-error requires complete knowledge of true

cardinalities and estimates for all the sub-plans of a query plan. Unlike Q-error, which considers

the estimates independently, L1-error is defined as the distance between the permutations – orders

– corresponding to true cardinalities and estimates for all the sub-plans having the same size,

i.e., the number of joins. Intuitively, the more different the two permutations are, the higher the

chance the plan computed using estimates is significantly different than the optimal plan, thus,

likely sub-optimal. The same observation is made in [33], where a plan is known to be optimal if

the two permutations are identical. We move beyond this limited case and define a quantitative

measure for the difference between permutations. Moreover, L1-error takes into account errors

relative to the magnitude of cardinalities since larger cardinalities have a greater influence on plan

optimality and, hence, their errors should incur higher penalties. L1-error also considers that small

multi-way joins are more critical, with their cardinality estimates likely to be more accurate than

larger joins [26, 38].

We summarize our main technical contributions as follows:

• We conduct an in-depth data-driven analysis of the impact of Q-error on cardinality estimation

and query plan optimality (Section 4). We study how Q-errors are distributed across different join

sizes and their impact on finding optimal query plans. Moreover, we identify practical limitations

of Q-error as a feature for sub-optimal plan classification.

• We introduce the L1-error feature for identifying sub-optimal query plans (Section 5). L1-error

is specifically tailored to assess how cardinality estimation errors impact plan enumeration

algorithms. It is designed to bridge the cardinality estimation errors and enumeration algorithms,

ultimately enhancing the interpretability of query optimizer performance.

• We apply L1-error as the single feature of a standard decision tree classifier (Section 6) and evaluate

its accuracy in identifying sub-optimal query execution plans over four different benchmarks,

including JOB [25, 26], JOB-light [21], JCCH [2], and DSB [7] benchmarks (Section 7). Our

experimental results confirm that L1-error is an accurate feature for identifying sub-optimal

plans. This accuracy can be further improved by combining L1-error with Q-error into a composite

feature that can be computed without overhead from the same data.

2 RELATEDWORK
Cardinality estimation errors. The importance of each component within a query optimizer is

widely acknowledged in comprehensive studies on query optimization [5, 29]. However, Leis et al.

empirically prove that cardinality estimates hold paramount importance [25, 26]. They observe

instances where cardinality miscalculations do not inevitably lead to sub-optimal query plans. This

is because, provided the errors in misestimation are evenly distributed across a large portion of the
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SELECT COUNT(*)

FROM company_name cn, keyword k, movie_keyword mk, movie_companies mc, title t
WHERE k.keyword = 'character-name-in-title' and cn.country_code = '[sm]' 

    and mc.movie_id = mk.movie_id and cn.id = mc.company_id and k.id = mk.keyword_id and t.id = mk.movie_id and t.id = mc.movie_id


movie_companies
mc


title

t

company_name
cn

keyword

k

movie_keyword

mk join graph k

mk

t(41.8K)

(41.8K)

(148.6K)

(4)

mc

 = 232.2K
(pg plan)

cnk

cn

mc

t(388)

(388)

(1,588)

(4)

mk

 = 2,364

(optimal plan)

Fig. 2. SQL statement for JOB query 2c, its corresponding join graph, and the query plans selected using true
cardinalities 𝑌 (for the optimal plan P𝑜𝑝𝑡 ) and cardinality estimations 𝑌 (for the PostgreSQL plan P𝑝𝑔). The
join sizes shown in parentheses are exact – not estimates – while the plan costs C(Popt, 𝑌 ) and C(Ppg, 𝑌 )
are also computed using true cardinalities.

estimates, sub-optimal query plans can be avoided. Consequently, estimation consistency can be

more important than high accuracy, since consistency does not disrupt the ranking of query plans.

Perron et al. [38] also confirm the importance of cardinality estimations as well as the importance

of cardinality estimation of smaller joins than higher-level joins. Based on the JOB benchmark,

their findings reveal that obtaining the true cardinalities up to four-way joins suffices to achieve

near-optimal runtime performance. This highlights the need for accurate and consistent cardinality

estimations, particularly for lower-level joins, in optimizing query performance.

Indicators of sub-optimal plans. Moerkotte et al. [33] introduce Q-error as a measure of

individual join cardinality misestimation. At the query level, the authors propose leveraging the

maximumQ-error across all sub-query cardinality estimates as a theoretical upper-bound to identify

sub-optimal query plans. This serves as the upper-bound for P-error, which is the cost ratio between

the selected and optimal plans, to denote the optimality of query plans. However, Han et al. highlight

the limitations of the Q-error bound as an indicator of query plan optimality [11]. They observe

that Q-error treats all cardinalities with equal weights, which is not always reflective of the realities

of query optimizers. As a result, even in the presence of significantly large Q-error values, a query

optimizer can still choose an optimal plan, and, conversely, a low Q-error is not always an indicator

of an optimal plan.

3 QUERY OPTIMIZATION
The goal of query optimization [5, 25, 26, 29] is to find the optimal query execution plan – the plan

with the fastest runtime – for a given SQL query. In classical cost-based query optimization, this is

achieved through a search procedure that consists of three components: cost model, cardinality

estimation, and plan enumeration. In this section, we provide a brief overview of these components

based on the JOB benchmark query 2c, which is depicted in Figure 2. This query joins five tables

with five join predicates – including a triangle cycle among tables t,mk, andmc – and has two point

selection predicates 𝜎 on tables cn and k. The figure also includes the join graph 𝐺 (𝑉 , 𝐸), in which

every table is represented as a vertex 𝑣 connected by edges 𝑒 for the corresponding join predicates.

For example, the join predicate cn.id = mc.company_id is represented as the edge between the cn
and mc vertices of the join graph.
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A query plan P defines the sequence in which the tables – vertices – are to be joined. It also

dictates the physical operators, such as join or scan, that are deployed during query execution. A

query sub-plan can be defined as a query plan that operates over a subgraph of the original join graph.

Two plans Popt and Ppg derived from the join graph are displayed in Figure 2. These plans provide

the sequence of tables to be joined — (𝑐𝑛 Z 𝑚𝑐 Z 𝑡 Z 𝑚𝑘 Z 𝑘) and (𝑘 Z 𝑚𝑘 Z 𝑡 Z 𝑚𝑐 Z 𝑐𝑛),
respectively. Sub-plan P𝑐𝑛Z𝑚𝑐 derived from a subgraph of two vertices 𝑐𝑛 and𝑚𝑐 of the join graph

determines the first two tables to be joined in plan Popt. Throughout the paper, we use the terms

query plan and join order interchangeably.

3.1 Cost Model
To evaluate and compare the efficiency of various query plans derived from the join graph, the

query optimizer assigns a cost to each of them using an analytical cost function. The query plan

considered to be optimal is the one with the minimum cost, as it is expected to have the fastest

execution time. However, defining a cost function that can accurately reflect the execution time is

challenging. For main-memory databases – the setting for this work – several cost functions have

been proposed in past studies [10, 11, 26, 34, 45]. Virtually all these cost functions are defined in

terms of the number of tuples – or cardinality – processed by the operators in the query plan. In

this work, we settle for the cost function introduced by Leis et al. [25] – which is formally defined

in Eq. (1) – because it can accurately predict the query runtime:

C(P) =


𝜏 × |𝑅 | if P = 𝑅 ∨ P = 𝜎 (𝑅)
|P| + |P1 | + C(P1) + C(P2) if P = P1 Z𝐻 𝐽 P2
C(P1) + 𝜆 × |P1 | ×max

(
| P1Z𝑅 |
| P1 | , 1

)
if P = P1 Z𝐼𝑁𝐿 P2 ∧ (P2 = 𝑅 ∨ P2 = 𝜎 (𝑅))

(1)

This cost function recursively sums the cost of all the nodes in the query plan starting from the

leaves – corresponding to scan operators – and following through the joins. In the leaf nodes, the

size of a base table 𝑅 is multiplied by a parameter 𝜏 = 0.2 to differentiate between a sequential

and an indexed scan. For the intermediate join nodes, the cost function considers two different

implementations—hash join Z𝐻 𝐽 and index nested-loop join Z𝐼𝑁𝐿 . The hash table is built on the

child with the smaller cost—as in zig-zag trees. To differentiate between hash lookup and index

lookup, parameter 𝜆 = 2 is used under the assumption that indexes are available on all the join

attributes. Even though the cost function considers different physical operators, operator cardinality

remains the main factor. This is in line with standard disk-based cost functions, which replace tuple

cardinality with block cardinality.

