
Distributed Caching for Processing Raw Arrays
Weijie Zhao1, Florin Rusu1,2, Bin Dong2, Kesheng Wu2, Anna Y. Q. Ho3, and Peter Nugent2

1University of California Merced, 2Lawrence Berkeley National Laboratory, 3CalTech
{wzhao23,frusu}@ucmerced.edu;{dbin,kwu}@lbl.gov;ah@astro.caltech.edu;penugent@lbl.gov

ABSTRACT
As applications continue to generate multi-dimensional data at ex-
ponentially increasing rates, fast analytics to extract meaningful
results is becoming extremely important. The database community
has developed array databases that alleviate this problem through
a series of techniques. In-situ mechanisms provide direct access
to raw data in the original format—without loading and partition-
ing. Parallel processing scales to the largest datasets. In-memory
caching reduces latency when the same data are accessed across
a workload of queries. However, we are not aware of any work
on distributed caching of multi-dimensional raw arrays. In this
paper, we introduce a distributed framework for cost-based caching
of multi-dimensional arrays in native format. Given a set of files
that contain portions of an array and an online query workload,
the framework computes an effective caching plan in two stages.
First, the plan identifies the cells to be cached locally from each of
the input files by continuously refining an evolving R-tree index.
In the second stage, an optimal assignment of cells to nodes that
collocates dependent cells in order to minimize the overall data
transfer is determined. We design cache eviction and placement
heuristic algorithms that consider the historical query workload. A
thorough experimental evaluation over two real datasets in three
file formats confirms the superiority – by as much as two orders of
magnitude – of the proposed framework over existing techniques
in terms of cache overhead and workload execution time.
ACM Reference Format:
W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent. 2018. Distributed
Caching for Processing Raw Arrays. In SSDBM ’18: 30th International Con-
ference on Scientific and Statistical Database Management, July 9–11, 2018,
Bozen-Bolzano, Italy. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3221269.3221295

1 INTRODUCTION
In the era of big data, many scientific applications – from high-
energy physics experiments to cosmology telescope observations –
collect and analyze immense amounts of data at an unprecedented
scale. For example, projects in astronomy such as Sloan Digital Sky
Survey1 (SDSS) and Palomar Transient Factory2 (PTF) collect the

1http://www.sdss.org/dr13/
2http://www.ptf.caltech.edu/iptf/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6505-5/18/07. . . $15.00
https://doi.org/10.1145/3221269.3221295

observations of stars and galaxies at a nightly rate of hundreds of gi-
gabytes. The newly-built Zwicky Transient Facility3 (ZTF) records
the sky at a 15X higher rate than PTF—up to 7 TB per night. A com-
mon characteristic of the datasets produced by astronomy projects
is that the data are natively organized in a multi-dimensional array
rather than an unordered set. Due to the inefficacy of traditional
relational databases to handle ordered array data [10, 18], a series
of specialized array processing systems [8, 10, 11, 14, 57, 63] have
emerged. These systems implement natively a distributed multi-
dimensional array data model in which arrays are chunked across
a distributed shared-nothing cluster and processed concurrently.

Automatic transient classification. The PTF project aims to
identify and automatically classify transient astrophysical objects
such as variable stars and supernovae in real-time. A list of potential
transients – or candidates – is extracted from the images taken by
the telescope during each night. They are stored as a sparse array:

candidates<bright,mag,. . . >[ra,dec,time]
with three dimensions – the equatorial coordinates ra and dec, and
time – and tens to a few hundred attributes such as brightness and
magnitude. The range of each dimension is set according to the
accuracy of the telescope which increases with every generation
of lenses. In PTF [37], an array cell corresponds to 1 arcsecond on
ra and dec, and 1 minute on time, which generate more than 1015
cells. The candidates array is stored in several FITS4 files—one for
every night. Since the telescope is pointed to distinct parts of the
sky each night, the files cover different ranges of the array space.
However, the ranges are large enough to overlap. The number of
candidates in a file has high variance—there are sparse files with
only tens of candidates and skewed files with millions of candidates.

