
TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16

Workload-Driven Antijoin Cardinality Estimation

FLORIN RUSU and ZIXUAN ZHUANG, University of California, Merced
MINGXI WU, GraphSQL
CHRIS JERMAINE, Rice University

Antijoin cardinality estimation is among a handful of problems that has eluded accurate efficient solutions
amenable to implementation in relational query optimizers. Given the widespread use of antijoin and subset-
based queries in analytical workloads and the extensive research targeted at join cardinality estimation—a
seemingly related problem—the lack of adequate solutions for antijoin cardinality estimation is intriguing.
In this article, we introduce a novel sampling-based estimator for antijoin cardinality that (unlike existent
estimators) provides sufficient accuracy and efficiency to be implemented in a query optimizer. The proposed
estimator incorporates three novel ideas. First, we use prior workload information when learning a mixture
superpopulation model of the data offline. Second, we design a Bayesian statistics framework that updates the
superpopulation model according to the live queries, thus allowing the estimator to adapt dynamically to the
online workload. Third, we develop an efficient algorithm for sampling from a hypergeometric distribution
in order to generate Monte Carlo trials, without explicitly instantiating either the population or the sample.
When put together, these ideas form the basis of an efficient antijoin cardinality estimator satisfying the
strict requirements of a query optimizer, as shown by the extensive experimental results over synthetically-
generated as well as massive TPC-H data.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing; G.3
[Mathematics of Computing]: Probability and Statistics—Distribution functions, Multivariate statistics,
Probabilistic algorithms

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Antijoin operator, query optimization, sampling, Monte Carlo, Bayesian
statistics

ACM Reference Format:
Florin Rusu, Zixuan Zhuang, Mingxi Wu, and Chris Jermaine. 2015. Workload-driven antijoin cardinality
estimation. ACM Trans. Datab. Syst. 40, 3, Article 16 (October 2015), 41 pages.
DOI: http://dx.doi.org/10.1145/2818178

1. INTRODUCTION

Cost-based query optimization [Chaudhuri 1998] relies fundamentally on the ability to
provide an accurate estimate for the number of tuples generated by a particular query
plan operator. The cardinality estimate is derived using simple arithmetic formulae
involving relation sizes and the number of distinct elements proposed more than three
decades ago [Selinger et al. 1979]. This is often the case despite the tremendous amount
of work on statistical synopses in databases [Cormode et al. 2012]. Of the many tech-
niques proposed, histograms [Ioannidis 2003] are the synopsis most widely adopted for
cost-based query optimization, for several reasons. A single-column histogram requires

Authors’ addresses: F. Rusu (corresponding author) and Z. Zhuang, School of Engineering, University of
California Merced, 5200 N Lake Rd., Merced, CA 95343; emails: {frusu, zzhuang}@ucmerced.edu; M. Wu,
GraphSQL Inc., 883 N. Shoreline Blvd., Mountain View, CA 94043; email: send2mingxiwu@gmail.com; C.
Jermaine, Computer Science Department, Rice University, 6100 Main, Houston, TX 77005-1827; email:
cmj4@cs.rice.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2015 ACM 0362-5915/2015/10-ART16 $15.00

DOI: http://dx.doi.org/10.1145/2818178

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:2 F. Rusu et al.

very little space to maintain. Histograms are effective in cost estimation for single table
selection. They are particularly accurate for highly selective queries compared to other
alternatives. Nonetheless, due to the implicit locality assumption, that is, adjacent
attribute values have similar frequency and thus can be grouped together, it has also
long been acknowledged that histograms are not very useful for join-size estimation
since they cannot capture correlations between columns. The situation is particularly
bad when there are multiple join levels since the errors propagate exponentially to the
top of the query tree [Ioannidis and Christodoulakis 1993].

For this and other reasons, a significant amount of research has been directed at
developing alternative synopsis structures for query optimization, chief among them
being sampling [Cormode et al. 2012] due to its generality and applicability to a large
class of SQL operators. One of the classical complaints against sampling, that is, sam-
ples have to be large in order to produce low-variance estimates, is much less signif-
icant in the modern era when even the most inexpensive machines have gigabytes of
memory. The common viewpoint that samples are useless for queries over infrequent
attribute values is also less relevant for modern big data analytics applications, where
most queries touch a large fraction of the data. Moreover, there are scenarios where
sampling is the only alternative for computing estimates in the query optimizer. For
example, Oracle temporary tables1 store only volatile data. No statistics (e.g., number
of distinct elements [Gibbons 2001] or histograms) are collected for temporary tables
whatsoever. Nonetheless, temporary tables can be used in queries just like any other
table. The Oracle query optimizer uses samples extracted dynamically at runtime in
order to estimate the cardinality of operators applied to temporary tables.

While it is well understood how to use samples for join-size estimation [Chaudhuri
et al. 1999], there is little work on sampling-based antijoin cardinality estimation—a
seemingly related problem. The classic example of an antijoin or subset-based query
is an SQL nested statement involving two queries connected by NOT IN or NOT EXISTS.
Given the dearth of applicable research on this topic in the literature, the assumption
seems to be that having synopses that can be used to accurately place antijoin
operators in a query plan has very limited applicability. However, this assumption
makes little sense since subset-based queries are quite common, particularly in
decision support applications (e.g., 10 of the 22 TPC-H2 queries involve a subset-based
operator). Furthermore, the placement of the antijoin operator can have a profound
effect on the cost of executing a query plan, as the motivating example following
shows. With respect to generality, we point out that the antijoin operator—and the
estimator proposed in this article, in particular—is applicable to a fairly large class
of problems. For example, DISTINCT queries and (anti)join similarity queries can be
rewritten using the antijoin operator, as shown in Section 2.

Motivating Example. Consider a standard TPC-H query, “What is the total supply
cost for parts less expensive than $700 supplied in 2007 by suppliers who did not supply
any part in 2006?” having the corresponding SQL statement.

SELECT SUM(ps supplycost*l1.l quantity)

FROM partsupp ps, lineitem l1

WHERE ps suppkey=l1.l suppkey AND ps partkey=l1.l partkey AND

year(l1.l shipdate)=2007 AND ps supplycost < 700 AND

1http://www.orafaq.com/wiki/Temporary table.
2www.tpc.org/tpch/.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:3

Fig. 1. Alternative left-deep execution plans for Query (1). “–” represents the antijoin operator.

NOT EXISTS (

SELECT * FROM lineitem l2

WHERE l2.l suppkey=l1.l suppkey AND

year(l2.l shipdate)=2006

).

(1)

Figure 1 sketches three alternative left-deep evaluation plans for this query. The plan
in Figure 1(a) is intuitive since it follows directly from the SQL statement. It first
evaluates the outer query and for every generated tuple it iterates over the inner query
to filter out only those tuples without any match. This requires a simple modification to
a nested-loop join algorithm that breaks the inner loop as soon as a match is found. The
same modification can be applied to other join algorithms (e.g., hash join or sort-merge
join). The job of the query optimizer is to determine, based on available synopses, which
of the three modified join algorithms (i.e., antijoin access paths [Colgan 2010; Schrag
2005]) is the most efficient.

In many database servers (e.g., MySQL and PostgreSQL), the plan in Figure 1(a) is
the only one available since those in Figures 1(b) and 1(c) require subquery unnesting
for the optimizer to even consider them. Essentially, Query (1) is rewritten as the
following equivalent query with the subquery in the FROM clause instead of WHERE.

SELECT SUM(ps supplycost*l1.l quantity)

FROM partsupp ps, lineitem l1,

(SELECT * FROM lineitem WHERE year(l shipdate)=2006) l2

WHERE ps suppkey=l1.l suppkey AND ps partkey=l1.l partkey AND

year(l1.l shipdate)=2007 AND ps supplycost < 700 AND

l1.l suppkey antijoin= l2.l suppkey

(2)

Here, the antijoin= is the notation for the antijoin access path. In the unnested query,
the optimizer can include the antijoin access path in the join-ordering algorithm and
generate plans that interchange the order of join and antijoin. Figure 1(b) is derived
directly from the unnested query by switching the order of the antijoin and join predi-
cates, while Figure 1(c) is inferred from the predicate ps suppkey=l1.l suppkey. These
plans have the potential of being considerably more efficient than the join in Figure 1(a)
because they can produce far fewer tuples. This is the case when the suppliers with line
items in 2006 and 2007 are (almost) the same (Figure 1(b)) or when the majority of the

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:4 F. Rusu et al.

suppliers who sell parts cheaper than $700 have line items in 2006 (Figure 1(c)). The
query optimizer has to identify these situations based on data statistics. This requires
antijoin cardinality estimation since the antijoin access path is not at the root of the
plan anymore.

Antijoin cardinality estimation turns out to be extremely unreliable with existing
synopses (e.g., histograms), because they aggregate data and lose tuple identity. For
example, consider the antijoin in Figure 1(b), which has to identify suppliers with
orders in 2007 but without any orders in 2006. Assume that a histogram is available
for year(l shipdate) having a separate bucket for each year. The optimizer makes the
assumption that the line items in a bucket are uniformly distributed across all the
suppliers. Moreover, it assumes that the suppliers in 2006 are a subset of the suppliers
in 2007. Thus, the only time a strictly positive estimate is returned is when the number
of 2006 line items is smaller than the number of suppliers and there are more line items
in 2007 than in 2006. Otherwise, the estimate is 0. There are at least two problems
with this estimator. First, it does not provide any information in the usual case, that
is, when the number of tuples in lineitem is considerably larger than in supplier. The
plan in Figure 1(b) is always assigned a lower cost than 1(a) in this situation. For this
reason, many query optimizers do not even consider the unnested plans. Second, the
0 estimate might prove to be extremely inaccurate in certain scenarios, for example,
when the 2007 line items are uniformly distributed across suppliers, while the majority
of the 2006 line items are provided by a small number of suppliers. Although end-biased
multidimensional histograms [Poosala et al. 1996] can provide better accuracy, they
are rarely implemented in query optimizers.

Problem Statement and Contributions. The problem we consider in this article is
sampling-based antijoin cardinality estimation. We explore how a set of prior (anti)join
queries and their results can be used to devise better sampling-based antijoin cardinal-
ity estimators for query optimization. To this end, we introduce a novel sampling-based
estimator for antijoin cardinality that (unlike existent estimators [Acharya et al. 1999;
Jermaine et al. 2005; Joshi and Jermaine 2009; Yu et al. 2013]) provides the required
generality and efficiency to be implemented in a query optimizer. The proposed esti-
mator builds upon the biased estimator introduced in Joshi and Jermaine [2009] by in-
tegrating query workload information using a Bayesian statistics framework [Gelman
et al. 2003] and by designing an efficient algorithm for sampling from a hypergeomet-
ric distribution. The use of prior workload information eliminates the time-consuming
requirement of building a model of the data at query time (for each query), while the
sampling algorithm replaces the naive procedure used in Joshi and Jermaine [2009].
Our specific contributions can be summarized as follows.

—We develop methods that allow the proposed estimator to learn a superpopulation
model of the data from prior workload information offline.

—We design a Bayesian statistics framework that updates the model according to the
live queries, thus allowing the estimator to adapt dynamically to the online workload.

—We develop an efficient algorithm for sampling from a hypergeometric distribution
in order to generate Monte Carlo trials without instantiating either the population
or the sample.

—We perform an extensive experimental study to evaluate the accuracy and efficiency
of the proposed estimator over synthetic as well as massive TPC-H data.

Organization. We start by formalizing the problem in Section 2 and discussing exis-
tent antijoin cardinality estimators in Section 3. We provide a high-level description of
the proposed estimator in Section 4, followed by a detailed presentation of the approach
in Sections 5, 6, 7, and 8. Section 9 contains the detailed experimental evaluation of

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:5

the proposed estimator. Related work is presented in Section 10, while Section 11
concludes.

2. THE ANTIJOIN SIZE-ESTIMATION PROBLEM

Antijoin cardinality has the following SQL form in the case of two relations R, the outer
relation, and S, the inner relation.

SELECT COUNT(*) FROM R r

WHERE NOT EXISTS

(SELECT * FROM S s WHERE f (r, s))
(3)

In this form, f is an arbitrary boolean predicate applicable to a pair of records from R
and S, respectively. If f(r, s) evaluates to true, then r and s are said to match. Essentially,
the antijoin cardinality problem asks for the number of records in R that do not have
a match in S according to predicate f. When f is defined as an equality between r and
s, that is, f (r, s) �→ r = s, antijoin cardinality reduces to computing the size of the set
(bag) difference between R and S, that is, |R− S|. Thus, we use the notation |R− f S| to
indicate antijoin cardinality throughout this article. For simplicity, we do not consider
selection predicates over individual records from R and S explicitly because they can be
encoded within the predicate f. Specifically, Query (3) can handle an arbitrary boolean
selection predicate PR (r) on tuples r ∈ R by having f(r, s) evaluate to true if PR (r) is
false. Similarly, Query (3) can handle an arbitrary selection predicate PS (s) on tuples
s ∈ S by having f(r, s) evaluate to false when PS (s) is false and PR (r) is true.

While we consider only antijoin queries, as given in Eq. (3), it is important to notice
that other types of SQL queries, for example, NOT IN, DISTINCT, semijoin, (anti)join
similarity, can be written in the form given in Eq. (3). For example, the number of
distinct elements in R, that is, COUNT DISTINCT, can be expressed as Eq. (3) by
simply replacing S with R in the inner subquery and setting f to f (r, r′) �→ (r.id <
r′.id) ∧ (r = r′), where id is a unique identifier, that is, key, corresponding to each
record. (Anti)join similarity requires only the definition of the appropriate similarity
predicate in f. These examples prove that the antijoin query is fairly general and that
solutions for the antijoin operator are applicable to a large class of computations beyond
subset-based queries.

The specific problem we consider in this article is sampling-based antijoin cardinality
estimation. Given random samples R′ ⊆ R and S′ ⊆ S, respectively, we are required to
guess the answer to Query (3) using only the samples. Moreover, we have to characterize
the accuracy of the guess from the samples R′ and S′. It is important to notice that
the new estimators we introduce in this article are applicable even when R and/or
S are themselves the result of an SQL subquery. For example, a sample R′ can be
extracted when R is the result of a join query using the well-known join synopsis
technique [Acharya et al. 1999]. We do not consider this extended case further here.

3. SAMPLING-BASED ESTIMATORS

We first discuss antijoin cardinality estimation when estimates are based on sampled
data only. In this section, we discuss some of the difficulties associated with the problem
as well as existing sampling-based estimators and their benefits and drawbacks, re-
spectively. We show that due to the hardness of the problem, standard sampling-based
strategies yield unsatisfactory results—both in terms of accuracy as well as execution
time—while advanced sampling strategies, such as correlated samples, require a sep-
arate synopsis for every antijoin predicate. Nonetheless, these serve as background for
the workload-aware estimator we propose in this work.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:6 F. Rusu et al.

