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Sketching techniques provide approximate answers to aggregate queries both for data-streaming
and distributed computation. Small space summaries that have linearity properties are required
for both types of applications. The prevalent method for analyzing sketches uses moment analysis
and distribution independent bounds based on moments. This method produces clean, easy to
interpret, theoretical bounds that are especially useful for deriving asymptotic results. However,
the theoretical bounds obscure fine details of the behavior of various sketches and they are mostly
not indicative of which type of sketches should be used in practice. Moreover, no significant
empirical comparison between various sketching techniques has been published, which makes the
choice even harder. In this paper, we take a close look at the sketching techniques proposed
in the literature from a statistical point of view with the goal of determining properties that
indicate the actual behavior and producing tighter confidence bounds. Interestingly, the statistical
analysis reveals that two of the techniques, Fast-AGMS and Count-Min, provide results that are
in some cases orders of magnitude better than the corresponding theoretical predictions. We
conduct an extensive empirical study that compares the different sketching techniques in order
to corroborate the statistical analysis with the conclusions we draw from it. The study indicates
the expected performance of various sketches, which is crucial if the techniques are to be used
by practitioners. The overall conclusion of the study is that Fast-AGMS sketches are, for the
full spectrum of problems, either the best, or close to the best, sketching technique. We apply
the insights obtained from the statistical study and the experimental results to design effective
algorithms for sketching interval data. We show how the two basic methods for sketching interval
data, DMAP and fast range-summation, can be improved significantly with respect to the update
time without a significant loss in accuracy. The gain in update time can be as large as two orders
of magnitude, thus making the improved methods practical. The empirical study suggests that
DMAP is preferable when update time is the critical requirement and fast range-summation is
desirable for better accuracy.
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1. INTRODUCTION

Through research in the last decade, sketching techniques evolved as the premier
approximation technique for aggregate queries over data streams. All sketching
techniques share one common feature: they are based on randomized algorithms
that combine random seeds with data to produce random variables that have dis-
tributions connected to the true value of the aggregate being estimated. By mea-
suring certain characteristics of the distribution, correct estimates of the aggregate
are obtained. The interesting thing about all sketching techniques that have been
proposed is that the combination of randomization and data is a linear operation
with the result that, as observed in [Cormode and Garofalakis 2005; Kempe et al.
2003], sketching techniques can be used to perform distributed computation of ag-
gregates without the need to send the actual data values. The tight connection
with both data-streaming and distributed computation makes sketching techniques
important from both the theoretical and practical point of view.

Sketches can be used as the actual approximation technique or as the basic block
in more complex techniques such as skimmed sketches [Ganguly et al. 2004] and
red-sketches [Ganguly et al. 2005]. When used as the actual estimator, the sketch
summarizes the entire data set. For the complex schemes, the sketch summarizes
only the least frequent parts of the data set, while the frequent items are treated
separately. This is necessary because the identity of the individual data elements is
lost through sketching. Consequently, a good understanding of the basic sketching
techniques is required both for identifying the properties of the different schemes
as well as for determining what type of basic sketches to use as part of skimmed
sketches [Ganguly et al. 2004] or red-sketches [Ganguly et al. 2005]. For either
application, it is important to understand as well as possible the approximation
behavior depending on the characteristics of the problem and to be able to predict
as accurately as possible the estimation error. As opposed to most approximation
techniques – one of the few exceptions are sampling techniques [Haas and Hellerstein
1999] – theoretical approximation guarantees in the form of confidence bounds
were provided for all types of sketches from the beginning [Alon et al. 1996]. All
the theoretical guarantees that we know of are expressed as memory and update
time requirements in terms of big-O notation, and are parametrized by ε, the target
relative error, δ, the target confidence (the relative error is at most ε with probability
at least 1 − δ), and the characteristics of the data – usually the first and the
second frequency moments. While these types of theoretical results are useful
in theoretical computer science, the fear is that they might hide details that are
relevant in practice. In particular, it might be hard to compare methods, or some
methods can look equally good according to the theoretical characterization, but
differ substantially in practice. An even more significant concern, which we show to
be perfectly justified, is that some of the theoretical bounds are too conservative.

In this paper, we set out to perform a detailed study of the statistical and empir-
ical behavior of the four basic sketching techniques that have been proposed in the
research literature for computing size of join and related problems: AGMS [Alon
et al. 1996; Alon et al. 2002], Fast-AGMS [Cormode and Garofalakis 2005], Count-
Min [Cormode and Muthukrishnan 2005a], and Fast-Count [Thorup and Zhang
2004] sketches. The initial goal of the study was to complement the theoretical
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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results and to make sketching techniques accessible and useful for the practitioners.
While accomplishing these tasks, the study also shows that, in general, the theoret-
ical bounds are conservative by at least a constant factor of 3. For Fast-AGMS and
Count-Min sketches, the study shows that the theoretical prediction is too conser-
vative (6 to 10 orders of magnitude) if the data is skewed. As part of our study we
provide practical confidence intervals for all sketches except Count-Min. We use
statistical techniques to provide confidence bounds at the same time the estimate
is produced without any prior knowledge about the distribution1. Notice that prior
knowledge is required in order to use the theoretical confidence bounds provided in
the literature and might not actually be available in practice. As far as we know,
there does not exist any detailed statistical study of sketching techniques and only
limited empirical studies to assess their accuracy. The insight we get from the sta-
tistical analysis and the extensive empirical study we perform allows us to clearly
show that, from a practical point of view, Fast-AGMS sketches are the best basic
sketching technique. The behavior of these sketches is truly exceptional and much
better than previously believed – the exceptional behavior is masked by the result
in [Cormode and Garofalakis 2005], but revealed by our detailed statistical analy-
sis. While [Cormode and Garofalakis 2005] provides only a big-O notation analysis
of Fast-AGMS sketches showing that they have the same accuracy as the original
AGMS sketches, we show that Fast-AGMS sketches have a completely different
statistical behavior that produces significantly improved accuracy. The timing re-
sults for the three hash-based sketching techniques (Fast-AGMS, Fast-Count, and
Count-Min) reveal that sketches are practical, easily able to keep up with streams
of million tuples/second.

We apply the results obtained from the statistical study to design effective al-
gorithms for sketching interval data. Sketches over interval data can be useful
by themselves, but they are also a building block in solutions to more complex
problems like the size of spatial joins [An et al. 2001; Das et al. 2004]. DMAP
and fast range-summation [Rusu and Dobra 2007; Das et al. 2004] are the existing
solutions for sketching interval data. They are both inefficient when compared to
hash-based sketches because of the use of AGMS sketches which have higher update
time. In this paper we study how DMAP and fast range-summation can use the
more efficient hash-based sketches. In particular, we show that only DMAP can be
extended to other types of sketches and, thus, a significant improvement in update
time can be gained by a simple replacement of the underlying sketching technique.
To improve the accuracy of DMAP, significantly inferior to that of the fast range-
summation method, we make use of a simple modification that keeps exact counts
for some of the frequencies. We call this modification DMAP COUNTS. We also
introduce a method to improve the update performance of fast range-summation
AGMS sketches based on a simple equi-width partitioning of the domain. The
experimental results show that these derived methods keep the advantage of their
base methods, while significantly improving their drawbacks, to the point where
they are efficient both in accuracy and update time.

Summarizing, our detailed contributions are:

1This is the common practice for sampling estimators [Haas and Hellerstein 1999].
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—We perform a statistical analysis of the basic sketch estimators proposed in the
literature. Our goal is to improve the distribution-independent confidence bounds
that are off by 6 to 10 orders of magnitude in some cases (for Fast-AGMS and
Count-Min sketches). The main result of this statistical study is the much tighter
distribution-dependent confidence bounds we derive for Fast-AGMS sketches. Al-
though identical according to the distribution-independent bounds, AGMS and
Fast-AGMS sketches have a completely different statistical behavior. Our con-
tribution is to identify this significant discrepancy and to provide the statistical
explanation based on higher frequency moments.

—We perform the first extensive empirical study designed to assess the perfor-
mance of the proposed sketch estimators based on a large variety of parameters
including data skew, data correlation, memory usage, and update time. The
main result of this empirical study is to identify Fast-AGMS sketches as the
sketching method with really good results irrespective of the experimental setup.
This result is surprising because, although designed to be faster than the original
AGMS sketches, Fast-AGMS sketches are expected to have the same accuracy
performance as AGMS sketches. Our statistical study provides sufficient insights
to explain this discrepancy.

—We design effective algorithms for sketching interval data. The existing solutions
are either designed only for AGMS sketches or have poor accuracy. We pro-
pose a fast range-summation algorithm that extends to hash-based sketches. We
also show that a simple heuristic improves the accuracy of DMAP significantly.
Our experimental study shows that the resulting algorithms are efficient both in
accuracy and update time.

1.1 Problem Formulation

Let S = (e1, w1), (e2, w2), . . . , (es, ws) be a data stream, where the keys ei are
members of the set I = {0, 1, . . . , N−1} and wi represent frequencies. The frequency
vector f̄ = [f0, f1, . . . , fN−1] over the stream S consists of the elements fi defined
as fi =

∑
j:ej=i wj . The key idea behind the existing sketching techniques is to

represent the domain-size frequency vector as a much smaller sketch vector x̄f

[Cormode and Garofalakis 2005] that can be easily maintained as the updates are
streaming by and that can provide good approximations for a wide spectrum of
queries.

Our focus is on sketching techniques that approximate the size of join of two data
streams. The size of join is defined as the inner-product of the frequency vectors f̄
and ḡ, f̄ � ḡ =

∑N−1
i=0 figi. As shown in [Rusu and Dobra 2007], this operator is

generic since other classes of queries can be reduced to the size of join computation.
For example, a range query over the interval [α, β], i.e.,

∑β
i=α fi, can be expressed

as the size of join between the data stream S and a virtual stream consisting of a
tuple (i, 1) for each α ≤ i ≤ β. Notice that point queries are range queries over size
zero intervals, i.e., α = β. Also, the second frequency moment or the self-join size
of S is nothing else than the inner-product f̄ � f̄ .
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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1.2 Outline

The rest of the paper is organized as follows. In Section 2 we provide important
results from measure theory and statistics that are needed throughout the paper.
In Section 3 we give an overview of the four basic sketching techniques proposed
in the literature. Section 4 contains our statistical analysis of the four sketching
techniques with insights on their behavior. Section 5 contains the details and
results of our extensive empirical study that corroborates the statistical analysis.
In Section 6 we apply the results of the statistical and empirical studies to design
efficient algorithms for sketching interval data. We conclude in Section 7.

2. CONFIDENCE BOUNDS

The abstract problem we study throughout the paper is the following. Given
X1, . . . , Xn independent instances of a generic random variable X, define an esti-
mator for the expected value E [X] and provide confidence bounds for the estimate.
While E [X] is the convergence value of the estimator (hopefully the true value of
the estimated quantity), confidence bounds provide information about the interval
where the expected value lies with high probability or, equivalently, the probability
that a particular instance of X deviates by a given amount from the expectation
E [X].

In this section we provide an overview of the methods to derive confidence bounds
for generic random variables in general, and sketches, in particular. There exist two
types of confidence bounds: distribution-independent and distribution-dependent.
Distribution-independent confidence bounds are derived from general notions in
measure theory and are mainly used in theoretical computer science. Distribution-
dependent confidence bounds assume certain distributions for the estimator of the
expectation E [X] and are largely used in statistics. While distribution-independent
bounds are based on general inequalities, a detailed problem-specific analysis is
required for distribution-dependent bounds. In the context of sketch estimators
we show that distribution-independent bounds, although easier to obtain, are un-
acceptably loose in some situations, thus making it necessary to derive tighter
distribution-dependent bounds.

2.1 Distribution-Independent Confidence Bounds

As already specified, distribution-independent confidence bounds are derived from
general inequalities on tail probabilities in measure theory. No assumption on the
probability distribution of the estimator is made. The general inequalities used for
characterizing sketching techniques are Markov inequality, Chebyshev inequality,
and Chernoff bound [Motwani and Raghavan 1995]. The Markov inequality states
that the probability that a random variable deviates by a factor larger than t from
its expected value is smaller than 1

t . This is the tightest bound that can be obtained
when only the expectation E [X] is known. Tighter confidence bounds can be de-
rived using Chebyshev inequality and its extension to higher moments. The larger
the number of moments computed, the tighter the confidence bounds. Unfortu-
nately, the computation of higher moments demands larger degrees of independence
between the instances of X and it cannot always be carried out exactly. Moreover,
the improvement gained by computing higher moments is usually a constant factor
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which is asymptotically insignificant. Thus, distribution-independent confidence
bounds are mostly expressed in terms of the first two frequency moments (expec-
tation and variance) using Markov and Chebyshev inequalities. Chernoff bounds
are exponential tail bounds applicable to sums of independent Poisson trials. They
are largely used for the analysis and design of randomized algorithms (including
sketches) because of the tight bounds (logarithmic) they provide.