Transient classification consists of a series of array queries that
compute the similarity join [65] between candidates, i.e., find all
the candidates identified at similar coordinates, possibly in a time
window. In order to execute these queries inside an array data-
base, the candidates array has to be loaded and partitioned. This
process is time-consuming – it takes hours in SciDB according
to [14, 61] – and duplicates the data. As a result, it is infeasible
for the real-time processing required in PTF. In-situ processing
over raw files [4, 9, 13] is an alternative that eliminates loading
altogether and provides instant access to data. While there is a large
body of work on in-situ processing for CSV and semi-structured
files such as JSON and Parquet [4, 13, 46, 55], there are only two
extensions to multi-dimensional arrays [26, 61]. Both of them act
as optimized HDF55 connectors for SciDB. They allow SciDB to
execute declarative array queries over dense arrays stored in HDF5
format by pushing down the subarray operator into the HDF5 read
function. None of the connectors support the sparse and skewed
files corresponding to PTF candidates because these files are not

3https://www.ptf.caltech.edu/ztf
4https://fits.gsfc.nasa.gov/fits_documentation.html
5https://support.hdfgroup.org/HDF5/

https://doi.org/10.1145/3221269.3221295
https://doi.org/10.1145/3221269.3221295
http://www.sdss.org/dr13/
http://www.ptf.caltech.edu/iptf/
https://doi.org/10.1145/3221269.3221295
https://www.ptf.caltech.edu/ztf
https://fits.gsfc.nasa.gov/fits_documentation.html
https://support.hdfgroup.org/HDF5/

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent

organized and partitioned along the dimensions of the array. Even
for dense arrays, the initial partitioning specified at array definition
may be suboptimal with respect to the query workload. For exam-
ple, a tight band range on one dimension triggers a high number of
partition accesses even though the number of queried cells is small.
Moreover, the connectors do not provide any caching mechanism.
This is pushed entirely to the SciDB buffer manger which operates
at instance-level, i.e., it caches only local arrays. This precludes any
optimization in accessing the raw data because the granularity and
the content to cache are query-dependent rather than partition-
dependent—partition or chunk caching is suboptimal. As pointed
out in [4, 33, 46], caching is extremely important for in-situ pro-
cessing because repeated access to raw data is expensive—the case
for the set of queries in PTF transient classification.

Problem statement. In this paper, we tackle the problem of
distributed caching for raw arrays with the goal to accelerate queries
over frequently accessed ranges. Given a set of raw files that contain
portions of an array and an online dynamic query workload, we
have to determine which cells to cache in the distributed memory
of an array database system. Rather than having each node manage
its memory buffer to cache local cells, we aim for a global caching
infrastructure that automatically identifies both the cells to cache
and the instance where to cache them. Our ultimate goal is to
provide both instant access to distributed multi-dimensional raw
arrays and optimal query performance through caching.

Challenges.Distributed caching for arrays poses twomain chal-
lenges. The first challenge is to determine the cells kept in the cache
at query time. This is a problem because cache misses over raw
arrays are very expensive. Even if we have only one cache miss for a
cell, it requires us to scan all the raw files whose bounding box con-
tains the cell—for dense arrays, although direct access eliminates
scanning, a complete disk read is still necessary. However, at most
one file contains the required cell. The second challenge comes
from the distributed nature of array database. The conventional
approach caches the requested data at the origin instance—where
it is stored. This approach works well in content delivery networks
(CDN) [48, 54] where data co-locality is not required for query
execution. However, most of the array queries specify shape-based
relationships between cells in the form of stencil operators and their
generalization to similarity joins [65]. Given the current placement
of raw and cached data, the challenge is to coordinate and organize
the caches across nodes – decide what cached data are placed on
which nodes – in order to preserve data co-locality and provide effi-
cient data access. Direct application to arrays of generic distributed
memory caching [5, 23, 39, 45, 58] implemented in Hadoop and
Spark suffers from excessive communication and load imbalance
due to the skewed distribution of cells across files.

