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ABSTRACT
Since the 1970’s, database systems have been “compute-centric”.
When a computation needs the data, it requests the data, and the
data are pulled through the system. We believe that this is prob-
lematic for two reasons. First, requests for data naturally incur
high latency as the data are pulled through the memory hierarchy,
and second, it makes it difficult or impossible for multiple queries
or operations that are interested in the same data to amortize the
bandwidth and latency costs associated with their data access.

In this paper, we describe a purely-push based, research proto-
type database system called DataPath. DataPath is “data-centric”.
In DataPath, queries do not request data. Instead, data are automat-
ically pushed onto processors, where they are then processed by
any interested computation. We show experimentally on a multi-
terabyte benchmark that this basic design principle makes for a very
lean and fast database system.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—Systems

General Terms
Algorithms

1. INTRODUCTION
Compute-Centric DB System Design. Databases have tradition-
ally been pull-based, “compute-centric” systems, in the sense that
the computation drives all data movement through the query pro-
cessing system. Consider the following TPC-H-style query:
SELECT SUM (l_extendedprice) as totPrice
FROM lineitem
WHERE l_partkey = 1267 AND l_quantity > 12

If we run this query in a typical database system with an index
on l_partkey, C-like code for the implementation of the query
might look something like:
index.Lookup (1267);
int totPrice = 0;
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while (index.GetNext(address) != NULL) {
lineitem.Fetch(address, myTuple);
if (myTuple.l_quantity > 12)
totPrice += myTuple.l_extendedprice; }

This code embodies the classic “compute centric” approach to
database engine design. When the query execution engine wants
to perform a computation on a tuple, the engine asks for it, and the
tuple is pulled through the memory hierarchy and onto the CPU.

Problems with the Compute-Centric Approach. This paper will
argue that such an approach makes little sense in a modern, read-
mostly analytic processing (AP) environment, for two reasons:

• First, there is no natural way to coordinate data requests among
different queries in the compute-centric approach. When a query
needs a data object, the query requests it, and so each query must
suffer through its own data access latency and consume additional
memory transfer bandwidth every time a tuple is moved onto a
CPU. Thus, the memory-related resources utilized by the system
scales linearly—or worse—with the number of queries.

• Second, even for a single query running in isolation, the compute-
centric approach will lose CPU cycles due to memory access la-
tency. A compute-centric data processing algorithm by definition
requests data when it wants them, and must wait for the data to be
moved onto the CPU if they are not already there.

Data-Centric Query Processing. Our ultimate goal is to abandon
the compute-centric paradigm entirely in favor of a “data-centric”
or purely push-based approach. In data-centric processing, data
flow drives the computation, rather than the other way around.

This paper describes our prototype data-centric database system,
called DataPath. In the DataPath system, all data production, in-
cluding system I/O, is undertaken asynchronously, without regard
to whether a receiving operation is actually ready for the data. If
there is no spare computation to process the data, the data are sim-
ply dropped to be reproduced at a later time. If computation is
available, the data are pushed onto a CPU, and once there, all of
the operations that could use the data perform the required com-
putations over them. Because (with a few notable exceptions), no
operation ever requests any data, CPU cycles lost to memory la-
tency cannot be a problem. And since the data are at the center of
the system, no particular computation ever owns a chunk of data.
Thus, all data are shared, and data access costs are amortized across
every computation that uses the data.

Our Contributions. While the DataPath system does implement
several brand-new ideas—such as its strategy of incorporating new
queries into existing path networks so as to minimize the addi-
tional data movement (see Section 2.2)—many of the techniques
employed have been proposed previously in the literature or have
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appeared in other systems. These include shared table scans which
first appeared in Red Brick in the 1990’s and were subsequently the
subject of scientific study [21], a data streaming model of execution
[1, 7, 5], multi-query optimization [17] and the idea of sharing the
same tuple across many queries [4]. Push-based execution engine
design was previously considered in the Qpipe [11], Volcano [9],
and Eddies [3] projects, and the DataPath system’s use of way-
points (see Section 2) resemble the push-based “staged” database
system of Harizopoulos et al. [10]. Our primary contribution is
uniting many of these ideas together as part of a new, intellectually-
consistent design paradigm for high-throughput AP.

We also highlight the following, more concrete contributions:

• We describe the design and implementation of the DataPath
system in detail. DataPath has been built from the ground up
to implement the data-centric design paradigm, without any
“intellectual concessions” due to reliance on legacy code.

• We have benchmarked DataPath, examining the effect of is-
suing many simultaneous queries issued over one and ten ter-
abyte instances of the TPC-H benchmark database.

• Our benchmarking was run on a single, inexpensive machine
costing less than $60,000—50+ disks, plus associated RAID
cards and and storage cabinets are included in this price.
While petabyte warehouses do exist, our educated guess is
that the median size of the data warehouse installations cur-
rently in existence is still smaller than ten terabytes. Thus,
we put forth a strong argument that by employing the data-
centric ideal, it is easily possible to architect a system that
can handle the throughput requirements of all but the largest
warehouses on a single, relatively inexpensive machine.

2. OVERVIEW OF DATAPATH
All query processing in the DataPath system is centered around

the idea of a single, central path network. DataPath’s path network
is a graph consisting of data streams (called paths) that force data
into computations (called waypoints).

2.1 DataPath on a Single Query
For an example of how the DataPath system uses data movement

to drive computation, consider the following query:

Q1: SELECT SUM (l_quantity)

FROM lineitem WHERE l_shipdate > ’1-1-06’

Imagine that Q1 is issued to the system. The DataPath system be-
gins by starting a table scan of lineitem. The system has just
one table scan for each table; each scan operates constantly and in-
dependently of the queries in the system, streaming data from disk
in a circular fashion [11]. The system creates a selection way-
point attached to the scan via a path. Depending upon the waypoint
type (waypoint types include selection, aggregate, join,
etc.), a waypoint has a varying set of supporting machinery asso-
ciated with it, but in the end, every waypoint organized around a
single “tuple-processing loop”. Every tuple-processing loop is a
variation on a tight loop of just a few lines of C++ code of the
form:
for (int i = 0; true; i++) {
if (tuple[i].BelongsTo (Q1))
Q1.Process (tuple[i]);

if (tuple[i].BelongsTo (Q2))
Q2.Process (tuple[i]);

if (tuple[i].BelongsTo (Q3))
Q3.Process (tuple[i]);

out

lineitem orders

σ Q1: l_shipdate > ‘1-1-06’
Q2: l_shipmode <> ‘rail’

σ Q2: o_orderdate < ‘1-1-08’
Q3: o_custkey = 1234

Q2: l_orderkey = o_orderkey
Q3: l_orderkey = o_orderkey

Q1: SUM(l_quantity)Σ

Q2: SUM(l_extendedprice)
Q3: AVG(l_discount)

out

Σ

Q1, Q2, Q3
Q2, Q3

Q1

Q2, Q3

out

lineitem orders

σ Q1: l_shipdate > ‘1-1-06’
Q2: l_shipmode <> ‘rail’

σ Q2: o_orderdate < ‘1-1-08’

Q2: l_orderkey = o_orderkey

Q1: SUM(l_quantity)Σ

Q2: SUM(l_extendedprice)

out

Σ

Q1, Q2
Q2

Q1
Q2

out

lineitem orders

σ Q1: l_shipdate > ‘1-1-06’

Q1: SUM(l_quantity)Σ

Q1

(a)

(b)

(c)

Figure 1: Issuing queries one-at-a-times.

if (TooSlow (i))
SkipSome (i); }

The loop runs continuously, and forces data into the Process
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method for each constituent query. Because each query operates on
the same tuple, there is little or no additional access cost incurred
by adding additional queries to the tuple-processing loop, and so
bandwidth consumption is amortized across queries. Furthermore,
since data are forced sequentially into the waypoint, latency due to
cache misses is almost non-existent (except during join processing,
which is described in detail in Section 8).