2.2 Distribution-Dependent Confidence Bounds

In order to compute distribution-dependent confidence bounds, a parametric dis-
tribution is assumed for the estimator of E [X]. Then confidence bounds are de-
rived from the cumulative distribution function (cdf) of the assumed distribution.
The parameters of the considered distribution are generally computed from the
frequency moments of X, i.e., a number of moments equal with the number of pa-
rameters have to be computed. Since a large number of distributions have only two
parameters, e.g., Normal, Gamma, Beta, etc., only the expectation and the variance
of X have to be determined. Notice that although both types of confidence bounds
require the computation of the frequency moments of X, the actual bounds are ex-
tracted in different ways. The question that immediately arises is which confidence
bounds should be used. Typically, distribution-dependent bounds are tighter, but
there exist assumptions that need to be satisfied in order for them to hold. Specif-
ically, the distribution of the estimator for E [X] has to be similar in shape with
the assumed parametric distribution. In the following we provide a short overview
of the results from statistics on distribution-dependent confidence bounds that are
used throughout the paper.

2.3 Mean Estimator

Usually the mean X̄ of X1, . . . , Xn is considered as the proper estimator for E [X].
It is known from statistics [Shao 1999] that when the distribution of X is normal,
the mean X̄ is the uniformly minimum variance unbiased estimator (UMVUE), the
minimum risk invariant estimator (MRIE), and the maximum likelihood estimator
(MLE) for E [X]. This is strong evidence that X̄ should be used as the estimator
of E [X] when the distribution of X is normal or almost normal. Central Limit
Theorem (CLT) extends the characterization of the mean estimator to arbitrary
distributions of the random variable X.

Theorem 1 Mean CLT [Shao 1999]. Let X1, . . . , Xn be independent samples
drawn from the distribution of the random variable X and X̄ be the average of the
n samples. Then, as long as Var [X] < ∞:

X̄ →d N

(
E [X] ,

Var [X]
n

)
Essentially, the Central Limit Theorem (CLT) states that the distribution of the
mean is asymptotically a normal distribution centered on the expected value and
having variance Var[X]

n irrespective of the distribution of X. Confidence bounds for
X̄ can be immediately derived from the cdf of the normal distribution:

Theorem 2 Mean Bounds [Sachs 1984]. For the same setup as in Theorem 1,
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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the asymptotic confidence bounds for X̄ are:

P

[
|X̄ − E [X] | > zα/2

√
Var [X]

n

]
< α

where zβ is the β quantile (β ∈ [0, 1]) of the normal N(0, 1) distribution, i.e., the
point for which the probability of N(0, 1) to be smaller than the point is β.

Since fast series algorithms for the computation of zβ are widely available2, the
computation of confidence bounds for X̄ is straightforward. Usually, the CLT
approximation of the distribution of the mean and the confidence bounds produced
with it are correct starting with hundreds of samples being averaged. If the number
of samples is smaller, confidence bounds can be determined based on the Student
t-distribution [Sachs 1984]. The only difference is that the β quantile tn−1,β of the
Student t-distribution with n− 1 degrees of freedom has to be used instead of the
β quantile zβ of the normal distribution in Theorem 2.

Notice that in order to characterize the mean estimator, only the variance of X
has to be determined. When Var [X] is not known – this is the case for sketches
since estimating the variance is at least as hard as estimating the expected value –
the variance can be estimated from the samples in the form of sample variance. This
is the common practice in statistics and also in database literature (approximate
query processing with sampling).

2.4 Median Estimator

Although the mean is the preferable estimator in most circumstances, there exist
distributions for which the mean cannot be used as an estimator of E [X]. For
Cauchy distributions (which have infinite variance) the mean can be shown to have
the same distribution as a single random sample. In such cases the median X̃ of the
samples is the only viable estimator of the expected value. The necessary condition
for the median to be an estimator of the expected value is that the distribution of
the estimator to be symmetric, in which case the mean and the median coincide.
We start the investigation of the median estimator by introducing its corresponding
central limit theorem and then show how to derive confidence bounds.

Theorem 3 Median CLT [Shao 1999]. Let X1, . . . , Xn be independent sam-
ples drawn from the distribution of the random variable X and X̃ be the median of
the n samples. Then, as long as the probability density function f of the distribution
of X has the property f(θ) > 0:

X̃ →d N

(
θ,

1
4n · f(θ)2

)
where θ is the true median of the distribution.

Median CLT states that the distribution of the median is asymptotically a normal
distribution centered on the true median and having the variance equal to 1

4n·f(θ)2 .
In order to compute the variance of this normal distribution and derive confidence

2The GNU Scientific Library (GSL) implements pdf, cdf, inverse cdf, and other functions for the
most popular distributions, including Normal and Student t.
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bounds from it, the probability density function (pdf) of X has to be determined
or at least estimated at the true median θ. Since f(θ) cannot be computed exactly
in general, multiple estimators for the variance are proposed in the statistics liter-
ature [Price and Bonett 2001]. We use the variance estimator proposed in [Olive
2005] for deriving confidence bounds:

Theorem 4 Median Bounds [Olive 2005]. For the same setup as in Theo-
rem 3, the confidence bounds for X̃ are given by:

P
[
|X̃ − θ| ≤ tn−1,1−α/2SE(X̃)

]
≥ 1− α

where tn−1,β is the β quantile of the Student t-distribution with n − 1 degrees of
freedom and SE(X̃) is the estimate for the standard deviation of X̃ given by:

SE(X̃) =
X(Un) −X(Ln+1)

2

Ln =
⌊n

2

⌋
−
⌈√

n

4

⌉
Un = n− Ln

Notice that while the distribution corresponding to the mean estimator is centered
on the expected value E [X], the distribution of the median is centered on the true
median, thus the requirement on the symmetry of the distribution for the median
to be an estimator of E [X].

2.5 Mean vs Median

For the cases when the distribution is symmetric, thus the expected value and the
median coincide, or when the difference between the median and the expected value
is insignificant, the decision with respect to which of the mean or the median to
be used as an estimate for the expected value is reduced to establishing which of
the two has smaller variance. Since for both estimators the variance decreases by
a factor of n, the question is further reduced to comparing the variance Var [X]
and the quantity 1

4f(θ)2 . The relation between these two quantities is established
in statistics through the notion of asymptotic relative efficiency :

Definition 1 [Shao 1999]. The relative efficiency of the median estimator X̃
with respect to the mean estimator X̄, shortly the efficiency of the distribution of
X with the probability density function f , is defined as:

e(f) = 4f(θ)2Var [X]

The efficiency of a distribution for which E [X] = θ indicates which of the mean
or the median is a better estimator for E [X]. More precisely, e(f) indicates the
reduction in mean squared error if the median is used instead of the mean. When
e(f) > 1, median is a better estimator, while for e(f) < 1 the mean provides better
estimates.

An important case to consider is when X has normal distribution. In this sit-
uation the efficiency is independent of the parameters of the distribution and it
is equal to 2

π ≈ 0.64 (derived from the above definition and the pdf of the nor-
mal distribution). This immediately implies that when the estimator is defined as
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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the average of the samples, i.e., by Mean CLT the distribution of the estimator is
asymptotically normal, the mean estimator is more efficient than the median esti-
mator. We exploit this result for analyzing sketches in Section 4. In terms of mean
squared error, the mean estimator has error 0.64 times smaller, while in terms of
root mean squared error or relative error, the mean estimator has error 0.8 times
smaller.

As already pointed out, when the efficiency is supra-unitary, i.e., e(f) > 1, medi-
ans should be preferred to means for estimating the expected value, if the distribu-
tion is symmetric or almost symmetric. An interesting question is what property of
the distribution – hopefully involving only moments since they are easier to com-
pute for discrete distributions – indicates supra-unitary efficiency. According to the
statistics literature [Balanda and MacGillivray 1988], kurtosis is a good indicator
of supra-unitary efficiency.

Definition 2 [Balanda and MacGillivray 1988]. The kurtosis k of the dis-
tribution of the random variable X is defined as:

k =
E
[
(X − E [X])4

]
Var [X]2

For normal distributions, the kurtosis is equal to 3 irrespective of the parameters.
Even though there does not exist a distribution-independent relationship between
the kurtosis and the efficiency, empirical studies [Pennecchi and Callegaro 2006]
show that whenever k ≤ 6 the mean is a better estimator of E [X], while for k > 6
the median is the better estimator.

2.6 Median of Means Estimator

Instead of using only the mean or the median as an estimator for the expected
value, we can also consider combined estimators. One possible combination that
is used in conjunction with sketching techniques (see Section 3) is to group the
samples into groups of equal size, compute the mean of each group, and then the
median of the means, thus obtaining the overall estimator for the expected value. To
characterize this estimator using distribution-independent bounds, a combination
of the Chebyshev and Chernoff bounds can be used:

Theorem 5 [Alon et al. 1996]. The median Y of 2 ln( 1
α ) means, each aver-

aging 16
ε2 independent samples of the random variable X, has the property:

P
[
|Y − E [X] | ≤ ε

√
Var [X]

]
≥ 1− α

We provide an example that compares the bounds for the median of means esti-
mator. While distribution-independent bounds are computed using the results in
Theorem 5, distribution-dependent bounds are computed through a combination
of Mean CLT, Median CLT, and efficiency.

Example 1. Suppose that we want to compute 95% confidence bounds for the
median of means estimator. Then the number of means for which we compute the
median should be 2 ln 1

0.05 = 2 ln 20 ≈ 9 according to Theorem 5. If the number of

samples is n, then each mean is the average of n
9 samples, thus ε =

√
144
n = 12·

√
1
n .

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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The width of the confidence bound in terms of
√

Var[X]
n is thus 12.

By applying Mean CLT, the distribution of each mean is asymptotically normal
with variance Var[X]

n/9 . In practice, confidence bounds can be easily derived by apply-
ing the results in Theorem 4. We cannot do that in this example because the values
of the 9 means are unknown. Instead we assume that the distribution of the means
is asymptotically normal and, by Median CLT and the definition of efficiency, the
median of the 9 means has variance 1

9e(N) ·
Var[X]

n/9 , with e(N) = 2
π the efficiency of

the normal distribution. The variance of Y is thus π
2 ·

Var[X]
n ≈ 1.57 · Var[X]

n . With

this, the width of the CLT-based confidence bound for Y with respect to
√

Var[X]
n is

√
1.57 · 1.96 = 2.45 (1.96 is the 95% quantile), which is 12

2.45 ≈ 4.89 times smaller
than the distribution-independent confidence bound.

This result confirms that distribution-dependent confidence bounds are tighter and
is consistent with other results that compare the two types of bounds [Sachs 1984].
Confidence bounds of different widths can be computed in a similar manner, the
only difference being the values that are plugged into the formulas. For example,
the ratio for the 99% confidence bound is 4.64 and 4.34 for the 99.9% confidence
interval.

An important point in the above derivation of the CLT confidence bounds for Y
is the fact that the confidence interval is wider by

√
π
2 ≈ 1.25 if medians are used,

compared to the situation when the estimator is only the mean (with no medians).
This implies that the median of means estimator is always inferior to the mean
estimator as long as the distribution of Y is (asymptotically) normal. A simple
explanation for this is that the asymptotic regime of Mean CLT starts to take
effect (the distribution becomes normal) since means are computed first and the
mean estimator is more efficient than the median estimator. Thus, from a practical
and statistical point of view based on efficiency, if the distribution of the basic
random variable X is symmetric the estimator should be either the mean (e < 1),
or the median (e > 1). The combined median over means estimator is recommended
whenever the distribution of X is not symmetric or when the number of means is
not large enough to make the asymptotic behavior of Mean CLT effective.

2.7 Minimum Estimator

Although the minimum of the samples X1, . . . , Xn is not an estimator for the ex-
pectation E [X], a discussion on the behavior of the minimum estimator is included
because of its relation to Count-Min sketches. It is known from statistics [Coles
2001] that the minimum of a set of samples has an asymptotic distribution called
the generalized extreme value distribution (GEV) independent of the distribution of
X. The parameters of the GEV distribution can be computed from the frequency
moments of X, thus confidence bounds for the minimum estimator can be derived
from the cdf of GEV. Although this is a straightforward method to characterize
the behavior of the minimum estimator, we will see that it is not applicable to
Count-Min sketches (Section 4).
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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3. SKETCHES

Sketches are small-space summaries of data suited for massive, rapid-rate data
streams processed either in a centralized or distributed environment. Queries are
not answered precisely anymore, but rather approximately, by considering only the
synopsis (sketch) of the data. All sketching techniques generate multiple random
instances of an elementary sketch estimator, instances that are effectively random
samples of the elementary estimator. While the random instances of the elementary
sketch estimator are samples of the estimator, these samples should not be confused
with the samples from the underlying data used by the sampling techniques [Haas
and Hellerstein 1999]. The samples of the elementary sketch estimator are grouped
and combined in different ways in order to obtain the overall estimate. Typically,
in order to produce an elementary sketch estimator – the process is duplicated for
each sample of the elementary sketch estimator – multiple counters corresponding
to random variables with required properties are maintained. The collection of
counters for all the samples of the elementary estimator is called the sketch. The
existing sketching techniques differ in how the random variables are organized, thus
the update procedure, the way the elementary sketch estimator is computed, and
how the answer to a given query is computed by combining the elementary sketch
estimators. In this section we provide an overview of the existing sketching tech-
niques used for approximating the size of join of two data streams (see Section 1.1).
For each technique we specify the elementary sketch estimator, denoted by X pos-
sibly with a subscript indicating the type of sketch, and the way the elementary
sketches are combined to obtain the final estimate Z.