The order in which the tables are joined is pivotal as it can significantly influence the execution

time. A sub-optimal ordering can result in unnecessary computational work or data movement,

leading to time and resource inefficiencies. The costs of two join orders Popt and Ppg are displayed in
Figure 2. These costs are obtained by summing up the exact cardinalities 𝑌 of the three intermediate

and the final join. We do not consider the physical operators in order to simplify the presentation.

In the case of the optimal plan Popt, the cost C𝑜𝑢𝑡 (Popt, 𝑌 ) = 388 + 388 + 1, 588 = 2, 364 is the sum

of the cardinalities of sub-plans corresponding to the 2-way join P𝑐𝑛Z𝑚𝑐 , the 3-way join P𝑐𝑛Z𝑚𝑐Z𝑡 ,
and the 4-way join P𝑐𝑛Z𝑚𝑐Z𝑡Z𝑚𝑘 , respectively. It is important to notice that the cardinality of

P𝑐𝑛Z𝑚𝑐Z𝑡 is not the sum of the cardinality for P𝑐𝑛Z𝑚𝑐 and P𝑚𝑐Z𝑡 – edges (cn −mc) and (mc − t)
from the join graph – which are 388 and 2.6𝑀 , respectively. This is because only the tuples in the

2-way join 𝑐𝑛 Z 𝑚𝑐 are subsequently joined with t—not all the tuples in mc.
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Plan Join Order

1,980 9,713

190.4K 125

2-way joins (COST + CARDINALITY)
index 1 2 3 4 5
sub-plan
true 388 41.8K 2.6M 4.5M 34.9M

est. 973 20 1.5M 2.7M 13.8M
Q-error 2.51 2,092 1.70 1.70 2.53

3-way joins (COST + CARDINALITY)
index 1 2 3 4 5

sub-plan

true 388+388 388+1,588 41.8K+41.8K 41.8K+148.6K 2.6M+34.9M

est. 973+973 973+8,739 20+20 20+104 1.5M+2.7M
Q-error 2.51 5.50 2,092 1,428.38 12.69

4-way joins (COST + CARDINALITY)
index 1 2 3

sub-plan

true 1,976+4 776+1,588 83.7K+148.6K

est. 124+1 1,946+8,739 40+104
Q-error 4 5.50 1,428.38

5-way joins (COST + CARDINALITY)
index 1

sub-plan

true 1,980+4

est. 125+1
Q-error 4

(a) Exhaustive plan enumeration

Plan Join order

2,364 10.7K

232.2K 144

2-way joins (CARDINALITY only)
index 1 2 3 4 5
sub-plan
true 388 41.8K 2.6M 4.5M 34.9M

est. 973 20 1.5M 2.7M 13.8M
Q-error 2.51 2,092 1.70 1.70 2.53

3-way joins (CARDINALITY only)
index 1 2 3 4 5

sub-plan

true 388 1,588 41.8K 148.6K 34.9M

est. 973 8,739 20 104 2.7M
Q-error 2.51 5.50 2,092 1,428.38 12.69

4-way joins (CARDINALITY only)
index 1 2 3

sub-plan

true 4 1,588 148.6K

est. 1 8,739 104
Q-error 4 5.50 1,428.38

5-way joins (CARDINALITY only)
index 1

sub-plan

true 4

est. 1
Q-error 4

(b) Greedy plan enumeration

Fig. 3. Query plan enumeration over the search space corresponding to JOB query 2c.

3.2 Cardinality Estimation
The cost model is defined based on the cardinality of the join operators. Computing the exact

cardinality 𝑌 of a join is only possible by executing the join operation. This poses a contradiction to

the goal of query optimization, which is intended to ascertain the most efficient order for executing

the joins without actually performing them. Cardinality estimation steps in to resolve this issue.

The function of cardinality estimation is to predict the join cardinality without executing the join

operation itself. These estimations 𝑌 are fed into the cost function in lieu of true cardinalities,

allowing the query optimizer to compute the cost of the plan. Subsequently, different plans are

ranked based on their estimated cost C(P, 𝑌 ) as opposed to their true cost C(P, 𝑌 ). As long as the

ranking of the query plans remains consistent across true and estimated costs, these estimations

can effectively serve as direct a stand-in for the true cardinalities. Looking through a statistical

lens, the purpose of cardinality estimation is to maximize accuracy. However, from the vantage

point of the cost model, such precision is not necessary. Instead, what matters is that the costs of

two distinct query plans maintain the same order when assessed based on both estimates and exact

cardinalities. It is worth noting that while accurate estimates naturally imply correct ranking, they

are not essential—as long as their errors are comparable. For instance, despite estimates that are a

hundred times greater than the actual values, the cost model treats them as equivalent, producing

costs that maintain the same order. Consequently, these estimations do not adversely impact the

cost model.

3.3 Plan Enumeration
Plan enumeration is the process of generating and evaluating various query plans that are semanti-

cally equivalent but with different costs. The challenge is finding an optimal plan, which entails the

minimum cost, by exhaustively enumerating a massive number of candidate query plans. These

candidate query plans form what is referred to as the search space. The size of the entire search

space is determined by the number of binary trees that can be constructed from |𝑉 | vertices in
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the join graph [26]. Given the factorial size of the search space, finding an optimal query plan is

NP-hard [13].

Search space. Traversing the join graph by following the existing edges 𝑒 ∈ 𝐸, it is possible to
avoid enumerating binary trees that incorporate cross-joins, which join tables along non-existent

edges 𝑒 ∉ 𝐸. Nonetheless, even the reduced search space still presents a computational challenge

due to its large size. A common strategy is to further downsize the search space by restricting the

shape of the considered query plans [30, 32]. This approach entails enumerating only those binary

trees with a certain shape. Bushy trees and left-deep trees are two common shapes of binary trees.

Bushy trees are characterized by an internal node that joins two sub-trees. On the other hand,

left-deep trees are identified by their structure where the right child at any given node is always a

leaf node, meaning it does not have any child nodes of its own. Two left-deep trees are depicted in

Figure 2. Focusing on specific types of binary trees helps to streamline the enumeration process and

manage the complexity of the search space, thereby simplifying the discovery of an optimal query

plan. However, this reduction in search space may inadvertently omit optimal query plans. This

balances the computational feasibility against the query plan optimality. Therefore, the objective is

to find a query plan within the reduced search space that is close to the globally optimal plan.

Exhaustive enumeration. To exhaustively enumerate all the trees, each individual query

plan is produced and its associated cost is calculated. Figure 3a depicts the optimal plan Popt –
in red – and the PostgreSQL plan Ppg – in green – selected through exhaustive enumeration.

Popt = (𝑐𝑛 Z 𝑚𝑐 Z 𝑚𝑘 Z 𝑘 Z 𝑡) is computed based on the true cardinalities 𝑌 while Ppg = (𝑘 Z
𝑚𝑘 Z 𝑚𝑐 Z 𝑐𝑛 Z 𝑡) is computed based on the PostgreSQL estimated cardinalities 𝑌 . These plans

are shown in the bottom-right table along with their true and estimated costs. As the complexity

of a query increases, exhaustive enumeration faces significant computational challenges and is

mitigated through optimizations such as dynamic programming and cost-based pruning [6, 31, 40].

Although these optimization techniques can reduce the number of plans evaluated, they still ensure

the discovery of the plan with minimum cost—according to the input estimates.

Greedy enumeration. The exhaustive enumeration over the large search space can be further

simplified into greedy heuristics that directly compute a single plan [3, 9, 22, 36, 42, 43]. In this

case, the cost of a join is its standalone cardinality. Even though the decision at every step is locally

optimal, there is no guarantee that the final plan has minimum cost among all the alternative plans.