3.1. How Do Query Optimizers Estimate Antijoin Cardinality?

Standard query optimizers do not use sampling for cardinality estimation. While they
implement histograms, it is often the case that cardinality is estimated based solely on
the size of the relations and the number of distinct elements. For example, the most
common estimator for the size of join |R �	 S| is min(dR, dS) · |R|

dR
· |S|

dS
, where dR and dS are

the number of distinct elements in R and S, respectively [Swami and Schiefer 1994].
Two important assumptions are made in the case of this simple estimator—uniformity
and containment. The values of the join attribute are assumed to be uniformly dis-
tributed over the domain of the attribute, and the set of values in the join column with
the smaller column cardinality is assumed to be a subset of the set of values in the join
column with the larger column cardinality. Although these are strong assumptions that
rarely hold in practice, they are ubiquitously used in almost all the relational query
optimizers. Consequently, the estimation error can be many orders of magnitude in
some situations.

Following the same assumptions, we can immediately derive an estimator for antijoin
cardinality |R − f S| as (dR − dS) · |R|

dR
. We assume that dR ≥ dS in this case. The

containment property tells us that all the distinct values in S are a subset of the distinct
values in R, while uniformity tells us that each distinct value appears the same number
of times. This is the standard nonsampling estimator for computing antijoin cardinality
in query optimizers [Selinger et al. 1979]. When histograms are available, the formula
is applied for every bucket and the results are summedup in order to get the final
estimator. As with the size of join estimator, the effect of the assumptions in practice
can be catastrophic, with orders of magnitude errors being common.

3.2. A Naive Estimator

It is not hard to imagine what a naive sampling estimator for the antijoin cardinality
problem might look like.

—Take a p · 100% sample (denoted R′) from R.
—Take a q · 100% sample (denoted S′) from S.
—Evaluate the antijoin cardinality Query (3) over samples R′ and S′ and return 1

p ·
|R′ − f S′| as the estimate for |R − f S|.

Though intuitive, this estimator is severely biased, or incorrect on expectation, since it
tends to overestimate the actual antijoin cardinality result. The reason is straightfor-
ward: simply because there is no match in S′ for a given record r′ ∈ R′ does not mean
that there is no match for r′ in S. Therefore, scaling up |R′ − f S′| by the sampling ratio
p incorrectly includes many records in R′ that do not have any matches in S′ but do
have matches in the remainder S − S′. This is especially true when the sampling ratio
q is small. The solution employed previously to counteract the bias, the concurrent
estimator in Jermaine et al. [2005], requires an index (e.g., B+-Tree) on the entire
relation S that permits fast identification of matching records s for any record r′ ∈ R′.
Unfortunately, this requirement limits the applicability of the concurrent estimator
severely. If an index on the inner relation S is not available, the concurrent estimator
cannot be used.

3.3. An Unbiased Estimator

Given the naive estimator, it is natural to ask if an unbiased estimator defined exclu-
sively over samples R′ and S′ exists. As presented in Joshi and Jermaine [2009], such
an estimator can be defined theoretically. We present this unbiased estimator in detail
in the following because it provides some intuition as to why sampling-based antijoin

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:7

cardinality estimation is so difficult. Moreover, the estimator we propose in this work
is derived from the basic form of this theoretical unbiased estimator.

When Each Tuple in R Has at Most One Match in S. It is useful to consider the form
of the unbiased estimator in the simplest case first. Imagine that we know every record
r ∈ R has none or at most one match in S. R′ can then be partitioned into two classes.

—R′
0. Records r′ ∈ R′ that have no matches in S′.

—R′
1. Records r′ ∈ R′ that have exactly one match in S′.

Likewise, records r ∈ R can be separated into two corresponding classes R0 and R1 that
contain records having no match and exactly one match in S, respectively. Throughout
the article, we refer to these records as class 0 and class 1 records, respectively. The
antijoin cardinality problem consists of computing the number of class 0 records, that
is, |R0|, based only on R′

0 and R′
1. If we can estimate how many records in R′

0 are
contributed by those records that have one match in S, that is, records r1 ∈ R1 that end
up in R′

0 due to sampling, an unbiased estimate for |R0| can be obtained by subtracting
this guess from |R′

0| and scaling up the result with the inverse of the sampling ratio
p. We know that |R1| · p · (1 − q) is an unbiased estimator for the number of records in
R′

0 that are actually in R1. The reason is straightforward: with probability p, a record
in R1 appears in sample R′ and with probability 1 − q, its match in S does not appear
in sample S′. Given this quantity, the next step is to estimate |R1| from the samples
R′ and S′—the only observable data. The probability for a class 1 record to appear in
R′ is p and, independently, the probability for its match record to appear in S′ is q.
Thus, on expectation, |R1| · p · q records from R′ have one match in S′. Then we can
immediately infer that |̂R1|1 = |R′

1| · 1
p · 1

q is an unbiased estimator for |R1|. By replacing
|R1| with |̂R1|1 and subtracting from |R′

0|, we obtain the unbiased estimator for antijoin
cardinality |R − f S|1:

|R − f S|1 ≈ 1
p

· (|R′
0| − |̂R1|1 · p · (1 − q)

) = 1
p

·
(

|R′
0| − |R′

1| · 1 − q
q

)
. (4)

Extension to at Most Two Matches. The unbiased estimator of Eq. (4) for the simplified
scenario of at most one matching record relies on not having any records in R that have
two or more matches in S. If such records exist, the estimator |̂R1|1 is not a good guess
for |R1|, since R′

1 inaccurately includes those records in R that have only one match
in S′ but actually have additional matches in S − S′. So what happens if every record
in R can have either zero, one, or two matches in S? Different from the simple at-
most-one-match scenario, this time there are two sources of bias in |R′

0|. One source is
represented by class 1 records, while class 2 records, that is, records r ∈ R with exactly
two matches in S, are the other source. In order to define an unbiased estimator in
this case, we have to design estimators for each of the bias sources, subtract them
from |R′

0|, and scale up the result by 1/p. As before, |R1| · p · (1 − q) is an unbiased
estimator for the bias introduced by class 1 records. The bias introduced by class 2
records, that is, records r ∈ R with two matches in S that are part of R′

0, is captured in
|R2| · p · H (X = 0 | |S|, 2, |S′|), where H (X = 0 | |S|, 2, |S′|) is the probability that none
of the matches of a class 2 record r2 ∈ R2 appears in S′. This probability is given by the
probability mass function (pmf)3 of a hypergeometric distribution [Johnson et al. 1996]
with parameters |S|, 2, and |S′|.

3The probability mass function is the equivalent of the probability density function (pdf) for discrete distri-
butions.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:8 F. Rusu et al.

Given the bias formulae for at most one match and at most two matches, the next
step in designing an unbiased estimator exclusively from the samples R′ and S′ is to
define estimators for |R1| and |R2|, respectively. In order to define an estimator for |R1|,
we cannot simply scaleup |R′

1| by 1/p, since part of R′
1 is coming from class 2 records—

these are records r ∈ R with two matches in S and only one match in S′. As a result, we
have to estimate the bias in R′

1 caused by class 2 records r2 ∈ R2. Since the inclusion
probability of a class 2 record in the sample R′ is p and the probability of seeing exactly
one of its matches in S′ is H (X = 1 | |S|, 2, |S′|), the average number of “disguised” class
2 records appearing in R′

1 is |R2| · p · H (X = 1 | |S|, 2, |S′|). By subtracting this quantity
from |R′

1| and multiplying the resulting difference by 1/p, an unbiased estimator |̂R1|2
for |R1| is obtained:

|̂R1|2 = (|R′
1| − |R2| · p · H

(
X = 1 | |S|, 2, |S′|)) · 1

p
· 1

q
(5)

Notice though that this formula relies on |R2|, that is, information not available in the
sample. Estimating |R2| turns out to be a much easier problem since the only source
for R2 records is R′

2:

|̂R2|2 = |R′
2| · 1

p
· 1

H (X = 2 | |S|, 2, |S′|) . (6)

Putting everything together, we obtain the estimator for |R − f S|2 as a linear combi-
nation of R′

0, R′
1, and R′

2:

|R − f S|2 ≈ 1
p

· [|R′
0| − |̂R1|2 · p · (1 − q) − |̂R2|2 · p · H

(
X = 0 | |S|, 2, |S′|)]

= 1
p

·
[
|R′

0| − |R′
1| · 1 − q

q

− |R′
2| ·

(
−1 − q

q
· H (X = 1 | |S|, 2, |S′|)

H (X = 2 | |S|, 2, |S′|) + H (X = 0 | |S|, 2, |S′|)
H (X = 2 | |S|, 2, |S′|)

)]
.

(7)

General Estimator Form. At this point, we have designed unbiased estimators for
two simple cases: at most one match in S and at most two matches in S for every record
r ∈ R, respectively. In both cases, the unbiased estimator is a linear combination of
|R′

0|, |R′
1|, . . . , |R′

m|, where m is the maximum number of matches a record r ∈ R can
have in S. In fact, it can be shown that the estimator is a linear combination of these
quantities for any m:

|R − f S|m ≈
m∑

i=0

bi · |R′
i|. (8)

The generalization as well as a recursion to compute the coefficients bi are given in Joshi
and Jermaine [2009]. Moreover, the variance of the estimator is also computed in the
general case in Joshi and Jermaine [2009]. While theoretically sound, the unbiased
estimator has several drawbacks that limit its applicability in practice. First, the al-
gorithm for computing the coefficients bi is factorial in m. Second, the probabilities
returned by the hypergeometric distribution pmf are infinitesimal (more so for large
values of m). Handling extremely small/large values introduces numerical instability
in computation which results in high errors both in the estimate as well as in the
variance (known to be prohibitively large in many situations). Third, the assumption
under which the unbiased estimator is theoretically sound is that each record r ∈ R

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:9

has its own class of matching records in S (without any overlap). If this assumption
does not hold, the correlations between records in R sharing records in S cannot be
accurately captured by the hypergeometric distribution and bias is introduced in the
estimator. Quantifying the bias analytically is virtually impossible and practically in-
feasible. In summary, the unbiased estimator is best suited for key-foreign key antijoins
over relations with a small number of matches m.

3.4. A Biased Estimator

A standard method for dealing with an unbiased estimator with high variance is to
drop it in favor of a biased estimator having low error. Since error is the result of
a combination of both bias and variance, it is often possible to exchange a highly
erroneous unbiased estimator, which has massive variance, for a far more accurate
estimator with some bias and much lower variance. In our particular case, designing a
low error biased estimator for anitjoin cardinality requires picking an alternative set
of bi coefficients that provide for an optimal error level.

A solution devising such a biased estimator exclusively from the samples R′ and S′
is introduced in Joshi and Jermaine [2009]. There are several aspects of this solution
that we present in detail since they are also used in the workload-aware estimator we
propose in this article. Since this is a parametric model-based estimator, an assumption
is made about the population, that is, relations R and S, that is, the samples R′ and S′
are drawn from. The class, number of matches in S, of each record r ∈ R is assumed
to be extracted from a multinomial distribution [Johnson et al. 1996] with m bins. The
parameters of the multinomial distribution, that is, the probability of each bin, are
not known in advance. They are inferred from samples R′ and S′ using the maximum-
likelihood estimator (MLE) technique. An iterative expectation maximization (EM)
algorithm [Dempster et al. 1977] which tries to determine optimal values for |Ri| from
known |R′

i| values, 0 ≤ i ≤ m, is designed to this end. The inferred model is subsequently
used to draw a specified number of random populations Rdi and their corresponding
samples R′

di
. These are used to compute the optimal value for the coefficients bi that

minimize the resulting estimator’s sum-squared error across the drawn population
instances. The optimal bi coefficients are finally plugged in Eq. (8) together with the
original sample to obtain the final query estimate. While there is no guarantee on the
estimator value, a good indicator of its accuracy is the mean-squared error across the
generated populations.

Although more scalable and, in general, more accurate than the unbiased estimator,
the biased estimator has a series of problems that make it infeasible for query opti-
mization. The first issue is computation time. Drawing multiple populations from the
parametric model and then a sample from each population is highly time consuming
when the size of the population is in the order of millions of records (not to mention
when it is even larger). Moreover, the entire process has to be repeated for every query.
No efficient solutions are discussed in Joshi and Jermaine [2009] for any of these prob-
lems. A second issue is poor estimator accuracy, especially when the size of the sample
is relatively small.

3.5. A Correlated Estimator

Instead of drawing independent samples from both R and S, respectively, an alternative
is to build sample S′ based on R′ [Acharya et al. 1999; Dobra et al. 2009; Yu et al. 2013].
R′ is obtained as before, by drawing a simple random sample from R. S′, on the other
hand, includes only those tuples s in S that are matches for sampled tuples from R.
Thus, S′ is correlated with R′. While R′ is still a random sample from R, S′ is not a
sample from S anymore.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:10 F. Rusu et al.

Two estimators can be defined for |R− f S|. The direct estimator scales up the number
of tuples r′ ∈ R′ without a match in S′ accordingly, that is, |R− f S| ≈ |R|

|R′| · |R′ − f S′|. The
difference with respect to the naive estimator is that tuples r′ ∈ R′ without a match in
S′ are guaranteed to not have a match in S. This results in a more accurate estimator.
An indirect estimator for the antijoin can be defined based on the semijoin, that is,
|R − f S| ≡ |R| − |R � f S|. The semijoin R � f S contains those tuples r ∈ R that have
matches in S. The indirect estimator is defined as |R − f S| ≈ |R| − |R||R′′|

|R′| , where |R′′|
is the number of samples with at least one match in S out of the |R′| drawn samples,
that is, |R′′| ≤ |R′|. It holds under both set and bag semantics. The indirect estimator
is useful when the correlated sample stores only tuples r ∈ R that have matches in S,
that is, nondangling tuples. This is a standard procedure for improving the accuracy
for size of join estimation and for better utilizing the synopsis storage space. In general,
though, the accuracy of the indirect estimator is likely worse than the accuracy of the
direct estimator.

The main drawback of correlated samples is that they are specific to a particular
instance of the antijoin problem. A correlated sample from R to S can provide estimates
only for |R− f S|. It cannot provide estimates for |S− f R| because unlike join cardinality,
antijoin is not commutative. The only solution is to build two correlated samples—one
from R to S and another from S to R. This has to be done for all possible antijoin
predicates ever to appear in queries; otherwise, no estimate can be produced. A similar
problem exists in the case of the concurrent estimator [Jermaine et al. 2005], which
requires an index on the inner relation. Essentially, we can think of the correlated
estimator as a materialized version of the concurrent estimator: both are unbiased
estimators, and both require the construction of a specialized synopsis for each antijoin
attribute pair.