3.1 AGMS Sketches

The ith entry of the size n AGMS (or, tug-of-war) [Alon et al. 1996; Alon et al.
2002] sketch vector is defined as the random variable xf [i] =

∑N−1
j=0 fj · ξi(j), where

{ξi(j) : j ∈ I} is a family of uniformly distributed ±1 4-wise independent random
variables, with different families being independent. The advantage of using ±1
random variables comes from the fact that they can be efficiently generated in small
space [Rusu and Dobra 2007]. When a new data stream item (e, w) arrives, all the
counters in the sketch vector are updated as xf [i] = xf [i]+w ·ξi(e), 1 ≤ i ≤ n. The
time to process an update is thus proportional with the size of the sketch vector.

It can be shown that X[i] = xf [i] · xg[i] is an unbiased estimator of the inner-
product of the frequency vectors f̄ and ḡ, i.e., E [X[i]] = f̄ � ḡ. The variance of
the estimator is:

Var [X[i]] =

∑
j∈I

f2
j

(∑
k∈I

g2
k

)
+

∑
j∈I

fjgj

2

− 2 ·
∑
j∈I

f2
j g2

j (1)

By averaging n independent estimators, Y = 1
n

∑n
i=1 X[i], the variance can be re-

duced by a factor of n, i.e., Var [Y ] = Var[X[i]]
n , thus improving the estimation error.

In order to make the estimation more stable, the original solution [Alon et al. 1996]
returned as the result the median of m Y estimators, i.e., Z = Median1≤k≤mY [k].
We provide an example to illustrate how AGMS sketches work.
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12 · F. Rusu and A. Dobra

Example 2. Consider two data streams F and G given as pairs (key, frequency):

F = {(1, 5), (4,−2), (1, 2), (2, 3), (3, 1), (1,−3), (3, 2), (5, 2), (4, 3)}
G = {(2, 1), (4, 3), (3, 2), (1, 3), (3,−2), (1, 2), (5,−1), (1, 2), (4,−1)}

We want to estimate the size of join |F 1 G| of the two streams using sketches
consisting of 3 counters. A family of 4-wise independent ±1 random variables
corresponds to each counter. Let the mappings from the key domain ({1, 2, 3, 4, 5}
in this case) to ±1 to be given as in Table I.

Counter Key domain

1 2 3 4 5

1 +1 +1 +1 −1 −1
2 +1 −1 −1 +1 +1
3 −1 +1 −1 +1 −1

Table I. Mappings for ±1 random variables.

As the data is streaming by, all the counters in the corresponding sketch vector
are updated. For example, the pair (1, 5) in F updates the counters in xf as follows:
xf [1] = 5, xf [2] = 5, and xf [3] = −5 (the counters are initialized to 0), while after
the pair (4,−2) is processed the counters have the following values: xf [1] = 7,
xf [2] = 3, and xf [3] = −7. After all the elements in the two streams passed by,
the two sketch vectors are: xf = [7, 1,−5] and xg = [7, 7,−3]. The estimator X
for the size of join |F 1 G| consists of the values X = [49, 7, 15] having the mean
Y = 23.66. The correct result is 31. Multiple instances of Y can be obtained if
other groups of 3 counters and their associated families of ±1 random variables are
added to the sketch. In this case the median of the instances of Y is returned as
the final result.

Notice the tradeoffs involved by the AGMS sketch structure. In order to decrease
the error of the estimator (proportional with the variance), the size n of the sketch
vector has to be increased. Since the space and the update-time are linear functions
of n, an increase of the sketch size implies a corresponding increase of these two
quantities.

The following theorem relates the accuracy of the estimator with the size of the
sketch, i.e., n = O( 1

ε2 ) and m = O(log 1
δ ).

Theorem 6 [Alon et al. 2002]. Let x̄f and x̄g denote two parallel sketches
comprising O

(
1
ε2 log 1

δ

)
counters each, where ε and 1−δ represent the desired bounds

on error and probabilistic confidence, respectively. Then, with probability at least
1 − δ, Z ∈ (f̄ � ḡ ± ε||f̄ ||2||ḡ||2). The processing time required to maintain each
sketch is O

(
1
ε2 log 1

δ

)
per update.

||f̄ ||2 =
√

f̄ � f̄ =
√∑

i∈I f2
i is the L2 norm of f̄ and ||ḡ||2 =

√
ḡ � ḡ =

√∑
i∈I g2

i

is the L2 norm of ḡ, respectively. From the perspective of the abstract problem in
Section 2, X[i] represent the primitive instances of the generic random variable X.
Median of means Z is the estimator for the expected value E [X]. The distribution-
independent confidence bounds in Theorem 6 are derived from Theorem 5.
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3.2 Fast-AGMS Sketches

As we have already mentioned, the main drawback of AGMS sketches is that any up-
date on the stream affects all the entries in the sketch vector. Fast-AGMS sketches
[Cormode and Garofalakis 2005], as a refinement of Count sketches proposed in
[Charikar et al. 2002] for detecting the most frequent items in a data stream, com-
bine the power of ±1 random variables and hashing to create a scheme with a signif-
icantly reduced update time while preserving the error bounds of AGMS sketches.
The sketch vector x̄f consists of n counters, xf [i]. Two independent random pro-
cesses are associated with the sketch vector: a family of ±1 4-wise independent
random variables ξ and a 2-universal hash function h : I → {1, . . . , n}. The role of
the hash function is to scatter the keys in the data stream to different counters in
the sketch vector, thus reducing the interaction between the keys. Meanwhile, the
unique family ξ preserves the dependencies across the counters. When a new data
stream item (e, w) arrives, only the counter xf [h(e)] is updated with the value of
the function ξ corresponding to the key e, i.e., xf [h(e)] = xf [h(e)] + w · ξ(e).

Given two parallel sketch vectors x̄f and x̄g using the same hash function h
and ξ family, the inner-product f̄ � ḡ is estimated by Y =

∑n
i=1 xf [i] · xg[i]. The

final estimator Z is computed as the median of m independent basic estimators Y ,
i.e., Z = Median1≤k≤mY [k]. In the light of Section 2, Y corresponds to the basic
instances while the median is the estimator for the expected value. We provide a
simple example to illustrate the Fast-AGMS sketch data structure.

Example 3. Consider the same data streams from Example 2. The sketch vec-
tor consists of 9 counters grouped into 3 rows of 3 counters each. The same families
of ±1 random variables (Example 2) are used, but a family corresponds to a row of
counters instead of only one counter. An additional family of 2-universal hash func-
tions corresponding to the rows of the sketch maps the elements in the key domain
to only one counter in each row. The hash functions are specified in Table II:

Row Key domain

1 2 3 4 5

1 1 1 3 2 3
2 1 3 2 1 2
3 3 2 3 3 1

Table II. Hash functions.

For each stream element only one counter from each row is updated. For example,
after the pair (2, 3) in F is processed, the sketch vector xf looks like: xf [1] =
[10, 2, 0], xf [2] = [5, 0,−3], and xf [3] = [0, 3,−9] (the counters are initialized to
0). After processing all the elements in the two streams, the two sketch vectors are:
xf = [[7,−1, 1], [5,−1,−3], [−2, 3,−6]] and xg = [[8,−2, 1], [9,−1,−1], [1, 1,−5]].
The estimator for the size of join |F 1 G| consists of the median of Y = [59, 49, 31]
which is 49, while the correct result is still 31.

The following theorem relates the number of sketch vectors m and their size n
with the error bound ε and the probabilistic confidence δ, respectively.
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Theorem 7 [Cormode and Garofalakis 2005]. Let n be defined as n = O( 1
ε2 )

and m as m = O(log 1
δ ). Then, with probability at least 1 − δ, Z ∈ (f̄ � ḡ ±

ε||f̄ ||2||ḡ||2). Sketch updates are performed in O(log 1
δ ) time.

The above theorem states that Fast-AGMS sketches provide the same guarantees as
basic AGMS sketches, while requiring onlyO(log 1

δ ) time to process the updates and
using only one ξ family per sketch vector (and one additional hash function h). Fast-
AGMS sketches have the same accuracy guarantees as basic AGMS sketches because
the variance of the basic estimator is the same for both schemes (see Equation (1)).
Moreover, notice that only the sketch vector size is dependent on the error ε.

At the first look, it may seem counter-intuitive that updating only one counter
(Fast-AGMS) instead of all (AGMS) does not affect negatively the accuracy of the
estimator. Since nothing comes for free, the cost of this gain in speed is an additional
random process represented by hashing. Essentially, the effect of random hashing
is somehow similar to the sketch partitioning scheme in [Dobra et al. 2002]. There
exist cases when random hashing generates a small variance and cases for which
the variance is significantly larger than the variance of AGMS sketches. Overall,
the expected value of the variance due to hashing is identical to the variance of
averaged AGMS estimators.

3.3 Fast-Count Sketches

Fast-Count sketches, introduced in [Thorup and Zhang 2004], provide the error
guarantees and the update time of Fast-AGMS sketches, while requiring only one
underlying random process – hashing. The tradeoffs involved are the size of the
sketch vector (or, equivalently, the error) and the degree of independence of the hash
function. The sketch vector consists of the same n counters as for AGMS sketches.
The difference is that there exists only a 4-universal hash function associated with
the sketch vector. When a new data item (e, w) arrives, w is directly added to
a single counter, i.e., xf [h(e)] = xf [h(e)] + w, where h : I → {1, . . . , n} is the
4-universal hash function.

The size of join estimator is defined as (this is a generalization of the second
frequency moment estimator in [Thorup and Zhang 2004]):

Y =
1

n− 1

[
n ·

n∑
i=1

xf [i] · xg[i]−

(
n∑

i=1

xf [i]

)(
n∑

i=1

xg[i]

)]
The complicated form of Y is due to the bias of the natural estimator Y ′ =∑n

i=1 xf [i] · xg[i]. Y is obtained by a simple correction of the bias of Y ′. It can be
proved that Y is an unbiased estimator of the inner-product f̄ � ḡ. The variance of
the Fast-Count estimator is identical to the variance of the Y estimator for AGMS
(Fast-AGMS) sketches in Equation (1) if the Fast-Count sketch structure contains
one extra counter. Hence, given desirable error guarantees, Fast-Count sketches re-
quire one additional entry in the sketch vector. For large values of n, e.g., n > 100,
the difference in variance between AGMS (Fast-AGMS) and Fast-Count sketches
can be ignored and the guarantees in Theorem 7 apply. Notice that in practice mul-
tiple instances of Y are computed and the final estimator for the expected value of
the size of join is the mean (average) of these instances. We provide an example
that shows how Fast-Count sketches work.
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Example 4. Consider the same data streams from Example 2. The sketch vector
consists of 9 counters grouped into 3 rows of 3 counters each. The same hash
functions as in Example 3 are used (suppose that they are 4-universal). For each
stream element only one counter from each row is updated. For example, after the
pair (2, 3) in F is processed, the sketch vector xf looks like: xf [1] = [10,−2, 0],
xf [2] = [5, 0, 3], and xf [3] = [0, 3, 5] (the counters are initialized to 0). After
processing all the elements in the two streams, the two sketch vectors are: xf =
[[7, 1, 5], [5, 5, 3], [2, 3, 8]] and xg = [[8, 2,−1], [9,−1, 1], [−1, 1, 9]]. The estimator for
the size of join |F 1 G| consists of the vector Y = [21, 6, 51]. The average 26 of the
elements in Y is returned as the final estimate.

3.4 Count-Min Sketches

Count-Min sketches [Cormode and Muthukrishnan 2005a] have almost the same
structure as Fast-Count sketches. The only difference is that the hash function is
drawn randomly from a family of 2-universal hash functions instead of 4-universal.
The update procedure is identical to Fast-Count sketches, only the counter xf [h(e)]
being updated as xf [h(e)] = xf [h(e)] + w when the item (e, w) arrives. The size
of join estimator is defined in a natural way as Y =

∑n
i=1 xf [i] · xg[i] (notice that

Y is actually equivalent with the above Y ′ estimator). It can be shown that Y
is an overestimate of the inner-product f̄ � ḡ. In order to minimize the over-
estimated quantity, the minimum over m independent Y estimators is computed,
i.e., Z = Min1≤k≤mY [k]. Notice the different methods applied to correct the bias
of the size of join estimator Y ′. While Fast-Count sketches define an unbiased
estimator Y based on Y ′, Count-Min sketches select the minimum over multiple
such overestimates. The following example illustrates the behavior of Count-Min
sketches.

