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ABSTRACT
Consider a set of black-box models – each of them independently
trained on a different dataset – answering the same predictive
spatio-temporal query. Being built in isolation, each model tra-
verses its own life-cycle until it is deployed to production, learning
data patterns from different datasets and facing independent hyper-
parameter tuning. In order to answer the query, the set of black-box
predictors has to be ensembled and allocated to the spatio-temporal
query region. However, computing an optimal ensemble is a com-
plex task that involves selecting the appropriate models and defin-
ing an effective allocation strategy that maps the models to the
query region. In this paper we present DJEnsemble, a cost-based
strategy for the automatic selection and allocation of a disjoint en-
semble of black-box predictors to answer predictive spatio-temporal
queries. We conduct a set of extensive experiments that evaluate
DJEnsemble and highlight its efficiency, selecting model ensembles
that are almost as efficient as the optimal solution. When compared
against the traditional ensemble approach, DJEnsemble achieves up
to 4𝑋 improvement in execution time and almost 9𝑋 improvement
in prediction accuracy.

CCS CONCEPTS
• Information systems→ Query planning; Spatial-temporal
systems.

KEYWORDS
Ensembles, Spatio-temporal, Deep Learning, Query Processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SSDBM 2021, July 6–7, 2021, Tampa, FL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8413-1/21/07. . . $15.00
https://doi.org/10.1145/3468791.3468806

ACM Reference Format:
Rafael S. Pereira, Yania Molina Souto, Anderson Silva, Rocio Zorrilla, Brian
Tsan, Florin Rusu, Eduardo Ogasawara, Arthur Ziviani, and Fabio Porto.
2021. DJEnsemble: a Cost-Based Selection and Allocation of a Disjoint
Ensemble of Spatio-temporal Models. In 33rd International Conference on
Scientific and Statistical Database Management (SSDBM 2021), July 6–7, 2021,
Tampa, FL, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3468791.3468806

1 INTRODUCTION
As AI expands into wide economical and societal activities, an
increasing number of AI models are developed and embedded in
diverse applications in many different domains. A particular class of
models such as in [22] aims to predict spatio-temporal phenomena
by capturing data patterns that are both spatially and temporally
correlated to the prediction. Typically, in order to improve predic-
tion accuracy different models are considered. The assumption is
that models have been trained and validated independently – as
in a traditional machine learning life-cycle – and are integrated
into applications as black-box functions, i.e., without taking into
account its architecture particularities.

In this paradigm, challenges emerge in the model selection pro-
cess to answer a given prediction query. Black-box models exhibit
different performance due to variation in the predictor’s archi-
tecture, hyper-parameters’ configuration, and the data samples
observed during training [13]. Thus, for a given predictive query
covering areas of varying spatio-temporal data correlation, a com-
bination of spatio-temporal predictor models (STP), i.e. an STP
Ensemble, may lead to an improved prediction accuracy, when
compared to a single model prediction. However, (a) selecting the
models to compose an ensemble and (b) defining their spatial allo-
cation over a query region is a hard problem. In (a), the challenge
involves predicting an STP model performance in a spatial region it
may not have seen during training, while in (b) one must take into
account the model varying performance within the query region.

In this paper, we propose DJEnsemble, an approach for the selec-
tion and allocation of models to compose a disjoint ensemble for
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Figure 1: STPs 𝑀1 and 𝑀2 trained on a different region than
two other STPs 𝑀3 and 𝑀4. On the right, the optimal alloca-
tion of models to answer a query over a different region

spatio-temporal predictions. This approach is orthogonal to the de-
sign and exploration of specific learning strategies and algorithms.
It can be applied to a set of spatial models implementing algorithms
varying from time-series predictors – such as ARIMA – to spatio-
temporal deep learning models with different architectures and
hyperparameters [5, 16].

