
Turbo-Charging Estimate Convergence in DBO

Alin Dobra1, Chris Jermaine1,2, Florin Rusu1, Fei Xu1

adobra@cise.ufl.edu, cjermain@cs.rice.edu, frusu@cise.ufl.edu, feixu@cise.ufl.edu
1University of Florida, 2Rice University

ABSTRACT
DBO is a database system that utilizes randomized algorithms to
give statistically meaningful estimates for the final answer to a
multi-table, disk-based query from start to finish during query ex-
ecution. However, DBO’s “time ’til utility” (or “TTU”; that is, the
time until DBO can give a useful estimate) can be overly large, par-
ticularly in the case that many database tables are joined in a query,
or in the case that a join query includes a very selective predicate
on one or more of the tables, or when the data are skewed. In this
paper, we describe Turbo DBO, which is a prototype database sys-
tem that can answer multi-table join queries in a scalable fashion,
just like DBO. However, Turbo DBO often has a much lower TTU
than DBO. The key innovation of Turbo DBO is that it makes use
of novel algorithms that look for and remember “partial match” tu-
ples in a randomized fashion. These are tuples that satisfy some of
the boolean predicates associated with the query, and can possibly
be grown into tuples that actually contribute to the final query result
at a later time.

1. INTRODUCTION
A common complaint regarding real-world data warehousing in-

stallations is that they give the user no meaningful feedback re-
garding the final result until the query runs to completion. This is
problematic for several reasons. For example, it makes debugging
queries difficult, because there is no sanity check on the final query
result. This is one of the reasons that users often subsample large
database tables, then run their queries over the sampled data before
running them over the entire database. Another problem related
to lack of feedback is that it discourages users from interactively
exploring the database data. When the goal is finding unexpected
trends or relationships, one may have to try out a large number of
exploratory queries, most of which return nothing of interest. A
user is unlikely to issue a query over a multi-terabyte warehouse,
look at the result, use the result to issue a second query, look at the
result, and so on, in interactive fashion, if evaluating each query
takes minutes or hours.

A notable line of work that attempted to address this problem is
online aggregation (OLA), which first began more than ten years

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

ago [6]. In OLA, the answer to a statistical/aggregate database
query is estimated from the time that the query fires up. The es-
timate is bracketed by statistically meaningful confidence bounds
of the form, “with probability p, the final answer is between low
and high.” This is achieved by clustering the data in a statistically
random fashion on disk, so that sequential processing of database
tuples results in a random sample of all of the tuples in the database.

The most recent work on OLA has been undertaken in the con-
text of the DBO database system [15, 9]. DBO is unique in that
unlike the original OLA proposals—which can only provide an es-
timate for the final query result as long as at last one table that
is being joined fits entirely in memory—DBO is saleable. DBO
is able to provide confidence bounds from start to finish, even for
complex query plans requiring external-memory joins of multiple,
disk-based tables.

Does DBO Always Converge Quickly? The utility of an OLA
system should ultimately be measured by its ability to quickly pro-
vide tight bounds on the final query result. That is, DBO should
have a short “time ’til utility”. If the bounds that DBO supplies are
wide (that is, if high−low

est
is a large value, even after much of the

query plan has been processed) then the ability to provide an esti-
mate will be of little use, because the estimate is of poor quality.

In practice, we have found that DBO often works quite well,
though there is a class of queries where DBO’s convergence to the
actual query result can be too slow for comfort: queries that are
highly selective, or that query highly skewed data, or that involve
joins of many database tables. Imagine that DBO is used to answer
a query of the form:

SELECT SUM(f(t1 • t2 • ... • tn))
FROM TABLE1 AS t1 TABLE2 AS t2 ... TABLEn AS tn
WHERE P (t1 • t2 • ... • tn)

In this query, • is the concatenation operator, f is an arbitrary func-
tion over the tuple created by concatenating t1 through tn, and P is
some boolean predicate. To guess the answer to such a query, DBO
relies on a statistical process to “get lucky” and find various com-
binations of tuples that happen to be buffered in-memory at a given
instant, and are also accepted by the predicate P . If n is large or P
is very selective, then finding such combinations in memory at any
given instant may be quite unlikely. If n = 4 and DBO has enough
memory to buffer 1/50 of each input relation in main memory, then
DBO has a 1/(504) or around 1 × 10−7 chance of being able to
construct any given output tuple at a given instant; if there are only
thousands of tuples in a result set, then few output tuples will ever
be discovered and DBO’s accuracy will suffer accordingly.

Turbo-Charging Estimate Convergence in DBO. This paper is
based upon the observation that it is possible to “turbo charge”
DBO’s estimation convergence in precisely those problem cases by

taking advantage of partial result tuples—combinations of tuples
from subsets of the input relations that cannot satisfy P directly be-
cause they are not constructed from all n input relations, but might
later be combined with other tuples to eventually satisfy P . For ex-
ample, imagine that n = 4 and DBO happens to find t1 and t2 that
satisfy the join predicate over TABLE1 and TABLE2, but DBO is
not lucky enough to find an associated t3 and t4 in memory at the
same time. The improved version of DBO described in this paper
(called Turbo DBO) remembers the partial result t1 • t2. As Turbo
DBO encounters more tuples, it tries to find appropriate matches
for t1 • t2 from TABLE3 and TABLE4 in an incremental fashion.
The fact that Turbo DBO searches for early result tuples incremen-
tally greatly increases the chance of finding combinations of tuples
such that P (t1 • t2 • t3 • t4) evaluates to true. As a result, esti-
mation accuracy can be radically improved. In many cases, Turbo
DBO can produce confidence bounds that are orders of magnitude
smaller than the ones produced by the original version of DBO.

The contributions of this paper include:

• Turbo DBO uses partial matches to implement a novel esti-
mation process, which results in a significantly boost to esti-
mation accuracy. This estimation process encompasses sev-
eral novel techniques, such as an optimized building order
for partial matching tuples, a subsampling process to con-
trol memory usage, and a tuple “timestamping” abstraction
to control the randomization in the system.

• Turbo DBO utilizes a system architecture that could conceiv-
ably be added to any database system, where a software com-
ponent called the in-memory join sits outside of the normal
data access path, and “snoops” for tuples that happen to con-
tribute to the final query result. This co-processor-like archi-
tecture is attractive, in that it need not slow down the rest of
the system.

• We benchmark a ground-up implementation of Turbo DBO,
and find that for queries joining five large tables, Turbo DBO
decreases the “time ’til utility” by almost 80% compared to
the original DBO. For a more traditional warehouse work-
load featuring a central fact table, the reduction is nearly
30%.

Related Work. Sampling and randomized algorithms have a very
long history in databases; the best-known early work is the PhD
thesis of Olken [14] and a series of papers from Case Western in the
early 1990’s [7, 8]. Our work on Turbo DBO is a continuation of a
line of work on OLA in the database management literature [5, 13,
6, 11, 15, 9]. The focus in Turbo DBO is on the systems-oriented
issues that are important when one designs a database system from
the ground-up to utilize randomized algorithms. Aside from OLA,
there is relatively little work specifically aimed at sampling- or
randomization-based systems design. Aside from DBO [9], and the
original OLA work at Berkeley and IBM [6], the two most notable
projects were the AQUA project from Bell Labs [1] and Derby/S
at Dresden [12]. However, the latter two systems do not aim to
combine sampling-based approximation with an industrial-strength
database engine, as is the goal of this paper.

2. PRELIMINARIES AND SCOPE
The remainder of the paper considers multi-table aggregate queries

of the form given in the Introduction. Both the function f and the
predicate P can be arbitrary, as long as they are “memory-less”;
that is, both f and P operate only over one tuple (t1 • t2 • ... • tn)

R1 R4R3R2 R5 R6 R7 R8

R12 R34 R56 R78

R1234 R5678

R12345678

(1) Original query plan

R1 R4R3R2 R5 R6 R7 R8

(2) All bottom-level joins
evaluated concurrently in
levelwise step #1. This step

(3) Remaining query plan

R12 R34 R56 R78

(4) All bottom-level joins
evaluated concurrently in
levelwise step #2, producing

(5) Remaining query plan R1234 R5678

(6) Final join evaluated in
levelwise step #3

(7) Result relation

N1

N2

N3

produces the estimatorN1

the second online estimatorN2

Figure 1: Levelwise query evaluation in DBO.

and no state can be saved across tuples. Fortunately, this is not
too restrictive and handles the classic “select-project-join” class of
queries, but it does rule out correlated sub-queries in the WHERE
clause and a DISTINCT keyword in the SELECT clause. Handling
such queries is an interesting research problem in and of itself [4,
11], and beyond the scope of the paper.