Example 5. For the same setup as in Example 4, exactly the same sketch vectors
are obtained after updating the two streams. Only the final estimator is different.
It is the minimum of Y = [53, 43, 73], that is 43.

The relationship between the size of the sketch and the accuracy of the estimator
Z is expressed by the following theorem:

Theorem 8 [Cormode and Muthukrishnan 2005a]. Z ≤ f̄�ḡ+ε||f̄ ||1||ḡ||1
with probability 1− δ, where the size of the sketch vector is n = O( 1

ε ) and the min-
imum is taken over m = O(log 1

δ ) sketch vectors. Updates are performed in time
O(log 1

δ ).

||f̄ ||1 =
∑

i∈I fi and ||ḡ||1 =
∑

i∈I gi represent the L1 norms of the vectors f̄ and ḡ,
respectively. Notice the dependence on the L1 norm, compared to the dependence
on the L2 norm for AGMS sketches. The L2 norm is always smaller than the L1

norm. In the extreme case of uniform frequency distributions, L2 is quadratically
smaller than L1. This implies increased errors for Count-Min sketches as compared
to AGMS sketches, or, equivalently, more space in order to guarantee the same
error bounds (even though the sketch vector size is only O( 1

ε )).
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3.5 Comparison

Given the above sketching techniques, we qualitatively compare their expected
performance based on the existing theoretical results. The techniques are compared
relatively to the result obtained by the use of AGMS sketches for the self-join size
problem, known to be asymptotically optimal [Alon et al. 1996]. The size of join
results are considered relatively to the product of the L2 (L1 for Count-Min) norms
of the data streams. Notice that large results correspond to the particular self-join
size problem. Low skew corresponds to frequency vectors for which the ratio L1

L2
is

close to
√

N (uniform distribution), while for high skew the ratio L1
L2

is close to 1.

Sketch Size of Join

Large Small
Low Skew High Skew

AGMS 0 0 −
Fast-AGMS 0 0 −
Fast-Count 0 0 −
Count-Min − 0 −

Table III. Expected theoretical performance. The scale has three types of values: 0, +, and −. 0
is the reference value corresponding to the AGMS self-join size. − indicates worse results, while
+ indicates better results.

Table III summarizes the results predicted by the theory based on distribution-
independent confidence bounds. Since the bounds for AGMS, Fast-AGMS, and
Fast-Count sketches are identical, they have the same behavior from a theoretical
perspective. For small size of join results, the performance of these three methods
worsens. Count-Min sketches have a distinct behavior due to their dependency on
the L1 norm. Their performance is highly influenced not only by the size of the
result, but also by the skewness of the data. For low skew data, the performance
is significantly worse than the performance of AGMS sketches. Since L1 ≥ L2, the
theoretical performance for Count-Min sketches is always worse than the perfor-
mance of AGMS (Fast-AGMS, Fast-Count) sketches.

4. STATISTICAL ANALYSIS OF SKETCH ESTIMATORS

The goals pursued in refining the sketching techniques were to leverage the random-
ness and to decrease the update time while maintaining the same error guarantees
as for the original AGMS sketches. As we have previously seen, all kinds of trade-
offs are involved. The main drawback of the existing theoretical results is that
they characterize only the asymptotic behavior, but do not provide enough details
about the behavior of the sketching techniques in practice (they ignore important
details about the estimator because they are derived from distribution-independent
confidence bounds). From a purely practical point of view, we are interested in
sketching techniques that are reasonably easy to implement, are fast (i.e., small
update time for the synopsis data-structure), have good accuracy and can estimate
as precisely as possible their error through confidence intervals. Although the same
goals are pursued from the theoretical point of view, in theory we insist on deriv-
ing simple formulas for the error expressed in terms of asymptotic big-O notation.
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Sketches for Size of Join Estimation · 17

This is perfectly reflected by the theoretical results we presented in the previous
section. The problem with theoretical results is the fact that, since we always insist
on expressible formulas, we might ignore details that matter at least in some cases –
the theoretical results are always conservative, but they might be too conservative
sometimes. In this section, we explore the sketching techniques from a statistical
perspective by asking the following questions that reflect the difference between the
pragmatic and the theoretical points of view:

—All sketching techniques combine multiple independent instances of elementary
sketches using the estimators from Section 2 (Mean, Median, Minimum) in order
to define a more accurate estimator for the expected value. We ask the question
which of the estimators is more accurate for each of the four sketching techniques?

—How tight are the theoretical distribution-independent confidence bounds? And
is it possible to derive tighter distribution-dependent confidence bounds that
work in practice based on the estimator chosen in the previous question? We
are not interested in tight bounds only for some situations, but in confidence
bounds that are realistic for all situations. The golden standard we are aiming
for is confidence bounds similar to the ones for sampling techniques [Haas and
Hellerstein 1999].

We use a large-scale statistical analysis based on experiments in order to answer
the above questions. The plots in this section have statistical significance and are
not highly sensitive to the experimental setup (Section 5).

4.1 AGMS Sketches

We explore which estimator – mean, median, or minimum – to use for AGMS
sketches instead of the median of means estimator proposed in the original pa-
per [Alon et al. 1996] and if that would be advisable. In order to accomplish this
task, we plotted the distribution of the basic sketch for a large spectrum of prob-
lems. Based on our experiments, Figure 1 is a representative example for the form
of the distribution. It is clear from this figure that both the minimum and the
median are poor choices. The median is a poor choice because the distribution
of the elementary AGMS sketch is not symmetric and there exists a variable gap
between the mean of the distribution and the median. This gap is not easy to com-
pute and, thus, to compensate for. In order to verify that the mean is the optimal
estimator (as the theory predicts), we plot its distribution for the same input data
(Figure 1). As expected, the distribution appears to be normal and its expected
value is the true result. As explained in Section 2.6, the mean is always preferable
to the median of means as an estimator for the expected value of a random variable
given as samples. This is the case because once averaging over the sample space
the distribution of the estimator starts to become normal (Mean CLT) and it is
known that the mean is more efficient than the median for normal distributions
(Section 2.5).

Although the median of means estimator has no statistical significance, it al-
lows the derivation of exponentially decreasing distribution-independent confidence
intervals based on Chernoff bound. To derive tighter distribution-dependent con-
fidence bounds based only on the mean estimator, we can use Theorem 2. The
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value of the variance is either the exact one (if it can be determined) or, more re-
alistically, an estimate computed from the samples. The distribution-independent
confidence bounds in Theorem 5 are wider by a factor of approximately 4 than the
CLT bounds, as derived in Example 1. This discrepancy between the distribution-
independent bounds and the effective error was observed experimentally in [Rusu
and Dobra 2007; Das et al. 2004], but it was not explained. In conclusion, the
mean estimator seems the right choice from a practical perspective considering its
advantages over the median of means estimator.
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Fig. 1. The distribution of AGMS sketches for self-join size. (a) depicts the dis-
tribution of the basic AGMS sketch estimator. In (b) the distribution of the same
data is plotted after grouping the basic estimators and taking their average. The
x-axis corresponds to the actual value of the estimator, while the y-axis represents
the experimental probability distribution. The red line corresponds to the true
result or expected value.

4.2 Fast-AGMS Sketches

Comparing Theorem 6 and 7 that characterize AGMS and Fast-AGMS (F-AGMS)
sketches, respectively, we observe that the predicted accuracy is identical, but Fast-
AGMS have significantly lower update time. This immediately indicates that F-
AGMS should be preferred to AGMS. In the previous section, we saw a discrepancy
of a factor of approximately 4 between the distribution-independent bounds and the
CLT-based bounds for AGMS sketches and the possibility of a significant improve-
ment if the median of means estimator is replaced by means only. In this section,
we investigate the statistical properties of F-AGMS sketches in order to identify
the most adequate estimator and to possibly derive tighter distribution-dependent
confidence bounds.

We start the investigation on the statistical properties of Fast-AGMS sketches
with the following result on the first two frequency moments (expected value and
variance) of the basic estimator:
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Proposition 1 [Cormode and Garofalakis 2005]. Let X be the Fast-AGMS
estimator obtained with a family of 4-universal hash functions h : I → B and a 4-
wise independent family ξ of ±1 random variables. Then,

Eh,ξ[X] = E[XAGMS]

Eh[V arξ[X]] =
1
B

V ar[XAGMS]

The first two moments of the elementary Fast-AGMS sketch coincide with the first
two moments of the average of B elementary AGMS sketches (in order to have the
same space usage). This is a somewhat unexpected result since it suggests that
hashing plays the same role as averaging when it comes to reducing the variance
and that the transformation on the distribution of elementary F-AGMS sketches is
the same, i.e., the distribution becomes normal and the variance is reduced by a
factor equal to the number of buckets. The following result on the fourth frequency
moment of F-AGMS represents the first discrepancy between the distributions of
Fast-AGMS and AGMS sketches:
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Fig. 2. F-AGMS kurtosis and efficiency. (a) depicts kurtosis as a function of the
skewness of the data for self-join size. The theoretical lower bound is computed
with the formula in Proposition 2. The efficiency as a function of kurtosis is plotted
in (b) for sketches with various number of buckets in a row.

Proposition 2. With the same setup as in Proposition 1, we have:

V arh[V arξ[X]] =
B − 1
B2
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In order to derive an exact closed-form formula for the fourth frequency moment
the ξ family is required to be 8-wise independent. Given the practical 4-wise inde-
pendence requirements for the ξ family, we are able to derive only V arh[V arξ[X]]
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which is a lower bound on the fourth moment of the estimator. We use kurtosis (the
ratio between the fourth frequency moment and the square of the variance, see Sec-
tion 2.5) to characterize the distribution of the Fast-AGMS basic estimator. From
Figure 2 which depicts the experimental kurtosis and its lower bound in Proposi-
tion 2, we observe that when the Zipf coefficient is larger than 1 the kurtosis grows
significantly, to the point that it gets around 1000 for a Zipf coefficient equal to 5.
Given these values of the kurtosis, we expect that the distribution of the F-AGMS
estimator to be (close to) normal for Zipf coefficients smaller than 1 (kurtosis is
equal to 3 for normal distributions, see Section 2.5) and then to suffer a drastic
change as the Zipf coefficient increases. Large kurtosis is an indicator of distribu-
tions that are more concentrated than the normal distribution, but also that have
heavier tails [Balanda and MacGillivray 1988]. Indeed, Figure 3 confirms experi-
mentally these observations for Zipf coefficients equal to 0.2 and 1.5, respectively.
The interaction between hashing and the frequent items is an intuitive explanation
for the transformation suffered by the F-AGMS distribution as a function of the
Zipf coefficient. For low skew data (uniform distribution) there does not exist a
significant difference between the way the frequencies are spread into the buckets
by the hash function. Although there exists some variation due to the randomness
of the hash function, the distribution of the estimator is normally centered on the
true value. The situation is completely different for skewed data which consists
of some extremely high frequencies and some other small frequencies. The impact
of the hash function is dominant in this case. Whenever the high frequencies are
distributed in different buckets (this happens with high probability) the estimation
is extremely accurate. When at least two high frequencies are hashed into the same
bucket (with small probability) the estimator is orders of magnitude away from
the true result. This behavior explains perfectly the shape of the distribution for
skewed data: the majority of the mass of the distribution is concentrated on the
true result while some small mass is situated far away in the heavy tails. Notice
that although large values of kurtosis capture this behavior, an extremely large
number of experiments is required to observe the behavior in practice. For exam-
ple, in Figure 2 the experimental kurtosis lies under the lower bound in some cases
because the colliding events did not appear even after 10 million experiments.