While this loop may superficially resemble the classic iterator
model for database query processing [8], nothing could be fur-
ther from the truth. The iterator model is pull-based; the tuple-
processing loop is exclusively push-based. The loop is run as fast
as new data are pushed into the waypoint. Because neither the loop
nor the waypoint can control the input stream, if the the loop is
running too slowly to process the input stream, then blocks of tu-
ples are dropped—they must be reproduced and re-streamed into
the tuple-processing loop at a later time.

When a new query such as Q1 wishes to create a new waypoint
or make use of an existing waypoint, it submits specifics about its
operation. In the case of this particular selection waypoint, Q1

would submit the selection predicate “WHERE l_shipdate >
’1-1-06’”. The waypoint first compiles the submitted operation
into C++ code that implements the query’s Process method us-
ing DataPath’s internal meta-compiler, and then the waypoint com-
piles the entire tuple processing loop into machine code using a
C++ compiler—hence, DataPath relies on a high-quality commod-
ity compiler to identify and exploit opportunities for sharing. Once
this compilation process is completed, the waypoint switches to
the newly-compiled tuple-processing loop. The output from this
particular waypoint is sent via a path into a new aggregate way-
point that computes “SUM(l_quantity)”. In our example, this
results in the simple path network depicted in Figure 1(a), and data
begins streaming along this path.

2.2 DataPath on Multiple Concurrent Queries
Now, while Q1 is running, the following two queries are issued:

Q2: SELECT SUM (l_extendedprice)

FROM lineitem, order WHERE l_shipmode <> ’rail’

AND o_orderdate < ’1-1-08’ AND

l_orderkey = o_orderkey

Q3: SELECT AVG (l_discount)

FROM lineitem, orders WHERE

o_custkey = 1234 AND l_orderkey = o_orderkey

When Q2 is issued, a table scan of orders is begun and streamed
into into a new selectionwaypoint, and code to compute “WHERE
o_orderdate < ’1-1-08’” is inserted into the new waypoint’s
tuple-processing loop. Code for “WHERE l_shipmode = ’rail’”
is also integrated into the original selection waypoint, and the
output stream of this waypoint is split into two paths; one for Q1,
and one for Q2. Next, a join waypoint is created to perform Q2’s
join, and code to compute “WHERE l_orderkey = o_orderkey"
is inserted into the waypoint. The output of this waypoint is sent
to an appropriate aggregate waypoint. The resulting network of
paths and waypoints is depicted in Figure 1(b).

Finally, imagine that Q3 is issued. Q3 requires only that new
code be registered with the existing system waypoints, because Q3

can be processed entirely within the existing network of paths and
waypoints. The resulting network is depicted in Figure 1(c). Since
Q3 does not induce any additional data movement, the expectation
is that the marginal cost associated with computing Q3 is very low.

2.3 Doesn’t This Preclude Tuning?
In a word, yes. Indexing and performance tuning in general are
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Figure 2: Basic layout of a chunk.

not compatible with the data-centric paradigm. But while some
may see this as a drawback, we see it as a positive. The lack of
indexing makes the system easy to use. Use of a data-centric sys-
tem should hopefully not require a DBA, whose job is largely con-
cerned with the black art of defining indexes, data clusterings, and
partitions of data across disks. These are not possible in DataPath.
Second, assuming that most queries touch a relatively large fraction
of the tables that they reference (which is reasonable in an AP sys-
tem), the performance gained from using a data-centric approach
may more than offset the lack of indexing. This is especially the
case in a realistic environment where multiple queries run simul-
taneously. Twenty queries, each accessing 1% of a database table,
are far likely better off accessing the data in a coordinated fashion,
amortizing disk seeks, memory bandwidth usage, and cache miss
stalls, than fighting one another for resources via indexed access.

3. RELATED WORK
DataPath is fundamentally organized around the idea of pushing

data onto a CPU, where it must be used or discarded. While the vast
majority of production database systems are pull-based, DataPath
is not the first system to utilize push-based data-centric operators.
In introducing the exchange operator to incorporate parallelism, the
Volcano execution engine [9] made an explicit distinction between
demand-driven dataflow and data-driven dataflow. The Volcano
exchange operator sets up a rendezvous between a producer and
a consumer thread and is used to encapsulate process boundaries.
Volcano’s implementation augmented the exchange operator with
flow-control to prevent flooding of the consumer by the producer.
The merits of push-vs-pull has also been debated in the context of
designing data streaming algorithms [1, 7, 5].

In the iterator model, there is a natural one-to-one mapping be-
tween the tree-shaped logical plan produced by the database query
optimizer and the physical plan that is realized by the executor. In
contrast, the role of the optimizer in DataPath (see Section 7) is to
find a suitable mapping into the global path-network that is mod-
eled after a directed, acyclic graph (DAG). While an execution en-
gine modeled after a DAG is new, DAGs have been used in query
optimization before [12, 18]. This prior work proposed a bypass
technique for optimizing disjunctive queries that requires the abil-
ity to route tuples into alternative execution pathways depending
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on the result of a predicate evaluation. A DAG model of execution
is also implied by the adaptive Eddies operator [3].

DataPath also shares many of the ideas of the QPipe [11] system,
whose goal is to maximize data and work sharing across queries at
run time. QPipe employs a micro-kernel approach whereby func-
tionality of each physical operator is exposed as a separate service.
By utilizing operator specific request queues and global scheduling
of various services, QPipe is able to obtain a high-degree of data
and resource sharing. One key difference between QPipe and Dat-
aPath is the former system’s use of run-time strategies to locate op-
portunities for sharing—this tends to localize the changes required
to “convert” a classic system into a QPipe system within the execu-
tion engine, leaving system components such as the query compiler
unchanged. In contrast, DataPath’s changes vis-a-vis a classic sys-
tem include a re-designed query optimizer and C++ meta-compiler
that are specifically constructed to facilitate sharing.

Candea et al. [4] introduce the CJoin operator, whose design is
reminiscent of several aspects of DataPath, such as DataPath’s join
operator (see Section 8). CJoin optimizes the execution of queries
that belong to a star-schema, by allowing multiple queries to oper-
ate over the same tuple in order to share memory usage and access
latency. CJoin is a push-based operator applied within a pull-based
execution framework. The runtime framework dynamically routes
queries to the CJoin operator after a suitability test (low-selectivity
and whether part of a star-schema workload). In this respect, CJoin
resembles eddies (which route tuples instead of queries).

Similarly, DataPath resembles the main-memory-based Crescando
system of Unterbrunner et al. [19] in the way it attempts to share
memory access latency and bandwidth. Crescando loads a tuple
into memory and then “joins” the tuple with all interested queries,
so that the cost associated with loading the tuple into memory is
amortized.