While the paper does not explicitly discuss aggregate functions
besides SUM, other functions such as COUNT, AVERAGE, STD DEV
and VARIANCE can all be handled easily. COUNT is a special case
of SUM where f(.) = 1 always. The other functions are handled
by answering several aggregate queries simultaneously [3] (for ex-
ample, AVERAGE is a ratio of a SUM and a COUNT). MIN and MAX
require special consideration [17].

Finally, GROUP BY queries can be handled using the methods
in this paper by simply treating each group as a separate query and
running all queries simultaneously; then all of the estimates are
presented to the user. For each group, a version of P is used that
accepts only tuples from that particular group.

3. QUERY PROCESSING IN DBO
We begin by reviewing at a high level the basic query processing

techniques employed by DBO to both (1) process analytic queries
efficiently from start-up through completion, and (2) give a statis-
tically meaningful guess as to the final query result the whole way.
For brevity, many details are glossed over and can be found in the
earlier paper on DBO [9].

3.1 The Levelwise Step
In DBO, a query plan is processed by running all of the relational

operations attached directly to the leaves of the query plan tree at
the same time, in a carefully choreographed fashion. This is called
a levelwise step. All of the operations in a levelwise step communi-
cate with one another to look to see if they can piece together tuples
that satisfy all selection/join predicates in the underlying query. As
such “lucky” tuples are discovered, they are used to update an es-
timate for the final query result, which is modeled as a random

variableNi. Here, i is the number of the current levelwise step. Ni

is provably unbiased, which means that DBO is “correct on aver-
age”. That is, E[Ni] = Q, where Q is the final query result and
E denotes the expectation of Ni. As more data are processed, it
becomes more likely that the levelwise step will discover “lucky”
output tuples. The effect of this is that as the levelwise step pro-
gresses, the variance V ar(Ni) decreases.

When the levelwise step completes (that is, when all of the op-
erations at the leaf level of the query plan finish), Ni is frozen. At
this point, the operations attached to the leaves of the query plan
are effectively removed, and replaced with the intermediate rela-
tions that they produced. Then the relational operations at the next
level of the query plan begin operation, and a new levelwise step
is begun. This process is repeated for each level of the query plan,
until the final, exact query answer is computed. The overall process
of executing a query plan in DBO is illustrated in Figure 1.

After l levels of the plan have been completed, the actual es-
timate given to the user is N = (

∑l
i=1 wiNi) for some set of

weights {w1...wl} such that (
∑l

i=1 wi) = 1. Since each Ni is un-
biased it holds that N is unbiased. By choosing the weights care-
fully, the variance of N can be minimized.

3.2 The Estimation Process in Detail
One of the most important aspects of query processing in DBO

is how “lucky” output tuples are discovered during a levelwise step,
and how they are used to produce Ni. This is the particular issue
that is considered in depth in the remainder of the paper.

The search for “lucky” output tuples in DBO is conducted as fol-
lows. The tuples that are input into each relational operation in a
levelwise step are always streamed into each operation in statisti-
cally random order (for details of how this randomness is achieved,
we refer the reader to the original DBO paper). Since tuples are
processed in random order, the set of tuples that each relational op-
eration has in memory at a given instant is generally a statistically
random subset of all of the tuples that the operation will be asked
to process. DBO requires that relational operations such as joins
make the tuples that they process visible to the rest of the system.
By joining these random samples and scaling up the result, DBO
produces an unbiased estimator Ni for Q.

This is best illustrated with an example. Imagine that we are
processing a join of four relations R1, R2, R3, and R4, with the
SQL WHERE predicate “WHERE R1.a = R2.a AND R2.b =
R3.b AND R3.c = R4.c”; Q is a a sum overR1.b for all the
tuples accepted by the WHERE clause. The current levelwise step
processes two joins concurrently, where join A is R1 1 R2, and
join B is R3 1 R4. Both joins are implemented as sort-merge
joins, and both joins have enough memory to buffer p × 100% of
their respective input relations in memory at a given instant.

In DBO, both joins start up by streaming tuples into their in-
ternal buffers, just like they would in a classical database system.
When all buffers fill, the contents of the buffers are indexed via
a DBO software component called the in-memory join (IMJ). The
IMJ maintains an in-memory, hash-based index that allows it to
quickly locate tuples that will contribute to Q. In our example, the
IMJ would create a separate index on each of the join attributes in
the WHERE clause: R1.a,R2.a,R2.b,R3.b,R3.c, andR4.c.
After the hash indexes are built, the IMJ uses them to locate com-
binations of tuples in the buffers that are accepted by the query’s
WHERE clause. After the IMJ finds all such combinations, it sums
up R1.b for all of these combinations, and multiplies this sum by
1/p4 to obtainNi. Ni is unbiased forQ since the buffer for each in-
put relation contains (p× 100)% of the tuples in the input relation
(for p < 1). Thus, on expectation, the IMJ will have discovered

RelationR1 buffer number
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9
10

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19

R
el

at
io

nR
2

bu
ffe

r
nu

m
be

r

Por
tio

n
of

 d
at

a
sp

ac
e

se
ar

ch
ed

Figure 2: Searching for “lucky” output tuples in a two-relation
join in classic DBO. The numbers on the grid cells show the
progression of the search.

(p4 × 100)% of Q.
Once the IMJ has searched for these “lucky” output tuples, join

A is allowed to replace its R1 buffer with another (p × 100)%
fraction of R1. The IMJ then indexes those new tuples from R1,
and again uses its various indexes to try to discover more “lucky”
output tuples that may be found with the new R1 buffer. With this
new search, the IMJ has now doubled its chances of finding any
given output tuple, and so by summing up the total aggregate value
forR1.b over all discovered output tuples and multiplying the sum
by 1/(2× p4), it obtains an updated value for Ni.

The process of allowing a join to replenish one of its buffers,
indexing the buffer, and looking for “lucky” output tuples is then
repeated until the levelwise step has read all of its input data. In
our example, the IMJ would then allow join A to replace its buffer
for relation R2. After this is done, the IMJ searches for “lucky”
output tuples, and updates Ni by multiplying the total aggregate
value seen so far by 1/(3 × p4). The process continues until all
the tuples from each input relation have been pushed through the
buffers.

4. CONVERGENCE IN DBO
To understand what governs “time ’til utility’ in DBO, and obtain

some intuition behind Turbo DBO’s improved estimation process,
it is critical to understand the key issues governing DBO’s conver-
gence speed.

4.1 What Governs Convergence Speed?
A visualization of DBO’s randomized search process for a two-

relation join R1 1 R2 with p = 1
10

is depicted in Figure 2. This
figure depicts a two-dimensional grid, where all of the tuples from
R1 are randomly arranged on the x-axis, and all of the tuples from
R2 are randomly arranged on the y-axis. The dots in the grid are
“hits”, or t1 ∈ R1, t2 ∈ R2 combinations where P (t1 • t2) =
true. The final answer to an aggregate query over this join is the
result of applying the aggregate function to each and every hit in
the grid. The lines along the x-axis partition R1 into 1/p different
subsets of tuples, where each subset will be buffered at once in its
entirety as the levelwise step processes its data. The grid lines along
the y-axis show a similar partitioning for R2.

As a levelwise step progresses, every time that a buffer is re-
filled, the IMJ searches all buffers for “lucky” result tuples. This
has the effect of searching one cell in the grid. For example, as
the levelwise step running R1 1 R2 begins, the first buffer from
R1 will be paired with the first from R2. In this case, the first grid

1 2 3 4 5 6 7 8 9 10

123456789101
2
3
4
5
6
7
8
9

10

R
el

at
io

nR
2

bu
ffe

r
nu

m
be

r

RelationR3 buffer number

RelationR
1 buffer number

P
or

tio
n

of
 d

at
a

sp
ac

e
se

ar
ch

ed

Figure 3: Searching for “lucky” output tuples in a three-
relation join in classic DBO.

cell (labeled “1” in Figure 2) is searched. Then the buffer of R1 is
flushed to disk, and the second buffer from R1 is paired with the
first from R2. This searches the grid cell labeled “2”. Then the
first buffer from R2 is flushed and the second buffer from R2 is
paired with the second from R1. This searches the grid cell labeled
“3”. This is repeated until both relations have been scanned in their
entirety. Since in this example p = 1/10, by the time the levelwise
step completes, exactly 19 cells have been searched for “lucky”
tuples, as depicted in Figure 2.