Approach. We design a distributed caching framework that
computes an effective caching plan in two stages. First, the plan
identifies the cells to be cached locally from each of the input files by
continuously refining an evolving R-tree index. Each query range
generates a finer granularity bounding box that allows advanced
pruning of the raw files that require inspection. This guarantees
that – after a sufficiently large number of queries – only relevant
files are scanned. In the second stage, an optimal assignment of cells
to nodes that collocates dependent cells in order to minimize the
overall data transfer is determined. We model cache eviction and

placement as cost-based heuristics that generate an effective cache
eviction plan and reorganize the cached data based on a window
of historical queries. We design efficient algorithms for each of
these stages. In the long run, the reorganization improves cache
data co-locality by grouping relevant portions of the array and by
balancing the computation across nodes.

Contributions. The specific contributions of this paper can be
summarized as follows:
• We introduce distributed caching for raw arrays (Section 3).
While caching over raw data has been explored in a centralized
setting, this is the first work that investigates in-situ processing
with distributed caching.
• We design an evolving R-tree index that refines the chunking of
a sparse array to efficiently find the cells contained in a given
subarray query (Section 3.1). The index is used to eliminate un-
necessary raw files from processing.
• We propose efficient cost-based algorithms for distributed cache
eviction and placement that consider a historical query workload
(Section 3.3 and 3.4). The goal is to collocate dependent cells in
order to minimize data transfer and balance computation.
• We evaluate experimentally our distributed caching framework
over two real sparse arrays with more than 1 billion cells stored in
three file formats—CSV, FITS, and HDF5 (Section 4). The results
prove the effectiveness of the caching plan in reducing access to
the raw files and the benefits of the eviction algorithm.

While our solution is presented for sparse arrays, the proposed
framework is also applicable to dense data.While access to a specific
cell is much faster in a dense array, caching entire chunks incurs
unnecessarymemory usage. Instead of caching the complete chunks
as specified in the array definition, our solution infers a workload-
derived caching scheme that may have smaller granularity. This
allows for more relevant data to be cached. Another important
application of this work is to distributed linear algebra which is the
fundamental building block in large-scale machine learning (ML).
Stochastic gradient descent (SGD) [42] – the primary algorithm to
train ML models – requires access to rows in the example matrix
that have non-zero entries for certain columns—or features. Existing
solutions in Spark MLlib [53] and TensorFlow [1] access all the
blocks containing the columns of the required example—which is
unnecessary and expensive.

2 PRELIMINARIES
In this section, we introduce multi-dimensional arrays, in-situ data
processing, and distributed caching.

2.1 Multi-Dimensional Arrays
A multi-dimensional array is defined by a set of dimensions D =
{D1,D2, . . . ,Dd } and a set of attributes A = {A1,A2, . . . ,Am }.
Each dimension Di is a finite ordered set. We assume that Di , i ∈
[1,d] is represented by the continuous range of integer values [1,N].
Each combination of dimension values, or indices, [i1, i2, . . . , id],
defines a cell. Cells have the same scalar type, given by the set of
attributes A. Dimensions and attributes define the schema of the
array. Based on these concepts, an array is defined as a function
over dimensions and taking value attribute tuples:

Array : [D1,D2, . . . ,Dd] 7−→ ⟨A1,A2, . . . ,Am⟩

Distributed Caching for Processing Raw Arrays SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

<X,1> <Y,1> <Z,1> <Z,3> <Y,2>

<Y,1> <X,1> <Z,2> <X,2> <Y,2>

<X,1> <Z,1> <X,2> <Z,3>

<Z,1>

<Z,1> <Y,2> <Z,2>

<Z,2> <X,2>

i
j

[1]

[2]

[3]

[4]

[5]

[6]

[1] [2] [3] [4] [5] [6] [7] [8]

Figure 1: Array A<n:char,f:int>[i=1,6;j=1,8]. This is a
raw array consisting of 7 files distributed over 3 nodes. At-
tributes n and f correspond to the node and the file id on the
node, e.g., <X,2> is a cell in the second file on node X. The
cell color also shows the server on which the file is stored.
The dashed rectangle specifies a query.