3.6. Estimation Example

In order to clarify how each estimator works and to emphasize their differences,
we provide an illustrative example. Consider R = {1, 2, 3, . . . , 14, 15} and S =
{11, 12, 13, . . . , 24, 25}, each containing 15 integers, that is, |R| = |S| = 15. We want
to compute |R − S| = 10 using only the samples R′ = {2, 6, 8, 10, 13} and S′ = {13, 14,
19, 20, 25}. Using our notation, we have p = q = 1/3, |R′

0| = 4, and |R′
1| = 1. The naive

estimator simply returns 12: 1/p · |R′
0| = 12—an overestimate computed as efficiently

as possible. The unbiased estimator used in this case is |R− S|1 since each record r ∈ R
has at most one match in S. The unbiased estimator returns 6: 3 · (4 − 1 · 2) = 6—a
considerably erroneous underestimate. This is expected given the high variance of the
unbiased estimator.

In the case of the biased estimator, the multinomial distribution corresponding to the
original population, that is, {2/3, 1/3}, has to be approximated as accurately as possible
by an MLE process that takes as input the multinomial distribution corresponding to
the sample, that is, {4/5, 1/5}, and the sampling ratios p and q, respectively. Once the
multinomial distribution is determined, a population Rd consisting of 15 records and
their corresponding number of matches in Sd is randomly drawn. These are equivalent
to our original relations R and S with the only difference being that we actually know
the value of |Rd − Sd|. A sample of five records is then taken from Rd and Sd, and |R′

d0
|

and |R′
d1

| are computed. The entire process of drawing a random population from the
multinomial distribution and sampling from it is repeated several times. The resulting
|R′

d0
|, |R′

d1
|, and |Rd−Sd| are used to compute optimal values for b0 and b1 in Eq. (8) (e.g.,

b0 = 2.25 and b1 = 0.8). With these values, the biased estimate is 9.8: b0|R′
0| + b1|R′

1| =
2.25 · 4 + 0.8 · 1 = 9.8.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:11

The correlated samples derived from the simple random samples R′ and S′ are
R′′ = {2, 6, 8, 10, 13} and S′′ = {13}. The corresponding direct correlated estimator
returns 12: 15

5 ·4 = 12. The indirect estimator returns 12 as well: 15− 15·1
5 = 12. Since the

overall sample size is only 6 in this case (compared to 10 for simple random samples),
the accuracy of the correlated estimator can be improved further by increasing the
overall sample size to 10. This requires taking more samples from R and including
their matches from S, if any. It is important to emphasize that while R′ and S′ can be
used to estimate |S − R| directly, this is not the case for R′′ and S′′. The estimation of
|S − R| requires a new set of correlated samples built from scratch.

The standard nonsampling estimator used by many query optimizers has the most
inaccurate result. The nonsampling estimator returns 0: (15 − 15) · 15

15 = 0, which is
far away from the correct result. And this uses exact values for the number of distinct
elements in the two relations, not inaccurate synopses. The cause for this inaccuracy
is the containment assumption. While uniformity holds perfectly, containment is not
true. Only 5 of the 15 distinct elements in S are contained in R. In practice, it might
easily be the case that none of the assumptions hold, in which the estimate error could
skyrocket. This is exactly the reason why many query optimizers do not even attempt to
estimate antijoin cardinality and default to the intuitive execution plan that positions
the antijoin operator at the top of the query tree. In many situations, this is not the
optimal choice.

3.7. Summary

None of the sampling-based estimators discussed in this section are directly applicable
in the time-constrained environment specific to a query optimizer. The naive estima-
tor is severely biased. The unbiased estimator is factorial in the maximum number of
matches m, thus prohibitively slow for m > 10. The biased estimator requires paramet-
ric sampling from a multinomial distribution followed by random sampling without
replacement to generate points used in the optimization problem that computes the co-
efficients bi. Repeating this process multiple times for sizable populations (in the order
of millions) renders the biased estimator inapplicable inside a query optimizer. More-
over, the accuracy of both the unbiased and the biased estimator can be unacceptably
low—especially for small sampling ratios—due to the fact that they are computed ex-
clusively from the samples. The concurrent and the correlated estimators, while more
accurate, require the existence of auxiliary data structures beyond simple random sam-
ples. The concurrent estimator requires an index for every attribute ever to be part
of the antijoin predicate in the inner relation. The correlated estimator requires sepa-
rate samples for every antijoin predicate. Whenever these auxiliary structures are not
available, no estimator can be produced. This is a drastic limitation on the generality
of a query optimizer.

4. WORKLOAD-DRIVEN ESTIMATION

In this article, we introduce a completely different approach starting from the biased
estimator presented in Section 3.4. While we use the same intuition of determining
optimal values for the coefficients bi in the linear combination (8), we propose sev-
eral novel ideas that eliminate the inefficiencies of the biased estimator and make
it suitable for query optimization. First, we separate the model learning phase from
the estimation process by defining a mixture model exclusively over past workload
queries. These can be either join or antijoin predicates as long as they provide a match
frequency histogram, that is, the values |Ri|. Second, whereas model learning is an of-
fline process, the learned model is not static. It is updated dynamically at runtime with
data extracted from the current running query using a principled Bayesian statistics

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:12 F. Rusu et al.

strategy. This results in improved estimation for similar queries executed in sequence.
Third, we design an efficient algorithm for extracting samples without replacement
from a population generated itself from a multinomial parametric distribution without
even materializing the population. This is the major technical contribution that makes
our approach suitable for query optimization.

4.1. High-Level Description

Recall that we classify records r ∈ R with respect to the number of matches they have
in S. |R0| is the number of such records without any match in S—class 0 records; |R1| is
the number of such records with exactly one match in S—class 1 records; and so on. We
define the match frequency histogram or histogram pattern as the array h containing
the number of records r ∈ R in each class: h = [|R0|, |R1|, . . . , |Rm|]. For example, for
R = {a, b, c, d, e, f } and S = {d, d, d, g, f }, h = [4, 1, 0, 1], when m = 3, since a, b, c,
and e have no matches in S, f has one match, and d has three matches. It is important
to emphasize that the match frequency histogram can be computed for any predicate,
not only equality. Similarity-based predicates using any distance function are a good
representative in this sense. The estimator we propose in this article is applicable to
any such predicate as long as the match frequency histogram is provided.

We can define h′ = [|R′
0|, |R′

1|, . . . , |R′
m|] in a similar way. Abstractly, the sampling-

based antijoin cardinality estimation problem consists in guessing h[0] = |R0| when
only h′ is known. The approach taken in the biased estimator (Section 3.4) is to first
infer h from h′ and then return h[0] as the estimate. Although this is a logical solution
given the correlation between h and h′, it still remains extremely difficult to accurately
infer hdue to the large number of configurations of such histograms that can generate h′
through sampling. The experimental evaluation in Joshi and Jermaine [2009] confirms
the mixed results of the approach—the only approach known though.

The approach we propose here follows the same basic idea: infer h from h′ and then
return h[0] as the estimate. Our strategy is completely different. We start with the
assumption that a large number of match frequency histograms h, from which the
given h′ is drawn, exists. This allows us to capture multiple histogram patterns (e.g.,
uniform, skewed to the left, skewed to the right) that produce very different estimates
for the given h′. The fundamental question is which histogram h is h′ drawn from? We
assign a weight or probability to each histogram h that specifies the extent to which
we believe this is the histogram h′ is drawn from—representing such a belief with a
probability is the hallmark of Bayesian statistics [Gelman et al. 2003]. The initial set
of weights that we start out with before any data (i.e., query) have been encountered
are known in Bayesian terminology as the prior distribution. While there are many
strategies for designing a reasonable prior distribution, we choose to learn the prior
from the historical query workload since it is common in a database setting to have
similar queries executed repeatedly. Considering a set (i.e., mixture) of histograms
h and including the query workload in the inference process is what differentiates
our approach from the biased estimator discussed in Section 3.4. The sampled match
frequency histogram h′ corresponding to a runtime query is used to update the mixture
weights in a statistically rigorous fashion that takes into account the new query. The
updated weights represent the posterior distribution in Bayesian terminology. They
are used to find an optimal estimator following a similar process to the biased estimator.

Errors in the Prior Distribution. At first glance, assuming the existence of a prior
distribution may seem error prone. Since we learn the prior from previous queries,
we are assuming that new queries are never totally different from all of the queries
in the training workload. In the case in which we see a “new” query, the histogram
corresponding to the new query necessarily has a zero prior weight, since the query is

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:13

totally unanticipated. This is a problem with all methods that rely on learning from the
past and not specific to our approach. However, robustness to errors in the prior with an
adequate sample size is a widely recognized merit of the Bayesian approach. As more
and more samples are taken, the posterior distribution that we use to do inference
becomes less dependent on the prior distribution. In most circumstances, after a few
hundred query samples (i.e., histograms h′), the prior carries little (if any) weight
and the query samples are used almost exclusively for guessing the true histogram h.
Overall, the proposed approach performs best when the workload is stable and may
suffer in the case of ad-hoc queries never seen before.

ALGORITHM 1: Bayesian Inference Framework for Workload-Driven Antijoin Cardi-
nality Estimation
OFFLINE PROCESSING
Learning phase
Input: Set of match frequency histograms extracted from previous queries
Output: Query superpopulation model
Method: EM algorithm for mixture of multinomial distributions

ONLINE PROCESSING DURING QUERY OPTIMIZATION
1. Characterization phase
Input: Sample match frequency histogram for new query
Output: Likelihood distribution of sample match frequency histogram to superpopulation model
Method: CD sampling algorithm from hypergeometric distribution
2. Inference phase
Input: Query superpopulation model and new query likelihood distribution
Output: Updated query superpopulation model
Method: Bayesian inference to update mixture of multinomial distributions
3. Optimization phase
Input: Updated query superpopulation model
Output: Cardinality estimate and confidence bounds for new query
Method: Linear optimization over Monte Carlo trials sampled from superpopulation model

4.2. Bayesian Inference Framework

Given the high-level description of our approach, we first introduce the four steps of
the proposed Bayesian inference framework, depicted in Algorithm 1. Then we present
the details of each step in a separate section.

The learning phase (Section 5) uses statistical methods to build a prior histogram
model composed of a number of candidate match frequency histogram patterns. Each
histogram pattern represents a class of (anti)join queries. A weight is assigned to
each pattern indicating how likely a future histogram query matches that histogram
pattern. Both the weights and the histogram patterns are learned offline from the
historical query workload using an EM algorithm.

In the characterization phase (Section 6), a likelihood distribution of the current
sample histogram h′ corresponding to each learned histogram pattern is generated.
This is done using a novel Monte Carlo [Robert and Casella 2005] sampling algorithm
that extracts a sample h′ from the parametric representation of h without materializing
the relations R and S. This is the main technical contribution we introduce in this
article—a contribution that makes the proposed Bayesian inference framework suited
for query optimization.

The inference phase (Section 7) uses the likelihood distribution computed in the
characterization phase and the observed sample histogram h′ to infer the posterior

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:14 F. Rusu et al.

histogram probabilities. The prior weights of the histogram model are updated based
upon the evidence seen in the sample histogram h′. The updated histogram model is
then deemed as a superpopulation from which the query result “hidden” histogram h is
generated. It is important to notice that the characterization phase applies solely to the
learned histogram patterns and not to the sample histogram h′ observed at runtime.

The optimization phase (Section 8) generates a large number MCo of histograms
from the superpopulation computed in the inference phase. Each histogram is then
used to instantiate a pair of outer and inner relations Pi = (Ri, Si), respectively. For
each relation pair, a sample pair Ti = (R′

i, S′
i) is subsequently generated. As expected,

this process is executed using the same Monte Carlo algorithm introduced in the
characterization phase. Let CPi [0] be the class 0 count, that is, the correct result, in
the ith relation pair. Let W(Ti) denote the estimator function. The optimal estimator
is computed such that it minimizes the sum-squared error (SSE) criterion, that is,∑d

i=1(CPi [0] − W(Ti))2, across all the generated populations. It is important to clarify
that characterization, inference, and optimization are executed online during query
optimization.

5. LEARNING PHASE

Any Bayesian method requires a probabilistic model of how data are generated. In
our case, each individual “data point” produced by the generative process is a match
frequency histogram containing the count for each record class in the outer relation
R of an antijoin operator. Informally, we assume the following generative process for
producing each histogram. First, a biased die is rolled to determine by which pattern
the match frequency histogram is generated. We assume the existence of a set of c
different histogram patterns, and the die roll selects one of them. Second, we repeatedly
sample |R| times from the selected histogram pattern. Each sample is generated with
a class label i meaning we see a record r ∈ R that has i matching records in the inner
relation S. The resulting histogram is composed by the sampled count of each class.
The assumption that we make here (which need not be strictly accurate) is that any
two records ri, rj ∈ R do not share matches in S.

Given this intuitive generative process, the next step is to formalize it rigorously.
There are three parts to consider in the formalization. First, a sound parametric model
has to be hypothesized for the histogram pattern. Second, a probability mass function
(pmf) that returns the probability of a given histogram to be produced by the generative
parametric model has to be defined. Third, learning the model consists in finding opti-
mal values for the parameters such that the learning error over the training workload
is minimized.

Multinomial Parametric Model. It is necessary to choose a parametric distribution to
model the histogram pattern. The parametric distribution has to be both general in the
sense that it allows any observable histogram to be generated and specific in the sense
that it captures the typical histogram shape of the underlying data and is tailored
for the historical workload. Following the reasoning in Joshi and Jermaine [2009], we
settle for the multinomial distribution [Johnson et al. 1996] with (m + 1) bins (m is
the maximum number of matches a record r ∈ R can have in S) as the histogram
pattern parametric model. As discussed in Joshi and Jermaine [2009], the multinomial
distribution is the most general choice since it does not impose any restriction on the
probability of a match record class. What differentiates our approach from that of
Joshi and Jermaine [2009], though (and makes it considerably more complex) is that
we use a family or mixture of c multinomial distributions rather than a single one
as the generative model. The increased complexity is beneficial in this case since it
reduces the chances of overfitting, as the mixture components compete for the shared

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:15

weight in the overall model. While any component might overfit the training data, the
others will limit the degree of overfitting. In general, mixture models are less prone to
overfitting because they can be seen as multiple instances of the model, instantiated
with different parameters. This is a standard method to handle overfitting [Joshi and
Jermaine 2009].

Generative Model pmf. The generative pmf function takes as input a histogram and
returns the probability that it is produced by the two-step generative process. Formally,
let {C0, C1, . . . , Cm} denote the m possible classes and h = [h0, h1, . . . , hm] denote the
match frequency histogram, where hi, 0 ≤ i ≤ m is the cardinality of class Ci. Also, let
�p = [p0, p1, . . . , pm], with

∑m
i=0 pi = 1, denote the multinomial “success” rate for each

class. Then, the likelihood of observing a histogram h given |R| and �p is given by the
pmf of the multinomial distribution �p applied to histogram h:

pmfmult (h | �p) = |R|!
h0!h1! . . . hm!

ph0
0 ph1

1 . . . phm
m (9)

Notice that |R| is not a model parameter: it is a data dependent parameter since it can
be derived from the input histogram h, that is, |R| = ∑m

i=0 hi. Remember though that
our generative model assumes that a histogram is chosen at random from a weighted
set of c patterns { �p1, . . . , �pc}, where the weight of each pattern is 0 < w j < 1, 1 ≤ j ≤ c.
Moreover,

∑c
j=1 w j = 1. Thus, the pmf f ∗ of the generative model is given by

f ∗ (h | �) =
c∑

j=1

w j · pmfmult
(
h | �pj

)
, (10)

where � = {c, �p1, . . . , �pc, w1, . . . , wc} are the model parameters.