The number of cells that are searched for “lucky” tuples is of
critical importance. Ignoring certain messy details, the inaccuracy
(variance) of any sampling-based aggregate estimator generally de-
creases in proportion with the expected number of output tuples
that are used in the estimate. Since the expected number of output
tuples increases linearly with the area or volume of the data space
that has been searched, the number of grid cells searched controls
the convergence rate of the estimate produced by DBO. Since each
cell in the grid covers the same area (that is, the probability that a
given output tuple is in a given cell is p2 in the case of a two-table
join), in DBO the variance of the estimator Ni decreases (approxi-
mately) proportionally with the number of cells that have been pro-
cessed. That is, if σ2 denotes the variance of the estimate that is
produced by searching a single cell, then after m cells have been
searched, V ar(Ni) ≈ σ2/m. If central-limit-theorem-based con-
fidence bounds are used, then the width of the resulting confidence
bound is proportional to the square root of the variance, and so the
bound width is approximately proportional to 1/

√
m.

4.2 So What’s the Problem?
In the example described above, DBO should converge quite

quickly. The fraction p is not too small and only a single join of
two relations is considered. By the time the levelwise step has com-
pleted, 19

100
or 19% of the data space has been searched, and so on

expectation 19% of the tuples satisfying the predicate P will be
discovered. In the realistic case where there are thousands to mil-
lions of hits in the entire grid, a 19% sample will obtain hundreds
of “lucky” tuples and tend to give a very good result.

The difficulty for DBO is when the expected number of “lucky”
output tuples becomes small. This can happen when there are
not many tuples to discover (that is, when the underlying query
is highly selective), or when the fraction of the data space that is
searched is very small. The fraction can be very small for two rea-
sons. First, p can be small, either due to having a very large input
data set or a small amount of available memory. In this case, the
fraction of the data space that is searched shrinks. Second, for a

fixed value of p, the fraction of the data space that is searched de-
creases exponentially when increasing the number of relations. For
example, consider Figure 3. In this case, p = 1

10
, and by the time

all of the input streams have been totally processed, only 28 out of
the 1,000 cells in the corresponding 3-D search space are checked –
or just 2.8%, compared with 19% in the case of a 2-way join using
the same value of p. In a four-way join using the same value of p,
the fraction of the data space searched decreases to just 0.37%.

5. ESTIMATION IN TURBO DBO
Intuitively, one of classic DBO’s biggest problems is that when

a relational operation re-fills its buffer with new tuples from one
of the input relations, the IMJ simply forgets everything about the
older tuples. No state is remembered across buffer flushes.

Turbo DBO uses a very different strategy. Rather than using
the IMJ to simply index the content of the various relational op-
erations’ buffers and passively look for “lucky” output tuples, in
Turbo DBO the IMJ has a memory budget of its own to buffer data.
If the current levelwise step is processing a join of n input relations
R1, R2, ..., Rn, the IMJ uses its internal memory to maintain n dif-
ferent buffers. The nth or last buffer contains “lucky” output tuples
from R1 × R2 × ... × Rn that are accepted by the WHERE pred-
icate P , and hence actually contribute to Q. The IMJ also buffers
“partial” results, or tuples from a cross product of a subset of the re-
lations that could eventually contribute to the result. In general, the
ith buffer contains a set of tuples that belong toR1×R2× ...×Ri

and are accepted by P 1. We will subsequently refer to these partial
results as “chains”, since they are strings of tuples chained together
using the join predicates encoded by P .

During query processing, tuples that enter into a levelwise step
are streamed into the relational operation that is processing them,
just as they would be in classic DBO or in any database system.
Copies of those tuples are pipelined into the IMJ. As we will de-
scribe in detail subsequently, tuples are pipelined into the IMJ in
such a way that the timestamp TS(t) denoting tuple t’s logical
arrival time—TS(t) takes a value from zero (the beginning of the
levelwise step) to one (the end of the levelwise step)—can be viewed
as statistically random and uniformly distributed from zero to one,
with tuples added to the IMJ in ascending order of TS(t).

When the IMJ obtains a tuple t1 from relation R1, if P (t1) =
true, the IMJ adds t1 to the first buffer. When the IMJ obtains
a tuple ti+1 from relation Ri+1 for i > 0, the IMJ goes to its ith

buffer, and sees if there is any tuple (t1 • t2 • ... • ti) in this buffer
where t = (t1 • t2 • ...• ti • ti+1) is accepted by the predicate P . If
the IMJ can construct such a t, then t is added to (i + 1)th buffer.
If i + 1 = n, then the IMJ adds f(t) to the total aggregate value
seen so far. In the remainder of the paper, we denote this running
sum with an upper-case sigma (Σ). Σ is then used to provide an
unbiased guess for the query result Q.

Intuitively, the ith buffer contains chains of tuples from each of
the first i relations, where each chain in the buffer is accepted by
all of the applicable join and selection predicates in P . When a
new tuple is accepted by the IMJ, the IMJ tries to attach it to the
end of an existing chain in order to grow the chain. If the IMJ is
successful, then it buffers the new, longer chain for later use. If
the IMJ manages to build a chain that spans all n relations, then
it has discovered a new, “lucky” output tuple. Since chains are
constructed in order (with relation R1 first, R2 second, and so on)
1Strictly speaking, P only accepts or rejects tuples from the cross
product of all of the input relations. For notational simplicity, we
assume that P applied to a tuple t that is “missing” one or more
attributes returns true if and only if it would be possible to satisfy
P using t by adding some set of additional attribute values.

0 0.2 0.4 0.6 0.8 1 0
0.2 0.4

0.6
0.8

1

0.2

0.4

0.6

0.8

1
R

el
at

io
nR

1
tu

pl
e

tim
es

ta
m

p

RelationR3 tu
ple timsestamp

RelationR2 tuple timestamp

Portio
n of data space searched

Figure 4: Searching for “lucky” output tuples in Turbo DBO.
The fraction of the data space that is searched is much greater
than in Figure 3.

a tuple t = (t1•t2•...•ti•tn) is discovered by the IMJ if and only
if TS(t1) < TS(t2) < ... < TS(tn). The reason this technique
may be very successful at discovering “lucky” output tuples is that
the IMJ does not need to discover them all-at-once. It can build
them up slowly, over time, which greatly increases the chance that
they will be found.

It is possible to visualize Turbo DBO’s search strategy using
a plot that is analogous to Figures 2 and 3. In Figure 4, the in-
put tuples from each of the three relations are ordered along each
axis based upon their arrival timestamps; just as in the previous
figures, the goal is to locate points in the space corresponding to
combinations of input tuples accepted by the predicate P . Since
an output tuple is discovered by the IMJ if TS(t1) < TS(t2) <
... < TS(tn), the IMJ will eventually discover any tuple falling
above and to the left of a triangular plane that connects the point
(0, 0, ..., 0) with the point (1, 1, ..., 1). Over time, the volume of
this space can dwarf the volume of the space that would be searched
along the diagonal by classic DBO. Since the variance of the re-
sulting estimate decreases in proportion to the volume of the space
searched, the strategy used by Turbo DBO can greatly increase es-
timation accuracy.

Of course, this discussion is fairly high level, and ignores many
of the key details that must be considered when realizing a practical
implementation of these ideas. The following key questions are
considered in the remainder of the paper:

• How exactly can Turbo DBO use this search strategy to pro-
duce an unbiased estimate for Q, and how can the accuracy
of the resulting estimator be quantified in a rigorous fashion?

• How is the search strategy actually implemented by the IMJ,
and what data structures are required?

• Chains of tuples of the form (t1 • t2 • ... • ti • tn) are con-
structed using a specific order for the input relations. Is this
order important, and if so, how can it be chosen?

• What happens when the space required to store all of the
chains exceeds the IMJ’s memory budget?

• How is the timestamp-based randomization described in this
section implemented?

6. BUILDING AN UNBIASED ESTIMATOR
The previous section described a process which computes a ran-

dom variable Σ. We have argued that this variable can be used to

produce a low-variance estimator because it searches a much larger
portion of the data space than the estimator used in classic DBO. In
this section, we derive an unbiased estimator Ni based upon Σ.