Given the different shapes of the distribution, no single estimator (mean or me-
dian, since minimum is clearly not a valid estimator for the expected value) is
always optimal for Fast-AGMS sketches. While mean is optimal for low skew data
since the distribution is normal (see Section 2.5), median is clearly preferable for
skewed data because of the large values of kurtosis. The symmetry condition re-
quired for the median to be an estimator for the expected value is satisfied because
of the symmetric ±1 random variables. In the following, we consider median as
the estimator for Fast-AGMS sketches even though its error is larger by a factor
of 1.25 for low skew data compared to the error of the mean. In order to quan-
tify exactly what is the gain of the median over the mean, we use the concept of
efficiency (see Section 2.5). Unfortunately, we cannot derive an analytical formula
for efficiency because it depends on the value of the probability density function
at the true median, which we actually try to determine. The alternative is to esti-
mate empirically the efficiency as a function of kurtosis which, as we have already
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 3. The distribution of F-AGMS sketches for self-join size. The data in (a)
has low skew (Zipf=0.2), while the data in (b) is skewed (Zipf=1.5). The red line
corresponds to the true result or expected value. The blue lines are positioned one
standard deviation away from the expected value.
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combination of the median over means estimator is used.
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seen, is a good indicator for the distribution of the F-AGMS estimator and can be
computed analytically. Figure 2 depicts the experimental efficiency as a function
of kurtosis for sketches with various number of buckets. As expected, efficiency
increases as the kurtosis increases, i.e., as the data becomes more skewed, and gets
to some extreme values in the order of 1010. While efficiency is independent of the
number of buckets in the sketch, the value of kurtosis is limited, with larger values
corresponding to a sketch with more buckets. This implies that efficiency is not a
simple function of the kurtosis and other parameters of the sketch and the data have
also to be considered. Consequently, although we could not quantify exactly what
is the gain of using the median instead of the mean, the extremely large values of
efficiency clearly indicate that median is the right estimator for F-AGMS sketches.
In order to verify that this is the case, we plot in Figure 4 the maximum relative
error obtained for different combinations of the mean and the median estimators.
As expected, the error is significantly smaller when median is the chosen estimator.
The error is the largest when mean is used and it takes intermediate values for the
median over means estimator.
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Fig. 5. Confidence bounds for F-AGMS sketches as a function of the skewness
of the data. The ratio between the experimental bounds and the distribution-
independent bounds for the size of join of two streams with various degrees of
correlation (decor=0 corresponds to streams fully correlated or self-join size, while
decor=1 corresponds to streams completely independent) is depicted in (a). Experi-
mental error, distribution-independent bounds, and distribution-dependent bounds
for self-join size are plotted in (b).

The distribution-independent confidence bounds given by Theorem 7 are likely
to be far too conservative because they are derived from the first two frequency mo-
ments using Chebyshev and Chernoff inequalities. These bounds are identical to the
bounds for AGMS sketches since the two have the same expected value and variance.
The significant discrepancy in the fourth moment and the shape of the distribution
(Figure 1 and 3 depict the distributions for the same data) between F-AGMS and
AGMS is not reflected by the distribution-independent confidence bounds. Fig-
ure 5(a) confirms the huge gap (as much as 10 orders of magnitude) that exists
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between the distribution-independent bounds and the experimental error. Practi-
cal distribution-dependent confidence bounds can be derived using the results in
Theorem 4. A comparison between distribution-independent confidence bounds,
distribution-dependent confidence bounds and the experimental error (95%) is de-
picted in Figure 5(b). Two important facts can be drawn from these results: first,
the distribution-independent bounds are too large for large Zipf coefficients and,
second, the distribution-dependent bounds derived from Theorem 4 are always ac-
curate. Figure 5(a) also reveals that the ratio between the actual error and the
prediction is not strongly dependent on the correlation between the data for the
same Zipf coefficient. This implies that in order to characterize the behavior of
F-AGMS sketches for the size of join problem only the Zipf coefficient of the dis-
tribution of the two streams has to be considered.

4.3 Count-Min Sketches

Based on Theorem 8, we expect Count-Min (CM) sketches to over-estimate the
true value by a factor proportional with the product of the sizes of the two streams
and inversely proportional with the number of buckets of the sketch structure. This
is the only sketch that has error dependencies on the first frequency moment, not
the second frequency moment, and the amount of memory (number of hashing
buckets), not the square root of the amount of memory. While the dependency on
the first frequency moment is worse than the dependency on the square root of the
second frequency moment since the first is always larger or equal than the second,
the dependency on the amount of memory is favorable to Count-Min sketches.
According to the theoretic distribution-independent confidence bounds, we expect
Count-Min sketches to have weak performance for relations with low skew, but
comparable performance to AGMS sketches (not much better though) for skewed
relations. In this section, we take a closer look at the distribution of the basic
CM estimator and discuss the methods to derive confidence bounds for Count-Min
sketches.

We start the study of the distribution of the elementary CM estimator with the
following result that characterizes the frequency moments of the estimator:

Proposition 3. If XCM is the elementary Count-Min estimator then:

E[XCM ] =
∑
i∈I

figi +
1
B

∑
i∈I

fi

∑
j∈I

gj −
∑
i∈I

figi

 (2)

V ar[XCM ] ≥ 1
B

V ar[XAGMS ] (3)

Equation 2 is proved in [Cormode and Muthukrishnan 2005a]. The inequality in
Equation 3 becomes equality if the hash functions used are 4-universal. For 2-
universal hashes, the variance increases depending on the particular generating
scheme and no simple formula can be derived. Most of the proof of Equation 3 for
4-universal hashes is embedded in the computation of the variance for Fast-Count
sketches (see Section 4.4), but the exact formula does not appear in previous work3.

3Since proving the formula is a simple matter of rewriting the equations in [Thorup and Zhang
2004], we do not provide the proof here.
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The expected value of XCM is always an over-estimate for the true result – this
is the reason why the minimum estimator is chosen. Interestingly, the variance of
the estimator coincides with the variance of averages of B AGMS sketches and the
variance of Fast-AGMS sketches. In order to characterize the distribution of CM
sketches we conducted an extensive statistical study based on experiments. As for
Fast-AGMS sketches, the distribution of the XCM estimator is highly dependent
on the skewness of the data and the randomness of hashing. The fundamental
difference is that the distribution is not symmetric anymore because ±1 random
variables are not used. The generic shape of the distribution has the majority
of the mass concentrated to the left extremity while the right tail is extremely
long. The intuition behind this shape lies in the way hashing spreads the data into
buckets: with high probability the data is evenly distributed into the buckets (this
situation corresponds to the left peak) while with some extremely low probability
a large number of items collide into the same bucket (this situation corresponds
to the right tail). Although the shape is generic, the position of the left peak
(the minimum of the distribution) depends heavily on the actual data. For low
skew data the peak is far away from the true value. As the data becomes more
skewed the peak starts to translate to the left, to the point it gets to the true
value. The movement towards the true value while increasing the Zipf parameter is
due to the importance high frequencies start to gain. For low skew data (uniform
distribution) the position of the peak is given by the average number of frequencies
that are hashed into the same bucket. For skewed data dominated by some high
frequencies the peak is situated at the point corresponding to the high frequencies
being hashed into different buckets. Since high frequencies dominate the result, the
estimate is in this case closer to the true value. Figure 6 depicts the distribution of
XCM for Zipf coefficients equal to 1.0 and 2.0, respectively.
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Fig. 6. The distribution of CM sketches for self-join size for Zipf=1.0 and Zipf=2.0,
respectively. The red line corresponds to the true result. The green line corresponds
to the expected value of the distribution which is an over-estimate of the true result.
The blue line is positioned one standard deviation away from the expected value.
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The distribution-independent confidence bounds for CM sketches in [Cormode
and Muthukrishnan 2005a] are derived from the Markov inequality. Essentially,
the error bounds are expressed in terms of the expected value of the over-estimated
quantity 1

B

(∑
i∈I fi

∑
j∈I gj −

∑
i∈I figi

)
in E [XCM ]. Neither the variance nor

the bias are considered in deriving these bounds. To verify the accuracy of the
confidence bounds, we plot in Figure 7 the ratio between the experimental error
obtained for data sets with different Zipf and correlation coefficients (see Section 5)
and the corresponding predicted error. The main observation from these results
is that the ratio between the actual error and the prediction decreases as the Zipf
coefficient increases, to the point where the gap is many orders of magnitude. In
what follows we provide an intuitive explanation for this behavior.
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Fig. 7. Confidence bounds for CM sketches as a function of the skewness of the
data. The ratio between the experimental bounds and the distribution-independent
bounds is plotted for the size of join of two streams with various degrees of cor-
relation (decor=0 corresponds to streams fully correlated or self-join size, while
decor=1 corresponds to streams completely independent).

For low skew data the error is almost entirely due to the bias, correctly estimated
by the expected value, thus the perfect correspondence between the actual error
and the prediction. This observation is inferred from Figure 6(a) which plots the
distribution of the elementary sketch estimator for Zipf coefficient equal with 1.0. In
this situation, the standard deviation of the elementary estimator is much smaller
than the bias. If multiple instances of the elementary sketch are obtained, they will
all be relatively close to the expected value (no more than a number of standard
deviations to the left), thus their minimum will be close to the expected value. The
fact that the standard deviation is small when compared to the bias for low skew
data can be predicted using Proposition 3 based on the fact that L2 norm is much
smaller than L1 norm for low skew data.
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For high skew, the standard deviation becomes significantly larger than the bias
as can be seen in Figure 6(b). In this situation, even though the bias is still
significant, with high probability some of the samples of the elementary sketch will
be close to the true value, thus the minimum of multiple elementary sketches will
have significantly smaller error. Notice how the shape of the distribution changes
when the Zipf coefficient increases: it is normal-like for low skew, but it has no left
tail for high skew. The distribution is forced to take this shape when the standard
deviation is larger than the bias since CM sketch estimators cannot take values
smaller than the true value. Referring back to the moments of the CM elementary
estimator in Proposition 3, for large skew the standard deviation is comparable to
the expected value, but the bias is much smaller since most of the result is given by
the large frequencies whose contribution is accurately captured by the estimator.

While the above discussion gives a good intuition why the theory gives rea-
sonable error predictions for low skew data and makes large errors for high skew
data, unfortunately it does not lead to better bounds for skewed data. In order to
provide tight confidence bounds, the distribution of the minimum of multiple ele-
mentary sketch estimators has to be characterized. While CLT-based results exist
for the minimum estimator (see Section 2.7), they provide means to characterize
the variance, but not the bias of the minimum estimator. Determining the bias of
the minimum is crucial for correct predictions of the error for large skew, but it
seems a difficult task since it depends on the precise distribution of the data not
only some characteristics like the first few moments. It is worth mentioning that
tighter bounds for CM sketches can be obtained if the Zipf coefficient of the data
is determined by other means [Cormode and Muthukrishnan 2005b]. Notice the
particular problems of deriving confidence bounds for CM sketches: high errors are
correctly predicted while small errors are incorrectly over-estimated. Consequently,
Count-Min sketches are difficult to use in practice because their behavior cannot
be predicted accurately.

4.4 Fast-Count Sketches

Fast-Count (FC) elementary estimator is essentially the bias-corrected version of
the Count-Min elementary estimator. The bias correction is a translation by bias
and a scaling by the factor B

B−1 . This can be observed in Figure 8 that depicts the
distribution of Fast-Count sketches. Everything stated for CM sketch distribution
still holds for the distribution of FC sketches, with the major difference that Fast-
Count sketches are unbiased, while Count-Min sketches are biased. Given the
unbiased estimator and the asymmetric shape of the distribution, mean is the only
viable estimator for the expected value, which is also the true value in this case.

The distribution-independent confidence bounds for FC sketches, derived in a
similar manner using Chebyshev and Chernoff bounds, are identical to those for
AGMS and Fast-AGMS sketches because the first two moments of the distribu-
tions are equal. Tighter distribution-dependent confidence bounds are derived us-
ing Mean CLT for AGMS and Median CLT for Fast-AGMS sketches, respectively.
Although the mean estimator is also used for FC sketches, the asymptotic regime
of Mean CLT does not apply in this case because the number of samples averaged
is only in the order of tens. The alternative is to use the Student t-distribution
for modeling the behavior of the mean (see Section 2.3), but the improvement
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 8. The distribution of FC sketches for self-join size. (a) depicts the distribution
of the basic FC sketch estimator. In (b) the distribution of the same data is plotted
after grouping the basic estimators and taking the average. The red line corresponds
to the true result or expected value.

over the distribution-independent bounds is not so remarkable. In conclusion, both
distribution-independent and distribution-dependent bounds can be used for FC
sketches without a significant advantage for any of them.

5. EMPIRICAL EVALUATION

The main purpose of the experimental evaluation is to validate and complement
the statistical results we obtained in Section 4 for the four sketching techniques.
The specific goals are: (1) establish the relative accuracy performance of the four
sketching techniques for various problems, and (2) determine the actual update
performance. Our main tool in establishing the accuracy of sketches is to measure
their error on synthetic data sets for which we control both the skew, via the
Zipf coefficient, and the correlation. This allows us to efficiently cover a large
spectrum of problems and to draw insightful observations about the performance
of sketches. We then validate the findings on real-life data sets and other synthetic
data generators.

The main findings of the study are:

—AGMS and Fast-Count (FC) sketches have virtually identical accuracy through-
out the spectrum of problems if only averages are used for AGMS. FC sketches
are preferable since they have significantly smaller update time.

—The performance of Count-Min sketches is strongly dependent on the skew of the
data. For small skew, the error is orders of magnitude larger than the error of the
other types of sketches. For large skew, CM sketches have the best performance
– much better than AGMS and FC.