Learn the Model Parameters. While the biased estimator in Section 3.4 uses ex-
clusively a query sample histogram h′ to learn the model parameters, we use prior
workload information. This takes the form of a set H = {h(1), h(2), . . . , h(k)} of match
frequency histograms obtained as a result of processing prior antijoin queries. We di-
vide the learning phase into two separate stages. First, determine the structure of
the model, that is, the number of mixtures c and the number of bins m in the multi-
nomial distribution. And second, find optimal values for �pi[j], 1 ≤ i ≤ c, 0 ≤ j ≤ m
and wi, 1 ≤ i ≤ c, respectively, for the configuration chosen in the first stage. In order
to guarantee that an overall optimal solution is found even though we do not solve
the complete optimization problem at once, we execute the second stage for multiple
model configurations of increasing complexity until we do not observe considerable
improvement in the objective function. The second stage can be formulated as a sound
optimization problem with a well-defined solution for a given model configuration,
whereas the best choice for c and m is not that clear, even for reduced workloads that
produce relatively small-sized histograms. It is also important to notice that larger
values for c and m increase the execution time of the online phases accordingly in the
Bayesian inference framework. As a result, a trade-off has to be made between esti-
mation accuracy and execution time. Since this trade-off is specific to every problem
instance, it is best determined experimentally. Nonetheless, in the experimental eval-
uation (Section 9), we present such a trade-off analysis that gives clear guidelines on
how to choose c and m independent of the problem.

EM Algorithm. Given a model configuration, i.e., fixed c and m, and a query workload
histogram set H = {h(1), h(2), . . . , h(k)}, we have to determine the optimal values for
the parameters �pi and wi, 1 ≤ i ≤ c that maximize the likelihood that H is drawn

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:16 F. Rusu et al.

ALGORITHM 2: EM Parametric Superpopulation Extraction
Input: H = {h(1), h(2), . . . , h(k)}
Output: �′

1: Initialize model parameters �′ = { �p1, . . . , �pc, w1, . . . , wc}
2: while (true) do
3: Lcurr = � (�′ | H)
4: if (convergence (Lcurr) == true) break
5: E-step: Compute posterior probabilities for each histogram bin count h(i)[j] over all the

(model mixture, multinomial bin) pairs. Let postijl = Prob(h(i)[j]| �pl[j])∑c
l′=1 Prob(h(i)[j]| �pl′ [j])

be the posterior

probability of bin j in input histogram h(i) drawn from the multinomial mixture component
l, 1 ≤ i ≤ k, 0 ≤ j ≤ m, 1 ≤ l ≤ c.

6: M-step: Recompute the model parameters in �′ using the update rules:
7: w′

l = 1
k

∑k
i=1 wl · posti∗l = 1

k

∑k
i=1 wl · pmfmult(h(i) | �pl)

8: �p′
l[j] =

∑k
i=1 h(i)[j]·postijl∑m

j′=0
∑k

i=1 h(i)[j′]·postij′l
9: end while
10: return �′

from �′ = { �p1, . . . , �pc, w1, . . . , wc}. This can be expressed as the following log-likelihood
optimization function:

�
(
�′ | H

) = argmax�′

k∑
i=1

log f ∗(h(i) | �′). (11)

The EM algorithm is a general method for finding the maximum likelihood estimate of
the parameters of an underlying distribution from a given dataset when the available
data are incomplete or have missing values. In our case, the histogram set H is incom-
plete. There are two pieces of information missing for every instance in H. We do not
know from which superpopulation mixture component it is generated. And, for every
bin in a particular instance in H, we do not know which bin in the mixture component
generates it. EM starts out with an initial assignment of values to the unknown pa-
rameters and, at each step, computes new values for each of the parameters via a set of
update rules. EM continues this process until the likelihood function stops increasing.
An alternative is to let the algorithm run for a fixed number of iterations.

Without diving into the derivation details, we present the EM algorithm for the mix-
ture of multinomial distributions in Algorithm 2. Every iteration of the EM algorithm
performs an expectation (E) step and a maximization (M) step. In the E-step, a set of
posterior probabilities are computed for each histogram bin h(i)[j] over all the (model
mixture, multinomial bin) pairs. These probabilities can be computed directly from the
multinomial distribution pmf in Eq. (9) restricted to a single bin j. The posterior prob-
abilities are then used in the M-step to update the values of the model parameters in
such a way that the expected value of the likelihood function associated with the model
is maximized with respect to the posterior probabilities. The derivation of these for-
mulae for any parametric distribution can be found elsewhere [Bilmes 1998; Benaglia
et al. 2009]. Since the particular case of a multinomial distribution requires only to
plug in the corresponding pmf formula, we do not include the complete derivation here.

While the number of components c in the mixture and the number of bins m in the
multinomial distribution have to be passed as input parameters to the EM algorithm
using the two-step optimization procedure just described, the final set of model pa-
rameters �′ returned by the EM algorithm contains valuable information that can be
used to reduce the search space of c and m, respectively. Very small weights, that is,

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:17

wl < 10−10, are a clear indication that the number of components c is too large and
some can be dropped. Similarly, very small probabilities corresponding to bins in �pl
point to a reduction in m. A correct implementation of the EM algorithm is guaranteed
to detect this behavior.

Model Construction. There are two separate stages in the computation of the query
superpopulation model. First, the match frequency histograms for the query workload
H have to be computed. In order to generate one such histogram h(i), the SQL query (12)
has to be executed in addition to the antijoin query: (3), which returns only h(i)[0]. The
main idea is to count how many matches each record r ∈ R has in S and then group on
the number of matches to obtain the match frequency histogram.

SELECT Q.cnt AS bin, COUNT(*) AS freq

FROM (SELECT r, COUNT(*) AS cnt

FROM R r, S s WHERE f(r,s)

GROUP BY r) AS Q

GROUP BY Q.cnt

(12)

If taken separately, this query can take a significant amount of time. Thus, it can only
be executed during query optimizer’s synopses maintenance. Otherwise, it can impact
drastically the execution of the original query. An alternative is to extend existing
join algorithms (e.g., nested loops, hybrid hash, sort-merge) such that they produce
the histogram as a side effect. While the changes are minimal—for every tuple in R
count how many tuples it generates in the join result—the integration with the query
optimizer requires care since the histogram is built and stored at query time.

The second stage comprises the execution of the EM algorithm. Since it can take
place only after all the workload histograms are extracted, it is executed during query
optimizer synopses maintenance. The complexity of the EM algorithm is O(k · c · m)
for every iteration, with convergence typically achieved in a few thousand iterations.
Although this might seem prohibitive, the R implementation [Benaglia et al. 2009] we
used in the experiments computes a parametric model with 20 components and 100
bins over a workload of 100 queries in less than one second. When the computation of
the match frequency histograms is included, the overall execution time is less than five
minutes, which is acceptable for synopses maintenance even in the most constrained
query optimizers.

Model Maintenance. Two situations have to be considered. First, the set of his-
tograms H is kept constant, while modifications to the base relations are allowed.
These have to be reflected in the corresponding match frequency histogram, though.
The naive approach is to recompute the histogram from scratch after each modifica-
tion operation (or after a number of operations). Incremental maintenance is the more
optimal approach in which the histogram is updated minimally. For example, when a
new record is inserted into R, the number of matching records in S is found and the
count of the corresponding histogram bin is incremented. In the case of a deletion from
R, the count is decremented. Insertions and deletions into/from S modify two counts:
one is decremented, while the other is incremented. Updates are executed as a delete
followed by an insert. In order to have the modifications reflected in the parametric
model, the EM algorithm has to be reevaluated. The previous model can be used as
a promising starting solution to speedup convergence. In the second situation, the set
of histograms H is modified through the addition/deletion of one or more histograms.
This can be the result of a significant change in the query workload. Since a com-
plete reexecution of the EM algorithm with different parameters is required in this

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:18 F. Rusu et al.

case, this type of modification is recommended only as part of the query optimizer’s
synopses maintenance, executed at fixed time intervals (e.g., daily) or at the request of
the database administrator.

6. CHARACTERIZATION PHASE

The learning phase provides us with a set of weighted histogram patterns that describe
the historical workload. As a preparation for the inference phase that makes use of
these patterns, we have to derive the distribution of the query sample histogram h′
corresponding to a model component �pl. In this section, we first show how to do this
when we know h′ is sampled from a match frequency histogram h generated by a given
pattern �pl. Then we present the extension to the distribution of an unknown sample
histogram h′.

Recall that we treat a given match frequency histogram h as a sample from a super-
population modeled as a mixture of multinomial distributions. Thus, a sample match
frequency histogram h′ can be viewed as the result of the following two-stage sam-
pling process when the multinomial distribution �p is fixed. First, a match frequency
histogram h is produced by drawing a sample of size |R| from �p. h contains in each bin
the number of records r ∈ R corresponding to each class. We use h to instantiate a pair
of outer and inner relations R and S, respectively. For each r ∈ R, we assign a unique
ID to it and add i matching records with the same ID to the inner relation S, where r
is a class i record, that is, r has i matching records in S. Second, two samples R′ and
S′ of size |R′| and |S′| are drawn without replacement from R and S, respectively. h′ is
obtained by executing Queries (3) and (12) over R′ and S′. Given this process, it is clear
that h and h′ are correlated. However, it is infeasible to analytically obtain the distri-
bution of h′ from the distribution of h in the general case of a multinomial distribution.
Therefore, we resort to Monte Carlo methods [Robert and Casella 2005] to obtain the
distribution of h′—represented (approximately) as a multinomial distribution as well.
In order to obtain the distribution of h′ given �p, the Monte Carlo approach obtains a
large number of independent and identically distributed (i.i.d). samples h′

(i) directly
from the underlying generative process previously described. The samples are then
summarized as a set of sufficient statistics to represent the final distribution of h′.

Class-Dependent Monte Carlo Sampling. It is not hard to imagine how a naive Monte
Carlo algorithm for generating the distribution of h′ works. The algorithm simply
repeats the preceding two-stage sampling process MCc times, where MCc is the number
of Monte Carlo samples to produce. Though simple, the direct implementation of the
naive algorithm is very inefficient. It is essentially impractical in query optimization
when the size of R is in the order of millions of records, since the cost per Monte Carlo
iteration is O(|R| + |S|). Thus, a more efficient algorithm is required.

We propose the class-dependent sampling algorithm, or CD sampling, to generate
h′ directly from �p without even instantiating R and S or executing the naive sam-
pling procedure. CD sampling is the principal technical contribution we introduce in
this article, required in order to apply the proposed method in a query optimization
setting. Essentially, CD sampling simulates the naive Monte Carlo procedure using a
considerably more efficient distributional sampling process that generates statistically
indistinguishable results when compared to the naive Monte Carlo procedure. The cen-
tral idea in CD sampling is the observation that sampling without replacement in the
second stage of the naive Monte Carlo process follows a hypergeometric distribution
for every bin in h. In order to determine the contribution to h′ for a specific bin in h,
we have to sample from the multinomial distribution composed by the hypergeometric
probabilities corresponding to bin h. This is similar to the generative process for h

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:19

ALGORITHM 3: CD Sampling
Input: �p, |R′|, |S|, |S′|
Output: h′

1: Draw a sample R′ from Multinomial(�p, |R′|). Let hR′ = [r′
0, r′

1, . . . , r′
m] with r′

i =
Multinomial(X = i | �p, |R′|), 0 ≤ i ≤ m, represent the match frequency histogram of R′

corresponding to S.
2: Initialize h′ to a zero vector with (m+ 1) elements [0, 0, . . . , 0]
3: NS = |S|; NS′ = |S′|
4: for i = m downto 0 do
5: Let �q = [q0, q1, . . . , qi], where qj = Hypergeometric(X = j | NS, i, NS′), 0 ≤ j ≤ i
6: Draw sample Y = {y0, y1, . . . , yi} from Multinomial(�q, r′

i)
7: for j = 0 to i do
8: h′[j] = h′[j] + yj ; NS′ = NS′ − j · yj
9: end for
10: NS = NS − i · r′

i
11: end for
12: return h′

with the difference that the probabilities in the multinomial distribution have to be
computed from the given �p and the relation sizes.

The CD sampling pseudocode is given in Algorithm 3. It takes as input parameters
the multinomial probabilities �p, the size of S, and the sample sizes |R′| and |S′|, re-
spectively. It returns h′, the sample match frequency histogram. The first step is to
generate R′. This is nothing else than drawing a sample of size |R′| from the multino-
mial distribution given by �p, since we consider the records r ∈ R to be i.i.d. (line 1).
The only difference between generating R and R′ is the sample size. The records r′ ∈ R′
are grouped in histogram hR′ on the record class (i.e., number of matches) they have
in S—the equivalent of h with fewer records. CD sampling is computing h′ iteratively
from hR′ (the for loop in lines 4–11). Starting from bin m corresponding to records
r′ ∈ R′ having m matches in S, the distribution of the number of matches r′ has in S′
is computed by drawing samples from a hypergeometric distribution with parameters
determined by the size of S and S′, respectively (vector �q in line 5). We use the hyperge-
ometric distribution since it is the pmf [Johnson et al. 1996] corresponding to sampling
without replacement—the generative process for h′. In order to determine the number
of matches a particular record r′ ∈ R′ has in S′, we draw a single sample from the multi-
nomial distribution governed by the probabilities �q. Line 6 groups the drawn values
corresponding to all records r′ in the same class into a single multinomial invocation
with size r′

i . This assumes that two records in the same class i are independent, which
is approximately true when m � |S′|. The inner for loop in lines 7–9 updates histogram
h′ and the size of S′ with the counts drawn from the multinomial distribution, while
line 10 updates the size of S. It is necessary to update |S| and |S′| in each iteration in
order to guarantee that the correct sample match frequency histogram h′ is generated.
Otherwise it is possible to generate a larger sample. Moreover, the execution of the
outer loop in descending order guarantees that large numbers of matches in h′ are
likely, and they are determined exclusively by the sample size.

CD sampling is a quadratic algorithm in the number of bins m. There are O(m2) calls
to the hypergeometric distribution pmf and O(m2) updates to h′ and NS′ . Considering
that CD sampling is invoked MCc times for every component in the mixture, the overall
complexity is O(MCc · c · m2). Thus, it is important to remark that, unlike the naive
Monte Carlo procedure, CD sampling is independent of the relation and sample sizes.
This results in increased scalability and applicability to query optimization.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:20 F. Rusu et al.