4. CHUNKS OF DATA
DataPath’s data-centric architecture is designed around the no-

tion of a “chunk of data”, or “chunk” for short. Chunks facilitate
DataPath’s push-based approach, where tuples are forced through
waypoints as fast as the waypoint can process them. Chunks also
serve as the basic unit of parallelism in DataPath, since different
chunks can be sent to different CPU cores for processing. Finally,
chunks serve as a way to drop (and later reproduce) tuples when
the system lacks available CPU cycles.

4.1 Moving Chunks Through the System
Logically, a chunk is nothing more than a consistent subset of

the tuples from a relation. This relation may be a base table that
is actually sitting on disk, or an intermediate relation produced via
the application of a set of relational operations. “Consistent” here
means that chunk i from a relation always refers to exactly the same
subset of tuples from the relation. The number of tuples in a chunk
is large—our system uses a chunk size of two million tuples. This
allows per-tuple fixed costs to be amortized to nearly zero.

Chunks are central to DataPath’s design, since they allow DataP-
ath’s execution engine to implement its purely push-based approach
by repeating the following set of simple steps, ad infinitum:

(1) The engine obtains a new chunk, either via a table scan, or as
the output of a waypoint.
(2) If there is not an available worker thread to process the chunk,
it is simply dropped; it will later be re-produced and re-processed.
(3) If there is an available worker, the engine determines the next
waypoint the chunk must be routed to.

(4) The worker thread is assigned the task of running that way-
point’s tuple processing loop over the rows in the chunk.

4.2 The Tuple Bitstring
One of the most basic requirements of the DataPath system is

that when (as part of a chunk), a tuple is moved onto a CPU to
be processed by a waypoint, it must be possible for the waypoint
to find out which queries will be interested in processing the tu-
ple. In other words, it must be possible to efficiently implement the
pseudo-code “if (tuple[i].BelongsTo (Q1))” from the
Introduction of the paper. To do this, we use a mechanism that was
recently also used by Candea et. al in their CJoin work [4]—each
tuple in a chunk has an associated string of bits that determines
which queries the tuple in the chunk is actually valid for. When
a tuple is moved through a waypoint, all queries that might po-
tentially be interested in that tuple should process it. A 1 for the
bit associated with query Qk in the bitstring for the jth tuple in a
chunk means that the jth tuple is valid for the kth query.

4.3 The Basic Chunk Organization
In RAM, a chunk bears some superficial resemblance to Aila-

maki et. al’s PAX layout, which is a semi-column-based layout for
data within a page [2]. Like a PAX page, a chunk stores a con-
tiguous subset of the tuples in a relation. Also like a PAX page, all
attribute values for a particular attribute are stored contiguously in
memory. Unlike a PAX page, there is no sense in which all of the
columns are stored contiguously. In RAM, a chunk is organized
a small amount of metadata, associated with an array of pointers
to the columns in the chunk. Many or even most of these pointers
will be NULL, due to the fact that chunks employ a schema that
is universal for all chunks that are moving through the system (we
we discuss in depth subsequently). The pointer in the ith slot of
the array points to another array that stores the values for the ith

attribute of each of the two million tuples in the chunk. Since this
array may be pointed to by many chunks (see Section 3.4), it has
an associated reference count and mutex to protect the reference
count. The very first slot in the array of pointers always points to
the chunk’s bitmap, which is the chunk’s array of tuple bitstrings.
The resulting chunk organization is shown in Figure 2.

Chunks and the Universal Schema. One of the most fundamen-
tal questions that must be addressed when designing any database
system is how relational operators interpret and understand the lay-
out and type information of the tuples that they process. DataPath’s
meta-compiler produces C++ code that is “written” so as to cor-
rectly interpret the tuples in each chunk, but this does not solve Dat-
aPath’s tuple-interpretation problem entirely. Because data move-
ment in DataPath is shared, if a waypoint is processing n queries
simultaneously, there can be up to 2n different schemas that a way-
point might encounter. The reason for this is quite simple. Recon-
sider Figure 1(c), and the selection waypoint on lineitem.
A chunk sent through this waypoint that is carrying data for all three
queries will contain the six attributes l_quantity, l_shipdate,
l_shipmode, l_orderkey, and l_discount. However, an-
other chunk that does not have any data for Q1 will not include
l_quantity or l_shipdate, and only have four attributes. In
practice, the queries for which a chunk actually contains data will
very over time. Queries finish, and so their attributes are not in-
cluded in chunks that are produced. Or, the table scan feeding a
waypoint may produce a chunk whose data have already been pro-
cessed for a given query; this can happen, for example, if another
chunk was previously dropped and a waypoint is “waiting” until is
sees the dropped chunk again. The system will not expend work to
attach attributes to a chunk that will not be used.

522



In the DataPath system, the potential for schema variability is
handled by making use of a single, universal schema that every
chunk uses, no matter which queries the chunk covers. Every at-
tribute that is used by some query that is being run by the system
is assigned a slot in every chunk, even if the chunk has no data for
that query. In that case, the slot is simply unused and contains a
null pointer–this is fine, because when the generated C++ code
needs to process a tuple, it first looks at the tuple’s bitmap, and de-
termines which queries will be interested in that tuple. This check
protects the system from looking at such null attributes, because
by definition an attribute can only be null if no query that covers
some tuple in the chunk could possibly care about it.

The obvious drawback of this approach is that if the system
is processing thousands of attributes simultaneously, then every
chunk requires thousands of slots, even if no chunk actually con-
tains more than a dozen attributes. This is true, but the cost of this
drawback is negligible in practice. Even if the array of pointers to
attribute arrays is very sparse, its size pales in comparison to the
many megabytes used to store the actual data in the chunk.

DataPath’s mapping of attributes to slots is handled by a soft-
ware component called the attribute manager. When the system is
preparing to process a new query, it registers all of the attributes that
it will use with the attribute manager. If any of these attributes are
new, they are assigned to some unused slot. When a query finishes,
the attribute manager decrements the number of queries using each
of its attributes. If this number reaches zero, the slot is unmapped.

4.4 Modifying Chunks
Except for the bitmap, once created, the columns in a chunk are

never modified. This greatly reduces the amount of data movement
through the system.

Still, chunks themselves may need to be modified. For example,
a chunk must be copied from another chunk. Copying is neces-
sary when a single chunk must be sent to multiple destinations (for
example, consider Figure 1, where the output of the table scan of
lineitem is sent in two directions). To copy a chunk, its meta-
data and array of attribute pointers are copied and written into the
new chunk that is produced. Since only the pointers to attribute
arrays are copied, the copy is shallow and very fast, and the actual
data within the chunk is shared among all of the copies. Reference
counts for each of the attributes in the chunk are incremented, so
that the memory needed to store the attribute can be freed when
all copies are destroyed. The bitmap must be copied as well, but
it differs from the chunk’s other columns in that it can actually be
written to by a waypoint (for example, to zero out a bit for a tuple
that was not accepted by a selection waypoint). A copy-on-
write mechanism is used to keep such copies fast.

5. I/O IN DATAPATH
Because all queries in DataPath are run in a push-based environ-

ment, Datapath’s I/O subsystem is different than that of a classical
database system. The goal of the I/O subsystem is simple: push
data from disk and into memory at the highest rate possible, to sup-
ply a high-volume stream of chunks for the system to process.