We perform extensive experiments that evaluate our approach
on two real datasets using six queries and a set of 36 STPs. Firstly, we
show that the learning curve correctly approximates the prediction
error as a function of data distribution distances. Next, we show that
the optimization procedure implemented by DJEnsemble is capable
of selecting a good ensemble plan out of a large number of possible
predictor allocations. The approach is resilient to different scenarios
involving the predictors’ architecture and training datasets. Finally,
we compare the results obtained by DJEnsemble against 5 other
ensemble approaches, including both a traditional and a stacking
ensemble. DJEnsemble achieves an accuracy improvement of up to
9𝑋 and it reduces query prediction time by a factor of up to 4𝑋 .

We summarize our contributions as follows:
• We propose a data distribution based methodology to select
spatio-temporal models for building ensembles

• We also propose a multi-variate cost model and allocation
approach to support the DJEnsemble methodology

• We present a comprehensive experimental evaluation over
two real datasets of meteorological observations, 6 queries,
and 36 models.

2 PRELIMINARIES
In this section, we describe in more detail the analyzed problem, the
spatio-temporal predictors considered and the Generalized Lambda
Distribution (GLD), a probability density function used in our ap-
proach.

2.1 Spatio-Temporal Queries Optimization
Assume that we have access to multiple black-box STP models that
can answer predictive spatio-temporal queries. The question we
want to answer is: “How to select and spatially allocate an STP
combination that gives the best possible performance, by measur-
ing performance as a function of multiple parameters, including
accuracy, execution time, and resource utilization?”. This task can
be formulated as the optimization problem of finding the optimal

STP ensemble of black-box predictors that minimizes a multivari-
ate cost function. We refer to this problem as the optimization of
spatio-temporal predictive queries (OSTEMPQ) problem. The solu-
tion specifies an allocation of the selected predictor’s spatial frames
to the query region that forms a disjoint ensemble allocation. Figure
1 illustrates this scenario. On the left-hand side, it shows a spatio-
temporal domain, where models𝑀1 and𝑀2 are trained in region
𝑅1 and models𝑀3 and𝑀4 are trained in region 𝑅2. 𝑅3 corresponds
to a spatio-temporal region of interest to a query. Finally, on the
right-hand side, a solution to the query is given by the allocation
of models𝑀1,𝑀2 and𝑀4. However, identifying such an ensemble
is a hard problem as it involves: (i) estimating the prediction accu-
racy of each black-box predictor at the query region; (ii) defining a
black-box model ensembling approach; (iii) finding the ensemble
plan that minimizes the cost function; and (iv) planning for the
execution.

We consider spatio-temporal deep learning models to solve re-
gression problems, each models input and output being lists of
fixed-size frames. Both input and output frames have the same size,
and the number of frames that the model receives determines the
rate of the input temporal signal. In this paper, we adopt the ConvL-
STM architecture as our baseline. Given a particular convolutional
model with a fixed-size frame and a spatial area where predictions
are to be computed, we assume that multiple invocations of the
model may be necessary to cover the entire area.

2.2 Modeling Data Distributions with GLDs
Tipically during training, a learner captures data patterns in an
input dataset. Different approaches to learn data distributions and
extract meta-features from the training data are proposed in the lit-
erature [1, 6]. We adopt the Generalized Lambda Distribution (GLD)
probability density function (pdf) [19] because it can model an en-
tire family of data distributions, such as Gaussian, Logarithm, and
Exponential [4]. GLD encodes different data distributions through
the specification of the lambda parameter representing statisti-
cal moments, where 𝜆1 and 𝜆2 determine the location (i.e., mean)
and scale (i.e., standard deviation) parameters, while 𝜆3 and 𝜆4
determine the skew and kurtosis of the distribution, respectively.
Then, a GLD is represented as𝐺𝐿𝐷 (𝜆1, 𝜆2, 𝜆3, 𝜆4), known as the RS
parametrization [19]. We fit GLDs to the distribution in the time-
series at each spatial position and time seasonality interval [14].
Then, we use the 𝜆 parameters to identify regions sharing similar
distributions (Section 3.1.1).

3 THE DJENSEMBLE APPROACH
We propose the DJEnsemble approach to solve the OSTEMPQ prob-
lem. DJEnsemble has an offline phase, in which the data and the
candidate models are prepared, and an online phase, in which a
cost function is used to select the model ensemble that answers the
given query. DJEmsemble is implemented as an extension of the
SAVIME multidimensional array database system [15].