THEOREM 6.1. Denote by H′ ⊂ [0 . . . |R′|]m+1 the set of all possible realizations of h′.
For fixed m, �p, and |R′|, we have

lim
|S′|,|S|→∞

sup
v∈H′

∣∣Prob(h′
naive = v) − Prob(h′

CD = v)
∣∣ = 0,

where |S′|, |S| → ∞ in a manner such that |S′|
|S| → p ∈ (0, 1).4

Thus, if S′ is a 100 · p% sample of S and both |S| and |S′| are sufficiently large,
then the distributions of h′

naive and h′
CD are approximately equal. (As shown in the

experiments, the deviation between the distributions is negligible for values of |S| and
|S′| encountered in practice.)

PROOF. First, observe that in the naive procedure, R′
naive is obtained by drawing an

i.i.d. sample of size |R| from �p and then drawing a simple random subsample of size
|R′|. This is probabilistically equivalent to directly drawing an i.i.d. random sample of
size |R′| from �p, which is how R′

CD is obtained in the CD algorithm. Now fix v and write

Prob(h′
naive = v) =

∑
U∈R′

Prob(h′
naive = v|R′

naive = U) · Prob(R′
naive = U),

Prob(h′
CD = v) =

∑
U∈R′

Prob(h′
CD = v|R′

CD = U) · Prob(R′
CD = U),

where R′ is the set of all possible values of R′. Because Prob(R′
naive = U) =

Prob(R′
CD = U) for all U as previously discussed, it suffices to show that

lim|S′|,|S|→∞ |Prob(h′
naive = v|R′) − Prob(h′

CD = v|R′)| = 0, for all R′ ∈ R′.
To this end, fix R′ and, for i ∈ [0 . . . m], denote by ni = |{r′ ∈ R′ : r′ = i}| the number of

class i records in R′ (where class is with respect to matches in S). Denote by r′
i, j the jth

record of class i so that R′ = ⋃m
i=0

⋃ni
j=1{r′

i, j}. Denote by Xi, j the class of r′
i, j with respect

to S′ and set �Y ∗
i = ∑

j I(Xi, j), where I(l) is the unit vector of length m+1 whose lth com-
ponent equals 1, with all other components equal to 0. Thus, h′

naive = ∑
i Yi, so that, for

each i = m, m−1, . . . , 0, an exact sequential implementation of the Naive method algo-
rithm generates �Xi = (Xi,1, . . . , Xi,ni) (conditional on the observed value �xj of �Xj for each
j > i) and then computes Y ∗

i and adds it to the current value of h′
naive. (That is, only line 3

of the CD algorithm is modified.) The actual CD algorithm computes Yi = ∑
j I(Zi, j),

where the components of �Zi = (Zi,1, . . . , Zi,ni) are independently and identically dis-
tributed (i.i.d) with Prob(Zi,l = k) = H(k; |S| − ∑m

j=i+1 j · nj, i, |S′| − ∑m
j=i+1 ||�zj ||). Here,

H denotes the hypergeometric probability mass function (pmf), �zj denotes the observed
value of �Zj , and || �w|| = ∑

j w j is the L1-norm for a vector �w. Set �X = (�X1, . . . , �Xm) and
�Z = (�Z1, . . . , �Zm). Assuming that

lim
|S′|,|S|→∞

sup
�v

|Prob(�X = �v) − Prob(�Z = �v)| = 0, (13)

the desired result follows by a straightforward argument which uses the fact that m
and |R′| are fixed.

To establish Eq. (13), first observe that (X1,1, . . . , Xm,nm, |S′| − ∑
j || �Xj ||) has a multi-

variate hypergeometric distribution [Johnson et al. 1996] denoted by MH(|S|, �b, |S′|),

4The proof of the theorem is largely provided by one of the anonymous reviewers. We are grateful for the
time spent on this article and the insightful comments that increased the quality of this work significantly.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:21

where �b = (r′
1,1, . . . , r′

m,nm
, |S| − ∑

i, j r′
i, j). Fixing �u = (u1, . . . , um) and using standard

grouping and conditioning properties of the MH distribution, we find that

Prob(Zm,1 = u1)
Prob(Xm,1 = u1)

= H(u1; |S|, m, |S′|)
H(u1; |S|, m, |S′|) = 1.

We also have
Prob(Zm,2 = u2|Zm,1 = u1)
Prob(Xm,2 = u2|Xm,1 = u1)

= Prob(Zm,2 = u2)
Prob(Xm,2 = u2|Xm,1 = u1)

= H(u2; |S|, m, |S′|)
H(u2; |S| − m, m, |S′| − u1)

.

It follows from the definition of the hypergeometric pmf that

H(u2; |S|, m, |S′|) =
(

m
u2

)
×

∏m−u2−1
i=0 (|S| − |S′| − i)

∏u2−1
i=0 (|S′| − i)∏m−1

i=0 (|S| − i)

→
(

m
u2

)
(1 − p)m−u2 pu2

as |S′|, |S| → ∞. We have used the fact that, for example,
∏m−u2−1

i=0 (|S|−|S′|−i)
(|S|−|S′|)m−u2 → 1 as

|S′|, |S| → ∞ since u2 ≤ m � |S|, |S′|. A similar calculation shows that H(u2; |S| −
m, m, |S′| − u1) → (m

u2
)(1 − p)m−u2 pu2 , so that

Prob(Zm,2 = u2|Zm,1 = u1)
Prob(Xm,2 = u2|Xm,1 = u1)

→ 1,

and hence, by our previous calculation,

Prob(Zm,2 = u2, Zm,1 = u1)
Prob(Xm,2 = u2, Xm,1 = u1)

= Prob(Zm,2 = u2|Zm,1 = u1)
Prob(Xm,2 = u2|Xm,1 = u1)

× Prob(Zm,1 = u1)
Prob(Xm,1 = u1)

= Prob(Zm,2 = u2|Zm,1 = u1)
Prob(Xm,2 = u2|Xm,1 = u1)

× 1 → 1 × 1 = 1.

We can iterate the foregoing argument to show that Prob(�Zm=�u)
Prob(�Xm=�u)

→ 1 and then that
Prob(�Z=�v)
Prob(�X=�v)

→ 1, for an arbitrary �v. The limit in Eq. (13) follows directly.

In order to confirm empirically the correctness of Theorem 6.1, we compare the match
frequency histograms of the two sampling processes on a multitude of synthetically-
generated datasets. The details are presented in Section 9. Figure 2 depicts the relative
difference between the bin frequencies with respect to the sample size for a histogram
with 10 bins. Two different sampling ratios are used: 1% and 10%. The relative differ-
ence and corresponding standard deviation are averaged over 1,000 independent runs.
In both cases, the relative difference between the histogram generated by CD sampling
and the histogram obtained through the naive Monte Carlo sampling process is below
1% of the sample size across all the bins. Essentially, the two histograms are virtually
identical. Since we observe the same behavior across all the datasets, we provide con-
vincing empirical evidence that CD sampling is producing a sample match frequency
histogram with the same characteristics as the naive Monte Carlo sampling, but in a
tiny fraction of the time.

Parametric Representation for Monte Carlo Samples. The MCc match frequency his-
tograms produced by CD sampling represent the empirical distribution of h′. However,
using the histograms directly is inconvenient and requires significant space. Ideally,

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:22 F. Rusu et al.

Fig. 2. Comparison between the sample match frequency histograms generated by CD sampling and naive
Monte Carlo sampling. The percentage relative difference with respect to the sample size is depicted for each
bin across the two sampling processes.

we want to summarize these histograms using a parametric distribution from which
any particular histogram instance can be sampled. Thus, we first have to choose a
distribution family and then learn its parameters such that they fit the generated his-
tograms best. Since histograms h′ are the result of a sampling without replacement
process, the hypergeometric distribution Hypergeometric(|S|, (m+1), |S′|) would be the
clear choice. In the specific setting of a query optimizer, though, the size of the sam-
ple S′ is considerably smaller than the size of S (i.e., |S′| � |S|). The multinomial
distribution with (m + 1) bins Multinomial(m + 1)—corresponding to sampling with
replacement—is asymptotically equivalent to the hypergeometric distribution in this
case. Moreover, |S| and |S′| are not parameters of the multinomial distribution. Thus,
we model histograms h′ as samples from a multinomial distribution. Bin probabilities
(i.e., the single parameters of the distribution) can be determined by a straightforward
application of the MLE technique over the generated histograms h′. With standard
arithmetic manipulations, it can be shown that the multinomial maximum likelihood
estimator h′ computed over a set MC = {h′

(1), h′
(2), . . . , h′

(MCc)} of MCc sample histograms
is given by

h′[j] =
∑MCc

i=1 h′
(i)[j]∑m

j ′=0
∑MCc

i=1 h′
(i)[j ′]

, 0 ≤ j ≤ m. (14)

The complete derivation of this formula is available online (e.g., [Murphy 2006]), and
thus we do not include it here.

7. INFERENCE PHASE

At this point, we have most of the tools necessary to compute the posterior model
probabilities. The superpopulation model is computed offline in the learning phase from
the prior workload. Given a runtime sampling scenario, the corresponding empirical
histogram is computed efficiently using the CD sampling algorithm and represented
as a parametric multinomial distribution in the characterization phase. There is one
such multinomial for every component in the superpopulation mixture model. The
next step is to compute the likelihood of a query sample match frequency histogram
corresponding to every multinomial in the mixture model. The resulting posterior
probabilities identify the most likely generative model the query sample histogram is

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:23

drawn from. We then use this posterior model in the estimation phase to compute the
estimator for the query sample histogram.

The formal problem we solve in the inference phase is the following. Given a mixture
model � = {c, �p1, . . . , �pc, w1, . . . , wc} and a query sample histogram h′

query, compute the
posterior weights of the most likely generative model from which the query sample
histogram is drawn. It is important to notice that we compute posterior probabilities
only for the weights {w1, . . . , wc}. We update the mixture model components { �p1, . . . , �pc}
only at periodic model-maintenance times using the EM learning algorithm described
in Section 5. In order to accomplish this task, we use the parametric distributions
{�h′

(1),
�h′

(2), . . . ,
�h′

(c)} computed in the characterization phase for each mixture component.
Specifically, we compute the likelihood of h′

query being drawn from each of the distribu-
tions {�h′

(1),
�h′

(2), . . . ,
�h′

(c)} and then use Bayes’ rule to obtain the posterior weights of the
mixture model as follows:

w′
l = wl · pmfmult

(
h′

query | �h′
(l)

)
∑c

l′=1 wl′ · pmfmult
(
h′

query | �h′
(l′)

) , 0 ≤ l ≤ c. (15)

How exactly to use the posterior weights w′
l requires further discussion. While it is

clear that they have to be used directly for computing the estimator corresponding to
the current query sample histogram h′

query, it is not so clear if they should be used as
they are in model �. This is because the values returned by the multinomial pmf tend
to be infinitesimal, for example, it is common for the GSL5 implementation of pmfmult
to return values in the order of 10−10. Moreover, there can be orders of magnitude
difference between these values across components. This results in posterior weights
w′

l becoming virtually zero (no matter what the prior weight is), even with the afferent
normalization, on the values returned by the pmf or on the posterior weights. Conse-
quently, if we use the posterior weights in the model as they are computed in Eq. (15),
the effect of a single query might be too skewed. A single query does not provide suf-
ficient evidence that the superpopulation model changes so dramatically. The solution
we use in the implementation is to limit the posterior weight change for every query.
The maximum change allowed for a query determines how fast the model transitions
between states. This way, it takes a larger number of queries to bring a particular
weight from 0.99 to 0.01, for example.

8. OPTIMIZATION PHASE

At the end of the inference phase, we have a posterior model adapted to the current
query sample histogram. This is the most probable model from which relations R and
S and their corresponding samples R′ and S′ are drawn. In the optimization phase, we
define, optimize, and compute the estimator for our query starting from the posterior
model, the sampling parameters, and the sample match frequency histogram. We resort
to Monte Carlo techniques again to accomplish this task. Specifically, we generate a
large number of histograms MCo from the posterior model. Each histogram is then
used to instantiate a pair of outer and inner relations Pi = (Ri, Si), respectively. For
each relation pair, a sample pair Ti = (R′

i, S′
i) is subsequently generated. Let CPi [0] be

the class 0 count, that is, the correct result, in the ith relation pair. Let W(Ti) denote
the estimator function. The optimal estimator is computed such that it minimizes
the sum-squared error (SSE), that is,

∑MCo
i=1 (CPi [0] − W(Ti))2, across all the generated

histograms.

5www.gnu.org/software/gsl/.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:24 F. Rusu et al.

ALGORITHM 4: Generate Population-Sample Pairs
Input: � = {c, �p1, . . . , �pc, w

′
1, . . . , w

′
c}, |R|, |R′|, |S|, |S′|

Output: CP[0], h′

1: Let �w′ = [w′
1, w

′
2, . . . , w

′
c]

2: Draw a sample comp from Multinomial(�w′, 1)
3: Draw a sample Ys = {ys0, ys1, . . . , ysm} where ysi = Multinomial(X = i | �pcomp, |R′|), 0 ≤ i ≤ m
4: Call CD sampling (�pcomp, |R′|, |S|, |S′|). Store result in h′.
5: Draw a sample Ya = {ya0, ya1, . . . , yam} where yai = Multinomial(X = i | �pcomp, |R| − |R′|),

0 ≤ i ≤ m
6: CP[0] = ys0 + ya0
7: return CP[0], h′

Generating Population-Sample Pairs. Recall that the superpopulation model is
composed of c weighted histogram patterns. To generate a population-sample pair,
we first use a die roll to select one of the patterns �pi. The probability of each pattern
is given by its weight in the posterior model. Then we generate the pair (P, T) by
applying the CD sampling algorithm presented in Section 6 to the drawn pattern
�pi. Remember though that CD sampling generates only the sample match frequency
histogram h′ corresponding to T . We still have to generate CP[0] (i.e., the correct query
result) in order to compute the estimator. This is not a problem, as all we have to do
is draw |R| − |R′| additional samples from the multinomial distribution defined over
�pi and count the class 0 records. CP[0] is the number of class 0 records drawn in |R|
trials. The overall process to generate a single population-sample pair is summarized
in Algorithm 4. The complexity of this algorithm is dominated by the call to CD
sampling which has complexity O(m2). Unlike the characterization phase, where MCc
Monte Carlo trials are executed for every mixture component, MCo trials are executed
overall in the optimization phase. Their distribution across components is dictated by
the posterior model probabilities. Thus, the overall complexity is O(MCo · m2).

Constructing the Estimator. We define the antijoin cardinality estimator as a lin-
ear combination of the bin values in the sample match frequency histogram, that is,
W (T) = ∑m

i=0 bi · h′[i] (Eq. (8)). Algorithm 4 provides us with MCo sample histograms
{h′

1, . . . , h′
MCo} and correct query results {CP1 [0], . . . , CPMCo [0]}. We still have to deter-

mine the coefficients bi, though, in order to complete the definition of the estimator.
The strategy we implement is to compute the coefficients bi as the solution to the
following sum-squared error (SSE) minimization problem:

SSE =
MCo∑
i=1

(
CPi [0] − W (Ti)

)2 =
MCo∑
i=1

⎛
⎝CPi [0] −

m∑
j=0

bj · h′
i[j]

⎞
⎠

2

. (16)

After applying the Lagrange multipliers optimization method, this reduces to solving
the following linear equation system:⎡

⎢⎢⎢⎢⎢⎣

∑MCo
i (h′

i[0])2 . . .
∑MCo

i h′
i[m]h′

i[0]∑MCo
i h′

i[0]h′
i[1] . . .