5.1 Basic Layout of a Datapath Relation
Just as query processing in Datapath is organized around the no-

tion of a “chunk”, so is disk I/O. To store a relation on disk, the
input tuples are read in from a bulk-loader, one-at-a-time, and then
buffered until two million tuples have been read (where two million
tuples is the size of one chunk). The resulting two million tuples
are assigned a chunk identifier, then decomposed into columns; the
columns are then decomposed into pages, which are one megabyte

in size on our system. Then the chunk identifier, the column identi-
fier, and the page sequence number are together used to hash each
column to a particular disk, where the page is written.

5.2 Reading Relations
When a query is issued to the Datapath system, it is also regis-

tered with the I/O controller, which is the software that runs Data-
path’s I/O subsystem. For each relation that the query must access,
the I/O controller is informed of which columns the query requires.
The I/O controller also keeps track of which chunks have been sent
to the query execution engine for each query.

At query time, to construct the chunks that are to be sent to the
query execution engine, the I/O controller reads in a small amount
of meta-data regarding the first few chunks that are to be read from
the relation. We refer to this initial set of chunks as the active read
set. The I/O controller then allocates enough memory for a staging
area that will serve as the location where the active read set will
be constructed. This staging area has enough space for all of the
columns from all of the chunks in the active read set to be written.
The number of chunks in the staging area might be ten for a fifty-
disk setup. The number is chosen so that even if only a single
column is read, there is a high likelihood that all of the disks will
be asked to fetch at least one page for one of the chunks in the
active read set—in this way, the I/O bandwidth off of each disk is
totally maximized. Recall that pages are randomly hashed to disks.
With ten chunks, two million tuples per chunk, and megabyte-sized
pages, this means that the expected number of pages requested from
each disk for the active read set even while reading a single column
of small, four-byte data objects is (10× 2× 106 × 4)/(106 × 50)
or 1.6 pages per disk—enough to keep most disks busy.

Once the staging area has been allocated, the I/O controller gen-
erates read requests for all of the pages that are needed for all of
the chunks in the active read set. Each disk has a queue of read re-
quests associated with it, that is managed by a separate thread that
is charged with managing that particular disk. When a disk com-
pletes the read of a page into the staging area, the I/O controller is
notified. If all of the pages from all of the columns of one of the
chunks in the active read set have been totally constructed, the I/O
controller wraps the necessary meta-data around the columns and
sends the resulting chunk off to the query execution engine. This
chunk is then removed from the active read set, and replaced with
the next chunk that is still needed by at least one of the queries that
has registered as a reader of that particular relation. The I/O con-
troller then adds enough space to the staging area so that chunk can
be written to, and sends the page requests associated with the new
chunk to the queues associated with each of the disks.

The process of finishing one of the chunks in the active read
set, sending the chunk off to the query execution engine, adding a
new chunk to the active read set, and adding the page read requests
associated with that new chunk to the disk read queues is continued
ad infinitum. The process is run as fast as the I/O controller can
bring the chunks off of disk; the queries themselves have no way to
slow the production of chunks

The immediate result of this lack of interference from the query
execution engine is a very high throughput. On a lightly-loaded
system, the speed with which data can be brought into memory
is remarkable. Even on our low-end benchmarking hardware (see
Section 9), DataPath’s I/O subsystem processes TPC-H query one
at the rate of nearly 70 million tuples per second.

6. DATAPATH’S EXECUTION ENGINE
It is DataPath’s query execution engine (or execution engine for

short) that is tasked with processing those 70 million+ tuples per
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Figure 3: An example path network. This network depicts
three queries running simultaneously. Terminal paths are those
that are labeled with a query identifier, and lead into the right-
hand-side of a join, or into an output waypoint.

second. DataPath’s execution engine is organized around two main
software components: the scheduler and the path network.

6.1 The Need for an Explicit Scheduler
At the heart of the execution engine is a software component

called the scheduler. The scheduler acts both prioritizer of data
processing tasks and as a router for information along the systems
network of paths, from waypoint to waypoint.

There is typically not an analogous component in a traditional,
compute-centric database system—or at least it is not as central. In
such a system, it is usual to set up pipelines between relational op-
erations. Thus, all scheduling and prioritization is implicit, in the
sense that the slowest operation in a pipeline naturally blocks the
other operations from proceeding, in turn freeing more computa-
tional resources for its own use.

Because data processing in DataPath is push-based, control and
prioritization must be explicit. The I/O subsystem produces data
as fast as it can, with no way to slow it down. If the system is
processing many queries simultaneously and becomes CPU bound,
then explicit choices must be made as to which data are important
and are pushed onto a CPU to be processed by a tuple processing
loop—the other data are simply dropped (see Section 6.4).

6.2 The Path Network
DataPath’s path network is a road-map for pushing data into

computations. The path network is a directed, acyclic graph that
is analogous to a query plan in a traditional database system, with a
key difference being that there is only a single path network for the
entire system, no matter how many queries that DataPath is running
simultaneously. An example path network is depicted in Figure 3.
When a new query is injected into the system (or when an exist-
ing query completes) DataPath’s query optimizer updates the path
network and hands the updated network to the execution engine.

Waypoints. As intimated in the introduction to the paper, the nodes
in the path network are called waypoints. Waypoints correspond to
operations such as joins, selections, aggregations, etc., and deter-
mine what computations must be performed. Waypoints are only

responsible for producing the computations that must be run; a
waypoint does no actual work itself (see Section 6.3).

Terminal vs. Non-Terminal Paths. There are two types of paths
(or edges) between waypoints—terminal paths and non-terminal
paths. Terminal paths provide a link to a waypoint from which
data will never independently emerge—such as the final output of
a query result, or the right-hand of an in-memory join operation (as-
suming that the right-hand side is stored in a hash table, and then
probed with data from the left-hand side). When a chunk enters a
waypoint via a terminal path, it need never (and should never) tra-
verse that path again. If it does, erroneous results may occur, such
as adding tuples to a hash table more than one time, or printing a
query result to the screen more than once. To put it yet another way,
data that enters a waypoint via a terminal path may alter the state of
the waypoint, but data that enters via a non-terminal path may not.

Terminal Paths and Chunk Routing. Since chunks can never
emerge from a terminal path, these paths provide the final destina-
tions for chunks as they are routed through the path network. Note
that just attaching query identifiers to each chunk is not enough to
uniquely determine where the chunk needs to go, because a single
query may require that copies of a chunk go in multiple directions
through the system (consider the case of a self-join).

Thus, each chunk produced by the I/O subsystem is stamped with
a set of what we term query-exit pairs. The “query” is a query iden-
tifier, and the “exit” is some terminal path where the chunk will
ultimately be routed to. When a chunk is emerges from a way-
point or from the I/O subsystem, the scheduler looks at each of the
query-exit pairs stamped on the chunk, and determines which path
or paths the chunk must be sent down. If the same chunk must
be sent down multiple paths, it is first copied the requisite number
of times (see Section 4), and the various copies of the chunk are
sent down the appropriate paths. For example, reconsider Figure 3.
A chunk produced by waypoint w2 and labeled with the query-
exit pairs (Q1, w3), (Q2, w3) would be sent down the terminal link
from w2 to w3. However, if the chunk had been labeled with the
pairs (Q1, w3), (Q3, w9), it would be copied to obtain two identi-
cal chunks. One would be labeled with the pair (Q1, w3), and sent
down the terminal link to w3. The second would be labeled with
the pair (Q3, w9) and sent down the non-terminal link to w4.