3.1 Offline: Preprocessing
The offline phase consists of three different stages: Clustering, in
which data is preprocessed and clustered into regions with similar
distributions, tiling, in which we repartition the domain data into
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nonaligned tiles and a last stage in which we estimate STP models
performance on a query region.

3.1.1 Clustering. Consider a spatial domain 𝐷 (𝐷,𝑉 ), where 𝐷 =

{𝑝1, 𝑝2, ..., 𝑝𝑛} is its discretization into a set of localized 2D-points
𝑝𝑖 (𝑥𝑖 , 𝑦𝑖 ), with 𝑥𝑖 and 𝑦𝑖 being spatial coordinates. At every point
𝑝𝑖 ∈ 𝐷 , observations are recorded as a time series 𝑉 . We perform
clustering in order to group time-series with similar data distribu-
tion, adopting a feature-based approach [1]. The GLD function is
used as a mechanism to compute the time-series features—exposed
through its lambda parameters. We fit a GLD function to every
time-series 𝑉𝑖 from domain 𝐷 and associate the four 𝜆 parameters
(i.e., time-series features) to it. If 𝑉𝑖 exhibits seasonality, we fit a
separate GLD function to each season. Thus, domain 𝐷 is repre-
sented as 𝐷𝑡 (𝑝,𝑉 , 𝜆1, 𝜆2, 𝜆3, 𝜆4). After determining 𝐷𝑡 , we cluster
the time-series that have similar 𝜆 values together, using a k-means
algorithm and silhouette analysis to guide the choice of 𝑘 . Therefore,
dataset𝐷𝑡 is transformed into𝐷𝑐 (𝑝,𝑉 , 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝑐𝑖𝑑), where 𝑐𝑖𝑑
identifies the cluster each point belongs.

3.1.2 Tiling. Tiling has been introduced in the context of multidi-
mensional array database systems. In [9], different tiling approaches
are discussed. Among them, nonaligned tiling divides a multidi-
mensional array into disjoint tiles, where the vertices of a tile do
not intersect with those of neighboring tiles. In DJEnsemble, we
adopt this tiling strategy in order to partition the domain into tiles
of time-series sharing the same cluster id and, as a consequence, ex-
hibiting time-series with similar data distribution. We start from an
arbitrary point 𝑝𝑖 (⟨𝑥𝑖 , 𝑦𝑖 ⟩,𝑉𝑖 ) and aggregate neighboring points to
form a hyper-rectangle—as long as they belong to the same cluster
as 𝑝𝑖 . We repeat this process until every point in 𝐷 has formed a
tile Tile (id,⟨coordinates⟩, centroid). 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 corresponds to the
3D spatial region covered by the tile, while 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 is the closest
time-series to all the other series in the tile. We use 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 as a
representative of a tile’s data distribution in order to simplify the
computation of the distance between two tiles.

3.1.3 Estimating model performance on query region. In addition
to preprocessing the domain data, we need to be able to estimate
the performance of every candidate model on any region of the do-
main. For this, we define a data distribution-based error prediction
function as follows:

𝐸𝑔𝑛𝑟 = 𝐹𝜖 (𝑑𝑖𝑠𝑡𝑖 𝑗 + 𝑒𝑖 ) (1)

𝐹𝜖 (𝑑𝑖𝑠𝑡𝑖, 𝑗 + 𝑒𝑖 ) is a monotonic non-decreasing function for every
candidate model. 𝑑𝑖𝑠𝑡𝑖, 𝑗 is the distance between the distribution in
the model’s training data 𝑑𝑖 and a prediction region 𝑑 𝑗 . 𝑒𝑖 denotes
the model’s generalization error, obtained on the testing dataset
the model is evaluated on. We assume that the training and the
testing datasets have similar distributions. Additionally, we adopt
the shape-based Dynamic Time Warping (DTW) function [17] for
computing the distance between the time-series representing the
model training dataset centroid and the tile centroid.