To use Σ to produce an unbiased estimatorNi (that is, one that is
correct on expectation), it is necessary to compute the expectation
of Σ. To do this, we begin by writing the exact formula for Σ. In the
remainder of this section, we simplify the formulation by assuming
that the aggregate function f has been altered to incorporate P ; that
is, if P (t) = false, then f(t) = 0. Assume that at a given instant
in time, the IMJ has processed all tuples with a timestamp less than
p. Given this, Σ can be expressed as:

Σ =
∑

t1∈R1

∑
t2∈R2

...
∑

tn∈Rn

I(TS(t1) < TS(t2) < ... < TS(tn)

∧ TS(ti) ≤ p forall i)f(t1 • t2 • ... • tn) (1)

In this formula, I is the identity function, returning one if the ran-
dom variable-valued argument returns true and zero otherwise.
In this case, I returns one if and only if tuple t1 is encountered by
the IMJ before t2, which is encountered before t3, and so on, and
all have a timestamp less than p. To use Σ to produce an unbiased
estimator Ni, it is necessary to compute the expectation of Σ:

E[Σ] =
∑

t1∈R1

...
∑

tn∈Rn

E[I(TS(t1) < TS(t2) < ... < TS(tn)

∧ TS(ti) ≤ p forall i)]f(t1 • t2 • ... • tn)

In this equation, the E[.] operator can be pushed inside the sum-
mation due to the linearity of expectation. Thus, it becomes neces-
sary to consider the expected value of E[I(.)]. Since this is a zero-
one random variable, its expectation is the probability that it eval-
uates to one. In other words, its expectation is the probability that
the tuples t1 through tn arrive in precisely that order, before time
p. Since each TS(ti) is an independent, uniformly distributed vari-
able, any ordering is equally possible. There are n! orderings of n
different tuples, and so Pr[TS(t1) < TS(t2) < ... < TS(tn)] =
1
n!

. Furthermore, due to the uniformity of TS(ti), the fact that all
TS(ti) < p has no effect on this probability—if we know that all
ti arrived sometimes before p, then the conditional distribution is
still uniform from 0 to p, which does not affect the fact that each
ordering is equally likely. Thus, we have E[I(.)] = pn

n!
and:

E[Σ] =
∑

t1∈R1

...
∑

tn∈Rn

pn

n!
f(t1 • t2 • ... • tn)

In order to make Σ unbiased (that is, equal to Q on expectation),
all we have to do is multiply Σ by n!

pn . Thus, the unbiased estimator
associated with the ith levelwise step is Ni = n!

pn Σ.

7. IMJ IMPLEMENTATION
The IMJ accepts a stream of input tuples from DBO that are

ordered based upon each tuple’s timestamp value and uses them to
compute Σ. In practice, this means that the IMJ must maintain data
structures that efficiently allow the IMJ to accept a tuple ti from
Ri, and join it with any existing chain of the form (t1 • ... • ti−1)
to create new tuples of the form t = (t1 • ... • ti−1 • ti) where
P (t) = true. Our IMJ implementation described in this section is
related to the MJoin algorithm for joining data streams with highly
variable and unpredictable rates introduced in [16].

As an IMJ is started up but before it begins accepting tuples,
Turbo DBO’s query compiler supplies the IMJ with an n×nmatrix

P containing boolean predicates of the form:
true true true ... true
P21 true true ... true
P31 P32 true ... true
P41 P42 P43 ... true
...


An entry Pij in P corresponds to the user-supplied equi-join pred-
icate for relations i and j in the original query predicate P , which
is suitable for use within a hash join. The query compiler also pro-
vides the IMJ with an additional boolean predicate P̄ . P̄ is every-
thing that is “left over” from P that does not appear in P; that is, it
is everything in P that cannot be captured as an equi-join predicate
suitable for hash-based evaluation. For example, if P contains a
clause of the form “e.SAL > s.SAL + 500”, then the clause
would appear in P̄ since it is not possible to compute this join using
standard hashing techniques. Given this, it is always the case that
predicate P = P̄ ∧

∧
ij Pij

2.
As the IMJ starts up, it creates n different sets, which are initially

empty. The ith set will be used to hold the tuples or chains of the
form t = (t1•t2•...•ti) from the cross productR1×R2×...×Ri

where P (t) = true. In order to efficiently search for such tuples,
the IMJ also creates a hash index on each set. The hash index on
the (i− 1)th set needs to be able to quickly locate all of the tuples
from this set that join with any tuple ti ∈ Ri that is passed to the
IMJ. More specifically, given a ti the IMJ needs to quickly locate
every chain (t1 • t2 • ... • ti−1) in the (i− 1)th set where the tuple
(t1 • ... • ti−1 • ti) is accepted by all of the predicates in the ith

row of P. Thus, all of the tuples in the (i− 1)th set are indexed by
a hash that takes into account the attributes from R1, R2, ..., Ri−1

that appear in the predicates Pi1, Pi2, ..., Pi(i−1).
When a new tuple ti is processed by the IMJ, it is first hashed on

all of the values of attributes from Ri that appear in the predicates
Pi1, Pi2, ..., Pi(i−1), and then joined with any chain (t1 • t2 • ... •
ti−1) in the corresponding bucket by applying all of the predicates
in the ith row of P. If i = n (that is, ti comes from relation Rn),
then the predicate P̄ is also checked; if P̄ accepts any new chain,
then it is treated as a “lucky” output tuple and the aggregate func-
tion f is applied to the chain and the result is added to Σ. Finally,
the “lucky” output tuple is added to the nth set.

If i 6= n, then any new chains resulting from ti are added di-
rectly to the ith set—Σ is not updated, and P̄ is not applied. Also
in this case, the index on the ith set must be updated to take into ac-
count these new chains, so that if a tuple ti+1 from Ri+1 is eventu-
ally processed, any matching chains from the ith set can be located
quickly using the hash index.

8. ORDERING THE INPUT RELATIONS
The IMJ accepts a stream of input tuples from each of the level-

wise step’s n input relations, and must map them to R1, R2, ..Rn,
which induces an ordering on the relations. We consider how does
this mapping/ordering matter, and how should it be chosen?

First, we argue that altering the ordering of the input relations has
no effect upon the statistical properties of the estimation process.
Consider the formula for the random variable Σ given in Equation
1. Altering the ordering of input relations has only the effect of re-
ordering the summations and of altering identities of the tuples in
the expression TS(t1) < TS(t2) < ... < TS(tn) and so it does
not affect the value of Σ. Thus, there is no statistical effect.
2In this discussion, we ignore any “pure” selection predicates; it
is assumed that any tuples not accepted by such a selection predi-
cate would be filtered before they even reach the IMJ, and so such
selection predicates are immaterial to this discussion.

While there is no statistical effect of the ordering, there is a
key practical effect: different orderings require different amounts
of memory. The problem of choosing an appropriate ordering is
somehow similar to logical query plan optimization (QO), but this
optimization problem has a unique structure. If the number of tu-
ples inR1×R2×...×Ri that are accepted by the predicate P ism,
then by the time the IMJ completes, the number of tuples from this
cross product that will be buffered by the IMJ is expected to be m

i!
.

This implies that choosing the identities of the input relations early
in the ordering is far more important than choosing the identity of
those later in the ordering, and suggests that a greedy strategy is
appropriate.

As such, our prototype chooses the first pair of relations in the
ordering in an “optimal” fashion, and then orders the remainder
greedily. To implement this, the IMJ begins with a short start-up
phase lasting a few seconds, when it buffers all of the tuples that
it sees. If the largest TS value encountered during this start-up
phase is p, then when the start-up phase ends the IMJ has buffered
(approximately) a (p× 100)% sample of each input relation.

Next, the IMJ chooses R1 and R2 by considering all pairs of
input relations that have a join predicate in the matrix P. For each
pair of relations Ra and Rb, the IMJ uses its start-up samples to
estimate bytesa = (size in bytes ofRa), bytesb = (size in bytes of
Rb), and bytesab = (size in bytes of Ra 1 Rb). by joining the two
samples, and multiplying the size of the join result by 1

p2 . Once
the IMJ has estimated these quantities for each (Ra, Rb) combina-
tion, it then chooses the (Ra, Rb) combination that minimizes the
quantity min(bytesa + bytesb + bytesab/2).

Then the IMJ chooses R3 by (a) joining the start-up tuples from
each of the remaining relations with the start-up tuples from R1 1

R2, and (b) selectingR3 as the relation for which the size (in bytes)
of the join result is minimized. Then, it chooses R4 in a similar
fashion. This process is repeated until the relation Rn is selected.

9. REDUCING THE FOOTPRINT SIZE OF
THE IMJ

9.1 Subsampling the Relations
In Turbo DBO, the IMJ is given two explicit main memory bud-

gets: a hard upper bound and a soft upper bound on the IMJ’s mem-
ory footprint. As soon as the amount of storage required by the
IMJ exceeds the hard upper bound, one of the relations is chosen
to “give up” a fraction of its tuples so that the footprint of the IMJ
shrinks below the soft upper bound. How to choose which relation
has to “give up” some tuples is discussed subsequently, but once a
relation Ri has been chosen in response to a memory overflow, the
“giving up” of tuples is implemented by subsampling the relation
in a Bernoulli fashion: logically, for each ti ∈ Ri that is present
in the IMJ, a biased coin is flipped. If the coin comes up “heads”,
then every chain of the form (t1 • ... • ti • ...) is removed from the
IMJ and the memory is freed.