This is due to conditioning the available choices at a step on previous decisions. Figure 3b exhibits

this issue for the optimal plan Popt and the PostgreSQL plan Ppg. For both plans, since the plan is

built bottom-up starting from 2-way joins, the minimum cardinality 4-way join P𝑐𝑛Z𝑚𝑐Z𝑚𝑘Z𝑘 is not
an option because the optimal 3-way joins include 𝑡 . At the same time, considering fewer sub-plans

when building a plan bottom-up means relying on estimates of smaller join size. The estimates for

smaller joins are – in principle – more accurate [26]. Thus, while exhaustive enumeration requires

consistent estimation across all join sizes, the greedy heuristics are more sensitive to estimates

for smaller joins. Therefore, the reduction in the size of the search space can be compensated by

consistent estimation of smaller joins.

4 Q-ERROR
Query optimizers often fail to find an optimal plan because of errors and sub-optimal decisions

made during the stages of cardinality estimation, cost function, and plan enumeration. In the cost

function, inaccuracies in measuring the exact cost of each physical operator in the plan can lead

the query optimizer to select a sub-optimal plan. Similarly, attempts to counter computational

constraints in plan enumeration through heuristic enumeration and pruning the search space can

mislead the query optimizer by excluding optimal plans from its scope of consideration. However,
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even under ideal conditions for the cost function and plan enumeration, unavoidable errors in

cardinality estimations can jeopardize these stages [25, 26]. In this section, we delve into the widely

used Q-error metric [33] that quantifies the errors in cardinality estimation. We discuss how this

metric can be employed to evaluate the sub-optimality of a plan by providing better understanding

of the extent of estimation errors and their impact on selecting the optimal plan.
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Fig. 4. The distribution of the Q-error and the number of sub-plans as a function of the number of joins for
all the 70,407 sub-plans generated from the 113 JOB queries.

4.1 Q-error for Cardinality Estimation
The Q-error metric was proposed as a means to quantify the degree of error in individual cardinality

estimations [33]. It has since become a preferred choice for quantifying the accuracy of synopses [4,

38] and learning-based models [19, 21]. Furthermore, it is extensively employed in empirical studies

to understand and improve the accuracy of these estimations, thus playing a significant role in

query optimization [24, 26, 44]. The Q-error of an individual cardinality estimation is defined as:

𝑞𝑖 = max

(
𝑌𝑖

𝑌𝑖
,
𝑌𝑖

𝑌𝑖

)
(2)

where 𝑌𝑖 and 𝑌𝑖 are true and estimated cardinality of a single sub-plan. The Q-error value is in the

range of [1, +∞). In the case of zero values in the denominator, the zeroes can be replaced by a

small number—in this work, we use 10
−4

for this purpose. The Q-error quantifies the deviation of

the estimated cardinality 𝑌𝑖 from the true cardinality 𝑌𝑖 treating under- and over-estimation equally.

In the last row of every table from Figure 3, we show the individual Q-error for the corresponding

sub-plan. Q-errors for sub-plans in both exhaustive and greedy plan enumeration are the same.

This is because Q-error solely measures the error between true and estimated join cardinalities

and does not take into account the sub-plan costs. In the figure, across all join sizes, the Q-error

of P𝑚𝑐Z𝑡 and P𝑚𝑘Z𝑡 are the smallest – both equal to 1.70 – which are underestimates of the true

cardinalities in this case. The least accurate estimations are for the 2-way join P𝑘Z𝑚𝑘 and the 3-way
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join P𝑘Z𝑚𝑘Z𝑡 . These Q-errors are equal to 2, 092, which also underestimates the true cardinalities.

Alternatively, the cardinality of P𝑐𝑛Z𝑚𝑐Z𝑡 is overestimated when the Q-error is 2.51.

In Figure 4a, at each join level, we depict the Q-error measured for the 70, 407 sub-plans generated

from all 113 queries in the JOB benchmark—excluding cross-joins [25, 26]. The sub-plans are grouped

by the number of joins – ranging from 2 to 17 – shown on the x-axis. At each join size, Q-errors

are shown via boxplots including 95, 75, 50, 25, and 5 percentiles. Additionally, Figure 4b provides a

breakdown of the number of estimates grouped by join size, which illustrates the effect of estimation

errors. By examining these estimates, we can gain a clearer understanding of how estimation errors

are distributed across different join sizes and how these errors can impact the overall performance

of finding optimal query plans. The results show that cardinality estimations for 2-way joins based

on 1, 336 estimations – which are 1.9% of all sub-plans – are the most accurate. Estimation accuracy

from 3-way to 6-way joins starts decreasing—median Q-errors are between 10
1
and 10

3
based on

21, 690 estimations, which are 30.8% of all the sub-plans. Starting from 7-way to 13-way joins,

median Q-error significantly increases – over 10
3
– which includes 46, 544 estimations, or 66.1% of

all sub-plans. The rest of the queries form 1.2% of all sub-plans, which is 837 queries. Interestingly,

although the number of sub-plans is small, we observe relatively smaller errors starting from

14-way to 17-way joins. These observations indicate that errors increase exponentially with the

increase in join size [14]. Inaccuracies in cardinality estimation can have a cumulative detrimental

effect on finding optimal query plans. Specifically, significant errors in cardinality estimations at

higher-level joins can outweigh and misdirect the query optimizer, causing it to essentially select

a query plan at random. Such errors reduce the likelihood of finding the optimal join order and

selecting efficient physical operators, thus compromising the overall optimization effectiveness.
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Fig. 5. Impact of cardinality estimation on plan enumeration. The costs are normalized to the cost of the
optimal plan obtained by exhaustive enumeration using true cardinalities.

In Figure 5, we illustrate the effect of errors in cardinality estimation on plan enumeration. This

figure provides a visual understanding of how inaccuracies in cardinality estimation can influence

the performance of different plan enumeration algorithms, highlighting the importance of accurate

estimations in finding an optimal query plan. For every JOB query – shown on the x-axis grouped

by join size – we compute the cost C of four different plans selected by exhaustive and greedy

enumeration when utilizing both true cardinalities 𝑌 and the PostgreSQL estimations 𝑌 . These

costs are plotted relative to the cost of the exhaustive plan with true cardinalities C(Popt, 𝑌 )—the
horizontal solid red line at 1. The plans C(Popt, 𝑌 ) are optimal within the search space. As expected,
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the costs of these optimal plans are lower than the costs of the other plans—equal to or above the

red horizontal line. We also observe that several plans selected by the greedy enumeration based

on true cardinalities have a higher cost than the greedy plans computed with estimates—green

spikes above the blue line. These cases occur when misestimated cardinalities 𝑌 accidentally lead

the greedy enumeration to more efficient plans than those selected based on true cardinalities 𝑌 .

The figure also demonstrates the growing need for accurate estimations as the query complexity

increases—the gaps among the red, black, and blue lines around the second red vertical line. This

behavior is expected as we begin to observe significant misestimations starting from 7-way joins and

beyond—as shown in Figure 4a, the Q-error exceeds 10
3
in these cases. Moreover, these significant

misestimations adversely impact the exhaustive plan enumeration, as the cumulative effect of

estimation errors misguides the cost and enumeration components. For moderate and complex

queries, plans selected by exhaustive enumeration have higher costs than plans greedily selected

based on estimations—black spikes above the blue line. This means the greedy search algorithm

appears to make better decisions based on relatively accurate early-stage join estimations while

the exhaustive enumeration is misguided by large misestimations of larger joins. Consequently,

the supposedly optimal plans are underestimated compared to the actual optimal plans. Hence,

they are selected by the exhaustive enumeration algorithm. These observations suggest that the

advantage of exhaustive search diminishes when operating on significant misestimations of large

joins. Such errors hinder the enumeration algorithm from finding the optimal query plan.

4.2 Q-error for Plan Optimality
In addition to measuring the error of an individual estimate, Moerkotte et al. [33] introduce a

theoretical upper-bound on the ratio of the cost of the selected Ppg and optimal Popt query plans

using Q-error:

C(Ppg, 𝑌 )
C(Popt, 𝑌 )

≤ 𝑞4 (3)

where 𝑞 = max𝑖⊆𝑋 {𝑞𝑖 } and 𝑋 is the set of all sub-plans. The cost ratio between the selected and

optimal plan has recently been named P-error [11, 27, 34]. In Figure 3, for query 2c, the maximum

Q-error is 𝑞 = 2, 092. The bound states that, given the estimated and true cardinalities of a query,

we can determine whether the selected plan is equivalent to the optimal plan without having to

enumerate and select expected and optimal query plans to compute P-error. In other words, if the

P-error of the selected and optimal plan is at most 𝑞4, then the selected plan is identical – or close

– to the optimal plan. This approach provides a theoretical method to evaluate the optimality of

a query plan based on cardinality estimates, reducing the computational burden associated with

exhaustive enumeration.