A 2-D array A<n,f>[i=1,6;j=1,8] with dimensions i and j and
attributes n and f is depicted in Figure 1. This is the notation to
define arrays in SciDB’s AQL language [40, 43]. The range of i is
[1, 6], while the range of j is [1, 8]. Non-empty cells are colored.

Chunking. Array databases apply chunking for storing, pro-
cessing, and communicating arrays. A chunk groups adjacent array
cells into a single access and processing unit. While many strate-
gies have been proposed in the literature – see [50] for a survey –
regular chunking is the most popular in practice, e.g., SciDB. Reg-
ular chunks have the same dimensionality as the input array, are
aligned with the dimensions, and have the same shape. The cells in-
side a chunk are sorted one dimension at a time, where dimensions
are ordered according to the array schema. In the case of sparse
and skewed arrays, regular chunking produces imbalanced chunks.
Moreover, if the input data is not fully known, it is impossible
to choose an appropriate chunking scheme. In dynamic workload-
based chunking [24, 51, 56], the array is continuously partitioned
based on the incoming queries and only for the ranges accessed in
the query. This strategy is the most adequate for raw sparse arrays
since no information on the content is available.

Shared-nothing architecture.We are given a distributed array
database having a shared-nothing architecture over a cluster of N
servers or nodes, each hosting one instance of the query processing
engine and having its local attached storage. The chunks of each
array are stored across several servers in order to support parallel
processing. All servers participate in query execution and share
access to a centralized system catalog that maintains information
about active servers, array schemas, and chunk distribution. A
coordinator stores the system catalog and manages the nodes and
their access to the catalog. The coordinator is the single query input
point into the system. For example, in Figure 1 there are 3 servers
in the database. The chunks of array A – which are complete files in
this case – are distributed over the 3 servers. The color of the cell
corresponds to the assigned server, while the attributes identify the
file the cell belongs to, e.g., <X,2> is a cell in file 2 of server X.

2.2 Array Similarity Join
Array similarity join is introduced in [65] as a generalization of
array equi-join [22] and distance-based similarity join. This op-
erator can encode any join conditions on dimensions and it can

express the most common similarity distances, e.g., Lp norms, Earth
Mover’s Distance (EMD), and Hamming [65]. For example, the L1(1)
similarity self-join of the dashed subarray in Figure 1 is a 4-D ar-
ray with 17 non-empty cells—there is a cell for each non-empty
cell in the subarray and 10 additional cells are generated by pairs
of adjacent cells that have L1 distance of 1. The execution of the
array similarity join operator requires identifying the chunks that
have to be joined and the assignment of these pairs to nodes that
perform the join. An optimization algorithm that minimizes the
overall query processing time and the amount of transferred data is
given in [65]. The optimal plan is computed at the coordinator from
the catalog metadata which stores the location of the chunks and
relevant chunk statistics. It consists of a detailed chunk transfer
and execution sub-plan for each node. This approach is applica-
ble to any distributed join processing algorithm over range-based
partitioned data—only the number of chunk pairs varies.

2.3 In-Situ Processing over Raw Data
Multiple systems that perform queries over raw data that do not
reside in databases have been proposed [2, 4, 13, 29, 32, 33, 44]
recently. They are extensions of the external table mechanism
supported by standard database servers. These systems execute
SQL queries directly over raw data while optimizing the conver-
sion process into the format required by the query engine. This
eliminates loading and provides instant access to data. Several sys-
tems [2, 4, 13] provide a dynamic tradeoff between the time to
access data and the query execution time by adaptively loading a
portion of the data during processing. This allows for gradually im-
proved query execution times while reducing the amount of storage
for replication. In-situ processing over scientific data – specifically,
multi-dimensional arrays – resumes to connectors from a query
processing engine, e.g., SciDB, to an I/O-library for a specific data
format, e.g., HDF5 [9, 26, 61]. These systems allow SciDB to execute
declarative array queries exclusively over dense HDF5 arrays by
pushing-down the subarray operator. They do not provide inte-
grated optimizations across layers. The focus of this work is on the
more general case of unorganized (sparse) arrays—not only HDF5.