The effect of this process is that every relation Ri now has a
subsampling rate pi. That is, there is a probability (1 − pi) that a
given tuple from relation Ri has been removed from the IMJ. If a
relation has never given up any tuples, then pi = 1. If a relation
has given up some of its tuples, then pi < 1.

The effect of subsampling on the search algorithm implemented
by Turbo DBO is illustrated pictorially in Figure 5. In this fig-
ure, a random subset of the tuples from one of the input relations
is removed, which results in the portion of the data space that is
searched being “cut up”, where the empty horizontal areas are as-
sociated with tuples that have been removed due to the subsam-

0.2
0.4

0.6
0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

R
el

at
io

nR
1

tu
pl

e
tim

es
ta

m
p

RelationR3 tu
ple timsestampRelationR2 tuple timestamp

Portio
n of data space searched

Figure 5: The effect of subsampling on the search for “lucky”
output tuples in Turbo DBO.

pling. If more than one relation were subsampled, then there would
be cuts or holes along another axis as well. Since the portion of
the data space searched is (approximately) proportional to the es-
timation accuracy, it should be clear that subsampling will have a
negative effect on the estimation accuracy—minimizing this nega-
tive effect is discussed subsequently.

9.2 Subsampling Implementation
To actually implement the subsampling, the IMJ attaches a value

randomly selected from the range zero to one to tuples as they are
added to the IMJ. As a tuple ti ∈ Ri is added to the IMJ, it is
checked to see if its random value exceeds pi. If it does, then the
tuple is discarded without ever entering the IMJ. Also, whenever
the subsampling rate pi for Ri is lowered, the chains that are al-
ready stored in the IMJ may need to be deleted as well. For every
existing chain of the form (t1 • ... • ti • ...), after pi is lowered, the
random value associated with ti is also checked against pi; if the
random value exceeds pi, then the chain is deleted. If any chain of
the form (t1•...•tn) is deleted, then its f() value is also subtracted
from the sum Σ.

9.3 Statistical Considerations
One effect of this is that the quantity Σ computed by the IMJ ac-

tually changes. Mathematically, a random variable Xti is attached
to each tuple ti ∈ Ri. Xti takes the value one with probability pi;
otherwise, it takes the value zero. Then:

Σ =
∑

t1∈R1

∑
t2∈R2

...
∑

tn∈Rn

I(TS(t1) < TS(t2) < ... < TS(tn)

∧ TS(ti) ≤ p forall i)f(t1 • t2 • ... • tn)
∏

i

Xti

For this new version of Σ, it becomes necessary to compute
the expectation again in order to produce an unbiased Ni. Since
E[

∏
i Xti] is

∏
i pi, we have:

E[Σ] =
∑

t1∈R1

...
∑

tn∈Rn

pn

n!
f(t1 • t2 • ... • tn)

∏
i

pi

Thus, in order to produce an unbiased estimate for Q, we let
Ni = n!

pn
∏

i pi
Σ.

9.4 Choosing the Relation to Subsample
When the IMJ exceeds its hard memory budget, it needs to choose

which relation to subsample from. This is done as follows:

1. The IMJ considers each input relation, in turn. For each re-
lation Ri, the IMJ estimates the new pi value (denoted by
p′i) that would be required to shrink the footprint size so that
it does not exceed the soft memory budget. This is done by
maintaining a set of counters as new data are inserted into the
IMJ, one for each relation. For relationRi, the IMJ maintains
a counter Bi, which is the total number of bytes required to
store chains containing any tuple ti ∈ Ri. Assuming that
B does not exceed Bi, then if the IMJ needs to shrink its
footprint size by B bytes, p′i can be estimated as Bpi

Bi
.

2. For each p′i, the IMJ computes the variance of the IMJ’s es-
timate that would be obtained if pi were replaced by p′i.

3. The relation with the minimum resulting variance is selected.
pi for this relation is replaced with p′i. All now-defunct
chains are removed from the IMJ, and Σ is updated.

10. STREAMING TUPLES INTO THE IMJ
The final systems-oriented issue that we consider is how Turbo

DBO actually supplies tuples to the IMJ. Specifically, Turbo DBO
needs to stream tuples into the IMJ so that they are sorted upon the
order of their randomized timestamp values.

10.1 Simulating Timestamp Ordering
In Turbo DBO (as in regular DBO), all joins are implemented

using sort or hash algorithms, where the lexicographic order for the
sorting or hashing is based upon a random ordering provided by
employing a hash function over the join key. This means that tu-
ples stream out of each join in a statistically random order, except
for the fact that tuples with the same join key value appear all at
once in a “clump”. These clumps do not affect query processing or
un-biasedness of Turbo DBO’s estimates in any way, except for the
fact that clumps tend to increase the variance of the resulting esti-
mate. For the remainder of the discussion, we ignore this clumping
of tuples and point out that the statistical issues introduced by the
clumping can be handled using methods very similar to those pro-
posed for handling clumping in the original DBO paper [9].

Ignoring clumping, it can be assumed that tuples are streamed
out of each levelwise step’s join operations in random order. The
random order supplied by each individual join needs to be used to
stream tuples into the IMJ in a way that is statistically equivalent to
first sorting all of the tuples from each and every join on the value
of a random timestamp, and then streaming them into the IMJ in
the resulting sorted order.

In Turbo DBO, this simulated sorting is facilitated by a special
software component called the Controller. The Controller controls
a set of “valves”, where there is one valve placed on each of the
output pipes through which all intermediate join results flow as they
are pipelined into the operations higher in the query plan. Initially,
the Controller turns all of the valves to the “off” position, which
blocks any tuples from flowing through the pipes. As the IMJ is
ready to start processing a levelwise step, the Controller turns on
each of the valves for a period of time. Then, as tuples flow into
the operations higher in the query plan, copies of the tuples are
also redirected into an in-memory priority queue maintained by the
Controller. The required ordering of all of the tuples in the queue
is obtained by normalizing each tuple’s random hash value to a
[0, 1] range—these normalized values are used to supply the ran-
dom timestamp that will be used to insert tuples into the IMJ.

Once the priority queue has filled, the Controller begins popping
tuples off of the front of the queue, and feeding them into the IMJ.
Whenever the number of tuples from one of the output pipes that

is buffered in the queue becomes too small, the Controller turns on
the valve corresponding to that pipe for long enough to replenish
the supply of tuples from that pipe.

10.2 Handling the Initial Table Scans
To achieve randomness in the initial table scans, data are stored

in random order on disk. To generate a timestamp for disk-based
tuples, the table scan maintains a value ti.num for the ith rela-
tion. ti.num = 0 for the first tuple from relation i, 1 for the
second, 2 for the third, and so on. The Controller also remem-
bers the value of the last timestamp provided by each relation (call
this value TSi for the ith relation). This number is set to be 0 ini-
tially. When the Controller pulls a new tuple ti from the ith pipe to
put into its priority queue, it generates a random number X from a
Beta(1, |Ri|−ti.num) distribution, and then sets the timestamp of
ti to be TSi +X(1−TSi). Without going into details, this process
assigns a simulated timestamp and ordering to ti that is statistically
equivalent to the required timestamp and ordering.

10.3 Constant Relations
It is often the case that a table scan or intermediate join result

supplies a set of tuples into a levelwise step that is so small that it
can be buffered in its entirety. This is labeled as a “constant rela-
tion”. Each constant relation is buffered by the IMJ in its entirety.

The effect of this is that the value Σ computed by the IMJ is al-
tered so that the timestamps for each constant relation are irrelevant—
a tuple ti from a constant relation is always counted towards Σ, no
matter what its timestamp. Mathematically, we can represent this
by introducing a boolean variable Ci that is true if and only if Ri

is constant. Then:

Σ =
∑

t1∈R1

∑
t2∈R2

...
∑

tn∈Rn

I(
∧
i6=j

(TS(ti) < TS(tj) ∨ Ci ∨ Cj) ∧

TS(ti) ≤ p forall i where ¬Ci)f(t1 • t2 • ... • tn)
∏

i

Xti

Since Σ is altered, it must be unbiased to compute the IMJ’s esti-
mate Ni in a slightly different fashion than if there are no constant
relations. Let n′ be the number of non-constant relations. Then
Ni = (n′)!

pn′ ∏
i pi

Σ is an unbiased estimate for Q.

11. VARIANCE ANALYSIS
As we explained in Section 5, the IMJ estimator is based on a

significantly larger part of the tuple space when compared to the
DBO estimator, thus, we expect the IMJ estimator to have a signifi-
cantly smaller variance. In order to provide meaningful confidence
bounds for the IMJ estimator, the variance needs to be estimated
accurately enough. The first step is to derive formulas for the vari-
ance and then to design an unbiased estimator for the variance.