To evaluate the Q-error bound on a larger and more complex workload operating on real-world

data, we compute both the Q-error and P-error for the entire JOB benchmark consisting of 113

queries [25, 26]. The results are presented in Figure 1 from the Introduction 1. We categorize the

queries based on the number of joins: 45 simple queries with 4-9 join predicates, 53 moderate

queries with 10-19 join predicates, and 15 complex queries with 20-28 join predicates, respectively.

To compute the P-error for a query, the join orders Popt and Ppg are determined by the exhaustive

enumeration algorithm with both true and PostgreSQL estimated cardinalities. The figure also

includes the upper-bound from Eq. (3) as an exponential function—represented by the red line.

The results show a large number of simple and moderate queries with optimal plans – P-error

equal to 1 – despite having a high Q-error. The P-error for these queries indeed falls within the

bound, hence their plans are optimal. However, many other queries that comply with the bound

exhibit significantly larger P-error and even higher Q-error. These queries are primarily moderate
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or complex queries having plans that are not optimal, thus, resulting in different join orders despite

satisfying the bound. For query 2c from Figure 3a, the optimal planPopt is (𝑐𝑛 Z 𝑚𝑐 Z 𝑚𝑘 Z 𝑘 Z 𝑡),
which has the true cost C(Popt, 𝑌 ) = 1, 980. The PostgreSQL selected plan Ppg is (𝑘 Z 𝑚𝑘 Z 𝑚𝑐 Z
𝑐𝑛 Z 𝑡), which has the true cost C(Ppg, 𝑌 ) = 190.4𝐾 . This results in a P-error of 96 and a Q-error of

𝑞 = 2, 092. According to the bound [11], 96 ≤ 2, 0924 ≈ 2E+13 is correct. However, the gap between

the two values is immense—more than 10 orders of magnitude. For moderate and complex queries,

we observe larger cost deviations and extremely high Q-error values. This indicates that the selected

and optimal query plans are very different despite satisfying the Q-error bound. Therefore, we

argue that Q-error is too loose as a bound and, as an indicator, fails to identify sub-optimal query

plans. Intuitively, we expect a small P-error to correspond with a small Q-error and a large P-error

with a large Q-error. However, our observations show that queries with a large P-error can have a

small Q-error and vice versa. Consequently, these observations show that the maximum Q-error

bound falls short in accurately determining the optimality of query plans [11, 35].

5 L1-ERROR
Finding an optimal join order highly depends on the accuracy of cardinality estimations and how the

misestimation errors “impact” the plan enumeration algorithm. In Figure 3, we show the sub-plans

enumerated by exhaustive and greedy plan search algorithms sorted by the true cardinality 𝑌 . The

sorted sub-plans are shown for every join size 𝑘 of query 2c. For 2-way joins, if the sub-plans are

sorted by the estimated cardinality𝑌 , then the relative order becomes different from the order of the

sub-plans sorted by true cardinality 𝑌 . The difference occurs because of the impact of cardinality

misestimation errors of sub-plans 𝑐𝑛 Z 𝑚𝑐 and 𝑘 Z 𝑚𝑘 . However, this difference is minimal in this

case – only on one position – henceforth, the plan enumeration algorithm is likely to make accurate

decisions in choosing optimal sub-plans. In this section, we introduce the L1-error to quantify the

permutation distance between the order of the true cardinalities and that of the estimates for a

given sub-plan size. While the importance of the relative ordering of the estimates has been pointed

out in previous work [33], L1-error is the first measure to analytically quantify and employ it in

determining if a particular join order is optimal.

5.1 Relative Sub-Plan Arrangement
By sorting the sub-plans for each join size 𝑘 by true and estimated cardinality, we have two sub-plan

arrangements — position vectors of the same length. For instance, in 2-way joins, the two position

vectors are defined as 𝜌 = (1, 2, 3, 4, 5) sorted by 𝑌 and 𝜌 = (2, 1, 3, 4, 5) sorted by 𝑌 , respectively.

To differentiate between 𝜌 and 𝜌 , we name 𝜌 as the identity permutation in the rest of the paper.

Similarly, for each join size 𝑘 , both position vectors are denoted as 𝜌 and 𝜌 ∈ N𝑑 by (1, 2, . . . , 𝑑)
where 𝑑 is the number of sub-plans of size 𝑘 . There is an extensive range of metrics available,

such as Spearman’s footrule [41] and Kendall’s tau [18], to measure the distance between two

arrangements (or ranked lists) [28]. This field has been extensively researched and is a well-studied

area. Among the various metrics available, we find Spearman’s footrule distance (also known as

L1 distance) is particularly effective in quantifying the impact of cardinality estimation errors

on plan search algorithms. It provides a strong measure of the distance between two sub-plan

arrangements. While it is certainly possible to substitute Spearman’s footrule distance with other

metrics to compare precision performances, we show, through our observations, that Spearman’s

footrule distance intuitively fits our problem well and delivers accurate results. In the remainder

of this paper, for the sake of convenience, we refer to Spearman’s footrule distance as L1-error.

L1-error measures the element-wise absolute differences between two position vectors 𝜌 and 𝜌 :

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.



17:12 Yesdaulet Izenov, Asoke Datta, Brian Tsan, & Florin Rusu

L1
𝑘 (𝜌, 𝜌) =

𝑑∑︁
𝑖

|𝜌 (𝑖) − 𝜌 (𝑖) | (4)

where 𝑘 is join size, and 𝜌 (𝑖) and 𝜌 (𝑖) are the positions of 𝑖-th sub-plan in the position vectors 𝜌

and 𝜌 . In the case of identical sub-plan arrangements, L1
𝑘 (𝜌, 𝜌) = 0. In the case of discrepancies,

L1-error captures the cardinality estimation errors that affect the relative arrangement of sub-plans.

In Figure 6, we demonstrate the position vectors 𝜌 and 𝜌 for each join size in query 2c — first

two rows of the tables located on the left side of the white vertical bars. The position vectors are

generated based on the cardinalities shown in Figure 3b. L1-error measures, L1
𝑘 (𝜌, 𝜌), for 2, 3 and

4-way joins are 2, 8 and 2, respectively.

5.2 Weighted Relative Sub-Plan Arrangement
From Equation 4, we observe that the L1-error does not take into account the following criteria

which are important to capture for plan search algorithms:

• Significantly over and underestimating cardinality should be associated with greater penalties.

Conversely, mispositioning sub-plans with similar cardinalities in the position vectors should

carry fewer and relatively similar penalties.

• Cardinality misestimations that occur early in the position vector should attract greater penalties.

This is particularly beneficial for plan search algorithms, which are more likely to choose a

sub-plan from the first half of the position vector.

Given the limitations identified in the original L1-error, we propose an enhanced L1-error. This new

design seeks to improve upon the original by more effectively capturing the impacts of cardinality

misestimations on plan search algorithms in query optimization. Kumar et al. [23] propose a method

for measuring the distance between two ranked lists, with extensions to factor in the weights of

elements and positions, as well as similarities between elements. In our study, we adapt and employ

variations of these proposed extensions that align intuitively with our problem context.