6.3 Scheduler Implementation
The scheduler is implemented as a single thread. Its operation

centers around a data structure called the work queue.
When the I/O subsystem or a waypoint produces a chunk, the

chunk and any relevant meta-data are placed into the work queue.
The scheduler constantly monitors the work queue, pulling chunks
out of it. When a chunk is extracted from the work queue, the
scheduler has two options. It may decide that there are not enough
CPU resources available to process the chunk, and so it must drop
the chunk. Or, the scheduler may give the chunk to the waypoint (or
waypoints) that is (or are) supposed to process it. The waypoints
themselves run on the scheduler’s thread, and, like the scheduler,
they do not actually do any data processing. Instead, a waypoint
packages the chunk into a so-called work unit that contains both the
chunk and whatever other state information, code, and meta data
are needed to process it. After the work unit is constructed, the
scheduler sends the work unit to a worker thread, which actually
executes the work unit. The scheduler will typically maintain one
worker thread per CPU core.

Note that the scheduler never does any data processing work it-
self, nor is it allowed to do any “heavy lifting” (such as allocating
big blocks of memory, or looking at the actual data within a chunk).
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Any computationally-intensive work must be packaged into a work
unit. The reason is simple: many gigabytes of new data being pro-
duced by the I/O subsystem each second, and completed work units
are constantly being inserted into the work queue in a bursty fash-
ion. If the scheduler were to become pre-occupied with actual data
processing for even a few milliseconds, the amount of data buffered
in the work queue could grow uncontrollably.

6.4 Table Scan/Execution Engine Interaction
Controlling the Table Scans. Thus far, we have repeatedly em-
phasized the fact that the various table scans each have a mind of
their own, and that they constantly throw as much data at the execu-
tion engine as they can. In fact, this is a slight over-simplification.
Given a table T , at all times, the I/O controller is aware of exactly
which query-exit pairs that have requested data from T , as well as
what columns those query-exit pairs have requested. The I/O con-
troller also maintains information about for which query-exit pairs
each chunk has been produced. The I/O controller will only add a
column to a chunk when there is some active query-exit who needs
that column, and has never seen that chunk before; data that is not
need for any chunk is never read from disk.

Another way in which the execution exerts some control over the
I/O controller is that the I/O controller will not actually start pro-
ducing data for a particular query-exit pair until it is instructed to
do so by the execution engine. The execution engine determines
when to signal the I/O controller that it should start producing data
for a particular query-exit by polling all of the waypoints between
the table scan and the query-exit. Each waypoint maintains a list
of query-exits for which it is “ready-to-go”. For waypoints corre-
sponding to simple operations such as selections, the waypoint is
immediately “ready-to-go” for all of its query-exit pairs. But con-
sider a join operation, where the join is implemented by reading the
right-hand-side input entirely into memory and constructing a hash
table over it. The join waypoint will not signal “ready-to-go” on the
left-hand-side until the hash table is fully constructed. Thus, peri-
odically, the scheduler will walk backwards from query-exit down
to the table-scan that produces data for it. If every waypoint along
that route has the query-exit in its “read-to-go” list, the I/O con-
troller is notified and data begins to flow along that route.

For example, consider Figure 3, and the query-exit pair (Q2, w8).
The scheduler will poll w8, w6, w3, and w1. When all have (Q2, w8)
in their “ready-to-go” list, the I/O controller is notified, and chunks
stamped with (Q2, w8) begin to appear from lineitem.

Dropping Chunks. The other way in which the execution engine
and the I/O controller interact is when the scheduler decides to drop
chunks, due to the fact that it has no spare CPU cycles to allocate
to processing the chuck. In this case, all of the query-exit pairs
associated with the lost chunk are sent to the I/O controller. The
I/O controller then resets the status of that chunk from “sent” to
“unsent”, for each of those query-exit pairs, and the chunk will be
re-produced the next time that it is read in sequence.

7. PATH NETWORK OPTIMIZATION
DataPath’s version of a query optimizer is its path network opti-

mizer. The path network optimizer is similar to a traditional cost-
based query optimizer, with one significant difference. Rather than
taking a single query and attempting to find a good plan, it in-
stead takes as input the existing path network, and then attempts
to work the new query into the network in such a way as to mini-
mize the additional data movement. Note that while this problem
bears some superficial resemblance to the multi-query optimization
(MQO) problem [17], it is actually quite different. MQO strives to

compile queries into trees of relational operations where the sub-
trees match up exactly: the same selection predicates, the same
join predicates, etc. In DataPath, sharing is much easier to come
by. For example, a selection waypoint with input path p can be
shared by any query that sends any data down path p—the selec-
tion predicates need not match. Assuming that the right-hand input
to a join is the smaller relation, then an equi-join waypoint with
left-hand input path pl can be shared by any query that sends data
down pl, as long as that query shares an equality check with the
same attribute (or attributes) on the tuples in pl. Because all joins
share the same data structures (see Section 8), the right-hand inputs
of the queries that use the same join waypoint need not even match.

At this point, we do not have an industrial-strength path opti-
mizer; what we have is a relatively simple, “proof-of-concept” im-
plementation. As such, this section is not meant to be the defini-
tive statement on how a path optimizer should be constructed. But
our optimizer is sufficient to handle the workloads described in the
benchmarking section of the paper.

7.1 Cost Function
We view path network optimization as a cost-based search prob-

lem. For a waypoint w, let t(w) denote the total number of tuples
that are moved into the waypoint to run all of the queries in the
network to completion. The cost of a path network P is defined as:∑

w∈P

t(w)

The goal of the path network optimizer is to build a path network
that minimizes the value of this cost function.

Estimating the number of tuples produced by each of the oper-
ations used to implement the query is long-studied, and we use all
of the standard estimation formulas (see, for example, [15]). How-
ever, our problem is unique in that DataPath shares data movement
between computations, so that if two queries send the same tuple
from one waypoint to another, that tuple should not necessarily be
double-counted when costing the resulting path network.

7.2 Search Strategy
Path network optimization is an online problem, in the sense that

the system will currently be running a set of queries using an ex-
isting path network, and then need to add a new query to the net-
work so as to minimize the additional cost. We currently imple-
ment the process of integrating a new query into the network using
an A*-style search [16]. Given a new query and an existing net-
work, the search process attempts to integrate one join from the
new query into the path network at a time, with the goal being the
fully-integrated plan of minimal cost.

This search requires that we have some way to take a plan that
has been partially integrated into the existing network, and produce
all plans that have one more join integrated into the path network.
This is done as follows. A query is represented as a graph, where
each of the tables referenced by the query is a node in the graph,
and there is a link between nodes if there is a join predicate that
somehow links the two queries. For example, consider the graph
at the upper right of Figure 4(a), which represents a query that has
join predicates between orders (O) and lineitem (L), L and
supplier (S), L and partsupp (PS), and PS and S. To pro-
duce all possible ways to incorporate one more join into the path
network, the path optimizer considers all possible ways to collapse
two adjacent nodes.