2.4 Caching
All database systems cache disk pages in memory buffers after they
are read from disk. The fundamental problem in caching is to de-
cide which pages to keep in memory when the available budget is
exhausted—or, equivalently, which pages to evict. The provably op-
timal eviction algorithm is to remove the page that will be accessed
farthest in the future. Since the future is generally unknown, exist-
ing eviction algorithms are based on the past query workload. The
least-recently-used (LRU) and least-frequently-used (LFU) are the
most common eviction algorithmswidely implemented in computer
systems. They can be easily extended to array databases by replac-
ing the page with the chunk [10]. Online cost-based caching algo-
rithms [12, 31] prioritize the eviction of pages/chunks with lower
cost in order to keep the expensive items in cache, where the cost
is application-dependent. Since there are no provable polynomial
time cost-based cache eviction algorithms [12], Greedy heuristics
are the only solution. Nonetheless, these algorithms are preferred
in a distributed setting where the cost of accessing data is variable.

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent

The standard approach in distributed caching is to define a global
shared memory that is mapped to the local memory of physical
nodes [39, 45]. This allows for an immediate extension of the cen-
tralized algorithms. Parallel databases use a simpler approach in
which each node is managing its local cache—there is no global
cache manager. The reason is transactional cache consistency. How-
ever, in read-intensive scientific applications, transactions are not
an issue. Caching for raw data processing is necessary because
of the high cost to extract data. The NoDB [4] and Proteus [33]
systems cache everything in memory and use LRU for eviction,
while SCANRAW [64] materializes the evicted pages adaptively in
the database storage. However, they do not target raw sparse arrays
and are centralized solutions.

3 RAW ARRAY DISTRIBUTED CACHING
In this section, we present the first distributed caching mechanism
over raw array data proposed in the literature. We begin with a
high-level description of the distributed caching inner-workings
that identifies the main processing stages. Then, we delve into the
details of each stage and introduce our technical contributions.

f
X,1

f
X,2

Node X Node ZNode Y

f
Z,1

f
Z,2

f
Z,3

Memory

Cache
manager

f
Y,1

f
Y,2

Memory

Cache
manager

Memory

Cache
manager

Catalog metadata

Cache coordinator Query optimizer

Coordinator

chunks chunks

file/chunk
metadata

chunk
metadata

execution
plan

file/chunk
metadata

execution & cache plan

Figure 2: Architecture of distributed caching for raw arrays.

Problem setting. Given a collection of raw files distributed
across the nodes of the array database and a query workload, the
goal is to process the queries optimally with limited memory bud-
get for caching. We assume the entire workload is unknown be-
fore processing—queries are processed one after another in online
fashion. Figure 2 illustrates the proposed distributed caching archi-
tecture which consists of a cache coordinator and a cache module
for every node of the array database. These can run either as inde-
pendent processes or as threads that are part of the array database
coordinator and nodes, respectively. Each file fi, j – the jth file
stored in its entirety on node i – has a bounding box B(fi, j) –
stored in the catalog at the cache coordinator – that contains the
range of each dimension for the cells in the file. The cache coordi-
nator has a complete view of the distributed cache memory across
nodes both in terms of content and size. This allows for optimizing

in-memory chunk location, thus, query execution, and is a major
departure from distributed buffer managers such as Spark’s. We
emphasize that the cache coordinator does not receive any file
data—exclusively managed by the cache nodes.