Impact weight, W (2-way join)
1 2 3 4 5

1 1.0 107.84 6,724.56 11,659.6189,854.74
2 1.0 62.36 108.12 833.26
3 1.0 1.73 13.36
4 1.0 7.71
5 1.0

2-way join (CARDINALITY only)
1 2 3 4 5
2 1 3 4 5

Swap cost 1.0 107.84 62.36 1.73 7.71
Monotonic weight 1.0 108.84 171.2 172.93 180.64

3-way join (CARDINALITY only)
1 2 3 4 5
3 4 1 2 5

Swap cost 1.0 4.09 26.35 3.55 234.69
Monotonic weight 1.0 5.09 31.44 34.99 269.68

4-way join (CARDINALITY only)
1 2 3
1 3 2

Swap cost 1.0 397.0 93.55
Monotonic weight 1.0 398.0 491.55

Impact weight, W (3-way join)
1 2 3 4 5

1 1.0 4.09 107.84 382.87 89,854.74
2 1.0 26.35 93.55 21,954.43
3 1.0 3.55 833.26
4 1.0 234.69
5 1.0

Impact weight, W (4-way join)
1 2 3

1 1.0 397.0 37,138.0
2 1.0 93.55
3 1.0

Fig. 6. Sub-plan weights used by the plan enumeration algorithms for JOB query 2c.
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Sub-plan impact weights. First, we define a misestimation impact of sub-plans within a weight

symmetric matrix𝑊 for each join size 𝑘 . Each 𝑖-th row of length 𝑑 in this matrix represents a

sub-plan, and misestimation impact weights are defined as:

𝑊 𝑘
𝑖,𝑗 = max

(
𝑌𝑗

𝑌𝑖
,
𝑌𝑖

𝑌𝑗

)
(5)

where𝑊𝑖, 𝑗 ≥ 1, and𝑌𝑗 and𝑌𝑖 are true cardinality values. In the case of zero cardinality, denominators

can be replaced with a small number. The weight scales are comparable across different query

complexities because𝑊𝑖, 𝑗 only captures the relative differences in cardinality. Thus, the specific

scales of cardinality in simple and complex queries, and join sizes are not consequential. In Figure 6,

for each join size 𝑘 , we illustrate the computed weight matrix as a separate table on the right

side of the white vertical bars. Row and column indexes in each weight matrix represent sub-plan

positions in the identity position vector 𝜌 . The weight matrix signifies the relative differences in

cardinality between any two sub-plans of the same join size. A larger weight implies a greater

disparity between the two sub-plans in terms of their cardinalities. For example, in Figure 3b, the

cardinality of 2-way sub-plan P𝑐𝑛Z𝑚𝑐 is 388 and it is significantly less than the cardinalities of the

other four 2-way sub-plans with cardinalities of 41.8𝐾 , 2.6𝑀 , 4.5𝑀 , and 34.9𝑀 . Therefore, in row

1 of the weight matrix for 𝑘 = 2, we observe much larger weights. The same weight matrix also

exhibits sub-plan weights of similar cardinality, a scenario frequently encountered when estimating

sub-plan cardinalities. Cardinalities of sub-plans P𝑚𝑐Z𝑡 and P𝑚𝑘Z𝑡 of join size 2 are relatively close

— 2.6𝑀 and 4.5𝑀 , respectively. Hence, the impact of mispositioning these two sub-plans has less

penalty — weight value is 1.73. We define the L1-error that assigns impact penalties for sub-plan

misestimations proportionate to their cardinality magnitudes:

L1
𝑘
𝑊 =

𝑑∑︁
𝑖

∑︁
𝑗 :𝜌 ( 𝑗 )<𝜌 (𝑖 )
∧ 𝜌 ( 𝑗 )>𝜌 (𝑖 )

𝑊 𝑘
𝑖,𝑗 +

∑︁
𝑗 :𝜌 ( 𝑗 )>𝜌 (𝑖 )
∧ 𝜌 ( 𝑗 )<𝜌 (𝑖 )

𝑊 𝑘
𝑖,𝑗 (6)

To measure the difference between 𝜌 and 𝜌 with sub-plan misestimation impacts, the outer term

sums weights for each sub-plan 𝑖 when it is mispositioned with other sub-plans. The left inner

term aggregates the weights of sub-plans when their true cardinalities are overestimated more than

the estimated cardinality of the sub-plan 𝑖 in 𝜌 , despite those sub-plans having true cardinalities

smaller than the true cardinality of sub-plan 𝑖 in 𝜌 . Similarly, the right inner term sums the weights

of sub-plans with underestimated true cardinality that is more than the estimated cardinality of the

sub-plan 𝑖 in 𝜌 , despite those sub-plans having larger true cardinalities than the true cardinality of

sub-plan 𝑖 in 𝜌 .

For example, in Figure 6, sub-plan P𝑘Z𝑚𝑘Z𝑡 of join size 3 is located at position 3 in 𝜌 . Its

true cardinality of 41.8𝐾 is underestimated as 20 which is less than the estimated cardinalities

973 and 8, 739 for sub-plans P𝑐𝑛Z𝑚𝑐Z𝑡 and P𝑐𝑛Z𝑚𝑐Z𝑚𝑘 which have true cardinalities as 388 and

1, 588, respectively. Hence, in the weight matrix𝑊 3
, the left inner term sums the penalty weights

𝑊3,1 = 107.84 and𝑊3,2 = 26.35 ofP𝑘Z𝑚𝑘Z𝑡 for being misplaced in 𝜌 to the left of sub-plans P𝑐𝑛Z𝑚𝑐Z𝑡
and P𝑐𝑛Z𝑚𝑐Z𝑚𝑘 . Similarly, the right term sums the penalty weights for being misplaced to the

right side of sub-plans locations in 𝜌 despite their larger true cardinality and higher locations

in 𝜌 . However, sub-plan P𝑘Z𝑚𝑘Z𝑡 is not overestimated than sub-plans P𝑘Z𝑚𝑘Z𝑚𝑐 and P𝑚𝑐Z𝑡Z𝑚𝑘 .
Sub-plan P𝑘Z𝑚𝑘Z𝑡 has true cardinality of 41.8𝐾 and estimate as 20, while sub-plans P𝑘Z𝑚𝑘Z𝑚𝑐 and
P𝑚𝑐Z𝑡Z𝑚𝑘 have true cardinality of 148.6𝐾 and 34.9𝑀 , and estimates as 104 and 2.7𝑀 , respectively.

Thus, the right term is equal to 0 and the overall misposition penalty weight for sub-plan P𝑘Z𝑚𝑘Z𝑡
is 107.84 + 26.35 + 0 = 134.19. For sub-plans of join size 𝑘 = 3, total misestimation impact is

L1
3

𝑊
= 1, 221.22.
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Sub-plan position weights. Intuitively, imposing larger penalties for the misestimation of

smaller cardinalities is desirable. This is because plan search algorithms are more likely to select

sub-plans with smaller cardinalities. The position vectors represent the locations of sub-plans sorted

by their true cardinality, thus sub-plans with smaller cardinalities are expected to be positioned

early or left half in 𝜌 . In Figure 3, search algorithms, when guided by true cardinality, tend to

select sub-plans from the left half of sub-plan lists on every join step. Consequently, preserving the

relative order of sub-plans with smaller cardinalities is generally of significant importance. In other

words, we impose a higher penalty for the early position differences between position vectors 𝜌

and 𝜌 than the differences at the tail. To achieve desired position-based penalty weights, we need

monotonically increasing weights similar to in [23]. We define the cost of a swap between two

adjacent sub-plans 𝑖 and 𝑖 − 1 in the position vectors as the ratio between their true cardinalities

𝑌𝑖/𝑌𝑖−1 ≥ 1. In Figure 6, we show the swap costs in the third row named as Swap cost in each join

table. Then, the monotonically increasing swap weights are defined as:

𝜇𝑖 = 𝜇𝑖−1 +
𝑌𝑖

𝑌𝑖−1
(7)

where 𝜇1 = 1, and 𝜇𝑖 < 𝜇 𝑗 < 𝜇𝑘 such that 𝑖 < 𝑗 and 𝑗 < 𝑘 . In Figure 6, we show the monotonically

increasing weights in the fourth row named asMonotonic weight in each join table. This monotonic

property offers weights by considering both the distance in position and the closeness in cardinality

values of the sub-plans. For example, in Figure 6, sub-plan P𝑘Z𝑚𝑘Z𝑡 of join size 3 is at distance 1

from sub-plan P𝑘Z𝑚𝑘Z𝑚𝑐 while P𝑐𝑛Z𝑚𝑐Z𝑡 is away from P𝑘Z𝑚𝑘Z𝑚𝑐 for 3 positions. Similarly, true

cardinality 388 of P𝑐𝑛Z𝑚𝑐Z𝑡 is much less than true cardinality 148.6𝐾 of P𝑘Z𝑚𝑘Z𝑚𝑐 while sub-plan
P𝑘Z𝑚𝑘Z𝑡 has true cardinality of 41.8𝐾 . Hence, the respective monotonic weights for these three

sub-plans are 1.0, 31.44, and 34.99. Integrating position-based monotonic weights 𝜇 into L1𝑘
𝑊

assigns

greater penalties to the misestimation of smaller true cardinalities that are positioned early in the

position vector 𝜌 . By assigning these estimations more weight, L1-error more accurately reflects

the significance of their errors, improving its ability to predict sub-optimal query plans:

L1
𝑘 =

𝑑∑︁
𝑖

𝜇−1𝑖 ×


∑︁

𝑗 :𝜌 ( 𝑗 )<𝜌 (𝑖 )
∧ 𝜌 ( 𝑗 )>𝜌 (𝑖 )

𝑊 𝑘
𝑖,𝑗 +

∑︁
𝑗 :𝜌 ( 𝑗 )>𝜌 (𝑖 )
∧ 𝜌 ( 𝑗 )<𝜌 (𝑖 )

𝑊 𝑘
𝑖,𝑗

 (8)

In Figure 6, in 3-way joins, penalty weights assigned to the five sub-plans are 490.71, 23.55, 4.27,

13.62, and 0, respectively. L1-error assigns a higher penalty to sub-plans P𝑐𝑛Z𝑚𝑐Z𝑡 and P𝑐𝑛Z𝑚𝑐Z𝑚𝑘 ,
which are 490.71 and 23.55 respectively, because of their earlier positions in 𝜌 . Despite being placed

at the fourth position, sub-plan P𝑘Z𝑚𝑘Z𝑚𝑐 has a higher penalty weight of 13.62 than P𝑘Z𝑚𝑘Z𝑡
with 4.27 penalty weight at the third position. This is because P𝑘Z𝑚𝑘Z𝑚𝑐 has a larger cardinality,
making it riskier to misplace. Consequently, overall L1-error for 3-way join is L1

3 = 532.15. This

illustration exemplifies how L1-error effectively penalizes misestimations based on their impact on

plan search algorithms.

6 L1-ERROR FOR PLAN OPTIMALITY
In this section, we explore the potential of the L1 error as a complement or perhaps even an

alternative metric to Q-error to evaluate query plans. In addition, we examine how the L1 error, as an

independent feature, can be utilized in classifying sub-optimal query plans, thereby demonstrating

its efficacy as a reliable indicator.
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Fig. 7. Importance of small joins at the beginning and decreasing impact of large joins at the end of query
plan enumeration algorithms.

6.1 Query-level L1-error
In Section 5, we show how L1

𝑘
can independently assess cardinality estimation errors at each join

size 𝑘 . It is essential to note that the number of sub-plans 𝑑 at each join size 𝑘 may vary depending

on the complexity of the query — different lengths of the position vectors 𝜌 and 𝜌 . By aggregating

individual L1-error at each join size into L1
𝑘
, we can form a feature vector of size 𝐾 , starting from

2-way joins 𝑘 = 2. Given that queries can have different join sizes, the dimensions of these feature

vectors can also vary. We define a query-level L1-error as:

L1𝑄 =

𝐾∑︁
𝑘=2

L1
𝑘

(9)

The magnitude of this query-level L1 error can be influenced by the complexity of the query —

various numbers of join sizes involved. Consequently, the aggregation approach, which sums up all

join-level L1 errors, can be particularly sensitive to the complexity of the query. This implies that

more complex queries with a larger number of join sizes may naturally result in higher aggregated

L1 errors, emphasizing the influence of query complexity on the overall L1-error calculation. To

alleviate this issue, we can take into account our insights from Figure 4a. Cardinality estimations

for higher-level joins tend to be severely inaccurate. There is a visible decline in accuracy following

3-way joins, and a considerable drop after 6-way joins. Given this, it is evident that higher-level

join cardinality estimations are unreliable and should, therefore, be excluded from consideration or

given less weight in comparison to lower-level join cardinality estimations [45]. This approach

would counterbalance the tendency for larger errors in complex queries. To further support this

decision, we present Figure 7 that illustrates how intermediate data decreases as the join size grows.

For each query complexity, we group all JOB sub-plans — including 𝑃𝐾 +𝐹𝐾 and 𝐹𝐾 +𝐹𝐾 joins — by

join size and plot the median cardinality value. The results show a consistent trend across all query

complexity groups: as join size increases and more filter predicates come into play, intermediate

data reduces. Therefore, selecting optimal sub-plans in the early stages of join sizes is crucial to

prevent the propagation of large intermediate data. Decisions made at later stages, influenced
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by inaccuracies, are less impactful due to the smaller volume of intermediate data processed at

higher-level joins. In the figure, we observe a notable drop in data after 6-way join sizes in simple

queries, 10-way join in moderate queries, and 15-way join in complex queries. Interestingly, the

volume of intermediate data for complex queries between 6 to 13 joins remains stable. This implies

the importance of choosing optimal sub-plans up to 13-way joins. While these results are primarily

derived from the analysis of JOB sub-plans, we believe this observed trend applies to a wide range

of workloads. Taking into account the discussed facts and observed trends, we assign weights to

already computed join-level L1-errors L1
𝑘
at each join size using an inverse logistic function. For

notational purposes, let𝑤𝑘 be defined as:

𝑤𝑘 =
𝑒−𝑡×𝑘

1 + 𝑒−𝑡×𝑘
(10)

where 𝑡 represents the logistic growth rate or the steepness of the curve. With this in mind, we can

define the weighted query-level L1-error as follows:

L1𝑄 =

𝐾∑︁
𝑘=2

𝑤𝑘 × L1𝑘 = 𝑤𝑇 × L1 (11)

L1-errors across different join sizes are aggregated into a unified L1-error while assigning lower

weights to L1-errors at high-level joins. The logistic growth rate 𝑡 can be tuned based on the

performance of the cardinality estimator in use. For example, we set 𝑡 = 1.5, thus𝑤_7 = 0.000028,

based on the Q-error values generated by PostgreSQL, depicted in Figure 4a. It begins to reduce the

impact of join-level L1-errors starting from 7-way joins as we observe significant estimation errors

at higher-level joins.

Algorithm 1 L1-error

Input: largest join size 𝐾 of input query 𝑄 , set of query sub-plans 𝑆 , true 𝑌 and estimated 𝑌

cardinalities

Output: L1𝑄 weighted query-level L1-error

1: functionQuery-L1-error(𝐾 , 𝑆 , 𝑌 , 𝑌 )

2: 𝑤 ∈ R𝐾−1 ← join size weights from Equation 10

3: L1← Join-L1-error(𝐾, 𝑆,𝑌 ,𝑌 )
4: return L1𝑄 = 𝑤𝑇 × L1
5: function Join-L1-error(𝐾 , 𝑆 , 𝑌 , 𝑌 )

6: for each join size 𝑘 ∈ {2 . . . 𝐾} do
7: 𝑆𝑘 ⊂ 𝑆 ← subset of sub-plans of size 𝑘 in 𝑆

8: 𝜌 ← positions of 𝑆𝑘 increasingly sorted by 𝑌

9: 𝜌 ← positions of 𝑆𝑘 increasingly sorted by 𝑌

10: // compute weights from Equations 5 and 7
11: 𝑊 𝑘 ← impact weights of sub-plans in 𝑆𝑘
12: 𝛿𝑘 ← position weights of sub-plans in 𝑆𝑘
13: L1

𝑘 ← L1-error for join size 𝑘 from Equation 8

14: return L1← join-level L1 feature vector of size 𝐾 − 1

Algorithm overview. Algorithm 1 shows an overview of computing L1-error for a given query

𝑄 . The inputs are the maximum join size𝐾 and all sub-plans 𝑆 along with their true𝑌 and estimated
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𝑌 cardinalities. Algorithm 1 consists of two functions Query-L1-error (lines 1-4) and Join-L1-

error (lines 5-14). For the sake of clarity, we separate these two functions, although these two

functions can be combined. At the query level, in functionQuery-L1-error, join weights𝑤 for

each join size 𝑘 are generated as in Equation 10 (line 2). The impact of joins decreases as their

sizes increase following the ‘S’-shaped sigmoid curve. Join-level L1 ∈ R𝐾 are aggregated into the

final query-level L1𝑄 (line 4). Join-L1-error computes join-level L1
𝑘
for each join size 𝑘 . For the

sub-plans 𝑆𝑘 of size 𝑘 , two position vectors 𝜌 and 𝜌 are created and sorted in increasing order based

on the true 𝑌 and estimated 𝑌 cardinalities, respectively (lines 7-9). Simultaneously, impact weight

matrix𝑊 𝑘
and position weights 𝛿𝑘 are generated from Equations 5 and 7, respectively (lines 10-12).