The starting point for the derivation of the variance of Σ is the
analysis developed for the DBO estimator [9]. Surprisingly, the
analysis of the DBO estimator depends only on a small degree on
the type of sampling; a general analysis was developed in [10] for
any sampling estimator as long as independent uniform samples,
one for each relation, are used to identify matching tuples and form
the query result estimator. The main feature of the IMJ estimator
is that it does not combine independent samples from the relations,
but rather computes the estimate using a complicated randomized
process. It is not immediately apparent that the analysis in [10]
does apply to the IMJ estimator. Fortunately, we discovered that
the existing analysis can be generalized to the IMJ estimator. In the
rest of this section we first develop this more general analysis and

then apply it to the IMJ estimator.

11.1 Generalized Uniform Sampling
The IMJ estimator does not look at all like a sampling estimator.

Nevertheless, the IMJ estimator randomly selects tuples from the
result tuples of the query and uses them to estimate the result. The
selection process seems non-uniform and too complicated to ana-
lyze. Fortunately, as we show in the next section, the tuple selection
used by the IMJ estimator does belong to the class of methods we
call generalized uniform sampling (GUS).

DEFINITION 1 (GUS). A randomized selection process that
selects tuples t = (t1, . . . , tn) from the cross-product of base rela-
tions R1, . . . , Rn is called generalized uniform sampling or GUS
if the probability that tuple t is selected is constant and the proba-
bility that tuples t and t′ are simultaneously selected depends only
on whether tuples t and t′ share the same tuples from the base re-
lations, but not on the content of these tuples.

For any GUS process, we can define the following constants:

P [(t1, . . . , tn) ∈ R] = a

P [(t1, . . . , tn) ∈ R ∧ (t′1, . . . , t
′
n) ∈ R] = bT , T = {i|ti = t′i}

with R the set of result tuples randomly selected by the specific
process. The set T used as a subscript in the constant bT specifies
which of the tuples form the base relations used in the two result
tuples are the same. Once this information is provided, the proba-
bility is a constant according to the definition of GUS above.

If we denote by A the true result of the query, the following
estimator of A can be introduced:

X =
1

a

∑
(t1,...,tn)∈R

f(t1 • · · · • tn)

The moment analysis of this generic estimator is given by the
following result that we provide without proof:

THEOREM 1. The expected value and the variance of the GUS
estimator X are given by:

E [X] = A, σ2 (X) =
∑

S∈P(n)

cS
a2
yS − y∅

with

yS =
∑

{ti∈Ri|i∈S}

 ∑
{tj∈Rj |j∈SC}

f({ti, tj})

2

cS =
∑

T∈P(S)

(−1)|T |+|S|bT

The terms yS are exactly the terms that appear in [10] and can
be evaluated using the same strategy.

11.2 Analysis of IMJ estimators
Since all the IMJ estimators do not look at the content of a tuple

to decide if the tuple is retained in the sample used for estima-
tion, all the estimators can be characterized using the analysis of
the GUS generic estimator. We only need to compute the constants
a and bT , ∀T ∈ P(n) for each different type of sampling. While
such a computation is nontrivial, it is significantly easier than a
head on analysis. We provide here only the values of the constants
bT . The values of a ware derived in the previous sections when the
estimators were introduced.

Basic IMJ estimator.

bT =
p2n−|T |

(2n− |T |)!

|T |∏
l=0

[2(il+1 − il − 1)]!

[(il+1 − il − 1)!]2
(2)

where i1, i2, . . . i|T | are the members of the set T , in increasing
order (i.e. i1 < i2 < · · · < i|T |) and i0 = 0, i|T |+1 = n+ 1.

Subsampling. Subsampling is performed independently of the
selection of tuples retained by the basic IMJ estimator. It can be
shown that the constants bT for two independent sampling pro-
cesses used in sequence are the product of the constants corre-
sponding to the individual sampling. With this

bT =
∏
i∈T

pi

∏
i∈T C

p2
i b
′
T

where b′T are the constants for the basic IMJ estimator and pi is the
probability that tuple ti ∈ Ri is subsampled.

Constant relations. If we denote by C the set of constant rela-
tions, to compute bT , we form the set T ′ = T − C and return bT ′

as computed for the basic IMJ estimator described in Equation 2.

12. EXPERIMENTS
There are four specific goals of our benchmarking:

1. First, we wish to explore how much of an improvement the
techniques described in this paper might potentially bring
compared to the original version of DBO in the extreme cases
where DBO’s “time ’til utility” is questionable.

2. Second, we wish to see the degree of improvement these new
techniques can achieve in a standard, multi-table query with
aggregation and grouping.

3. Third, we wish to verify experimentally the unbiasedness of
our estimates and the correctness of the statistical bounds
provided by our methods.

4. Finally, we would like to have some idea of the extra expense
associated with the estimation algorithms used by Turbo DBO,
compared to a traditional database system.

12.1 Basic Setup
The version of Turbo DBO that we benchmark is implemented

as approximately 40,000 lines of C++ code. Since our goal is to
compare Turbo DBO against the original DBO, we require an im-
plementation of the original DBO as well. The implementation of
the original DBO that we benchmark is nothing more than a mod-
ification of our Turbo DBO implementation, with the various soft-
ware components modified so that they implement original DBO’s
estimation algorithms, rather than Turbo DBO’s. Because it is
not a ground-up implementation, our “hacked” version of origi-
nal DBO is quite slow. Thus, for all of our comparisons, the plots
are stretched or contracted (normalized) as needed to ensure that
both DBO versions begin and end each levelwise step at exactly
the same instant on the timeline. This ensures that the comparisons
are without an implementation bias.

For each experiment, we are mostly interested in confidence in-
terval width as a function of time. Thus, the vast majority of our
plots will have time as the x axis, and the confidence interval width
(or relative error) as the y axis, where the width is computed as
high−low

est
, where est is the current estimate, and low and high are

95% confidence bounds on the answer. Thus, if the interval width

is 0.3 (for example), then the error is ±15%. We note that while
the time axis always starts at zero, differences between Turbo and
original DBO before 5% of the query has completed are mostly
meaningless when comparing the two approaches, because such
differences can be attributed largely to system-dependent start-up
costs, and not to fundamental differences.

All experiments were conducted with a 20GB instance of the
TPC-H benchmark database. Experiments were run on a low-end,
eight core Intel server running the Ubuntu distribution of the Linux
OS, with the database data striped across four disks. Both versions
of DBO make use of 2GB of RAM.

12.2 Nasty Joins, Selective Predicates
Our first set of experiments is designed to compare the two DBO

versions in the case where Turbo DBO is likely (by design) to be the
most advantageous: when many large database tables are joined, or
when a selection predicate of high selectivity is applied to one of
the inputs to a join.

Setup. In our first experiment, we run a query of the form:

SELECT SUM(l extendedprice)
FROM lineitem, orders 1, orders 2,...,orders N
WHERE l orderkey = o1 orderkey AND

o1 orderkey = o2 orderkey...

In this query, orders 1, orders 2, and orders N are repli-
cated versions of the TPC-H orders relation. Since both orders
and lineitem are large, this query tests the ability of the system
to produce narrow bound widths over query plans that join several
large relations that cannot fit into memory. The query is run for an
N value of two, three, and four. Results are plotted in Figure 6.

In our second experiment, we run a query of the form:

SELECT SUM(l.l extendedprice)
FROM lineitem l, orders
WHERE l.l orderkey = o orderkey AND PRED(l)

In this query, PRED(l) is some selection predicate on tuples from
lineitem. PRED is varied so that it accepts 10%, 1%, or 0.1%
of the tuples from lineitem. The results are plotted in Figure 7.

Discussion. These plots clearly show that as the query gets “nas-
tier”, Turbo DBO performs better and better compared to the orig-
inal version of DBO. Consider Figure 6. For this particular three-
table join, both systems give extremely accurate estimates after just
10% of the time required to process the entire query: the relative
error is 2.5%, or ±0.0125. For a four-table join, there begins to
be a clear separation between Turbo DBO and original DBO, for
the period when between 10% and 60% of the query has been pro-
cessed. However, one can argue that this difference may not be too
significant, because for both systems the relative error is less than
10% after 10% of the query has been processed; this is already
quite accurate. However, when another table is added in, origi-
nal DBO really begins to suffer. After 10% of the query has been
processed, Turbo DBO is able to give useful bounds, with error of
±0.15. However, original DBO does not begin to produce bounds
of equivalent quality until nearly 45% of the query has been pro-
cessed; in this way, the “time ’til utility” (TTU) of the Turbo DBO
estimate is 77% smaller that the TTU for original DBO. With ad-
ditional tables in the join, the gap between the two TTUs will only
increase.