∑MCo
i h′

i[m]h′
i[1]

...
...

...∑MCo
i h′

i[0]h′
i[m] . . .

∑MCo
i (h′

i[m])2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b0

b1
...

bm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

∑MCo
i CPi [0]h′

i[0]∑MCo
i CPi [0]h′

i[1]
...∑MCo

i CPi [0]h′
i[m]

⎤
⎥⎥⎥⎥⎦ . (17)

The optimal coefficients bi are easily computed using a solver to solve this above linear
equation system. Then they are plugged in W together with the query histogram h′

query

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:25

to get the final estimate. It is important to emphasize that W is a biased estimator.
Moreover, the variance of the estimator cannot be derived in a closed-form formula.
A good indicator of model accuracy is the mean-squared error (MSE) over the MCo
sample histograms {h′

1, . . . , h′
MCo}.

9. EXPERIMENTAL EVALUATION

The objective of the experimental evaluation is to investigate the accuracy and ex-
ecution time of the proposed estimator across a variety of datasets and workloads,
including a single query as well as a sequence of queries. Additionally, the sensitivity
of the estimator is quantified with respect to many configuration parameters. Specifi-
cally, the experiments we design are targeted to answer the following questions.

—What is the sensitivity of the estimator with respect to the number of mixture com-
ponents, the number of historical queries, the number of bins in the sample match
frequency histogram, the number of Monte Carlo trials, and the sampling ratio.

—How is the execution time distributed across the online stages?
—How does the proposed estimator compare to the previous sampling-based estimators

in terms of accuracy and execution time?
—How well does the estimator adapt to the query workload?

Implementation. We implement the proposed estimator as well as the other subset-
based query estimators in C++. Statistical operations such as sampling from parametric
distributions and computing the pmf of a distribution are implemented as function calls
to the GSL library. Linear algebra computations are implemented using the armadillo
library6, which proves to be more stable than gsl. In addition to the estimation code,
we implement a complete suite of data generation routines that allow the creation of
datasets exhibiting specific patterns required in the sensitivity microbenchmarks.

System. We execute the experiments on a standard server with two AMD Opteron
6128 series 8-core processors—a total of 16 cores—40GB of memory, and four 2TB
7200RPM SAS hard drives configured RAID-0 in software. Each processor has 12MB of
L3 cache, while each core has 128KB L1 and 512KB L2 local caches. The storage system
supports 240, 436, and 1600MB/second minimum, average, and maximum read rates,
respectively, based on the Ubuntu disk utility. The cached and buffered read rates are
3GB/second and 565MB/second, respectively. Ubuntu 12.04.3 SMP 64-bit with Linux
kernel 3.2.0-56 is the operating system.

Methodology. We measure estimator accuracy using relative error defined as
|estimate−true result|

true result . We perform all the experiments 100 times and report the average
value as the result. If the experiment consists of a single query, the same initial model
is used across all the iterations. In experiments over a sequence of queries, the model
weights are updated after each query. Thus, the model taken as input by subsequent
queries takes into account workload knowledge.

9.1. Microbenchmarks

In order to evaluate the sensitivity of the proposed estimator with respect to the various
configuration parameters, we design a complete suite of experiments over synthetically-
generated data. To this end, we develop a versatile data generator for the match
frequency histogram h that takes as parameters the size of the outer relation |R|,
the number of bins m, the type of the distribution and parameters used to generate the
bin values, and the amount of noise in the inner relation S. Histogram h plays the role

6www.arma.sourceforge.net/.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:26 F. Rusu et al.

Fig. 3. Accuracy as a function of the number of bins in the sample match frequency histogram.

of superpopulation model as well as of a particular population instance, that is, the
mixture model consists of a single component in this case. As a result, the only phase
that is executed is optimization. In the experiments we execute, |R| takes values in
{106, 107, 108, 109}, m is in {10, 100, 1000}, while the amount of noise in S, that is, tuples
that do not have any match in R, is chosen from 0%, 0.1%, 1%, and 100% the size of S, as
generated by a given distribution. The values in the histogram bins are generated using
a zipfian distribution7 with skew parameters ranging from 0 (uniform distribution) to
3 (highly skewed distribution). The shape of the histogram can be normal zipfian
(skewed to the left), random, or reversed zipfian (skewed to the right). Query sample
match frequency histograms h′ are extracted from a histogram h by applying the CD
sampling algorithm without materializing the two relations. We do not include results
for all the configurations in this article. We use <|R| = 106, m = 10, noiseS = 0%>,
coupled with 1% sampling on both R and S, as the canonical configuration throughout
the remainder at this article, except where necessary. Notice, though, that we observed
similar (if not better) results for all the other configurations.

Number of Histogram Bins. In this experiment, we study the effect the number of
bins in the sample match frequency histogram has on the proposed estimator. We
consider sample histograms with number of bins varying from 10 to 100, where 100
is the number of bins in the original population. The histogram with reduced size is
generated by summing the values in the rightmost bins that is, bins that do not ap-
pear in the histogram anymore, and storing them in the last, that is, rightmost, bin
of the reduced histogram. There are two methods to do this. We can compact the orig-
inal histogram and then execute the normal sampling procedure to get h′, or we can
compact only the sample histogram h′. We have found from experiments that the prob-
ability of generating tuples with a large number of matches in the sample histogram
is quite low even when such tuples exist in h. Thus, we use the first alternative in
our implementation since it also simulates the superpopulation sampling process. The
effect of the number of bins on estimator accuracy and execution time are depicted in
Figure 3. The number of Monte Carlo trials used in these experiments is 100—a rather
modest number. Figure 3(a) depicts the relative error of the estimator as a function of
skew in the normal zipfian distribution used to generate the original population. As
expected, the more bins in the sample histogram, the more accurate the estimator. For
highly-skewed histograms (i.e., zipf=2 and zipf=3), a large part of the population mass

7www.en.wikipedia.org/wiki/Zipf’s law.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:27

Fig. 4. (a) Execution time as a function of the number of bins in the sample match frequency histogram and
(b) the number of Monte Carlo trials in the optimization phase.

is already concentrated in the few leftmost bins. Thus, reducing the number of bins in
the representation does not degrade accuracy, which is always above 99%. The effect
of the number of bins is best illustrated for the uniform distribution, that is, zipf=0.
It is clear that reducing the dimensionality of the histogram degrades the accuracy.
Nonetheless, with 70 or more bins, the relative error converges to 10% and does not
improve further, the reason being the large number of false positives (i.e., tuples with
zero matches) in the sample histogram h′. The accuracy becomes even worse when the
shape of the original histogram is random or reversed zipfian. Figure 3(b) depicts the
relative error for these distributions when derived from zipf=1. In these situations, it
is necessary to accurately represent the original distribution (using the same number
of bins) in order to achieve acceptable relative error below 10%. Another observation
that can be drawn from these results is that the proposed estimator is sensitive to the
number of bins in the histogram representation only when the result is relatively low.
This insight is confirmed by further experiments.

While a large number of bins improves accuracy, it also increases the execution time
of the estimator. As depicted in Figure 4(a), the time taken for 80 bins or more is
over 1 second when a single execution thread is used. If we perform the Monte Carlo
trials in parallel, a linear speedup is obtained since the trials are independent. For 16
threads—the maximum on the test system—the estimation always takes less than 100
milliseconds. There is an interesting trade-off to consider between the number of Monte
Carlo trials and the width of the sample histogram with respect to execution time.
Narrow histograms and a high number of trials are effective for skewed distributions,
while wide histograms and a low number of trials work well for uniform and reversed
zipfian distributions. These are the two parameters that have to be carefully adjusted
in order to guarantee a desired execution time for the estimation process.

Number of Monte Carlo Trials in the Optimization Phase. In this experiment, we
vary the number of Monte Carlo trials in the optimization phase, that is, the only
phase when the number of components is one, while we keep all the other parameters
as defined in the canonical configuration. The number of bins in the sample histogram
is set to 50. Figure 5(a) depicts the accuracy of the proposed estimator as a function of
the skew parameter in the zipfian distribution. As expected, an increase in the number
of trials translates into lower relative error, independent of the skew. For distributions
with relatively modest skew, however, the decrease is more pronounced, since the error
is quite high when the number of trials is low. Relative error of 0 on the bars for

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:28 F. Rusu et al.

Fig. 5. Accuracy as a function of the number of Monte Carlo trials in the optimization phase.

zipf=2 and zipf=3 stands for error smaller than 1%. We observe similar results for
distributions having other shapes with zipf=1 in Figure 5(b). The errors are of course
higher for random and reversed distributions, respectively. The careful reader observes
immediately that the results in Figure 3 and Figure 5 are not identical even though
there is overlap in the experiments run (i.e., 50 bins and 100 Monte Carlo trials).
The reason is that we generate different datasets for each experiment. Moreover, the
sample histogram is also randomly generated in each case. From the results in the two
sets of figures it is clear that the sample extracted in the number of bins experiment
provides more accurate estimates.

The execution time results as a function of the number of Monte Carlo trials are
depicted in Figure 4(b). The most important observation is that a ten-fold increase in
the number of trials translates in a factor smaller than ten-fold increase in execution
time. With straightforward parallelization across trials, even configurations with thou-
sands of Monte Carlo trials can achieve subsecond execution times, as the results in
Figure 4(b) show. However, it is important to notice that thousands of trials provide a
significant improvement in accuracy only for adversarial distributions. Hundreds of tri-
als are more than sufficient to obtain satisfactory accuracy in a matter of milliseconds.
This is ideal for estimation in query optimization.

Sampling Ratio. The last set of experiments we execute over synthetically–generated
zipfian data are to determines the effect of the sampling ratio on the accuracy of the
proposed estimator. It is important to notice that the sampling ratio does not impact
the execution time. The results for zipfian distributions with different parameters and
for different distribution shapes with zipf=1 are presented in Figure 6. The most im-
portant observation that can be drawn from these results is that larger samples do not
automatically translate into higher accuracy. In order to confirm that this is indeed the
case, we execute these experiments over a much larger set of configuration parameters.
The results depicted in Figure 6 are for 10 bins both in the original population as well
as in the sample histogram and with 10,000 Monte Carlo trials, thus the extremely
low relative error. After careful investigation, we find an explanation for this unex-
pected behavior. While larger samples translate into match frequency histograms with
nonzero values for larger numbers of matches, that is, further to the right, this does
not guarantee a more accurate estimator because more coefficients bi in the linear com-
bination have to be learned. This process is highly sensitive to the samples generated
in the Monte Carlo trials and to the numerical stability of the linear system solver due

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:29

Fig. 6. Accuracy as a function of the sampling ratio.

to rank deficiency—many cells in the matrix in Eq. (17) are zero. These are specific to
every sample histogram and do not necessarily depend on the sampling ratio. To con-
clude, although sampling ratio is not entirely correlated with the estimator accuracy, it
is important to notice that the absolute difference across ratios is insignificantly small,
that is, less than 0.0001%.

9.2. TPC-H Data

In order to illustrate the power of the proposed estimator in query workload scenarios,
we devise a query generator based on the TPC-H benchmark. We use the generator to
create a training workload of 100 query pairs as given in Eqs. (3) and (12), respectively.
We execute these queries over a TPC-H scale 1 (1GB) instance in MonetDB.8 The
resulting 100 match frequency histograms are used to learn a superpopulation
mixture model using the R multmix package [Benaglia et al. 2009]. The entire process
takes less than five minutes on the test machine. We use the same query generator
to create a different test workload consisting also of 100 queries. Instead of running
the test queries over the training TPC-H scale 1 instance, we use a scale 50 (50GB)
instance. This makes the estimation considerably harder because both the queries and
data are different from training. Since the input to the estimator consists of sample
match frequency histograms, we execute the test queries over a 1% sample of the
TPC-H scale 50 instance, that is, a 1% sample is drawn from each table using the
MonetDB SAMPLE operator. We also execute the antijoin query in Eq. (3) over the entire
database to get the correct query result required to determine the estimator accuracy.
We use the learned model to compute estimates for the test queries. In the following,
we present a series of experiments that assess various properties of the proposed
estimator in this workload scenario. Before that, though, we give more details on the
query generator.

Query Workload Generator. The generator selects each query randomly from a set
of ten pre-defined patterns. The patterns involve common (anti)join predicates (not
necessarily key-foreign key) in TPC-H queries. We use the following (anti)join pairs.

(p partkey, ps partkey); (s suppkey, ps suppkey)
(c custkey, o custkey); (o orderkey, l orderkey)

8www.monetdb.org/.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:30 F. Rusu et al.

Fig. 7. Accuracy as a function of the number of mixtures.

(s suppkey, l suppkey); (ps suppkey, l suppkey)
(l suppkey, ps suppkey); (p partkey, l partkey)
(l partkey, ps partkey); (ps partkey, l partkey)

Using only these ten pairs alone, it is impossible to generate 100 different queries. We
achieve this by adding selection predicates with random and correlated selectivity on
each of the two relations that appear in the (anti)join query. The selection predicates
involve at most two attributes from each relation, not necessarily the antijoin attribute.
This guarantees a large mix of match frequency histograms both over the complete
data as well as over the samples.

Number of Mixture Components. In this experiment, we investigate the accuracy
of the estimator as a function of the number of mixture components. For this, we
execute Algorithm 2 in the learning phase with four c values, that is, 5, 10, 15, and
20. Each execution results in a superpopulation model with the corresponding number
of components. Finding the optimal solution for a given configuration requires a large
number of reinitializations since the optimization problem is not convex, thus there
exist multiple local minima. Given that each algorithm run takes less than 10 seconds,
this procedure can be executed relatively quickly. Figure 7 depicts the accuracy of the
estimator as a function of the cardinality size for the four numbers of components
considered. The other estimator parameters are set as follows: m = 10, MCc = 100,
and MCo = 100. Since the relative error formula goes to infinity when the true result is
zero, we eliminate the queries with result zero from the figure. Thus, 32 queries are not
displayed even though estimators are computed for each of them. Although not obvious
for all the queries, models with different numbers of components provide different
accuracy levels. It is not always the case that more components provide higher accuracy
even though the log likelihood function in the EM learning algorithm is larger—the
log likelihood increases monotonically from 5 to 20 components. In these particular
results, 10 components provide the lowest relative error for multiple queries. Overall,
the 10 and 20 mixture models slightly outperform the 5 and 15 components. After a
closer investigation, we discover that in models with more than 13 components, the

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:31

Fig. 8. Accuracy as a function of the number of historical queries used to learn the model.

remaining components have extremely small weights, that is, < 10−10; thus they can
be discarded without degrading accuracy. An orthogonal observation that can be drawn
from Figure 7 is that the proposed estimator provides higher accuracy for cardinality
results above 5,000. This is expected since no sampling estimator excels when the
result is in the order of tens or hundreds.