For example, the path optimizer can choose to collapse the S and
PS nodes, as has been done in Figure 4(b). To collapse two nodes,
the path optimizer first looks at the sets of tables referenced in each
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Figure 4: Exploring the path optimization search space.

of the two nodes to be collapsed; this is {S} and {PS}. It then
looks at the existing path network, and tries to determine if there
is any existing waypoint w in the path network where the set of
leaves (database table scans) descended from the left-hand child of
w covers one of these sets of tables, and where the join attributes
originating from this set of leaves match those from the join we
are trying to integrate. If such a w exists, and the join predicate
corresponding to the link that is being collapsed is the predicate
being computed by w, then the new, collapsed node in the query
is mapped to w. This is exactly what has happened in Figure 4(b),
where the node containing S and PS has been mapped to w1.

If such a w does not exist, then an appropriate waypoint is cre-
ated and added into the path network—this new waypoint will have
paths leading into it from the two waypoints that correspond to the
two nodes in the query that have been merged. This is what hap-
pened when taking the query graph in Figure 4(c.1) and collapsing
the two remaining nodes.

Note that all possible next steps are enumerated by the A*-search
algorithm, as it attempts to find the best integration. For example,
consider Figure 4(b). There are two options. We can choose to

collapse the query into {L, O} and {S, PS}, which would result in
c.1, or we can collapse the query into {O} and {L, S, PS}, which
would result in c.2. Both of these options are considered during the
enumeration, and the coster will be used to choose between them.

8. JOIN PROCESSING
Though space precludes a detailed discussion of most of Data-

Path’s relational operations, we do discuss join processing in de-
tail. Our discussion considers a join where the right-hand-side
(RHS) relation fits into RAM, since we have not yet implemented
an external-memory join.

8.1 Key Considerations
When designing DataPath’s join, we kept the following consid-

erations in mind:

(1) We chose to optimize for the extreme case—a very large (100GB+)
sized RHS that can fit in memory, but just barely. We felt that if we
had a nice solution for such an extreme case, then modern hardware
(with its sophisticated caching schemes) should make the easy case
run well, too.

(2) All of the costs associated with a join (memory bandwidth and
latency, as well as CPU) should be constant, no matter how many
queries are mapped to a particular join waypoint. That is, it should
not be any more expensive to process the left-hand-side (LHS) for
ten queries simultaneously than for one query.

(3) Minimizing memory bus bandwidth was more of a concern than
minimizing latency due to cache misses. Since everything in Dat-
aPath is push-based, the system moves around a huge amount of
data. Simply running 50+ disks at full scan speed consumes a
tremendous amount of bandwidth.

(4) Cache miss stalls are a big problem, but through experimenta-
tion, we came to realize that the cache miss problem encompasses
two very distinct subproblems: the TLB miss incurred when trans-
lating a virtual to a physical address, and the data cache miss in-
curred when actually going to that physical address. The former is
actually much more significant than the latter. Using standard 4KB
RAM pages, on our hardware an arbitrary lookup into a 100GB ar-
ray incurs around 500 nanoseconds in latency, with only 1

10
or 50

nanoseconds due to the actual data lookup. Fortunately, it seems
that the TLB miss problem is going away due to the efforts of OS
and hardware designers. A simple switch to 2MB RAM pages (now
nicely supported by newer OS kernels and chips) reduces the TLB
working set by a factor of 500, to only to 50,000 addresses for a
100GB array. 50,000 addresses fit in L2 cache (with perhaps a few
misses into L3), cutting the TLB miss penalty by a factor of four
in our experience. One GB pages, which are supported by newer
processors but have not yet worked their way into most OS kernels,
should eliminate the TLB miss penalty entirely.

Taken together, this led us to eschew a sort-based solution in fa-
vor of a hash join, despite some very compelling arguments from
the MonetDB project that a multi-pass, radix-sort-based join may
be preferred on a modern processor [14]. Additional reasons for
choosing hashing as opposed to sorting are:

• First and foremost, it is very clear how work can be shared
in a hash-based join. All chunks from all queries are added
asynchronously to a large hash table that indexes the RHS
of the join. When a chunk streams into the LHS of the join,
each of the tuples in the chunk are hashed, and a lookup in
the RHS hash table is performed. If a LHS tuple is shared by

526



many queries, then the latency and bandwidth costs associ-
ated with the hash table lookup are amortized.

• Queries are added to join waypoints asynchronously, so that
while one query is running, a second query may be added.
This would be difficult for a sort-based solution. Once the
RHS for one query is sorted and sitting in RAM, it would be
impossible to add the new query’s data to the RHS without
re-organizing the whole RHS, because (among other reasons)
adding even a single byte to the middle of a sorted array re-
quires that the whole array after that byte be re-written.

• Sorting (even in three or four passes using a MonetDB’s
radix approach) is usually more bandwidth intensive than
hashing, since each data object must be loaded onto the CPU
multiple times.

• Finally, the ability to use large memory pages, significantly
reducing the TLB cost, makes hashing all the more attractive.

8.2 Our Hash-Based Solution
Once we decided to use hashing, several additional design con-

siderations emerged. First, we decided to avoid sophisticated meth-
ods to try to make hashing cache-friendly [20, 6]. These can pro-
duce impressive performance, but (in our opinion) there is insuf-
ficient evidence that they scale to very large (100GB+) sized in-
memory hash tables, and we worry that they can be tied too closely
to specific hardware. Thus, we decided to accept a single, 50-
nanosecond RAM access per probe, but no more. Second, to deal
with queries that were issued asynchronously, we needed to support
concurrent building and probing of the hash table—but probing had
to be possible without any locking, since this would kill perfor-
mance. Third, if we had a hope of even coming close to keeping
up with 50+ disks streaming data to the RHS, we could never write
data more than once to the table. This ruled out a linear-hashing
scheme [13], for example, to deal with a growing hash table. Fi-
nally, we somehow had to deal with the problem discussed in Sec-
tion 4.3, namely, that since many queries are sharing the same data
structure (in this case, the hash table), we have to simultaneously
support many schemas, and all possible combinations thereof. We
addressed this considerations with the following design.

One Large Hash Table. In DataPath, there is only a single hash
table, shared by all queries and all join waypoints. This hash ta-
ble consumes almost all of the RAM available to DataPath. Our
benchmarking hardware has 128GB of RAM. On startup, DataP-
ath organizes 233 × 12B (or 103GB) of this RAM into its single
hash table—12 bytes is the size of each hash table entry. The use
of a single, gigantic hash table alleviates any problems associated
with needing to grow a hash table in response to more data being
added to the RHS of a join, which in turn would mean moving data
around (as in linear hashing). Since the hash contains nearly all of
the RAM in the system, if more data can’t fit into the hash table,
then there is no way it can fit into RAM!

Since a join with a very small RHS whose working set could
fit easily into L2 cache may suffer by having its RHS scattered all
over a 103GB hash table, a waypoint begins by picking a random
interval in the hash table that is the same size as L2 cache. Initially,
it tries to hash all of its RHS data there. When the RHS data exceeds
the size of this region, the waypoint gives up and begins hashing its
data evenly, all over the hash table.

Concurrency. To deal with concurrency and to somewhat alleviate
the cost of cache misses as the RHS of the hash table is constructed,
DataPath uses a two-phase approach to add new data to the hash

table. First, data from a RHS chunk are hashed to a small hash
table (10MB in size) that is owned only by the single CPU core
that is hashing that chunk; since it is wholly-owned by one core, no
locking is needed. When that table fills, it is sequentially merged
into the huge table. There are 64 contiguous regions in the huge
table (where 64 is twice the number of CPU cores). To merge data
into a region, that portion of the table must be locked, but since the
merge happens sequentially, a region is locked only once by a CPU
core per 10MB small hash.