A similar trend is observed in Figure 7. For a two-table join,
when 10% of the tuples from the central fact table are accepted
by the underlying selection predicate, both systems give extremely
tight bounds after only 10% of the query has been processed. For a
1% selection predicate, there is a gap between the two systems, but

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

orders1 JOIN orders2 JOIN lineitem

NEW
OLD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

orders1 JOIN orders2 JOIN orders3 JOIN lineitem

NEW
OLD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

orders1 JOIN orders2 JOIN orders3 JOIN orders4 JOIN lineitem

NEW
OLD

Two Joins Three Joins Four Joins
R

el
at

iv
e

Er
ro

r

Time Fraction
0.2 0.4 0.6 0.8 1

0.1

0

0.2

0.3

Old
New

R
el

at
iv

e
Er

ro
r

Time Fraction
0.2 0.4 0.6 0.8 1

0.1

0

0.2

0.3

Old
New

R
el

at
iv

e
Er

ro
r

Time Fraction
0.2 0.4 0.6 0.8 1

0.1

0

0.2

0.3

Old
New

Figure 6: Confidence bound width as a function of time for joins of multiple large relations.

 0

 0.05

 0.1

 0.15

 0.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

Selectivity = 10%

NEW
OLD

 0

 0.05

 0.1

 0.15

 0.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

Selectivity = 1%

NEW
OLD

 0

 0.05

 0.1

 0.15

 0.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

Selectivity = 0.1%

NEW
OLD

Selectivity 10% Selectivity 1% Selectivity 0.1%

R
el

at
iv

e
Er

ro
r

Time Fraction
0.2 0.4 0.6 0.8 1

0.1

0

0.2

Old

New

R
el

at
iv

e
Er

ro
r

Time Fraction
0.2 0.4 0.6 0.8 1

0.1

0

0.2

Old

New

R
el

at
iv

e
Er

ro
r

Time Fraction
0.2 0.4 0.6 0.8 1

0.1

0

0.2

Old
New

Figure 7: Confidence bound width as a function of time for join queries with relational selection predicates on the central fact table.

it is probably not significant; after all, both systems have around
5% relative error after only 10% of the query has been processed.
But when 0.1% of the tuples are accepted, the gap becomes very
large. In fact, Turbo DBO has a zero-variance estimate after query
processing is only one-half complete, because it treats lineitem
as a constant relation in this case.

12.3 TPC-H Queries
It is clear that one can construct queries for which Turbo DBO

outperforms the original DBO. However, how will the two systems
compare on run-of-the mill, TPC-H-style queries?

Setup. To address this, we run the following four queries, each
chosen for their “ordinary”-ness as standard, analytic-style queries.
The four queries are named Q1, Q2, Q3, and Q4 respectively. SQL
code for these four queries follows:

SELECT n name, sum(l extprice*(1-l discount))
FROM customer, orders, lineitem, nation
WHERE (fk join conds) AND l retflag = ’R’
AND o orderdate < ’1994-01-01’
AND o orderdate > ’1993-09-30’
GROUP BY n name

SELECT n name, sum(l extprice*(1-l discount))
FROM customer, orders, lineitem,

supplier, nation, region
WHERE (fk join conds) AND l disc > 0.08
AND r name = ’ASIA’ AND o orderdate >
’1993-12-31’ AND o orderdate < ’1995-01-01’
GROUP BY n name

SELECT n1 name, n2 name, extract(year from
l shipdate) as l yr,
sum(l extprice*(1-l discount))

FROM customer, orders, lineitem,

supplier, nation n1, nation n2
WHERE (fk join conds) AND ((n1 name = ’GERM’
AND n2 name = ’FRANCE’) OR (n2 name = ’GERM’
AND n1 name = ’FRANCE’)) AND l shipdate <
’1997-01-01’ AND l shipdate > ’1995-01-01’
AND l discount > 0.08
GROUP BY n1 name, n2 name, l yr

SELECT sum(1), l shipmode, extract(year from
l shipdate) as l yr

FROM orders, lineitem
WHERE (fk join cond) AND o orderpriority >
’1-URGENT’ AND l recdate > ’1993-12-31’
AND l recdate < ’1995-01-01’ AND l comdate
< l recdate AND l shipdate < l comdate
GROUP BY l shipmode, l yr

We executed each of these queries over the TPC-H database. Re-
sults are plotted in Figure 8. For each query, one of the groups
returned is arbitrarily chosen, and the confidence interval width as
a function of time for that group is plotted.

Discussion. Each of these queries considers at most two large
and a few medium-sized database tables, since only orders and
lineitem are too large to fit into the amount of available main
memory. Thus, these queries are hardly the sort of workload that
Turbo DBO was designed to outperform original DBO on. Still,
there is a significant difference between Turbo and original DBO
for each of the four queries. While the two curves may look sim-
ilar in each plot, the key comparison to make is the TTU for both
systems on each query — that is, the time required until a usable
estimate has been returned. If one considers a confidence bound
width of±0.15 to be the smallest usable width, then for Q1, Turbo
DBO decreases the TTU from 0.3 to 0.26, for a reduction of 13%.
For Q2, the decrease is from 0.56 to 0.27, or 41%. For Q3, the

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

[ALGERIA]

NEW
OLD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

[CHINA]

NEW
OLD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

[FRANCE-GERMANY 1995]

NEW
OLD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

[TRUCK 1993]

NEW
OLD

Q1 Q2 Q3 Q4
0.2 0.4 0.6 0.8 1

Time Fraction

0.3

0.2

0.1

0

Q1: [Algeria]
R

el
at

iv
e

Er
ro

r

Old

New

0.2 0.4 0.6 0.8 1
Time Fraction

0.3

0.2

0.1

0

Q2: [China]

R
el

at
iv

e
Er

ro
r Old

New

0.2 0.4 0.6 0.8 1
Time Fraction

0.3

0.2

0.1

0

Q3: [France-Germany 1995]

R
el

at
iv

e
Er

ro
r Old

New

0.2 0.4 0.6 0.8 1
Time Fraction

0.3

0.2

0.1

0

Q4: [Truck 1993]

R
el

at
iv

e
Er

ro
r Old

New

Figure 8: Confidence bound width as a function of time for typical, analytic queries.

decrease is from 0.35 to 0.25, or 29%. For Q4, the decrease is from
0.39 to 0.27, or 31%.

The take-home message from all of this is that it is certainly
possible to construct queries for which Turbo DBO decreases the
TTU by 70% or more — just join many large tables together. But
even for a rather pedestrian, “join the fact table with a bunch of
dimension tables” workload, Turbo DBO averaged a 29% reduction
in TTU, which we argue is very significant.

12.4 Data Skew
Data skew is always a problem when sampling. If one joins

lineitem and orders but a certain subset of the orders have
many more entries in lineitem than the others, then sampling
can be quite inaccurate if it misses those important orders.

Setup. To test whether Turbo DBO provides some protection against
data skew compared to original DBO, we re-run Q1 above. How-
ever, this time we modify the TPC-H data generator so that the
number of entries in lineitem that reference a single record in
orders is not uniform, but is instead generated via a Zipf distri-
bution. We then generate four versions of lineitem, using Zipf
parameters 0, 0.5, 1.0, and 2.0. AQ Zipf parameter of 0 should
give results that are identical to Q1 in the previous subsection (no
skew), whereas a parameter of 2.0 is indicative of extreme skew.
“Real life” domains with extreme skew (such as the frequency of
use of words in the English language dictionary) tend to top out
with a Zipf parameter of around 2. This is very severe skew—in
English, the top 20 words (out of more than 100,000) account for
nearly a third of the English words in print. For these four data sets,
we plot confidence bound width as a function of time in Figure 9.

Discussion. The results are striking. Turbo DBO is relatively unaf-
fected by skew until the Zipf parameter rises to 2.0, whereas origi-
nal DBO is unable to provide meaningful estimates until the query
is more than 90% complete, even with the moderate skew resulting
from a Zipf parameter of 0.5. The reason for Turbo DBO’s ro-
bustness to skew is that when Turbo DBO runs out of memory,
it is able to intelligently choose which relation to subsample so
as to minimize the variance. Since, in this case, certain records
from orders are very important, Turbo DBO will avoid subsam-
pling orders to save space, and will subsample lineitem or
customer instead.

12.5 Correctness
It is useful to experimentally verify the correctness of Turbo

DBO’s statistical guarantees via a Monte Carlo experiment.