In order to determine the optimal number of components, we use two criteria. First,
if we do not see significant improvement in the log likelihood objective function of
the EM algorithm as we increase c, this is a clear sign that increasing the number
of components further does not provide real benefits. Moreover, remember that the
execution time is linear in the number of components. And second, in the case of
too many components, that is, overfitting, the weight associated with some of the
components becomes insignificantly small, thus the probability generating samples
from them is close to zero. Essentially, the EM algorithm identifies only the important
components if we pass in a too large c value.

Number of Historical Queries. The impact of the number of historical queries used to
build the superpopulation model in the learning phase is depicted in Figure 8. All the
model parameters in the EM learning algorithm are kept the same, while the number
of historical match frequency histograms is increased from 20 to 100, in increments
of 20. The histograms in each batch are a random sample without replacement from
the overall query workload, with the additional constraint that each smaller set is a
subset of the larger sets. It is clear from the figure that the results corresponding to
each query are mostly clustered together—the accuracy is not highly sensitive to the
size of the workload. Random sampling guarantees that a representative set of queries
is generated even when the size is small (e.g., 20). The results also confirm that the
model does not overfit as more queries are included in the workload.

Comparison with Existent Sampling-Based Estimators. Figure 9 depicts a compari-
son between the proposed estimator and the other sampling-based estimators for subset
queries. These estimators are discussed in Section 3. The same number of bins in the
histogram representation is used across all the estimators (i.e., m = 10). The number
of iterations in the biased estimator is set to 1,000, while the number of Monte Carlo

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:32 F. Rusu et al.

Fig. 9. Accuracy comparison with antijoin sampling-based estimators.

trials in the proposed estimator is relatively small, that is, MCc = 100 and MCo = 100,
respectively. While all the other estimators require the existence of a random sample
for every relation, the correlated estimator demands one synopsis for every antijoin
predicate. In our particular case, this equates to 20 samples vs. 6 samples. For every
additional antijoin predicate, two samples have to be built. Otherwise, no estimator
can be produced. Even if all the antijoin predicates are known beforehand (e.g., in a
production system), the construction and maintenance of such a large number of sam-
ples demands significantly more resources than a simple random sample per relation.
The overall size of the samples used by the correlated estimator is kept close to the
size of the random samples used by the other estimators. However, in order to obtain
accurate estimates, the total size of the correlated samples on lineitem is 50% larger.

Figure 9 depicts the ratio of the average relative error between the previous esti-
mators and the proposed estimator for all the nonzero result queries in the workload.
Values above the horizontal line at position 1 on the y-axis indicate that the proposed
estimator is more accurate. This is the case for a large majority of the queries. As
expected, the correlated estimator is the most accurate whenever an estimator can be
produced—the direct correlated estimator is used throughout these experiments. This
requires the existence of a synopsis for every antijoin predicate and a relatively uni-
form distribution of the matching tuples. When this is not the case, no estimator can
be produced, (e.g., the points at the top of the y-axis). Overall, the proposed estimator
always outperforms the other estimators in the case of hard estimation problems with
low cardinality results. Recall that none of the previous estimators can be implemented
in a query optimizer due to the large execution time (factorial in the number of his-
togram bins for the unbiased estimator and linear in the size of the relations for the
biased estimator) or the unbounded number of synopses (one for every possible antijoin
predicate in the case of the correlated estimator). It is also important to reiterate that
the proposed estimator is trained neither on the test dataset nor on the test queries.
Thus, it has practically no advantage over the other estimators, derived exclusively
from the samples.

Table I contains the estimation time for the three match frequency histogram-based
estimators—Bayes is the proposed estimator. The correlated estimator is not included
in the comparison since it can be computed by simply executing the query over the

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:33

Table I. Execution Time
(Milliseconds) Comparison with

Antijoin Sampling-Based Estimators

Estimator 10 bins 100 bins
Unbiased 2.3 ∞
Biased 177 10,657
Bayes 9.4 769

Table II. Execution Time (Milliseconds) Distribution
across Framework Phases

Phase 10 bins 100 bins Time complexity
Characterization 42 3,496 O(MCc · c · m2)
Inference 0.03 0.07 O(c)
Optimization 5.84 345 O(MCo · m2)

samples in the synopsis. This is also the case for the naive estimator. For a small number
of bins in the histogram, the unbiased estimator is the fastest. When the number of
bins is large (e.g., 100), the unbiased estimator does not produce an estimate even after
10 hours—we stop the execution at that stage. The execution of the biased estimator
is dominated by the EM algorithm that infers the superpopulation model from the
samples. Since the EM algorithm is executed offline in the proposed estimator, we
observe a sharp decrease in the execution time. To speed up the execution further,
we execute the characterization phase in parallel across all the mixture components. A
factor of 10 speedup is achieved since the components are independent. Two conclusions
can be drawn. First, when the number of bins is small, there is no significant difference
between the unbiased and the proposed estimator in terms of estimation time. Second,
the proposed estimator is the only one that achieves satisfactory performance when
the number of bins is large.

Table II shows how the estimation time is distributed across the phases of the pro-
posed estimator. Parallelization is disabled in the characterization phase. The results
confirm the time complexity. Inference can be ignored. Characterization is by far the
most time-consuming stage. Since the computation across the mixture components is
independent, parallelization can reduce the time spent in characterization by a linear
factor, as shown in Table I.

We do not include the results generated by the standard query optimizer estimator
given in Section 3.1 in the comparison because they are considerably worse than
for any of the sampling-based estimators. Although the uniformity and containment
assumptions hold for most of the antijoin predicates (they are key-foreign key joins),
the selection predicates applied to each relation make the accurate cardinality esti-
mation after the selection predicates almost impossible. Not to mention the estimate
for the number of distinct elements. These two inaccurate values propagate with an
exponential factor in the error of the antijoin operator, resulting in unusable estimates.
This confirms the difficulty in estimating antijoin cardinality with the standard query
optimizer estimator and provides support for the default query execution plan. The
estimator we propose, however, is accurate and fast enough to be used inside a query
optimizer, as the experimental results in this section prove.

Estimation for a Query Sequence. In all the experiments presented up to this point,
we keep the superpopulation model static, that is, we do not update the mixture weights
after a query is executed. In this experiment, we study the behavior of the proposed
estimator for a query sequence when the model adapts dynamically to the workload,
that is, updates the weights based on the processed queries. Notice that none of the

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:34 F. Rusu et al.

other estimators proposed in the literature are dynamic. To properly study the esti-
mator in such a complex environment, we extract 10 queries with high error from the
test workload and create three sequences consisting of 1,000 queries each. In the first
sequence, we execute each query 100 times consecutively. In the second sequence, we
execute 10 instances of each query consecutively. We repeat this in the same order 10
times (e.g., query 1 executes at positions 1-10, 101-110), . . . , 901-910. And finally, in
the third sequence, we execute one instance of each query round-robin 100 times (e.g.,
query 1 executes at positions 1, 11, 21, 31, . . . , 991).

Figure 10 presents the accuracy as a function of the position in the sequence for
a selected query class out of the 10 executed. We present results for three different
amounts of maximum weight change between queries (e.g., 0.01, 0.1, and 1). The
larger this value, the larger the influence of the last query on the superpopulation
model. The initial model is the same for all three query sequences as well as the
order of the query classes. A common trend in three scenarios depicted in Figure 10
is the periodic behavior of the estimator resulting from the repetitions in the query
sequence. Moreover, in all three cases and for any of the three weight changes, the
estimator converges to some value. This value is highly dependent on the sequence
and the weight change though. Nonetheless, some clear patterns emerge. First, the
more queries from the same class that are executed together, the higher the accuracy
and the lower the estimator variance. This trend is very clear for weight changes of 0.1
and 1, respectively. Second, when the impact of a single query on the model is limited
(e.g., weight change of 0.01), it takes a large number of consecutive queries until the
model learns the workload and accurate estimates are produced (Figure 10(a)). And
third, the careful reader notes immediately the oscillations of the estimator even when
the same query is executed repetitively with the same weight change (Figure 10(a) with
0.01 and Figure 10(b) with 0.1 and 1). After carefully investigating, we determined that
two mixture components in the model (out of the total of 10) are used alternatively to
make predictions. Their accuracy is quite different though. Whenever the weights are
updated—or after a number of updates—the dominant mixture changes. As a result,
the model enters a steady state consisting of two mixtures (although there can be
more than two) and jumps between them, thus the oscillating behavior. Overall, it
is important to emphasize that in the best scenario, the proposed estimator achieves
a two-orders of magnitude accuracy improvement by dynamically learning the query
workload. The example query has a cardinality of only 40 thus it is extremely difficult
to estimate. For comparison, the two existent estimators provide accuracy in the order
of 105, which is 10 times worse than the proposed estimator without model update and
three orders of magnitude inferior when updating the model.

9.3. Discussion

We conclude this section by summarizing the main results and providing answers to
the three questions driving the experimental evaluation. Out of the four configuration
parameters—mixture components, histogram bins, Monte Carlo trials, and sampling
ratio—the proposed estimator is most sensitive to the number of histogram bins and
the Monte Carlo trials. Increasing the number of mixture components or the sampling
ratio does not necessarily result in better accuracy. With respect to the execution time,
the estimator has quadratic complexity in the number of bins and linear in the num-
ber of mixtures and Monte Carlo trials. When compared to the other sampling-based
estimators for subset-based queries, the proposed estimator is more accurate than the
unbiased and biased estimators in most cases. The correlated estimator is, as expected,
the most accurate whenever an estimate can be produced. However, this requires a syn-
opsis for every antijoin predicate—a rather unrealistic condition. The proposed estima-
tor is also the only estimator that scales to match frequency histograms with a large

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:35

Fig. 10. Accuracy for a query executed in sequences of (a) 100, (b) 10, and (c) 1 in a workload of 1,000 queries
of 10 different classes.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:36 F. Rusu et al.

number of bins. The capacity to adapt to the query workload results in considerable
accuracy improvement (e.g., two orders of magnitude) over the static estimators. We
found a configuration with 10 components, 10 histogram bins, 1% sampling ratio, and
100 Monte Carlo trials both in characterization as well as in optimization to perform
satisfactorily well across all experiments. The execution time for such a configuration
is a few milliseconds. This allows for hundreds of alternative query execution plans
to be inspected in less than a second and confirms the applicability of the proposed
estimator to query optimization.

10. RELATED WORK

Query optimization in relational database systems has been studied for over 35 years,
starting with the seminal paper on cost-based access path selection [Selinger et al.
1979]. Many survey articles [Ioannidis 1996; Chaudhuri 1998; Kaushik et al. 2005;
Haas et al. 2009] provide a thorough view on cost-based query optimization both from
a system perspective as well as a theoretical and statistical standpoint. Other arti-
cles [Graefe 1995] discuss rule-based query optimization. Without exception, all these
works focus on select-project-join queries and ignore the antijoin operator. To date, the
antijoin cardinality estimator used in standard query optimizers is still the simplified
estimator introduced in Selinger et al. [1979, (Section 3.1)]. This is a good example
of an optimization problem that has not seen any progress since the beginning of the
relational systems. A SIGMOD Blog post by Lohman [2014] provides other such exam-
ples. The reason for the lack of innovation is not the satisfactory performance of the
standard estimator, but rather the difficulty of the problem, as pointed out in Cormode
et al. [2012].

Progressive Optimization. Two strategies handling inaccurate cardinality estimates
for select-project-join queries are progressive optimization [Kabra and DeWitt 1998;
Stillger et al. 2001; Markl et al. 2003, 2004] and query reoptimization [Babu et al. 2005].
The idea is to monitor the cardinality of intermediate results during query processing,
compare these live cardinalities with the cardinalities used by the query optimizer
when choosing the plan, and reoptimizing, that is, changing the execution plan, when-
ever there is sufficient evidence that the current plan is not optimal. The decision to
change the plan during processing has to factor in the work that has already been done
and might be lost. As an additional step, the statistics stored in the query optimizer can
be reconciled with the statistics gathered at runtime. Moerkotte et al. [2009] introduce
a q-error measure that directly relates cardinality estimates to query plan costs. The
q-error improves the detection accuracy of bad plans in progressive optimization. The
estimator we propose in this article is similar in spirit to progressive optimization in
using workload information to improve estimation accuracy. However, histograms are
the synopsis targeted in progressive optimization. Antijoin cardinality is still estimated
with the standard inaccurate estimator. A possible research direction is to integrate
sampling, and the proposed antijoin estimator, in progressive optimization.

Workload-Driven Histogram Construction. The idea of using workload information
to build better statistics is pushed to the extreme in Aboulnaga and Chaudhuri [1999]
and Bruno et al. [2001]. STHoles histograms and their subsequent variants [Srivastava
et al. 2006; Kaushik and Suciu 2009] are built entirely from the query workload, with-
out scanning the data. Initially, the histogram does not contain any data. When a query
is processed, exact cardinality information is gathered for the predicates appearing in
the query and an initial histogram is built. The histogram is refined accordingly as
more queries are executed. Since STHoles histograms contain only range frequency
data, they are not applicable to antijoin queries. Nonetheless, the same principle can

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:37

be used to extract the workload match frequency histograms required when building
the superpopulation model.

Sampling Synopses. There is a plethora of work on sampling-based estimation pub-
lished in the database literature. We point the interested reader to Cormode et al.
[2012] which surveys synopses for approximate query processing over massive data.
Sampling is introduced as a synopsis for query optimization in Haas and Swami [1992].
With almost no exception, all the work on sampling focuses on size of join [Ganguly
et al. 1996; Chaudhuri et al. 1999] and distinct value [Haas et al. 1995; Gibbons 2001]
estimation. There is no work on antijoin cardinality estimation in the context of query
optimization. It is important to notice that while DISTINCT can be expressed as an
antijoin query (Section 2), the reverse is not true. Thus, sampling-based solutions for
distinct value estimation are not applicable to antijoin cardinality estimation.

Join [Acharya et al. 1999] and CS2 [Yu et al. 2013] synopses are representative
implementations of the correlated estimator. They are identical for the case of two
relations. In the case of multiple relations, instead of drawing an independent sample
from each individual relation, the sample is extracted from the join, following key-
foreign key relationships. In a join synopsis, a sample is built starting from each
relation. A single CS2 synopsis is built for an entire database starting from a designated
source relation. The CS2 synopsis is subsequently enriched with supplement samples,
that is, join synopses, at other relations, ultimately degenerating into a join synopsis.
Join (and CS2) synopses can be used for antijoin cardinality estimation between two
relations connected by a key-foreign key relationship, only for a predicate from the
foreign key to the key, that is, the direction in which the synopsis is built. Of course,
without additional selection predicates, the result of such an antijoin is zero. Estimating
the antijoin cardinality of any other predicate requires the construction of a separate
synopsis. This is a rather demanding constraint for a query optimizer and impossible
to achieve in practice due to the unlimited number of possible antijoin predicates.