For a given model, we compute its corresponding error function
𝐹𝜖 (𝑑𝑖𝑠𝑡𝑖, 𝑗 + 𝑒𝑖 ) by fitting a polynomial model to a series of pairs
(𝑑𝑖𝑠𝑡, 𝑒𝑟𝑟𝑜𝑟 ). It has been shown that learning curves that estimate
a model loss as a function of an distribution distance follow a
power-law [8]. Thus, our goal is to find a polynomial function that

maps the data distribution distance to prediction error. The fitting
process works as follows: First we select the region from the test
set. We modify these by sequentially adding a Gaussian noise with
increasing variance. Distance between the original and modified
dataset centroid series is calculated using the DTW function along
with the error in applying the model. From the 𝑑𝑡𝑤, 𝑒𝑟𝑟𝑜𝑟 pair we
fit a regression model of the form 𝑒𝑟𝑟𝑜𝑟 = 𝐹𝜖 (𝑑𝑖𝑠𝑡𝑖, 𝑗 + 𝑒𝑖 ) using
cross validation. At the end of the offline preprocessing phase, the
spatio-temporal series are partitioned into tiles of homogeneous
data distributions—represented by their centroid spatio-time series.

3.2 Online: Query Processing
In the online phase of the DJEnsemble, the spatio-temporal predic-
tive query𝑄 is evaluated, and a set of STPs𝑀 = {𝑚1,𝑚2, . . .𝑚𝑠 } is
considered to compute the predictions. This phase is split into three
stages—planning, execution, and post-processing. In the planning
stage, a set of black-box candidate predictors are selected and an
allocation matrix is computed. In the execution stage, the selected
models are evaluated according to the planned allocations. Lastly,
post-processing actions are taken if necessary.

3.2.1 Model Ensembling Strategy. The single STP model approach
to solve the OSTEMPQ problem is depicted in Figure 2 a) and b).
In a), the model𝑀𝑖 completely covers the query region 𝑄.𝑅. Thus,
a single instance of the model is sufficient to evaluate the query.
In b), the area of the query region is larger than the model frame
size. The traditional ensemble of STP models [21] – depicted in
Figure 2 c) – evaluates query 𝑄 as follows. In the planning stage,
it selects a subset𝑀 ′ ⊆ 𝑀 of models with testing accuracy higher
than some threshold 𝛿 . An allocation matrix A is built for every
model in 𝑀 ′, such that the entire query region 𝑄.𝑅 is covered by
every model. In the execution stage, the allocations are submitted
to a prediction execution engine. Finally, in the post-processing
stage, an aggregation operation computes a linear combination of
the results.

Figure 2: Strategies for answering spatio-temporal predic-
tive queries: a) Single STP model, b) Single STP model
with smaller frame size, c) Traditional Ensemble, and d)
DJEnsemble.

The DJEnsemble approach, depicted in Figure 2d), extends the
planning phase of the traditional ensemble approach. In addition to
identifying𝑀 ′, it also computes the allocation matrix 𝐴 using the
cost function described in Equation 2. However, differently from
the traditional ensemble, the allocation of each selected model may
not cover the complete spatial query region. Instead, the allocation
matrix associates each selected STP model to the spatial area in the
query (i.e. a tile) it exhibits the best cost among the selected models.
Thus, each tile in the spatial area covered by the query is associated
to one and only one model in 𝑀 ′. The allocations in 𝐴 are used
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as input to an execution engine and the generated predictions are
composed in the query result.