Lastly, a join-level L1
𝑘
for join size 𝑘 is computed from Equation 8 (line 13). We repeat the process

for each join size (lines 6-13) yielding a feature vector, L1 of length 𝐾 , of join-level L1𝑘 (line 14).

6.2 Applications of L1-error
While minimizing individual Q-errors can enhance the overall efficiency of a query optimizer,

the metric often falls short of accurately indicating query plan optimality [11, 44]. Q-error is

conventionally used to assess cardinality estimation techniques and synopses, as a separate sub-

task that influences the likelihood of finding an optimal query plan [19, 26]. In recent years, Q-error

has been widely adopted in learning-based approaches [44], where it is utilized in the post-training

evaluation phase [12, 46–48] and during training [21, 34]. In Section 4, we observe that being solely

an error measurement, cannot reliably identify sub-optimal query plans. This limitation arises from

the fact that other factors that bridge the gap between estimation error and the selection of an

optimal plan, such as cost function and plan enumeration, are not taken into account by Q-error.

In this work, we present L1-error as a metric to characterize plan sub-optimality, taking as an

input only cardinalities and without requiring plan enumeration to compute P-error. Contrary to

Q-error which primarily concentrates on estimation precision, L1-error prioritizes the relative order

of sub-plans — a critical aspect for cost function and plan enumeration algorithms. It accounts for

the impact weights of sub-plans and their relative displacement in the presence of estimation errors.

Therefore, unlike Q-error, L1-error is capable of accurately identifying queries with sub-optimal

plans. This suggests that L1-error can serve as a complementary metric to Q-error to evaluate

query plans and can be employed in future research to evaluate the sub-optimality of query plans

produced by synopses and learning-based models. In the current work, we evaluate L1-error as

a standalone measure. For this purpose, we frame the identification of queries with sub-optimal

query plans as a binary classification task.

7 EMPIRICAL EVALUATION
In the current study, we assess L1-error as a separate measure and frame the identification of

queries with sub-optimal query plans as a binary classification task. This allows us to evaluate the

standalone efficacy of L1-error. Our evaluation of L1-error spans three different facets — varying

sources of cardinality estimates, plan search algorithms, and workloads and data.

7.1 Experimental Setup
Datasets & query workloads. We perform the experiments on the JOB benchmark [39] over

IMDB dataset [1], which has seen extensive use in evaluating query optimizers and has thereby

established itself as a standard benchmark [25, 26]. The JOB benchmark defines 113 queries grouped

into 33 families. These queries vary significantly in their complexity, with the simplest having 4 join

predicates and the largest join size of 4, and the most complex having 28 join predicates with the

largest join size of 17. This variability manifests itself in execution times that are highly different. To
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compensate for this, we split the queries into three complexity groups — simple (4-9 join predicates),

moderate (10-19 join predicates), and complex (20-28 join predicates) — and examine each group

separately. We also perform experiments using the JOB-light benchmark [20], a simpler version of

the JOB benchmark that includes 67 simple queries that can be represented with a star join graph

and feature 2 to 4 join predicates. To show how L1-error generalizes to different workloads and

data, we evaluate L1-error on JCCH [2] and DSB [7] benchmarks. We use scale factors of 1 and 10,

and generate 511 and 1440 queries, respectively.
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Fig. 8. Distribution of JOB queries based on P-error using true and PostgreSQL estimated cardinalities.

Methodology & implementation. For cardinality estimations, we select two distinct cardinality

estimators—PostgreSQL 15.1 [37], a widely recognized database system, and COMPASS [16, 17],

a more recent system. We run the sub-plans of the four workloads in PostgreSQL to collect their

estimated and true join cardinalities. Additionally, we collect estimated join cardinalities for the
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sub-plans of JOB and JOB-light produced by COMPASS. We compute the P-Error for each query and

use it as a true label in our binary classification task. We acquire query plans utilizing exhaustive

and greedy plan search algorithms based on estimated and true cardinalities. The cost of the query

plans is calculated using the cost function C from Section 3.1.

We show the performance of the L1-error-based binary classifier via confusion matrices depicted

in Tables 1 and 2. We label queries with sub-optimal plans as ‘positive’ (P) and ‘negative’ (N)

otherwise. These classifications are shown in the fifth to eighth columns of the confusion tables. In

the tables, we report four measures: ‘true positive’ (TP), ‘true negative’ (TN), ‘false positive’ (FP),

and ‘false negative’ (FN) shown on the ninth to twelfth columns. In addition, we report overall

accuracies on test data of the classifiers based on L1-error, Q-error and both in Figures 9 and 10.

In the binary classification task, we use a CART decision tree model of a tree depth of 5 from the

Scikit-learn library (version 1.1.2). For the logistic growth rate in Equation 10, we set 𝑡 = 1.5, which

begins weighting 4-way joins at ≈ 0.002. We partition the queries into training and testing, using a

70% to 30% split, respectively, to have a large enough test data for the classification task. In JCCH

and DSB, we split the data into 80% to 20%. The resulting data sizes are shown in the third and

fourth columns in Tables 1 and 2. The implementation of the current work together with all the

experimental artifacts are available online [15].

Benchmark Enumerator Train
queries

Test
queries

Actual Predicted
TP TN FP FNSub-optimal

(Positive)

Optimal

(Negative)

Sub-optimal

(Positive)

Optimal

(Negative)

JOB

113 queries

Exhaustive

79 34

87

61 train

26 test

26

18 train

8 test

94

67 train

27 test

19

12 train

7 test

85

60 train

25 test

17

11 train

6 test

9

7 train

2 test

2

1 train

1 test

Greedy

46

32 train

14 test

67

47 train

20 test

51

34 train

17 test

62

45 train

17 test

33

24 train

9 test

49

37 train

12 test

18

10 train

8 test

13

8 train

5 test

JOB-light

67 queries

Exhaustive

40 27

9

5 train

4 test

58

35 train

23 test

3

2 train

1 test

64

39 train

25 test

1

1 train

0 test

56

35 train

21 test

2

0 train

2 test

8

4 train

4 test

Greedy

2

1 train

1 test

65

39 train

26 test

0

0 train

0 test

67

40 train

27 test

0

0 train

0 test

65

39 train

26 test

0

0 train

0 test

2

1 train

1 test

JCCH

511 queries

Exhaustive

408 103

150

120 train

30 test

361

288 train

73 test

127

99 train

28 test

384

309 train

75 test

127

99 train

28 test

361

288 train

73 test

0

0 train

0 test

23

21 train

2 test

Greedy

120

96 train

24 test

391

312 train

79 test

59

45 train

14 test

452

363 train

89 test

59

45 train

14 test

391

312 train

79 test

0

0 train

0 test

61

51 train

10 test

DSB

1440 queries

Exhaustive

1152 288

727

582 train

145 test

713

570 train

143 test

668

529 train

139 test

772

623 train

149 test

586

462 train

124 test

631

503 train

128 test

82

67 train

15 test

141

120 train

21 test

Greedy

668

534 train

134 test

772

618 train

154 test

626

503 train

123 test

814

649 train

165 test

529

424 train

105 test

675

539 train

136 test

97

79 train

18 test

139

110 train

29 test

Table 1. Evaluation of L1-error on query plans selected using PostgreSQL cardinality estimates.

7.2 Results
L1-error performance on PostgreSQL. In this section, we first examine L1-error performance

identifying the sub-optimality of query plans selected based on PostgreSQL’s cardinality estimation.