To handle concurrency between readers and writers, each hash
table entry has a “used” bit. No LHS probe will look at a hash table
entry whose “used” bit is not set, and so as long as this bit is set by
the last instruction writing to a hash table entry, there is no chance
that a reader will see bad data.

Tuple Storage/Access. Finally, there is the issue of moving a tuple
from its column-based format (in a chunk) and into the row-based
format necessary to store individual tuples in the RHS hash table—
as well as the difficulties associated with each tuple in the hash
table being possibly being “owned” by a different set of queries,
and having a different schema. When the table is probed to try to
find a match with a LHS tuple and a potential mate is found, how
is it interpreted? What is its schema?

One solution would be to have each hash table entry contain a
pointer to the serialized record and its schema, stored as a con-
tiguous block in RAM. However, we were quite opposed to this
solution, because a hash lookup would require at least two random
RAM accesses: one to the hash table, and one to chase the pointer.
We felt that all data needed to reside in the hash table itself. Thus,
we use the following solution. A single record is stored as many
hash table entries, not just one. As mentioned before, each entry in
the hash table is twelve bytes. The first four bytes in each entry are
metadata, and the last eight are actual data. When a tuple is hashed,
it is first broken up into a series of eight-byte segments, each of
which will be put into one hash table entry. If an attribute value
from the tuple is eight bytes or less, it resides in a single segment.
If it is more than eight bytes, it will reside in a series of eight-byte
segments. Among other things, the meta-data associated with each
eight-byte data segment contains the “used” bit (described above)
as well as (a) the column that the data is from, (b) whether it is
the first eight-byte segment from that column, or the second, or the
third, and so on, and (c) an offset to where the next eight-byte seg-
ment from this tuple is stored in the hash table. Aside from the
eight-byte segments used to store its actual data, the chunk requires
two additional eight-byte segments—one to store its hash key, and
one to store its query membership bitstring.

To actually store a tuple in the hash table, the record is hashed,
and the hash table entry associated with that hash value is accessed.
If that entry is used, then a linear search is performed until the first
unused slot is found, and tuple’s first twelve-byte entry is written
(this consists of four bytes of meta-data as well as the eight byte
hash value). The next unused slot is then found, and the entry con-
taining the query membership bitstring is written. Then all of the
tuple’s data are written in subsequent unused slots.

To probe the table, we first use the LHS tuple to calculate a hash
value, and the appropriate hash table entry is checked. If it is un-
used, then no mate is found. If it is used, we see if the entry starts a
new tuple. If it does, we check to see if its hash value matches the
probe hash value. If it does, then we have a potential mate.

9. BENCHMARKING
In this section, we detail the sort of performance one might ex-

pect when running DataPath on an inexpensive server machine, an-
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swering queries on a terabyte-sized database (or larger). Our goal
is not to argue that the system we have implemented is the fastest
available—such arguments are difficult to make, due to the affinity
of different database systems for different hardware configurations
that have very different purchase, setup, and maintenance costs, as
well as questions regarding the quality of the physical database de-
sign and the human resource cost that goes into tuning the database.
Thus, our quite modest goal is twofold. First, we seek to uncover
evidence that the DataPath system should (or should not) be seri-
ously considered as an alternative database system architecture for
use in environments with heavy, concurrent workloads. Second,
we wish to impart to the reader some intuition as to what bottle-
necks, pitfalls, and benefits might be encountered when running an
intensive DataPath workload on a large database.

Experimental Overview. Our DataPath prototype is around 50,000
lines of code, mostly C++. The hardware we run our prototype on
is a relatively inexpensive server with eight AMD CPUs having
four cores each. The system has about 128GB of RAM, and costs
approximately $25,000. We use 52, 300GB Velociraptor disks for
database storage. These disks are in the server itself, as well as in
four enclosures. The total storage cost was an additional $35,000.

We test our DataPath prototype on a set of eight, multi-table
queries over a one terabyte TPC-H database. We wrote seven of
the queries ourselves (as opposed to using TPC-H queries them-
selves) since the multi-table queries in the actual benchmark have
a structure that is so uniform that the opportunities for sharing are
so numerous as to be somewhat unrealistic. The eighth query (Q8)
corresponds to query one from the TPC-H benchmark (this is a ta-
ble scan of lineitem). The queries are (with some column names
shortened for brevity):

Q1: SELECT SUM(l_extprice*(1-l_discount)) AS rev

FROM lineitem, orders

WHERE l_ordkey=o_ordkey AND o_orddate>=’1997-02-01’

AND o_orddate < ’1997-05-07’;

Q2: SELECT AVG(o_totalprice) AS agg

FROM orders, customer, nation

WHERE o_cstkey=c_cstkey AND o_orddate>’1997-03-02’

AND o_orddate < ’1997-05-09’ AND n_natk=c_natk

AND n_name=’FRANCE’ OR n_name=’GERMANY’;

Q3: SELECT COUNT(l_orderkey) AS cnt

FROM lineitem, orders, customer, nation

WHERE o_cstkey=c_cstkey AND l_ordkey=o_ordkey

AND c_natkey=n_natkey AND n_name=’ALGERIA’

AND o_orddt>=’1997-03-01’ AND o_orddt<’1997-04-07’;

Q4: SELECT 100.00*
SUM(CASE WHEN p_type LIKE ’%PROMO%’

THEN l_extprice*(1-l_discount) ELSE 0

END) / SUM(l_extprice*(1-l_discount))

FROM lineitem, part

WHERE l_partkey=p_partkey AND p_size=13

AND p_brand LIKE ’Brand%’;

Q5: SELECT AVG(l_extprice*(1-l_discount))

FROM lineitem, part, orders

WHERE l_partkey=p_partkey AND l_ordkey=o_ordkey

AND o_orddt>’1997-2-20’ AND o_orddt<=’1997-3-24’

AND p_container LIKE ’%CAN%’;

Q6: SELECT AVG(l_extendedprice) AS agg

FROM lineitem, part, supplier, nation

WHERE s_suppkey=l_suppkey AND p_sz>5 AND p_sz<10

AND p_partkey=l_partkey AND p_type LIKE ’%BRUSH%’

AND n_natkey=s_natkey AND n_name=’RUSSIA’;

Q7: SELECT SUM(CASE WHEN n_name=’JAPAN’ THEN

l_extprice*(1-l_discount) ELSE

0 END) / SUM(l_extprice*(1-l_discount))

FROM nation, lineitem, orders, customer, supplier

WHERE l_ordkey=o_ordkey AND c_custkey=o_custkey

AND s_natkey=c_natkey AND s_natkey=n_natkey

AND o_orddate>’1997-03-01’

AND o_orddate<’1997-04-07’ AND n_name=’JAPAN’;

Q8: TPC-H query one.

We then ran the following protocol:

(1) We ran each independently on a one-terabyte instance of the
TPC-H database, to obtain the individual running times. We also
run Q8 over a ten-terabyte instance of the database.