Themain challenge of the DJEnsemble approach is to compute an
assignment of models𝑀 to the query spatial area that minimizes the
cost function. For each candidate model𝑚 ∈ 𝑀 with frame size𝑚𝑓 𝑠

(𝑚.𝑓 𝑟𝑎𝑚𝑒-𝑠𝑖𝑧𝑒) – a fraction of the query frame size 𝑞𝑓 𝑠 = (𝑅.𝑠𝑖𝑧𝑒)
– we can align its frame’s top-left corner with any of the 𝑝𝑖 spatial
positions in 𝑄.𝑅. We can repeatedly apply this procedure until all
the points in 𝑄.𝑅 are considered for prediction by a model in 𝑀 .
However, this exhaustive procedure hinders the ability to execute
prediction queries efficiently due to the high overhead it incurs.
Instead, we partition the query domain into tiles, as described in
Section 3.1.2. Given that each tile covers a region with time-series
having similar data distribution, we pick the model whose training
data distribution resembles that of the tile’s centroid the most. This
procedure reduces the search space for selecting candidate models
to every query tile, which are considerably fewer than the number
of observation points.

Given a suggested allocation, the implication of a possible differ-
ence between𝑚.𝑓 𝑟𝑎𝑚𝑒-𝑠𝑖𝑧𝑒 and the tile size is managed as follows.
First, models are placed with the top-left corner matching that of
the tile. Then, for models whose frame size is a fraction of the tile
size, we place as many non-overlapping instances of the model
so that the tile region is covered. Conversely, in case the model
frame extends beyond the tile area, we only consider predictions
on spatial points falling within the tile area.

3.2.2 Cost function. We design a cost function to optimize model
allocation as the linear combination of a model’s estimated general-
ization error and its estimated prediction execution time. The error
estimate is computed by the error function, as described in Section
3.1.3. The estimate for the prediction execution time is obtained by
averaging the model’s previously recorded execution times, leading
to a unitary cost (𝑢𝑐). Moreover, depending on the ratio between
the tile’s 2D size and the model frame size and a , a number ⌈𝑟 ≥ 1⌉
of invocations of the model are required to cover all the points in
the tile region. In this case, every candidate allocation 𝐴(𝑡𝑖 ,𝑚 𝑗 ) for
tile 𝑡𝑖 , model𝑚 𝑗 , and a weighting parameter 𝜇𝑒 , is assigned a cost
given by the formula:

𝐶𝑜𝑠𝑡𝑖, 𝑗 = (1 − 𝜇𝑒 ) × 𝐹𝜖 (𝑑𝑖𝑠𝑡𝑖, 𝑗 + 𝜖𝑖 ) + 𝜇𝑒 × ⌈𝑟𝑖, 𝑗 ⌉ × 𝑢𝑐 (2)
This cost formula normalizes the generalization error and the predic-
tion time to [0, 1] intervals by dividing each value by the maximum
value in the set of models, once outliers are eliminated from the
set. The maximum values can be computed in a single pass over
the predictions.

3.2.3 DJEnsemble algorithm. Algorithm 1 presents the DJEnsemble
algorithm. It takes as input the query𝑄 , the set of tiles𝑇 , the set of
candidate models𝑀 , and a weight parameter 𝜇𝑒 . The DJEnsemble
function returns the set of mappings 𝐴(𝑇𝑖 , 𝑀𝑗 ) that satisfy the
problem constraints and minimize the cost function detailed in
Section 3.2.2.

4 EXPERIMENTS
In this section, we evaluate the assumptions considered in this work
and the applicability of the DJEnsemble approach.

4.1 Setup
We introduce the experimental scenario and methodology, the com-
putational environment, and the implementation of DJEnsemble in
SAVIME.

4.1.1 Experimental scenario. The data used in the experiments is a
subset of the Climate Forecast System Reanalysis (CFSR) dataset
that contains air temperature observations from January 1979 to
December 2015 covering the space between 8N-54S latitude and
80W-25W longitude (temperature dataset) [18]. Additionally, we
also use a subset of the rainfall dataset from NASA’s TRMM and
GPM missions, with rainfall collected for the same spatial region
as in the CSFR dataset over 22 years (rainfall dataset) [11].