Setup. For each of the four queries from the previous subsection,
we repeated the following experiment 100 times. For each exper-
iment, we first randomly shuffle all of the data on disk, so that
there is no correlation across experiments. Then, we ran the query
from start to finish. For each levelwise step (there are three level-
wise steps in each query except for Q1, which has only two), at ten

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

levelwise step 2 levelwise step 3levelwise step 1

exec. begins exec. ends
fr

ac
tio

n
of

 ti
m

e
bo

un
ds

 a
re

 c
or

re
ct

0.95

Figure 10: Accuracy of Turbo DBO’s confidence bounds. Each
line corresponds to one of the four test queries. At ten different
intervals during each levelwise step, the fraction of the time
that Turbo DBO’s 95% intervals contained the actual query
result is reported. Ideally, each value should be close to 0.95.

evenly-spaced intervals, we checked the accuracy of the current,
95% confidence bound. If the current confidence bound contained
the true query result, we report the trial as a success; otherwise it
is failure. Thus, for a three-level query and 100 Monte Carlo trials,
we will obtain 3× 10× 100 success/failure results. We then group
the results for each query by the interval, count the number of suc-
cesses, and divide that number by 100. If the confidence intervals
are in fact accurate, this should result in 30 numbers that are all
close to 0.95. The results are plotted in Figure 10.

Discussion. Each of the values in Figure 10 are closely clustered
around 0.95, just as one would expect if the bounds were in fact cor-
rect. The only somewhat anomalous result is the one 0.89 result for
Q1; but even that is not too exceptional, since there is a 5% chance
of seeing only 89 correct bounds if in fact the true probability of
correctness were 95% (this is a simple binomial probability).

12.6 Speed
The final issue that we consider is the speed of the Turbo DBO

system. We were somewhat unsure as to whether including these
results in the paper was a good idea. Currently, Turbo DBO is not
built for speed. In particular, our implementation of the IMJ could
be drastically improved (see below). But in the end, we felt that
including some numbers is informative. In particular, we wanted to
provide at least some evidence that DBO’s co-processor-like archi-
tecture, where the IMJ sits outside of the normal data access path
and “snoops” for lucky tuples, is not too cumbersome and need not
greatly affect performance of a database system.

Setup. In an attempt to measure the cost of the IMJ and the vari-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

[ALGERIA]

NEW
OLD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

[ALGERIA]

NEW
OLD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

[ALGERIA]

NEW
OLD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r

Time fraction

[ALGERIA]

NEW
OLD

Zipf 0.0 Zipf 0.5 Zipf 1.0 Zipf 2.0

0.2 0.4 0.6 0.8 1
Time Fraction

R
el

at
iv

e
Er

ro
r

0

0.2

0.1

0.3
[Algeria]; Zipf = 0.0

Old

New

0.2 0.4 0.6 0.8 1
Time Fraction

R
el

at
iv

e
Er

ro
r

0

0.2

0.1

0.3
[Algeria]; Zipf = 0.5

New Old

0.2 0.4 0.6 0.8 1
Time Fraction

R
el

at
iv

e
Er

ro
r

0

0.2

0.1

0.3
[Algeria]; Zipf = 1.0

New Old

0.2 0.4 0.6 0.8 1
Time Fraction

R
el

at
iv

e
Er

ro
r

0

0.2

0.1

0.3
[Algeria]; Zipf = 2.0

New
Old

Figure 9: Confidence bound width as a function of time for data with increasing skew.

ous estimation algorithms, we prepared a stripped-down version of
Turbo DBO, by ripping out as much of the machinery described
in this paper as was possible. Tuples in this modified system are
not streamed into the IMJ, and so no extra processing is required
compared to what one might expect in a traditional system.

We then ran each of the four queries from the previous sub-
sections in both the original and stripped-down versions of Turbo
DBO, and averaged the running times over ten runs. For Q1, the
average running times were 862 seconds and 612 seconds, respec-
tively. For Q2, they were 772 and 606 seconds, respectively. For
Q3, they were 957 and 613 seconds, respectively. And for Q4, they
were 688 and 485 seconds, respectively.

Discussion. In our current implementation, there is a significant hit
associated with the IMJ and its associated algorithms. By remov-
ing these software components from the system, we were able to
speed our Turbo DBO implementation by an average of 29% over
the four queries. This is significant. However, we feel that it was
not too large considering the extent to which the core systems is-
sues associated with the IMJ implementation were overlooked in
our Turbo DBO prototype. For example, we used a very naive IMJ
implementation which incurred a huge number of cache misses;
this coulds be addressed using appropriate methods [2]. Further-
more, our IMJ was implemented as a single thread. We are hopeful
that by a much more careful implementation of the IMJ, this extra
cost could be taken down to almost zero.

13. CONCLUSIONS
This paper has described Turbo DBO, which is a prototype data-

base system that aims to combine scalable, disk-based query pro-
cessing with “fast-first” estimation, in order to give a user an im-
mediate idea as to what the final answer to his or her query will be.
Turbo DBO owes much of its inspiration to the original DBO sys-
tem [9], but Turbo DBO contains a number of innovations above
and beyond DBO. Specifically, Turbo DBO makes use of a novel
estimation strategy that searches for partial chains of tuples that
may eventually grow into full tuples that will contribute to the fi-
nal answer to the query. Since Turbo DBO can make use of partial
results to guide its search, it can have a much lower “time ’til util-
ity” (TTU) than the original DBO, where TTU is defined to be the
time required until a useful estimate for the final query result can
be produced. This is particularly the case for joins of many tables,
or when the underlying query is highly selective, or when the data
are skewed. For example, in the case where five large database
tables are being joined, Turbo DBO’s TTU is nearly 80% lower
than original DBO’s TTU. Even for standard, TPC-H-style queries
where only one or two large tables are present in the query, Turbo
DBO’s TTU averaged nearly 30% less than original DBO without
data skew, and 60% less with skew. The net result is that Turbo
DBO substantially increases the set of queries that are amenable to
fast-first estimation, compared with the current state-of-the-art.

Acknowledgements. Material in this paper was supported by the
National Science Foundation under grant no. 0803511.

14. REFERENCES
[1] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional

samples for approximate answering of group-by queries. In
SIGMOD Conference, pages 487–498, 2000.

[2] P. A. Boncz, S. Manegold, and M. L. Kersten. Database
architecture optimized for the new bottleneck: Memory
access. In VLDB, pages 54–65, 1999.

[3] P. Haas. Large-sample and deterministic confidence intervals
for online aggregation. In SSDBM, pages 51–63, 1997.

[4] P. Haas, J. Naughton, S. Seshadri, and L. Stokes.
Sampling-based estimation of the number of distinct values
of an attribute. In VLDB, pages 311–322, 1995.

[5] P. J. Haas and J. M. Hellerstein. Ripple joins for online
aggregation. In SIGMOD, pages 287–298, 1999.

[6] J. Hellerstein, P. Haas, and H. Wang. Online aggregation. In
SIGMOD, pages 171–182, 1997.

[7] W.-C. Hou and G. Özsoyoglu. Statistical estimators for
aggregate relational algebra queries. ACM Trans. Database
Syst., 16(4), 1991.

[8] W.-C. Hou, G. Özsoyoglu, and E. Dogdu. Error-constraint
count query evaluation in relational databases. In SIGMOD
Conference, pages 278–287, 1991.

[9] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable
approximate query processing with the dbo engine. In
SIGMOD, pages 725–736, 2007.

[10] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable
approximate query processing with the dbo engine. ACM
Trans. Database Syst., 33(4), 2008.

[11] C. Jermaine, A. Dobra, A. Pol, and S. Joshi. Online
estimation for subset-based sql queries. In VLDB, pages
745–756, 2005.

[12] A. Klein, R. Gemulla, P. Rösch, and W. Lehner. Derby/s: a
dbms for sample-based query answering. In SIGMOD, pages
757–759, 2006.

[13] G. Luo, C. J. Ellmann, P. J. Haas, and J. F. Naughton. A
scalable hash ripple join algorithm. In SIGMOD, pages
252–262, 2002.

[14] F. Olken. Random sampling from databases. PhD thesis, UC
Berkeley, 1993.

[15] F. Rusu, F. Xu, L. Perez, M. Wu, R. Jampani, C. Jermaine,
and A. Dobra. The dbo database system. In SIGMOD, pages
1223–1226, 2008.

[16] S. D. Viglas, J. F. Naughton, and J. Burger. Maximizing the
output rate of multi-way join queries over streaming
information sources. In VLDB, pages 285–296, 2003.

[17] M. Wu and C. Jermaine. A bayesian method for guessing the
extreme values in a data set. In VLDB, pages 471–482, 2007.