(2) Then, to test a lightly concurrent workload, we select three
of those queries, and randomly order those queries three in three
ways to form three permutations: {Q5, Q3, Q1}, {Q1, Q5, Q3},
and {Q3, Q5, Q1}. The queries in each permutation are fed to Dat-
aPath one-at-a-time, in order, which runs them on a one-terabyte
TPC-H instance. A fourth “permutation” consists simply of three
different versions of Q8: {Q8, Q8, Q8}. This fourth permutation
is run over both one- and ten-terabyte instances.

(3) To test a heavily concurrent workload, we do the same thing
but create three different eight-query workloads: {Q5, Q8, Q6, Q4,
Q7, Q2, Q3, Q1}, {Q1, Q5, Q4, Q3, Q6, Q8, Q2, Q7}, and {Q2,
Q1, Q7, Q5, Q3, Q8 Q4, Q6}. A fourth “permutation” consists
of eight different versions of Q8, which is run over both one- and
ten-terabyte instances.

Results. On the one-terabyte instance of the database, the eight
queries in isolation took one minute, 22 seconds, 0:27, 1:23, 1:19,
1:52, 0:47, 1:28, and 1:31 to run, respectively, for a total serialized
time of 10:09. Q8 took 17:11 to run to completion on the ten-
terabyte instance of the database.

On the one-terabyte instance of the database, the four, three-
query workloads took 2:22, 1:48, 1:53, and 1:30 to run, respec-
tively. The three versions of Q8 took 17:12 to run to completion on
the ten-terabyte instance of the database.

The four, eight-query workloads took 6:43, 5:30, 4:21, and 1:31
to run to completion on the one-terabyte instance of the TPC-H
databases. The eight concurrent versions of Q8 took 17:52 to run
to completion on the ten-terabyte version.

To illustrate in more detail what is going on when the heaviest
of the workloads are run, we collect and plot some additional data
regarding the system resource utilization for both the slowest and
the fastest of the three, eight-query workloads (not counting the
one consisting entirely of Q8). Throughout the benchmark run, we
collect (a) the CPU utilization, and, per second: (b) the number
of chunks that have been dropped, (c) the number of hash table
insertions that have been processed, and (d) the number of hash
table probes that have been processed.

These four values are plotted as a function of time in Figure 5(a)
and Figure 5(c). The y-axis of these two plots is a number from
0 to 100 that gives the percentage of the maximum load that was
observed. For CPU utilization, the maximum load is 3200% (that
is, all 32 of the system’s cores are fully engaged). For the chunk
drop rate, the maximum is 36. The maximum probe rate is 109
million, and the maximum insertion rate is 12 million.

We also plot the hashing and probing activity of queries Q1

through Q7 for the slowest (Figure 5(b)) and fastest (Figure 5(d))
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Figure 5: Detailed results for two eight-query, concurrent workloads.

of the three workloads. For each query, these plots show the time
periods in which each of the seven queries were adding data to the
hash table, and the time periods where the queries are performing
probes of the hash. Q8 is excluded from these plots because it does
not run any joins.

Finally, we plot the path networks used by these workloads in
Figures 6(a) and (b).

Discussion. There are several notable results here. First, the re-
sponse times for each of the seven queries in isolation seem to be
quite reasonable. While a system could surely be assembled us-
ing commercial hardware and software that would do much better,
we feel that a sub-two-minute response time on a multi-table join
query over a terabyte-sized database, with no tuning or indexing is
quite good, particularly using a relatively inexpensive machine.

More interesting is the way in which performance degrades as
the workload is intensified. Consider the various three-query work-
loads (excluding the one that contains only instances of Q8). Each
of these workloads contains Q5, which took 1:52 to run in isolation.
Adding Q1 and Q3 to a workload along with Q5 causes absolutely
no degradation in performance in two of the three permutations that
we tested (in fact, one of the permutations containing Q5 is actually
slightly faster than running Q5 alone), and even the worst ordering
experiences only a penalty of 27% compared to running Q5 alone.

Now consider the various eight-query workloads (again exclud-
ing the workload that contains only Q8). In the best case, running
the eight queries together takes 43% of the time that running the
queries sequentially would take. We feel that given the challeng-
ing nature of this workload, this result is quite remarkable. Six
of the eight queries involve joins over lineitem with no selec-
tion predicate on the table. This means that all six billion tuples in
lineitem must be joined with at least one other table in each of
those six queries, which is a rather daunting prospect. Even when
running these eight multi-table join queries, and with all 54 disks
running at full speed, DataPath is still I/O bound. Despite all of the

memory bandwidth being used to move at least one column from
each of the TPC-H tables into RAM, we see from Figure 5(c) that
DataPath still stays at or above 60 million hash table probes per
second as soon as the majority of the hash table construction has
finished (after around 50 seconds) and until the workload begins to
wind down at 250 seconds. The chunk drop rate stays low through-
out, and the CPU utilization never quite hits the ceiling of 3200%.

It is informative to compare this with the slowest workload. Con-
sider Figures 6(a) and (b). In the latter, faster case, Q3 is executed
using a pure, left-deep query plan, whereas in the former case the
system uses a bushy plan in an attempt to share both a join of
lineitem and orders and a join of nation and customer.
Thus, the output of the join of lineitem and orders must be
written to the hash table. This in turn means that the query must
perform hash table updates throughout execution (see Figure 5(b)).
Such updates are very costly since they necessitate moving por-
tions of the system’s hash table into the CPU cache where they are
merged with the new data, and then written back to memory. These
ongoing merges seem to consume enough memory bandwidth that
the system cannot keep up with the ongoing construction also re-
quired by Q7, and all of the concurrent probing. Hence, the chunk
drop rate skyrockets (Figure 5(a)) and throughput suffers.

This illustrates some of the limitations of our relatively simple,
prototype path network optimizer. For example, the optimizer does
not differentiate between hash table reads and writes. In addition,
the optimizer also has no understanding of time. A key drawback
of the plan of Figure 6(a) seems to be that the join of lineitem
and orders lasts a very long time, and so the hashing of the output
will last a long time—thus creating a long time period during which
high-speed probing may be difficult or impossible.

10. FINAL REMARKS
Some readers may question the lack of emphasis on a cluster-

based solution, which one might argue is the only cost-effective
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Figure 6: Path networks used for the slowest eight-query workload (a) and the fastest (b). Probing relations use blue links.

way to scale to the largest database sizes. We respond by point-
ing out that DataPath’s data-centric approach should also apply to
a cluster environment. On a concurrent workload, even the nodes
in a shared-nothing system will run faster by utilizing data-centric
processing. Furthermore, massive, shared-everything-style paral-
lelism is increasingly unavoidable. Relatively inexpensive 64-plus-
core machines should become common in the next few years. As
time passes, it is inconceivable to us that the individual machines in
most clusters will not resemble the multi-processor behemoths of
yesteryear. As the number of processing units per machine grows,
DataPath’s approach should become more attractive.

Finally, we address the slow and possibly inevitable shift from
hard disk to solid state. Flash differs from hard disk in that (a)
random I/O patterns are not a problem, and (b) flash offers much
higher sustained transfer rates. In our opinion, point (a) is not very
relevant for analytic database design—few I/Os in a well-designed
AP system should be random anyway. But point (b) is very rele-
vant. DataPath is centered around the idea of pushing an uncon-
trollable stream of data into the system, then processing as much
as possible. A single inexpensive solid state drive will soon stream
data at 500MB/sec—to us, this is an exciting prospect, because it
means that the stream of data will become more uncontrollable.
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