All experiments used the CFSR dataset, except for the experi-
ments in subsections 4.2.2 and 4.2.4, which used the rainfall dataset.
The complete set of experiments uses thirty-six models adopting
the ConvLSTM architecture. Twenty-one of them are trained in
the temperature domain. Models 𝑆𝐴1 to 𝑆𝐴6 share the same archi-
tecture – filters, layers, etc. – and are trained in different regions.
While models 𝐷𝐴1 to 𝐷𝐴7 are trained in different regions and with
different architectures. Model 𝑆𝑅1 is considered a baseline model
and is trained in the region where the predictions to answer the
predictive query are computed. The last seven temperature models
and the fifteen models trained on the rainfall dataset have all differ-
ent architectures and are used to answer the five queries on real
data (Figure 4). Our evaluation methodology considers root mean
square error (RMSE) and composition execution time—as defined
in Eq. 2.

4.1.2 Computational environment. The computing environment
was kept constant throughout the experiments. It consists of a Dell
PowerEdge R730 server with 2 Intel Xeon E5-2690 v3 @ 2.60GHz
CPUs, 768GB of RAM, and running Linux CentOS 7.7.1908 kernel
version 3.10.0-1062.4.3.e17.x86_64. The models were trained and
tested on an NVIDIA Pascal P100 GPU with 16GB RAM.

http://www.data.nodc.noaa.gov
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4.2 Results
Next sections present the experiments.

Figure 3: Generalization error on increasingly distant
datasets for predictors with identical (left) and varying
(right) hyper-parametrization.

4.2.1 Distance to error model fitting. An important assumption
in this work is that we can predict the error of a black-box model
on unseen data by a learning error function. In this experiment,
we evaluate the 𝑒𝑟𝑟𝑜𝑟 -𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 predictor. Figure 3 depicts the gen-
eralization error curve for a set of black-box STP models 𝑀 =

{𝐷𝐴1, . . . , 𝐷𝐴7, 𝑆𝐴1, . . . , 𝑆𝐴6} obtained by applying the procedure
presented in Section 3.1.3, on 50 datasets for each model. On the 𝑦
axis, we plot the estimate for the generalization error, considering
the RMSE in the spatio-temporal region 𝑑𝑖 being predicted. Dis-
tances are computed between a base and a perturbed dataset using
the DTW function and it is the measure on the 𝑥 axis. One can
observe that the error computed by the 𝑒𝑟𝑟𝑜𝑟 -𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 can be used
to rank the models for a given STP prediction. Moreover, the results
show that the 𝑒𝑟𝑟𝑜𝑟 -𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 reflects the generalization capacity
of every model, as well as showing a strong correlation between
distance and error—as the curves in both graphs are monotonically
increasing.

4.2.2 DJEnsemble versus baseline approaches. We consider two
baseline approaches to solve the OSTEMPQ problem. The first
approach takes a single model trained on the same region as the
query and uses it as a predictor (i.e., single model baseline). The
second approach applies the traditional ensemble technique (i.e.,
ensemble baseline), as presented in Section 3.2.1.

Single model baseline. The single model baseline is constructed
as follows. We use the 𝑆𝐴1 model architecture – which works best
in most of the experiments – and train, validate, and test it on the
same region in which query 𝑄 is specified, using a time interval
from 1 to time-final (200). The remaining time slots are used for the
predicting query.

Ensemble baselines. The second baseline includes multiple en-
sembles models.We build four ensembles and compare them against
DJEnsemble and the single model baseline. The ensemble models
are constructed using the seven models built with different archi-
tectures 𝐷𝐴1 to 𝐷𝐴7. The traditional ensemble is built considering
all models in that list, combined as described in Section 3.2.1. The
second ensemble selects models whose estimated error at all tiles is
below 5 degrees. The model allocation follows the same strategy as
in the traditional ensemble approach. The third ensemble extends
the second ensemble approach by using tiling as a guide for model

allocation, in addition to model filtering based on the error estimate
at each tile. Finally, the fourth ensemble creates a stacking on top
of the predictions of the seven base models. A multiple linear re-
gression model (MLR) was trained and used for computing a linear
combination of the ensemble predictions.To evaluate our approach,
we built two DJEnsemble plans. Both implement the DJEnsemble
approach, but ensemble (5) considers the choice of models to be
allocated using the estimates for prediction error. The ensemble in
(6) considers real errors in computing the cost function. The latter
would correspond to an optimal solution.