Subsequently, we analyze L1-error performance on different sets of cardinality estimates collected

from the COMPASS estimator used to select query plans. We start the evaluation with the JOB

workload, composed of a mix of 113 simple, moderate and complex queries. Out of the four

workloads, JOB is the most challenging due to its relatively complex graph topology and large

number of joins. Figure 8 displays the distribution of JOB queries, grouped by their P-error shown

on the x-axis. In Figure 8a, when employing exhaustive enumeration, we observe that 23.9%
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of the selected plans are equivalent to optimal plans (P-error = 1), while 35.4% of 113 queries

are near-optimal (P-error < 1.5), thus may be considered successful. The remaining 40.7% of

the overall number of queries exhibits larger cost differences, some of which are severely sub-

optimal. In the case of greedy enumeration, Figure 8b, we observe that 25.7% and 24.8% of the

selected plans are equivalent to optimal plans (P-error = 1) and near-optimal (P-error < 1.5),

respectively. Interestingly, 17.7% of the queries have even better plans than the plans selected using

true cardinalities (P-error < 1). This is due to greedy decisions made during the enumeration. The

remaining 31.8% of the plans demonstrate higher P-errors, and some are severely sub-optimal.

These sub-optimal plans mainly include moderate and complex queries, and their sub-optimal plans

should be accurately identified.
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Fig. 9. L1-error classifier accuracy on test data using PostgreSQL cardinality estimates.

The objective is to directly classify sub-optimal query plans using only L1-error, not by P-error.

The first two rows in Table 1 depict the performance of L1-error evaluated on JOB. In the case

of exhaustive enumeration, the number of positive queries (sub-optimal) is higher than negative

queries (optimal) – columns 5 and 6. Based on the results, we observe a similar trend but now

query plans are classified by L1-error as an indicator of queries with sub-optimal plans – columns

7 and 8. The difference between predicted positive and negative queries is also high. Out of 87 true

sub-optimal plans (Positive), 85 sub-optimal query plans are correctly classified (TP), resulting in 2

FN. On the other hand, the number of misclassifying optimal plans as sub-optimal (FP) is higher

which is not as critical as FN. In the case of greedy enumeration, we observe an opposite trend

– the number of positive queries (sub-optimal) is lower than negative queries (optimal). While

the classifier results in 18 FP and 13 FN, the predicted Positive and Negative results follow the

pattern of the actual Positive and Negative results. Analyzing the misclassified optimal plans, in

both enumerations, we observe that the classifier primarily misclassifies queries with P-error < 1.5.

We now evaluate L1-error on simple queries in JOB-light — third and fourth rows in Table 1.

Unlike in JOB, this particular workload presents a relatively high unbalanced class ratio for the
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classification task. From the results, we notice a significant difference between the number of true

sub-optimal plans (Positive of 9 and 2) and true optimal plans (Negative of 58 and 65) in exhaustive

and greedy enumerations, respectively. This is expected because, in simple queries, the join sizes are

smaller, thus cardinality estimations are relatively accurate. Therefore, this results in a high number

of queries with optimal plans in both search algorithms. The results exhibit a similar trend but now

queries are classified by L1-error as an indicator. The difference between predicted positive and

negative queries is also high. Even though a large P-error may have less impact on the execution

time of simple queries, the classifier is still efficient in identifying plan sub-optimality. As in JOB,

the misclassified query plans show P-error < 1.5.

To conduct a comprehensive assessment of L1-error across a more expansive dataset and query

spectrum, we present evaluations performed on JCCH (rows 5 and 6) and DSB (rows 7 and 8)

workloads. Unlike the previous two workloads, JCCH and DSB show a relatively more balanced

class ratio, albeit with the predomination of optimal plans. This is due to the workload complexity

standing between JOB and JOB-light. Based on the results, the predicted Positive and Negative

results in a similar trend as in actual Positive and Negative results. The predicted class ratio also

follows a similar trend. Interestingly, the classifier avoids misclassifying optimal plans as sub-

optimal, with 0 FN in both enumeration algorithms. Looking into the misclassified queries reveals

query plans exhibiting P-error values centered around 1.78.

Benchmark Enumerator Train
queries

Test
queries

Actual Predicted
TP TN FP FNSub-optimal

(Positive)

Optimal

(Negative)

Sub-optimal

(Positive)

Optimal

(Negative)

JOB

113 queries

Exhaustive

79 34

78

55 train

23 test

35

24 train

11 test

100

68 train

32 test

13

11 train

2 test

76

54 train

22 test

11

10 train

1 test

24

14 train

10 test

2

1 train

1 test

Greedy

57

40 train

17 test

56

39 train

17 test

80

55 train

25 test

33

24 train

9 test

55

40 train

15 test

31

24 train

7 test

25

15 train

10 test

2

0 train

2 test

JOB-light

67 queries

Exhaustive

40 27

14

8 train

6 test

53

32 train

21 test

10

4 train

6 test

57

36 train

21 test

7

4 train

3 test

50

32 train

18 test

3

0 train

3 test

7

4 train

3 test

Greedy

3

2 train

1 test

64

38 train

26 test

4

2 train

2 test

63

38 train

25 test

3

2 train

1 test

63

38 train

25 test

1

0 train

1 test

0

0 train

0 test

Table 2. Evaluation of L1-error on query plans selected using COMPASS cardinality estimates.

Figure 9 illustrates the accuracy of the classifier on the test data. We compare the classifier based

on L1-error and the classifier based on Q-error as well as the classifier that utilizes both L1-error

and Q-error to identify sub-optimal query plans. Overall, we observe an improvement over the

Q-error classifier except in exhaustive enumeration on JOB-light attributed to the small number

of test data. The results above suggest L1-error is a viable indicator for identifying sub-optimal

query plans and can be used in tandem with Q-error to assess query optimizers to identify query

sub-optimality. The classifier based on both L1-error and Q-error exhibits overall improvement

in identifying sub-optimal plans. The combined approach can provide a more comprehensive

evaluation, considering both the absolute accuracy of individual estimates and their impact on

query plan optimality.

L1-error performance on COMPASS. In order to evaluate L1-error on a different dimension,

we collect true and estimated cardinalities from the COMPASS estimation for JOB and JOB-light

workloads. In Table 2, we present the classifier performance identifying sub-optimal query plans

selected by exhaustive and greedy enumeration algorithms using COMPASS cardinality estimates.

As with PostgreSQL estimates, we observe similar class ratios – actual Positives and Negatives

on columns 5 and 6 – in JOB and JOB-light. The predicted Positives and Negatives once again
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Fig. 10. L1-error classifier accuracy on test data using COMPASS cardinality estimates.

follow a similar pattern except for greedy enumeration in JOB. The number of estimated Positives

is noticeably higher than the actual Positives. Thus, the classifier results in a higher FP while still

maintaining a low FN. A closer scrutiny of the misclassified queries reveals a central tendency of

query plans exhibiting P-error values around 1.0. In Figure 10, we compare the classifiers using

L1-error, Q-error, and both performed, on JOB and JOB-light. As in PostgreSQL estimates, we

observe a positive trend over Q-error. The combined classifier on L1-error and Q-error shows

improved accuracy on the test data.

7.3 Summary
The experimental results can be summarized as follows:

• L1-error correctly classifies the optimality of query plans by following the trend and ratio

between true sub-optimal and optimal query plans. The results contain only a small number of

false negatives—the case when true sub-optimal plans are misclassified.

• The classifier based exclusively on L1-error identifies sub-optimal plans more accurately than

the classifier that has Q-error as a feature. When having a combined feature consisting of both

L1-error and Q-error, the best accuracy is achieved. These results prove that L1-error acts as an

important feature both alone as well as in conjunction with Q-error.

• L1-error maintains its accuracy across multiple sets of cardinality estimates and workloads. This

proves its generality both for different cardinality estimation synopses as well as across various

datasets and queries.

8 CONCLUSIONS AND FUTUREWORK
We introduce L1-error, a novel indicator designed to identify sub-optimal join orders. L1-error

emphasizes cardinality estimation errors that influence plan search algorithms, specifically those

errors that disrupt the cardinality-based sorted order of sub-plans. Importantly, L1-error disregards

estimation errors that do not bear any impact on the plan search algorithms. L1-error also takes

into account that the cardinality estimates of earlier multi-way joins tend to be more accurate and

critical than those of later joins. Our empirical results, across four different benchmarks, prove that

as a standalone metric, L1-error can efficiently identify sub-optimal join orders in both moderate

and complex queries.

As we look towards future research, we propose employing L1-error as a supplementary measure

in conjunction with Q-error to better correlate with the optimality of a query plan. Therefore, we

intend to utilize L1-error in the evaluation of a broader range of cardinality estimation techniques,

including learning-based approaches, to assess the efficacy of their trained models.
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