TuG synopses [Spiegel and Polyzotis 2009] are often classified in the same cate-
gory with join and CS2 synopses because they are constructed over the relational
schema graph. However, they are not sampling-based synopses and they do not impose
a direction on the graph. They are tuple-based holistic data summaries that combine
histograms with exact join cardinality computation. A TuG synopsis consists of multi-
ple such data summaries built over separate partitions of the relational schema graph.
Estimation is done using the value and join independence assumptions, specific to his-
tograms. These can be extended to antijoin cardinality estimation following the same
principles discussed in Section 3.1 and with corresponding degradation in accuracy.
We do not include TuG synopses in the experimental comparison with the other esti-
mators for two reasons. First, they are not sampling-based synopses. Second, join and
CS2 synopses are shown to be more accurate and considerably faster to construct than
the TuG synopsis in Yu et al. [2013]. These are included in our comparison with the
correlated estimator.

Antijoin Cardinality Estimation. Essentially, there are only two papers that address
subset-based query estimation as a generalization of antijoin cardinality estimation.
The first work that introduces an estimator for subset-based queries is the online
estimation paper [Jermaine et al. 2005]. The authors acknowledge the difficulty of
designing an unbiased estimator and propose an alternative estimator for a simplified
version of the problem in which a sample is taken only from the outer relation while
the inner relation is always inspected in full. In order to make this process efficient,
an index is built over the inner relation that allows for the fast identification of the
matching records corresponding to any record r ∈ R. Due to this strict requirement, the

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:38 F. Rusu et al.

applicability of the concurrent estimator [Jermaine et al. 2005] is limited to scenarios
where such an index exists.

The paper by Joshi and Jermaine on sampling-based estimators for subset-based
queries [Joshi and Jermaine 2009] is the closest to the work we propose here. The au-
thors introduce two estimators—unbiased and biased—derived exclusively from the
samples R′ and S′, respectively. The unbiased estimator has large variance due to
the numerical stability issues arising in the computation of the hypergeometric pmf.
The real problem though is the factorial algorithm in the number of histogram bins
which practically renders the unbiased estimator unusable for m values larger than
10. The biased estimator proposed by Joshi and Jermaine [2009] follows the same su-
perpopulation approach as the estimator we introduce here. However, we use a more
complex mixture superpopulation model that captures the reality more accurately and
is less prone to overfitting. There are two important differences that render our es-
timator applicable to query optimization, even though it is more complex. The first
difference is the learning phase. We use prior workload information to learn the super-
population model offline, once, while the biased estimator in Joshi and Jermaine [2009]
learns a different model online, for every query, using only the samples. Moreover, we
use a Bayesian statistics framework to update the model dynamically based on the
runtime query workload. The second difference is the CD sampling algorithm. This is
our main technical contribution that makes the proposed estimator amenable for query
optimization. The biased estimator in Joshi and Jermaine [2009] implements the naive
Monte Carlo sampling procedure. Notice, however, that CD sampling can replace naive
sampling in the biased estimator.

Bootstrap. Bootstrap is a statistical Monte Carlo method for deriving the probability
distribution of an estimator computed over samples. It is widely applied to derive confi-
dence bounds for complex aggregate queries [Pol and Jermaine 2005]. Following the pre-
sentation in this article, bootstrap consists in taking a sample from a superpopulation
and then resampling the sample repetitively. The query at hand is evaluated on each
resample to produce an estimate. The empirical distribution is obtained by collecting
all the estimates together though without defining a parametric distribution. Recent
work [Agarwal et al. 2014; Zeng et al. 2014] proposes bootstrap algorithms that avoid
the inefficiencies required by resampling—similar in nature to CD sampling. Agarwal
et al. [2014] use a Poisson distribution with mean 1 to estimate the number of times
each tuple in the sample is part of the resample, without executing the resampling.
The constraint on the resample size is dropped in favor of ease of parallelization. While
Zeng et al. [2014] enforce the resample size constraint, they approximate the multino-
mial distribution corresponding to a resample with a multivariate normal distribution
having a more concise representation. This results in reduced storage overhead. The
main difference between these efficient bootstrap algorithms and CD sampling is that
they provide concise representations for a single relation, while CD sampling operates
over the match frequency histogram of two relations connected by an antijoin operator.
Moreover, the dimensionality of the distributions used in bootstrap is given by the
size of the relation, while in our case, it is given by the number of bins in the match
frequency histogram. As a result, the execution time for the bootstrap algorithms is
considerably higher. It is not clear how this can be reduced for the analytical bootstrap
algorithms to be integrated into a query optimizer.

11. CONCLUSIONS AND FUTURE WORK

In this article, we present a novel sampling-based estimator for antijoin cardinality that
provides the required efficiency to be implemented in a query optimizer. The proposed
estimator incorporates three novel ideas. First, it uses prior workload information

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:39

when learning a mixture superpopulation model of the data offline. Second, we design
a Bayesian statistics framework that updates the model according to the live queries,
thus allowing the estimator to adapt dynamically to the online workload. And third, we
develop an efficient algorithm to sample from a hypergeometric distribution in order
to generate Monte Carlo trials without explicitly instantiating either the population
or the sample. When put together, these ideas form the basis of an efficient antijoin
cardinality estimator satisfying the strict requirements of a query optimizer as shown
by the extensive experimental results over synthetically-generated as well as massive
TPC-H data. We plan to extend the proposed estimator to parallel settings where
samples are distributed across computing nodes in future work.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments that improved the
quality of this article. In particular, the proof of Theorem 6.1 is largely provided by one of the reviewers. We
are grateful for the time spent on this article and the insightful comments that increased the quality of this
work significantly.

REFERENCES

A. Aboulnaga and S. Chaudhuri. 1999. Self-tuning histograms: Building histograms without looking at
data. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 181–192.
DOI:http://dx.doi.org/10.1145/304182.304198

S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. 1999. Join synopses for approximate query
answering. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
275–286. DOI:http://dx.doi.org/10.1145/304182.304207

S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan, S. Madden, B. Mozafari, and I. Stoica. 2014.
Knowing when you’re wrong: Building fast and reliable approximate query processing systems. In
Proceedings of the ACM SIGMOD International Conference on Management of Data. 481–492. DOI:http:
//dx.doi.org/10.1145/2588555.2593667

S. Babu, P. Bizarro, and D. DeWitt. 2005. Proactive reoptimization. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data. 107–118. DOI:http://dx.doi.org/10.1145/1066157.1066171

T. Benaglia, D. Chauveau, D. R. Hunter, and D. Young. 2009. mixtools: An R package for analyzing finite
mixture models. J. Stat. Softw. 32, 6 (2009), 1–29.

J. A. Bilmes. 1998. A Gentle Tutorial of the EM algorithm and its application to parameter estimation for
gaussian mixture and hidden markov models. ftp://ftp.icsi.berkeley.edu/pub/techreports/1997/tr-97-021.
pdf. (Last accessed September 2014.)

N. Bruno, S. Chaudhuri, and L. Gravano. 2001. STHoles: A multidimensional workload-aware histogram. In
Proceedings of the ACM SIGMOD International Conference on Management of Data. 211–222. DOI:http:
//dx.doi.org/10.1145/375663.375686

S. Chaudhuri. 1998. An overview of query optimization in relational systems. In Proceedings of the ACM
PODS Symposium on Principles of Database Systems. 34–43. DOI:http://dx.doi.org/10.1145/275487.
275492

S. Chaudhuri, R. Motwani, and V. Narasayya. 1999. On random sampling over joins. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. 263–274.

M. Colgan. 2010. Optimizer transformations: Subquery unesting, Part 2. https://blogs.oracle.com/optimizer/
entry/optimizer transformations subquery unesting part 2. (Last accessed September 2014.)

G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. 2012. Synopses for massive data: Samples,
histograms, wavelets, sketches. Found. Trends Datab. 4, 1–3 (2012), 1–294.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum-likelihood from incomplete data via the EM
algorithm. J. Royal Statist. 39 (1977).

A. Dobra, C. Jermaine, F. Rusu, and F. Xu. 2009. Turbo-charging estimate convergence in DBO. Proc. VLDB
2, 1 (2009), 419–430. DOI:http://dx.doi.org/10.14778/1687627.1687675

S. Ganguly, P. B. Gibbons, Y. Matias, and A. Silberschatz. 1996. Bifocal sampling for skew-resistant join size
estimation. SIGMOD Record 25, 2 (1996), 271–281. DOI:http://dx.doi.org/10.1145/235968.233340

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. 2003. Bayesian data analysis. Chapman & Hall/CRC.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

16:40 F. Rusu et al.

P. B. Gibbons. 2001. Distinct sampling for highly-accurate answers to distinct values queries and event
reports. In Proceedings of the VLDB International Conference on Very Large Data Bases. 541–550.

G. Graefe. 1995. The cascades framework for query optimization. IEEE Data Eng. Bulle. 18, 3 (1995), 19–29.
P. J. Haas, I. F. Ilyas, G. M. Lohman, and V. Markl. 2009. Discovering and exploiting statistical properties

for query optimization in relational databases: A survey. Stat. Anal. Data Mining 1, 4 (2009), 223–
250.

P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes. 1995. Sampling-based estimation of the number of
distinct values of an attribute. In Proceedings of the VLDB International Conference on Very Large Data
Bases. 311–322.

P. J. Haas and A. N. Swami. 1992. Sequential sampling procedures for query size estimation. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. 341–350. DOI:http://dx.doi.org/
10.1145/130283.130335

Y. E. Ioannidis. 1996. Query optimization. ACM Comput. Surv. 28, 1 (1996), 121–123. DOI:http://dx.doi.org/
10.1145/234313.234367

Y. E. Ioannidis. 2003. The history of histograms (abridged). In Proceedings of the VLDB International
Conference on Very Large Data Bases. 19–30.

Y. E. Ioannidis and S. Christodoulakis. 1993. Optimal histograms for limiting worst-case error propagation
in the size of join results. Trans. Datab. Syst. 18, 4 (1993), 709–748. DOI:http://dx.doi.org/10.1145/169725.
169708

C. Jermaine, A. Dobra, A. Pol, and S. Joshi. 2005. Online estimation for subset-based SQL queries. In
Proceedings of the VLDB International Conference on Very Large Data Bases. 745–756.

N. L. Johnson, S. Kotz, and N. Balakrishnan. 1996. Discrete Multivariate Distributions. John Wiley & Sons,
Inc.

S. Joshi and C. Jermaine. 2009. Sampling-based estimators for subset-based queries. VLDB J. 18, 1 (2009),
181–202. DOI:http://dx.doi.org/10.1007/s00778-008-0095-0

N. Kabra and D. DeWitt. 1998. Efficient mid-query reoptimization of suboptimal query execution plans. In
Proceedings of the ACM SIGMOD International Conference on Management of Data. 106–117. DOI:http:
//dx.doi.org/10.1145/276304.276315

R. Kaushik, J. F. Naughton, R. Ramakrishnan, and V. T. Chakaravarthy. 2005. Synopses for query op-
timization: A space-complexity perspective. Trans. Datab. Syst. 30, 4 (2005), 1102–1127. DOI:http:
//dx.doi.org/10.1145/1114244.1114251

R. Kaushik and D. Suciu. 2009. Consistent histograms in the presence of distinct value counts. Proc. VLDB
2, 1 (2009), 850–861. DOI:http://dx.doi.org/10.14778/1687627.1687723

G. M. Lohman. 2014. Is query optimization a “solved” problem? http://wp.sigmod.org/?p=1075. (Last accessed
May 2014.)

V. Markl, G. Lohman, and V. Raman. 2003. LEO: An automatic query optimizer for DB2. IBM Syst. J. 42, 1
(2003), 98–106. DOI:http://dx.doi.org/10.1147/sj.421.0098

V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and H. Pirahesh. 2004. Robust query processing through
progressive optimization. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. 659–670. DOI:http://dx.doi.org/10.1145/1007568.1007642

G. Moerkotte, T. Neumann, and G. Steidl. 2009. Preventing bad plans by bounding the impact of cardinality
estimation errors. PVLDB 2, 1 (2009), 982–993. DOI:http://dx.doi.org/10.14778/1687627.1687738

K. P. Murphy. 2006. Binomial and multinomial distributions. http://www.cs.ubc.ca/∼murphyk/Teaching/
CSE40-Fall06/reading/bernoulli.pdf. (Last accessed September 2014.)

A. Pol and C. Jermaine. 2005. Relational confidence bounds are easy with the bootstrap. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. 587–598. DOI:http://dx.doi.org/10.
1145/1066157.1066224

V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita. 1996. Improved histograms for selectivity estimation
of range predicates. In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 294–305. DOI:http://dx.doi.org/10.1145/233269.233342

C. P. Robert and G. Casella. 2005. Monte Carlo Statistical Methods. Springer.
R. Schrag. 2005. Speeding up queries with semi-joins and anti-joins: How Oracle evaluates EXISTS, NOT EX-

ISTS, IN, and NOT IN. http://www.dbspecialists.com/files/presentations/semijoins.html. (Last accessed
September 2014.)

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. 1979. Access path selection in a
relational database management system. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 23–34. DOI:http://dx.doi.org/10.1145/582095.582099

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

TODS4003-16 ACM-TRANSACTION September 26, 2015 18:26

Workload-Driven Antijoin Cardinality Estimation 16:41

J. Spiegel and N. Polyzotis. 2009. TuG synopses for approximate query answering. Trans. Datab. Syst. 34, 1
(2009). DOI:http://dx.doi.org/10.1145/1508857.1508860

U. Srivastava, P. J. Haas, V. Markl, and N. Megiddo. 2006. ISOMER: Consistent histogram construction
using query feedback. In Proceedings of the IEEE ICDE International Conference on Data Engineering.
39. DOI:http://dx.doi.org/10.1109/ICDE.2006.84

M. Stillger, G. Lohman, V. Markl, and M. Kandil. 2001. LEO—DB2’s learning optimizer. In Proceedings of
the VLDB International Conference on Very Large Data Bases. 19–28.

A. Swami and K. B. Schiefer. 1994. On the estimation of join result sizes. In Proceedings of the EDBT
Extended Database Technology Conference. 287–300.

F. Yu, W. Hou, C. Luo, D. Che, and M. Zhu. 2013. CS2: A new database synopsis for query estimation. In
Proceedings of the ACM SIGMOD International Conference on Management of Data. 469–480. DOI:http:
//dx.doi.org/10.1145/2463676.2463701

K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. 2014. The analytical bootstrap: A new method for fast error esti-
mation in approximate query processing. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 277–288. DOI:http://dx.doi.org/10.1145/2588555.2588579

Received May 2014; revised October, December 2014, March 2015; accepted June 2015

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 16, Publication date: October 2015.