Ensemble approaches Error Perf. Exec.Time

1- Traditional ensemble 21.03 -838.83% 68.35 +−0.586
2- Ensemble-DTW distance 3.07 -37.05% 34.38 +−0.482
3- Ensemble-DTW and tiles 2.68 -19.64% 43.46 +−0.262
4- Stacking(MLR)-DTW distance 2.92 -23.28% 35.32 +−0.301
5- Single model baseline/𝑆𝑅1 2.85 -21.00% 4.22 +−0.059
6- DJEnsemble (S) 2.35 -4.91% 14.06 +−0.193
7- DJEnsemble (R) 2.24 -

Table 1: DJEnsemble vs ensemble baselines.

The results obtained by running the different ensemble approaches
are included in Table 1. We can see that with respect to known
ensemble approaches, DJEnsemble is more accurate and faster, out-
performing the traditional ensemble approach accuracy in almost
9𝑥 .

Figure 4: Queries over the temperature (left) and rainfall
(right) domains.

4.2.3 Queries on temperature and rainfall datasets. We present the
results obtained on five queries executed on data extracted from
the temperature and rainfall datasets. Figure 4 depicts the regions
corresponding to each query. Each color represents a region with
different data distribution, associated to a different cluster. Table 2
summarizes the results and shows that DJEnsemble achieves the
best rmse for all the queries.

Query R[lat,lon] Trad. ensemble Stacking DJEnsemble

Q1 [70:130,95:140] 25.01 7.28 3.35
Q2 [60:110,40:80] 27.88 5.52 4.29
Q3 [125:175,25:90] 14.28 13.96 5.34
Q4 [0:40,60:130] 8.80 12.94 6.04
Q5 [59:100,25:100] 29.10 5.04 3.18

Table 2: RMSE over the temperature and rainfall domains.
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5 RELATEDWORK
Meta-Feature Learning. In DJEnsemble, model selection follows a
meta-learning approach [3]—datasets are used in learning a model
that predicts deep learning models’ performance, enabling model
selection. This is similar to the approach developed in AutoGRD [6].
However, AutoGRD selects a single best performing model based
on independent multi-variate prediction.

Ensembles. There are several approaches that apply deep learning
techniques as model stacking strategies to improve the performance
of base models [2], or that use a single deep learning architec-
ture in which, while some layers of the architecture learn, others
are used for second-level supervision acting as an ensemble [10].
Other strategies are ensemble-based black-box attacks to explore
the vulnerability of the deep learning models—which is significant
to choose effective substitute models for ensembles. The main dif-
ference between the approach we propose in the online phase and
the existing literature is that our decisions are data-driven (i.e., data
distributions) and address an auto-regressive problem.

AutoML and Model Serving Systems. DJEnsemble contributes to
the broader topic of AutoML [12] with respect to model selection,
an approach introduced in many state-of-the-art predictor serv-
ing systems, such as the framework Clipper [7] and the machine
learning training and inference service Rafiki [20], just to name a
few. In this sense, DJEnsemble considers a cost model that statically
defines a prediction ensemble plan based on estimates for accuracy
and prediction time. In fact, DJEnsemble can be implemented as
a model selection solution if these systems provide a service for
auto-regressive STP predictions.

6 CONCLUSIONS AND FUTUREWORK
We presented DJEnsemble, a disjoint ensemble approach to plan
for the composition of black-box deep learning models to answer
spatio-temporal auto-regressive predictive queries, and showed
that it significantly outperforms traditional ensemble approaches
in both accuracy and execution time. We believe there is plenty
of future work to be explored. The offline phase can be further
optimized, improving the identification of spatio-temporal patterns
and reducing the pre-processing cost. Techniques to improve the
error function accuracy – especially in higher dimensions – can
also be investigated. The execution of the selected plans can take
advantage of parallelism in the AI inference framework. Improve-
ments in model design can also contribute to the overall prediction
quality, especially considering the effect of different grid scales
across datasets. Finally, multivariate predictions and how to adapt
the data distribution distance-based approach to this scenario are
topics to be explored.
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