—Fast-AGMS (F-AGMS) sketches have error at most 25% larger than AGMS
sketches for small skew, but the error is orders of magnitude (as much as 6
orders of magnitude for large skew) smaller for moderate and large skew. Their
error for large skew is slightly larger than the error of CM sketches.
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—All sketches, except CM for small skew, are practical in evaluating self-join size
queries. This is to be expected since AGMS sketches are asymptotically optimal
[Alon et al. 1996] for this problem. For size of join problems, F-AGMS sketches
remain practical well beyond AGMS and FC sketches. CM sketches have good
accuracy as long as the data is skewed.

—F-AGMS, FC, and CM sketches (all of them are based on random hashing)
have fast and comparable update performance that ranges between 50 − 400 ns
depending on the size of the sketch.

5.1 Testbed and Methodology

Sketch Implementation. We implemented a generic framework that incorporates
the sketching techniques mentioned throughout the paper. Algorithms for gener-
ating random variables with limited degree of independence [MassDAL 2006; Rusu
and Dobra 2007] are at the core of the framework. Since the sketching techniques
have a similar structure, they are designed as a hierarchy parametrized on the type
of random variables they employ. Applications have only to instantiate the sketch-
ing structures with the corresponding size and random variables, and to call the
update and the estimation procedures.

Data Sets. We used two synthetic data generators and one real-life data set in
our experiments. The data sets cover an extensive range of possible inputs, thus
allowing us to infer general results on the behavior of the compared sketching
techniques.

Census data set [CPS 2006]. This real-life data set was extracted from the
Current Population Survey (CPS) data repository, which is a monthly survey of
about 50, 000 households. Each month’s data contains around 135, 000 tuples with
361 attributes. We ran experiments for estimating the size of join on the weekly
wage (PTERNWA) numerical attribute with domain size 288, 416 for the surveys
corresponding to the months of September 2002 (15, 563 records) and September
2006 (14, 931 records)4.

Estan’s et al. [Estan and Naughton 2006] synthetic data generator.
Two tables with approximately 1 million tuples each with a Zipf distribution for
the frequencies of the values are randomly generated. The values are from a domain
with 5 million values, and for each of the values its corresponding frequency is chosen
independently at random from the distribution of the frequencies. We used in our
experiments the memory-peaked (Zipf=0.8) and the memory-unpeaked (Zipf=0.35)
data sets.

Synthetic data generator. We implemented our synthetic data generator
for frequency vectors. It takes into account parameters such as the domain size,
the number of tuples, the frequency distribution, and the correlation (decor =
1− correlation) coefficient. Out of the large variety of data sets that we conducted
experiments on, we focus in this experimental evaluation on frequency vectors over a
214 = 16, 384 size domain that contain 1 million tuples and having Zipf distributions
(the Zipf coefficient ranges between 0 and 5). The degree of correlation between
two frequency vectors varies from full correlation to complete independence.

4After eliminating the records with missing values.
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Answer-Quality Metrics. Each experiment is performed 100 times and the aver-
age relative error, i.e., |actual−estimate|

actual , over the number of experiments is reported.
In the case of direct comparison between two methods, the ratio between their
average relative errors is reported. Although we performed the experiments for
different sketch sizes, the results are reported only for a sketch structure consisting
of 21 vectors with 1024 counters each (n = 1024, m = 21), since the same trend
was observed for the other sketch sizes.

5.2 Results
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Fig. 9. Accuracy as a function of the Zipf coefficient for self-join size estimation.
Both (a) and (b) are plotted from the same experimental data, (a) on a normal
scale, while (b) on a logarithmic scale.

Self-Join Size Estimation. The behavior of the sketching techniques for estimat-
ing the self-join size as a function of the Zipf coefficient of the frequency distribution
is depicted in Figure 9 both on a normal (a) as well as logarithmic (b) scale. As
expected, the errors of AGMS and FC sketches are similar (the difference for (close
to) uniform distributions is due to the EH3 [Rusu and Dobra 2007] random num-
ber generator). While F-AGMS has almost the same behavior as FC (AGMS) for
small Zipf coefficients, the F-AGMS error is drastically decreasing for Zipf coeffi-
cients larger than 0.8. These are due to the effect the median estimator has on the
distribution of the predicted results: for small Zipf coefficients the distribution is
normal, thus the performance of the median estimator is approximately 25% worse,
while for large Zipf coefficients the distribution is focused around the true result
(Section 4). CM sketches have extremely poor performance for distributions (close
to) uniform. This can be explained theoretically by the dependency on the L1

norm, much larger than the L2 norm in this regime. Intuitively, uniform distribu-
tions have multiple non-zero frequencies that are hashed into the same bucket, thus
highly over-estimating the predicted result. The situation changes dramatically at
high skew when it is highly probable that each non-zero frequency is hashed to a
different bucket, making the estimation almost perfect. Based on these results, we

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



30 · F. Rusu and A. Dobra

can conclude that F-AGMS is the best (or close to the best) sketch estimator for
computing the second frequency moment, irrespective of the skew.
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Fig. 10. Accuracy as a function of the correlation coefficient for size of join esti-
mation. The data streams in (a) have Zipf coefficient equal to 0.8, while (b) is for
streams with a Zipf coefficient equal to 3.0.
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Fig. 11. Relative performance for size of join estimation between pairs of sketch
estimators. The ratio of the average relative error as a function of the skewness of
the data between F-AGMS and AGMS (a), and F-AGMS and CM (b), respectively,
is depicted for different degrees of correlation.

Join Size Estimation. In order to determine the performance of the sketching
techniques for estimating the size of join, we conducted experiments based on the
Zipf coefficient and the correlation between the two frequency vectors. A correlation
coefficient of 0 corresponds to two identical frequency vectors (self-join size). For a
correlation coefficient of 1, the frequencies in the two vectors are completely shuffled.
The results for different Zipf coefficients are depicted in Figure 10 as a function
of the correlation. It can be clearly seen how the relation between the sketch
estimators is changing as a function of the skew (behavior identical to the self-join
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Fig. 12. Accuracy as a function of the skewness of the data for size of join estimation
of two data streams having different Zipf coefficients. One of the streams has a
constant skew coefficient, 0.5 for (a) and 1.0 for (b), while the skew of the other
stream ranges from 0.0 (uniform) to 5.0.

size). Moreover, it seems that the degree of correlation is affecting all the estimators
similarly (the error increases as the degree of correlation is increasing), but it does
not affect the relative order given by the Zipf coefficient. The same findings are
reinforced in Figure 11 which depicts the relative performance, i.e., the ratio of
the average relative errors, between pairs of estimators for computing the size of
join. Figure 12 plots the accuracy for estimating the size of join of two streams
with different skew coefficients. While the error of F-AGMS and FC increases with
the skewness of the free stream, the error of CM stays almost constant, having a
minimum where the two streams have equal Zipf coefficients. At the same time,
it seems that the value of the error is determined by the smallest skew parameter.
Consequently, we conclude that, as in the case of self-join size, the Zipf coefficient is
the only parameter that influences the relative behavior of the sketching techniques
for estimating the size of join of two frequency vectors.

Memory Budget. The accuracy of the sketching methods (AGMS is excluded
since its behavior is identical to FC, but its update time is much larger) as a function
of the space available is represented in Figure 13 for one of Estan’s synthetic data
sets (a) and for the census real-life data set (b). The error of CM sketches is
orders of magnitude worse than the error of the other two methods for the entire
range of available memory (due to the low skew). The accuracy of F-AGMS is
comparable with that of FC for low skew data, while for skewed data F-AGMS
is clearly superior. Notice that the relative performance of the techniques is not
dependent on the memory budget.

Update Time. The goal of the timing experiment is to clarify if there exist sig-
nificant differences in update time between the hash sketches since the random
variables they use are different. As shown in Figure 14, all the schemes have com-
parable update time performance, CM sketches being the fastest, while FC sketches
are the slowest. Notice that the relative gap between the schemes shrinks when the
number of counters is increasing since more references are made to the main mem-
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Fig. 13. Accuracy as a function of the available space budget for a synthetic (a)
and a real (b) data set. The memory budget is given as the number of counters
used by all sketch structures.
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Fig. 14. Update time as a function of the number of counters in a sketch that has
only one row.

ory. As long as the sketch vector fits into the cache, the update rate is extremely
high (around 10 million updates can be executed per second on the test machine5),
making hash sketches a viable solution for high-speed data stream processing.

5.3 Discussion

As we have seen, the statistical and empirical study in this paper paints a different
picture than suggested by the theory (see Table III). Table IV summarizes these
results qualitatively and indicates that on skewed data, F-AGMS and CM sketches

5The results in Figure 14 are for a Xeon 2.8 GHz processor with 512 KB of cache. The main
memory is 4 GB.
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Sketch Size of Join

Large Small
Low Skew High Skew

AGMS 0 0 −
Fast-AGMS 0 + +
Fast-Count 0 0 −
Count-Min − + +

Table IV. Expected statistical/empirical performance (same scale as Table III).

have much better accuracy than expected.
The statistical analysis in Section 4 revealed that the theoretical results for Fast-

AGMS (F-AGMS) and Count-Min (CM) sketches do not capture the significantly
better accuracy with respect to AGMS and Fast-Count (FC) sketches for skewed
data. The reason there exists such a large gap between the theory and the actual
behavior is the fact that the median, for F-AGMS, and the minimum, for CM, have
a fundamentally different behavior than the mean on skewed data. This behavior
defies statistical intuition since most distributions that are encountered in practice
have relatively small kurtosis, usually below 20. The distributions of approximation
techniques that use hashing on skewed data can have kurtosis in the 1000 range,
as we have seen for F-AGMS sketches. For these distributions, the median, as an
estimator for the expected value, can have error 106 smaller than the mean.

An interesting property of all sketching techniques is that the relationship be-
tween their accuracy does not change significantly when the degree of correlation
changes, as indicated by Figure 11. The relationship is strongly influenced by the
skew though, which suggests that the nature of the individual relations, but not
the interaction between them, dictates how well sketching techniques behave.

The relationship between sketches in Figure 11 also indicates that F-AGMS
sketches essentially work as well as AGMS and FC for small skew and just slightly
worse than CM for large skew. It seems that F-AGMS sketches combine in an
ideal way the benefits of AGMS sketches and hashes and give good performance
throughout the spectrum of problems without the need to determine the skew of
the data. The better accuracy of F-AGMS when compared to AGMS is some-
how counter-intuitive since only one counter is updated instead of all the counters.
The main reason for this is the fact that F-AGMS sketches have good chances to
separate the most frequent items from each other – if a bucket contains a single
frequent item and multiple infrequent items, the error is small since the frequent
item dominates. When frequent items are not separated (they collide in the same
hash bucket), the error could be extremely large (this is why on average the error
is the same). Luckily, the median removes these outlier situations and thus the
error is smaller overall. While CM sketches have better performance for large skew,
their use seems riskier since their performance outside this regime is poor and their
accuracy cannot be predicted precisely for large skew. It seems that, unless ex-
tremely precise information about the data is available, F-AGMS sketches are the
safe choice.
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6. SKETCHES FOR INTERVAL DATA

The problem we treat in this section is to estimate the size of join between a
data stream given as points and a data stream given as intervals using sketches.
Notice that this remains a size of join problem defined over the frequencies of
individual points but, since one of the streams is specified by intervals rather than
individual points, if basic sketches are used the update time is proportional to
the size of the interval, which is undesirable. There exist two solutions, DMAP
and fast range-summation, that have update time sub-linear in the interval size
for this problem. DMAP [Das et al. 2004] consists in mapping both the intervals
and the points into the space of dyadic intervals in order to reduce the size of
the interval representation. Since both intervals and points map to a logarithmic
number of dyadic intervals in the dyadic space, the update time becomes poly-
logarithmic with respect to the input. Fast range-summation [Rusu and Dobra
2007] uses properties of the pseudo-random variables in order to sketch intervals
in sub-linear time, while points are sketched as before. While the update time of
these methods is poly-logarithmic with respect to the size of the interval, since
they are based on AGMS sketches, the update time is also proportional with the
size of the sketch. In the light of the statistical and empirical evaluation of hash-
based sketches, the update time due to sketching could be significantly improved
without loss in accuracy. The question we ask and thoroughly explore in this
section is whether hash-based sketches can be combined successfully with the two
methods to sketch interval data. The insights gained from the statistical analysis
and the empirical evaluation of the hash-based sketching techniques are applied in
this section to provide variants of the two methods for sketching interval data that
have significantly smaller update time and comparable accuracy.

As mentioned in Section 1, sketching interval data is a fundamental problem that
is used as a building block in more complex problems such as estimating the size of
spatial joins and building dynamic histograms. For example, for the size of spatial
joins problem in which two data streams of intervals are given, two sketches are
built for each stream, one for the entire interval and one for the end-points. The size
of the spatial join between the two interval data streams is subsequently estimated
as the average of the product of the interval sketch from one stream and the sketch
for the end-points from the other stream (see [Das et al. 2004] for complete details).