Approach. The array distributed caching framework works as
follows (Figure 2). First, the execution engine sends the subarray and
the shape in the array similarity join query to the cache coordinator
which has to determine the chunk pairs that have to be joined.While
these can be immediately inferred from the catalog for loaded data,
there is no chunking – or the chunking is not known – for raw
data. The naive solution to handle this problem is to treat each
file as a chunk and perform the similarity join between pairs of
files. Since a file covers a much larger range and is not organized
based on cell locality, this solution accesses many unnecessary cells
and uses the cache budget inefficiently. Our approach is to build
in-memory chunks incrementally based on the query—workload-
driven chunking [50]. These chunks are built by the cache nodes
by accessing the files that overlap with the query—the only data
the cache coordinator forwards to the nodes. Instead of extracting
chunks only for the queried data, the cache nodes create higher
granularity chunks for the entire file. Since chunk building requires
raw file access – which is expensive – caching is very important for
efficient processing. In the best case, the entire file can be cached.
Otherwise, a cache replacement policy is required to determine the
chunks to keep in memory. Once evicted from memory, the chunks
are lost—they have to be recreated from the raw data. While it is
possible to materialize the evicted chunks in some representation,
e.g., R-tree, this replicates data and adds another dimension – which
representation to read data from – to the problem.

Instead of allowing each node to execute a local cache replace-
ment algorithm, e.g., LRU, we develop a global cost-based caching
mechanism [7] executed at the coordinator. This algorithm takes
the metadata of all the created chunks across nodes and determines
the chunks to be evicted from the cache in a unified way—this
may incur chunk transfer across nodes. Since query evaluation also
requires chunk transfer and replication, we go one step further
and combine query processing with cache replacement. Specifi-
cally, cache replacement piggybacks on the query execution plan
and eliminates extra chunk transfer. Moreover, the location of a
cached chunk is computed by considering the relationship with
other chunks in the historical query workload. This is implemented
as follows (Figure 2). Upon receiving the chunk metadata from the
nodes, the coordinator – query optimizer – computes the optimal
query execution plan which specifies what node joins each of the
chunk pairs. This is passed to the cache coordinator which com-
putes the cache replacement plan by combining the execution plan
with chunk usage statistics and chunk co-locality information. The
cache replacement plan informs every node on what chunk replica
to cache and which chunks to evict. Finally, these two plans are for-
warded to the nodes for execution—the engine executes the query
and the cache executes the replacement plan, in this sequence.

3.1 Raw Array Chunking
The goal of raw array chunking is to infer the chunks of the array
file dynamically at runtime from the query workload. Instead of cre-
ating arbitrary chunks during loading – which is time-consuming,

Distributed Caching for Processing Raw Arrays SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

(a)

Q
1 Q

1

(b)

Q
2

Q
2

(c)

Q
3

Q
3

(d) (e)

Figure 3: Raw array query-driven chunking. (a) depicts a raw array and its bounding box. (b), (c), and (d) showhow the chunking
evolves based on a workload of three queries. (e) depicts the resulting four chunks into which the initial array is partitioned.

delays the time-to-query, and may not be optimal for the actual
workload – we build chunks incrementally one query-at-a-time.
Given a subarray in the domain of the raw arrays over which to
evaluate a similarity join query, we have to identify the cells that
are relevant for the query while minimizing the total number of
inspected cells. We have to avoid access to the raw files because
they are unorganized and require full scan. This cannot be realized
initially unless there is no overlap between a file and the query.
A straightforward solution is to load the coordinates of all the
cells after the first access. However, this is impractical because it
requires complete data replication. Instead, we build chunks that
group close cells and maintain only the much smaller bounding
box. The chunks are cached in the memory of the nodes, while the
bounding boxes are managed by the cache coordinator in memory.
Moreover, not all the chunks can be cached.