6.1 Problem Formulation

The problem considered in this section is a derivation of the size of join prob-
lem defined in Section 1.1 in which one of the two data streams is given by (in-
terval, frequency) pairs rather than (key, frequency) pairs. The frequency is at-
tached to each element in the interval, not only to a single key. Formally, let
S = (e1, w1), . . . , (es, ws) and T = ([l1, r1], v1), . . . , ([lt, rt], vt) be two data streams,
where the keys ei and the intervals [li, ri], with li ≤ ri, are members of the set
I = {0, 1, . . . , N − 1}, and wi and vi, respectively, represent frequencies. The
computation using sketches of the size of join of the two data streams defined as
the inner-product of their frequency vectors remains our focus. Notice that it is
straightforward to reduce this problem to the basic size of join problem by observing
that a pair ([li, ri], vi) in T can be represented as an equivalent set of pairs (ej , vi)
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in S, with ej taking all the values between li and ri, li ≤ ej ≤ ri. The drawback
of this solution is the time to process an interval which is linear in the size of the
interval.

6.2 Dyadic Mapping (DMAP)

DMAP method uses dyadic intervals in order to reduce the representation of an
interval, thus making possible the efficient sketching of intervals (see [Gilbert et al.
2005; Das et al. 2004; Rusu and Dobra 2007] for details). DMAP is based on a
set of three transformations to which the size of join operation is invariant. The
original domain is mapped into the domain of all possible dyadic intervals that can
be defined over it. An interval in the original domain is mapped into its minimal
dyadic cover in the new domain. By doing this, the representation of the interval
reduces to at most a logarithmic number of points in the new domain, i.e., the
number of sketch updates reduces from linear to logarithmic in the size of the
interval. At the same time, a point in the original domain maps to the set of
all dyadic intervals that contain the point in the new domain, thus increasing the
number of sketch updates from one to logarithmic in the size of the original domain.
DMAP allows the correct approximation of the size of join in the mapped domain
with the added benefit that the sketch of each relation can be computed efficiently
since both for an interval, as well as a point, at most log |I| = n dyadic intervals
have to be sketched.

The application of any of the sketching methods in the dyadic domain is straight-
forward. For a point, the sketch data structure is updated with all the dyadic in-
tervals that contain the point (exactly log |I| = n). For an interval, the sketch is
updated with the dyadic intervals contained in the minimal dyadic cover (at most
2n − 2, but still logarithmic in the size of the interval). Specifically, in the case
of AGMS sketches all the counters are updated for each dyadic interval, while in
the case of hash-based sketches (Fast-AGMS, Fast-Count, Count-Min) only one
counter in each row is updated for each dyadic interval. Notice that the update
procedure is identical to the procedure for point data streams since a dyadic inter-
val is represented as a point in the dyadic domain. Once the sketches for the two
data streams are updated, the estimation procedure corresponding to each type of
sketch described in Section 3 is immediately applicable.

The experimental results in [Rusu and Dobra 2007] showed that DMAP has
significantly worse accuracy, as much as a factor of 8, than fast range-summable
methods for AGMS sketches. We provide an explanation for this behavior based
on the statistical analysis in Section 4 and the empirical results in Section 5. At
the same time, we provide evidence that the performance of DMAP for hash-based
sketches (Fast-AGMS in particular) cannot be significantly better. To characterize
statistically the performance of DMAP, we first look at the distribution of the two
data streams in the dyadic domain. The distribution of the point data stream has
a peak corresponding to the domain (the largest dyadic interval) due to the fact
that this dyadic interval contains all the points, so its associated counters get up-
dated for each streaming point. The dyadic intervals at the second level, of size
half of the domain size, have high frequencies for the same reason. As the size of
dyadic intervals decreases, their frequency decreases too, to the point it is exactly
the true frequency for point dyadic intervals. Unfortunately, the high frequencies
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in the dyadic domain are outliers because their impact on the size of join result is
minimal (for example, the domain dyadic interval appears in the size of join only
if the interval data stream contains the entire domain as an interval). Practically,
DMAP transforms the distribution of the point data stream into a skewed distri-
bution dominated by outliers corresponding to large dyadic intervals. The effect of
DMAP over the distribution of the interval data stream is far less dramatic, but
more difficult to quantify. This is due to the fact that both the size of the interval
and the position are important parameters. For example, two intervals of the same
size, one which happens to be dyadic and one translated by only a position, can
generate extremely different minimal dyadic covers and, thus, distributions in the
dyadic domain. Even without any further assumptions on the distribution of the
interval data stream, we expect the skewed distribution of the point stream to affect
negatively the estimate, due to the outliers corresponding to large dyadic intervals.
At the same time, we would expect not to have a significant difference between
AGMS (Fast-Count) and Fast-AGMS sketches unless the distribution of the inter-
val stream is also skewed towards large dyadic intervals. The reason for this lies
in the fact that since the point stream over the dyadic domain is skewed and the
behavior of the sketch estimators for the size of join of two streams with different
Zipf coefficients is governed by the smallest skew factor, the overall behavior is de-
termined by the skew of the interval stream. Figure 12 shows a significant difference
between FC and F-AGMS only when both streams are skewed.The experimental
results in Section 6.4 verify these hypotheses.

An evident drawback of DMAP is that it cannot be extended easily to the case
when both input data streams are given as intervals. If the sketches are simply
updated with the dyadic intervals in the minimal dyadic cover, the size of join of
the points in the dyadic domain is computed which is different from the size of
join in the original domain because a point in the dyadic domain corresponds to
a range of points in the original domain. Updating one of the sketches with the
product of the size of the dyadic interval and the frequency instead of only the
frequency seems to be an easy fix that would compensate for the reduction in the
representation. This is not the case because a point can be part of different dyadic
intervals with different sizes, a situation that cannot be eliminated by moving in
the dyadic domain.

6.2.1 DMAP COUNTS. A possible improvement to the basic DMAP method
is to keep exact counts for large dyadic intervals in both streams and to compute
sketches only for the rest of the data. The idea of keeping exact counts for the
first few levels of the hierarchy was proposed for Count-Min sketches in [Cormode
and Muthukrishnan 2005a]. By doing this, the distribution of the point stream in
the dyadic domain becomes closer to the original distribution since the effect of the
outliers is neutralized. The contribution of the large dyadic intervals to the size of
join is computed exactly through the counts, while the contribution of the rest of
dyadic intervals is better approximated through the sketches. Although the evident
resemblance between this technique and other types of complex sketches, e.g., count
sketches [Charikar et al. 2002], skimmed sketches [Ganguly et al. 2004], and red
sketches [Ganguly et al. 2005], there is a subtle difference. While for all the other
techniques the high frequencies have to be determined and represent an important
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fraction of the result, in this case they are known before and represent an outlier
whose effect has to be minimized. In order to quantify the error of this method and
to determine the optimal number of exact counts, similar solutions to [Charikar
et al. 2002; Ganguly et al. 2005] can be applied with the added complexity of
dealing with interval distributions over a dyadic domain. The deeper insights such
an analysis could reveal are hard to determine since even the exact behavior of
DMAP is only loosely quantified in [Das et al. 2004; Rusu and Dobra 2007]. The
empirical results we provide in Section 6.4 show that the improvement is effective.

6.3 Fast Range-Summation

While DMAP uses mappings in the dyadic domain in order to sketch intervals
efficiently, fast range-summation methods are based on properties of the random
variables that allow the sketching of an interval in a number of steps sub-linear in the
size of the interval. Specifically, the sum of random variables over dyadic intervals
is computed in a constant number of steps and, since there exists a logarithmic
number of dyadic intervals in the minimal dyadic cover of any interval, the number
of steps to sketch the entire interval is logarithmic in its size. [Rusu and Dobra
2007] show that fast range-summation is a property of the generation scheme of
the random variables and that there exist only two practical schemes applicable to
AGMS sketches, EH3 and BCH3, respectively. Moreover, the performance of BCH3
is highly sensitive to the input data, so we consider only EH3 in this paper. [Rusu
and Dobra 2007] use fast range-summation only in the context of AGMS sketches
where the update of each key (interval) affects each counter in the sketch structure.
More exactly, for all the elements in an interval, the same counter has to be updated
(and all the counters overall). This is not the case anymore for hash-based sketches
where different counters are updated for different keys (unless they are hashed
into the same bucket). In this section we show that fast range-summation and
random hashing are conflicting operations and, consequently, fast range-summation
is not applicable to hash-based sketches (Fast-AGMS, Fast-Count, Count-Min).
Fortunately, we show that fast range-summation for AGMS sketches can be applied
in conjunction with deterministic partitions of the domain without loss in error, but
with a significant improvement in the update time.

As mentioned in Section 3, the main drawback of AGMS sketches is the update
time. For each stream element, each counter in the sketch structure has to be
updated. Essentially, each counter is a randomized synopsis of the entire data.
Fast range-summation exploits exactly this additive property to sketch intervals
efficiently since the update corresponding to each element in the interval has to be
added to the same counter. Hash-based sketches partition randomly the domain I
of the key attribute and associate a single counter in the sketch structure with each
of these partitions. For each stream element, only the counter corresponding to its
random partition is updated, thus the considerable gain in update time. In order
to determine if fast range-summation can be extended to hash-based sketches, we
focus on the interaction between random hashing, whose goal is to partition evenly
the keys into buckets, and the efficient sketching of continuous intervals for which
the maximum benefit is obtained when all the elements in the interval are placed
into the same bucket. The following proposition relates the number of counters
that have to be updated in a hash-based sketch to the size of the input interval:
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Proposition 4. Given a hash function h : I → B and an interval [α, β] of size
l, the number of buckets touched by the function h when applied to the elements in
[α, β] is on expectation B

[
1−

(
1− 1

B

)l].
Proof. Let Xi be a 0/1 random variable corresponding to each of the B buckets

of the hash function h, 0 ≤ i < B. Xi takes the value 1 when at least one element
in the range [α, β] is hashed into the bucket i and the value 0 otherwise:

Xi =
{

1 , if ∃j ∈ [α, β] with h(j) = i
0 , otherwise

The expected value E [Xi] can be computed as:

E [Xi] = P [Xi = 1] = 1− P [Xi = 0] = 1−
(

1− 1
B

)l

since the probability of an element to be hashed in the ith bucket is 1
B . The expected

value of the number of buckets touched by h over [α, β] is then:

E [X] = E

[
B−1∑
i=0

Xi

]
=

B−1∑
i=0

E [Xi] = B

[
1−

(
1− 1

B

)l
]

(4)

where X is defined as X =
∑B−1

i=0 Xi.

In order to give some practical interpretation to the above proposition, we consider
the size l to be proportional with the number of buckets B, i.e., l = kB, for k > 0.
This allows us to rewrite Equation 4 as:

B

[
1−

(
1− 1

B

)l
]

= B

[
1−

(
1− 1

B

)kB
]
≈ B

(
1− 1

ek

)
where we used the approximation 1

e = limB→∞
(
1− 1

B

)B .

Example 6. For a hash function with B buckets, 63.21% of the buckets are
touched on expectation when h is applied to an interval of size B. The number of
buckets increases to 86.46% when the size of the interval is twice the number of
buckets B, and to 98.16% for k = 4.

The above corollary states that for intervals of size at least four times the size of the
hash almost all the buckets are touched on expectation. This eliminates completely
the effect of hashing for sketching intervals since AGMS sketches already require the
update of each counter in the sketch. The difference is that for AGMS sketches each
counter is updated with the entire interval, while for hash-based sketches a counter
is updated only with the elements in the interval assigned to the random partition
corresponding to that counter. Although the number of updates per counter is
smaller for hash-based sketches, determining how many (and which) elements in the
given interval update the same counter without looking at the entire interval is a
difficult problem. The only solution we are aware of is for 2-universal hash functions,
so applicable only to Fast-AGMS and Count-Min sketches. It consists in applying
the sub-linear algorithm proposed in [Aduri and Tirthapura 2005] for counting how
many elements in the interval are hashed into a range of buckets either for each
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Fig. 15. Fast range-summation with domain partitioning. The domain I = {0, . . . , 15} is split
into 4 partitions of equal size. The intersection between the input interval [2, 7] and the partitions
is computed. For each non-empty intersection, fast range-summation is applied.

bucket or for ranges of increasing size. Notice that this actually is not even enough
for Fast-AGMS sketches for which the interaction between hashing and EH3 (or
BCH3) [Rusu and Dobra 2007] has to be quantified. While fast range-summation
takes advantage of properties of the generating scheme for the particular form of
dyadic intervals, determining the contribution of the elements in the same random
partition without considering each element separately has to be more difficult due
to the lack of structure. Consequently, fast range-summation is directly applicable
only to Count-Min sketches throughout the hash-based sketching techniques, with
the requirement that each counter is updated when sketching an interval.