We design a novel incremental chunking algorithm that builds
an evolving R-tree [25] based on the queries executed by the system.
This algorithm can be seen as an extension of database cracking [30]
to multi-dimensional arrays. The invariant of the algorithm is that
the set of chunks cover all the cells of the array at any time instant.
Moreover, the chunks are non-overlapping. The central point of
this algorithm is splitting a chunk that overlaps with the query
subarray (Algorithm 1). Two questions require answer.
When to split? A chunk is split in two cases. First, if there are a
sufficiently large number of cells in the chunk. This threshold is a
configurable parameter that can be set by the user. In the second
case, even when the number of cells is below the threshold, if the
query subarray does not contain any cell, the chunk is split further.
Creating a large number of (small) chunks has both positive and
negative impact. On the positive side, the likelihood that a chunk
that overlaps with the query contains relevant cells is higher. This
avoids inspecting unnecessary chunks. On the negative side, the
number of bounding boxes that have to be managed by the cache
coordinator increases and this makes query and cache optimization
more time-consuming.
How to split? The number of additional chunks generated by a
split varies between 1 and 3d , where d is the dimensionality of the
array. We opt for always splitting a chunk into two chunks. This is
done by selecting a single splitting dimension. The algorithm enu-
merates over the queried subarray boundaries that intersect with
the chunk bounding box and chooses to split into those two chunks
that have the minimum combined hyper-volume. Rather than com-
puting the hyper-volume from the query-generated chunks, we
derive the bounding box of a chunk only from the cells assigned to

it. Typically, this results in smaller and more condensed chunks. We
increase the number of chunks conservatively because we do not
want the number of bounding boxes managed by the cache coordi-
nator to explode with the number of queries. Chunks that cover a
smaller hyper-volume are more compact, thus the probability to
contain relevant cells is higher.

Algorithm 1 Chunk Split
Input: Chunk α with bounding box BBα that intersects query

subarray Q ; Minimum number of cells threshold MinC
Output: Chunks β and γ after splitting α
1. if(cells in α < MinC) and (∃ cell in α ∈ Q) then return
2. min_vol = +∞
3. for each boundary b ∈ Q that intersects with BBα do
4. (βb ,γb) ← split cells in α into two sets by boundary b
5. if vol(βb) + vol(γb) < min_vol then
6. min_vol← vol(βb) + vol(γb)
7. β ← bounding_box(βb), γ ← bounding_box(γb)
8. end if
9. end for

We illustrate how the algorithmworks for a 2-D array in Figure 3.
The dashed box is the query subarrayQ , while the set of chunks at a
given instant is represented by solid bounding boxes. Initially, there
is a single chunk with a large bounding box. This corresponds to the
root of the R-tree. Since only two boundaries of query Q1 overlap
with the original chunk, only two potential splits are considered.
The one that is chosen corresponds to the horizontal axis. Two
smaller chunks are generated. Query Q2 overlaps with both of
these two chunks. Since the number of cells in the upper chunk
is 4 – smaller than the splitting threshold of 5 – and there is a
cell relevant to the query, no split is triggered. The lower chunk
is split based on the single query boundary that intersects with it.
Query Q3 overlaps only with one of the input 3 chunks. Although
the number of cells in the chunk is below the splitting threshold,
there is no cell in the query subarray. This triggers a split into two
condensed chunks, for a total of four chunks overall.

3.2 Cost-Based Chunk Caching
Given the chunks extracted from the raw array and a memory
caching budget at each server, the goal is to find an optimal caching
plan to execute the query workload. In a centralized setting, cache
optimality is defined as minimizing the number of cache misses, i.e.,

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent

<X,1>

<X,1> <X,2>

<X,1> <X,2>

<X,2>

i
j

[1]

[2]

[3]

[4]

[5]

[6]

[1] [2] [3] [4] [5] [6] [7] [8]

X

Y

Z

[1,1], [2,3], [3,1]

[1,3], [2,2]

[3,3], [4,2], [5,2] [1,4], [2,5], [5,6], [6,4]

Cached cells Read but not cached

<Y,1> <Y,2>

<Y,1> <Y,2>

<Y,2>

i
j

[1]

[2]

[3]

[4]

[5]

[6]

[1] [2] [3] [4] [5] [6] [7] [8]

<Z,1> <Z,3>

<Z,2>

<Z,1> <Z,3>

<Z,1>

<Z,1> <Z,2>

<Z,2>

i
j

[1]

[2]

[3]

[4]

[5]

[6]

[1] [2] [3] [4] [5] [6] [7] [8]

Local caching

X

Y

Z

[1,1], [2,3], [3,1]

[1,3], [2,2], [1,4]

[3,3], [4,2], [5,2] [1,4], [2,5], [5,6], [6,4]