6.3.1 Fast Range-Summation with Domain Partitioning. The intermediate so-
lution between AGMS sketches, which update all the counters, and hash-based
sketches, which update only one counter for a given key, is sketch partitioning [Do-
bra et al. 2002]. The domain I is partitioned in continuous blocks rather than
random blocks. A number of counters from the sketch structure proportional to
the size of the block is assigned to each block. When the update of a key has to be
processed, only the counters in the block corresponding to that key are updated.
This method can be easily extended to fast range-summing intervals without the
need to update all the counters unless the size of the interval is close to the size of
the domain. The intersection between the given interval and each partition is first
determined and, for each non-empty intersection, the fast range-summation algo-
rithm is applied only to the set of associated counters. Thus, a number of counters
proportional with the number of non-empty intersections (and indirectly propor-
tional to the size of the interval) has to be updated. In what follows we provide an
example to illustrate how fast range-summation with sketch partitioning works.

Example 7. Consider the domain I = {0, . . . , 15} to be split into 4 equi-width
partitions as depicted in Figure 15. For simplicity, assume that the available AGMS
sketch consists of 8 counters which are evenly distributed between the domain par-
titions, 2 for each partition. Instead of having a single estimator for the entire
domain, a sketch estimator combining the counters in the partition is built for each
partition. The final estimator is the sum of these individual estimators correspond-
ing to each partition.

Figure 15 depicts the update procedure for the interval [2, 7]. The non-empty
intersections [2, 3] and [4, 7] correspond to partition 0 and 1, respectively. The fast
range-summation algorithm is applied to each of these intervals only for the counters
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associated with the corresponding domain partition, not for all the counters in the
sketch. In our example, fast range-summation is applied to interval [2, 3] and the
two counters associated to partition 0, and to interval [4, 7] and the two counters
associated to partition 1, respectively. Overall, only four counters are updated,
instead of eight, for sketching the interval [2, 7].

The advantage of domain partitioning is the fact that the update time is smaller
when compared to the basic fast range-summation method. This is the case because
only a part of the sketch has to be updated if the interval is not too large with
respect to the size of a partition. In particular, only the sketches corresponding
to the partitions that intersect the interval need to be updated which means that
the speedup is proportional to the ratio between the number of partitions and the
average number of partitions an interval intersects. When points are sketched, only
the counters corresponding to the partition the point belongs to need to be updated
instead of all the counters in the sketch. In the above example only two counters
have to be updated for each point, instead of eight.

Notice that, as shown in [Dobra et al. 2002], any partitioning of the domain
can be used and the number of counters associated to each partition can also be
different from partition to partition. More precisely, any partitioning and any
allocation scheme for the counters results in an unbiased estimator for the size of
join. An important question though is what is the variance of the estimator, which
is an indicator for the accuracy. In [Dobra et al. 2002] a sophisticated method to
partition and allocate the counters per partition was proposed in order to minimize
the variance of the estimator. For gains to be obtained, regions of the domain
where high frequencies in one stream match small frequencies in the other have to
be identified. Since in this particular situation we do not expect large frequencies
for the interval stream, as explained in Section 6.2, we do not expect the sketch
partitioning technique in [Dobra et al. 2002] to be able to reduce the variance
significantly. Moreover, using the fact that the variance of the estimator remains
the same if the partitioning is random (see Proposition 1), as long as there does
not exist significant correlation between the partitioning scheme and the input
frequencies, we expect the variance of the estimator to remain the same. The
expected distribution of the interval frequencies also suggests that a simple equi-
width partitioning should behave reasonably well. Indeed, the experimental results
in Section 6.4 show that this partitioning is effective in reducing the update time
while the error of the estimate remains roughly the same. Notice that in the worst
case when the frequency distribution is focused on a small range of the domain, equi-
width partitioning has a negative effect on the accuracy because the value of the
variance increases. If multiple counters are assigned to the problematic partitions,
for example using the allocation scheme in [Dobra et al. 2002], the update time
increases since more counters need to be updated and the advantage of domain
partitioning on fast range-summing is lost.

6.4 Experimental Results

In this section we present the results of the empirical study designed to evaluate
the performance of five of the algorithms for efficiently sketching intervals intro-
duced previously. The five methods tested are: AGMS DMAP, F-AGMS DMAP
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(F-AGMS), F-AGMS DMAP with exact counts (F-AGMS COUNTS), fast range-
summation AGMS (AGMS), and fast range-summation AGMS with sketch par-
titioning (AGMS P). Methods based on Count-Min sketches are excluded due to
their high sensitivity to the input data, while for Fast-Count sketches the same
behavior as for AGMS is expected (see Section 5), where applicable. The accuracy
and the update time per interval are the two quantities measured in our study for
the size of spatial join problem involving intervals (see [Das et al. 2004]). Follow-
ing the experimental setup in [Das et al. 2004; Rusu and Dobra 2007], three real
data sets are used in our experiments: LANDO, describing land cover ownership
for the state of Wyoming and containing 33, 860 objects; LANDC, describing land
cover information such as vegetation types for the state of Wyoming and containing
14, 731 objects; and SOIL, representing the Wyoming state soils at a 1 : 105 scale
and containing 29, 662 objects. The use of synthetic generators for interval data is
questionable because it is not clear what are acceptable distributions for the size of
the intervals, as well as the position of the interval end-points. In a similar man-
ner to Section 5, each experiment is performed 100 times and either the average
relative error, i.e., |actual−estimate|

actual , or the median update time over the number of
experiments is reported.
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Fig. 16. Accuracy. In (a) the average relative error is depicted as a function
of the memory budget for the size of spatial join between the data sets LANDO
and LANDC. The sketch contains 4 rows and AGMS P uses 64 partitions. The
dependence of the accuracy on the number of partitions is plotted in (b) for a sketch
of 4 rows with 256 counters each. The same data sets, LANDO and LANDC, are
joined. 7 exact counts at the first 3 dyadic levels are used in the implementation of
F-AGMS COUNTS.

Accuracy. We pursue two goals in our accuracy experiments. First, we determine
the dependence of the average relative error on the memory budget, i.e., the number
of counters in the sketch structure. For this, we run experiments with different
sketch configurations having either 4 or 8 rows in the structure and varying the
number of counters in a row between 64 and 1024. Second, we want to establish
the relation between the accuracy and the number of partitions for AGMS P. For
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this, we distribute the counters in the sketch into 4 to 64 groups corresponding to
an equal number of partitions of the domain. Given the previous results in [Rusu
and Dobra 2007] for AGMS and AGMS DMAP, we expect the results for F-AGMS
to be close to AGMS DMAP, with some improvement for F-AGMS COUNTS which
eliminates the effect of outliers to some extent. At the same time, we expect that
partitioning does not significantly deteriorate the performance of AGMS P unless
it is applied to the extreme where only one counter corresponds to each partition.

Figure 16 depicts the accuracy results for a specific parameter configuration.
The same trend was observed for the other settings, with the normal behavior for
the confined action of each parameter. As expected, the error decreases as the
memory budget increases for all the methods (left plot). The behavior of DMAP
methods is more sensitive to the available memory, without a significant difference
between AGMS and F-AGMS sketches, but still slightly favorable to F-AGMS.
What is significant is the effect of maintaining exact counts for F-AGMS DMAP.
The error reduces drastically, to the point it is almost identical with the error of
fast range-summation AGMS, the most accurate of the studied methods. This is
due to limiting the effect of outliers that would otherwise significantly deteriorate
the accuracy of the sketch. Notice the reduced levels of the error for fast range-
summation methods even when only low memory is available. Our second goal
was to detect the effect partitioning has on the accuracy of fast range-summation
AGMS. From the right plot in Figure 16, we observe that partitioning has almost
no influence on the accuracy of AGMS, the errors of the two methods being almost
identical even when a significant number of partitions is used. Clearly, we expect the
accuracy to drop after a certain level of partitioning, when the number of counters
corresponding to a partition is small. The error of the other methods is plotted in
(b) only for completeness. The fluctuations are due only to the randomness present
in the methods since the experiments were repeated with the same parameters for
each different configuration of AGMS P.
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(b) SOIL with 4096 counters

Fig. 17. Update time per interval as a function of the number of partitions for
the SOIL data set. The sketch structure consists of a single row with either 512
counters (a) or 4096 counters (b).
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Update Time. Our objective is to measure the time to update the sketch structure
for the presented sketching methods. For a sketch consisting of only one row of
counters, we know that the time is linear for AGMS sketches since all the counters
have to be updated. This is reflected in Figure 17 that depicts the update time
per interval for two sketch structures, one with 512 counters (left), and one with
4096 counters (right)6. Notice that Figure 17 actually plots the update time per
interval as a function of the number of partitions, thus the constant curves for all
the methods except AGMS P. As expected, the update time for AGMS P decreases
as the number of partitions increases since the number of counters in a partition
decreases. The decrease is substantial for a sketch with 512 counters, to the point
where the update time is almost identical with the time for DMAP over F-AGMS
sketches, the fastest method. Notice the significant gap of 2 to 4 orders of magnitude
between the methods based on AGMS and those based on F-AGMS sketches, with
the update time for F-AGMS being in the order of a few micro-seconds, while the
update time for AGMS is in the order of milli-seconds.

6.5 Discussion

As it was already known [Rusu and Dobra 2007], DMAP is inferior both in accuracy
and update time to fast range-summation for AGMS sketches, facts re-confirmed by
our experimental results. While DMAP can be used in conjunction with any type of
sketching technique, fast range-summation is immediately applicable only to AGMS
sketches. In order to improve the update time of AGMS, we propose AGMS P, a
method that reduces the number of counters that need to be updated by partitioning
the domain of the key and distributing the counters over the partitions. Even with
a simple partitioning that splits the domain into buckets with the same size, as
is done for equi-width histograms, the improvement we obtain is remarkable, the
update time becoming comparable with that for F-AGMS sketches, while the error
remains as good as the error of fast range-summation AGMS. The only improvement
gained by using DMAP over F-AGMS sketches is in update time. With a simple
implementation modification that keeps exact counts for large dyadic intervals (F-
AGMS COUNTS), the error drops significantly and becomes comparable with the
error of fast range-summation AGMS. The roots of this modified method lie in the
statistical analysis presented in Section 4.

Overall, to obtain methods for sketching intervals that have both small error
and efficient update time, the basic techniques (DMAP and fast range-summation)
have to be modified. F-AGMS COUNTS is a modification of DMAP over F-AGMS
sketches with extremely efficient update time and with error approaching the stan-
dard given by AGMS for large enough memory. AGMS P is a modification of fast
range-summation AGMS that has excellent error and with update time close to
that of F-AGMS sketches when the number of partitions is large enough. In con-
clusion, we recommend the use of F-AGMS COUNTS when the update time is the
bottleneck and AGMS P when the available space is a problem.

6We used the same machine as in Section 5.
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7. CONCLUSIONS

In this paper we studied the four basic sketching techniques proposed in the litera-
ture, AGMS, Fast-AGMS, Fast-Count, and Count-Min, from both a statistical and
empirical point of view. Our study complements and refines the theoretical results
known about these sketches. The analysis reveals that Fast-AGMS and Count-Min
sketches have much better performance than the theoretical prediction for skewed
data, by a factor as much as 106 to 108 for large skew. Overall, the analysis indi-
cates strongly that Fast-AGMS sketches should be the preferred sketching technique
since it has consistently good performance throughout the spectrum of problems.
The success of the statistical analysis we performed indicates that, especially for
estimators that use minimum or median, such analysis gives insights that are easily
missed by classical theoretical analysis. Given the good performance, the small up-
date time, and the fact that they have tight error guarantees, Fast-AGMS sketches
are appealing as a practical basic approximation technique that is well suited for
data stream processing. At the same time, Fast-AGMS sketches seem to represent
the preferred choice as a basic block in more complex sketching techniques such as
skimmed sketches [Ganguly et al. 2004] and red-sketches [Ganguly et al. 2005].

Fast range-summation remains the most accurate method to sketch interval data.
Unfortunately, it is applicable only to AGMS sketches and, thus, it is not practical
due to the high update time. The solution we propose in this paper is based on
the partitioning of the domain and of the counters in the sketch structure in order
to reduce the number of counters that need to be updated. The improvement
in update time is substantial, getting close to DMAP over Fast-AGMS sketches,
the fastest method studied. Moreover, by applying a simple modification inspired
from the statistical analysis and the empirical study of the sketching techniques,
the accuracy of DMAP over F-AGMS can be increased significantly, to the point
where it is almost equal with the accuracy of fast range-summation over AGMS for
large enough space. Considering the overall results for sketching interval data, we
recommend the use of the fast range-summation method with domain partitioning
whenever the accuracy is critical and the use of DMAP COUNTS method over
F-AGMS sketches in situations where the time to maintain the sketch is critical.
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