Distributed caching

X

Y

Z

[1,1], [2,3], [3,3]

[1,3], [2,2], [1,4]

[3,1], [4,2], [5,2] [1,4], [2,5], [5,6], [6,4]

Cost-based caching

Cached cells Read but not cached Cached cells Read but not cached

Figure 4: High-level view of raw array distributed caching. The chunks in Figure 1 are shown together with the corresponding
bounding box separately for each server. The queried subarray is depicted as a dashed rectangle.

disk misses. In a distributed setting, another type of cache misses
are present—chunks that have to be transferred over the network,
i.e., network misses. The impact of these two measures depends on
the relative throughput of the disk and the network. In the case of
raw arrays, however, disk access always requires a complete file
scan because chunks are not organized. Intuitively, this suggests
that cache optimality should be defined exclusively in terms of
disk misses. While this is true for queries that consider the chunks
independently, in the case of array join queries, network misses are
important because of chunk co-locality—chunk pairs that have to
be processed together.

We illustrate the issues in array chunk caching on the example in
Figure 4. We set the memory budget on each node to at most 3 cells.
A self-similarity join query with a cross shape, i.e., L1(1), is executed
over the dashed rectangle subarray. The example starts with a cold
cache—the cache is empty in the beginning. The cache coordinator
determines that chunks fX ,1, fY ,1, fZ ,1, and fZ ,2 overlap with the
queried subarray. Since chunk fZ ,2 does not have any cells that are
contained by the query subarray, it is not considered for caching—it
is split into two smaller chunks based on Algorithm 1. The other
3 chunks overlap with the query, thus they are cached. In local
caching, a chunk is cached on the node where it is stored. This is
suboptimal for chunk fZ ,1 which has 4 cells—it cannot be cached
entirely. In distributed caching, the memory budget is aggregated.
As a result, chunk fZ ,1 is cached completely by using the available
entry at node Y . This eliminates the expensive disk misses incurred
by partially cached chunks. In order to retrieve the uncached cell
[1,4], a full scan over the file containing chunk fZ ,1 is required. In
order to execute the self-similarity join query, cell pairs ([1,3],[1,4]),
([1,3],[2,3]), ([2,2],[2,3]), ([2,3],[3,3]), and ([4,2],[5,2]) have to be
resident on the same node. Since distributed caching does not con-
sider network misses, only cell pairs ([1,3],[1,4]) and ([4,2],[5,2])
are collocated. A better caching configuration that collocates 3 cell
pairs is shown in Figure 4.

We design a cost-based caching algorithm that weighs the chunks
based on how they are accessed in the query workload. There
are two components to the cost—access frequency and co-locality.
Access frequency prioritizes chunks that are accessed in the near
past. While this is similar to standard LRU, access is biased towards
chunks belonging to the same raw file—a cache miss inside a file

requires a complete scan of the file. The access frequency cost is
included in the cache eviction section of the algorithm. Co-locality
assigns chunk pairs that are joined together to the same node in
the cluster. This cost is based on the query workload and is also
biased towards more recent queries. The co-locality cost is included
in the chunk placement section of the algorithm. The separation of
cost-based caching into two sections is necessary because of the
interaction between query processing and caching. If we consider
them together, it is not clear how to define – not to mention solve –
a cost formula that combines access and frequency.

3.3 Cache Eviction
After we generate the currently queried chunks, we have to identify
chunks to evict from the cache—when the cache is full. Notice that
only the chunks that overlap with the current query are considered
for caching—chunks created because of non-overlapping splits are
discarded. The important observation in caching raw array chunks
is that we have to scan a file entirely even if only one accessed
chunk is not cached. Therefore, we aim to cache all the queried
chunks in a file. Conversely, if we evict a chunk from a file, we
should evict all the other chunks from that file—independent of
when they have been accessed. Since chunk-level LRU does not
consider this correlation between chunks, it is likely suboptimal.
File-level LRU – on the other hand – uses ineffectively the cache
budget by caching non-accessed chunks. We include experiments
for both of these two alternatives in Section 4.

We propose a novel cost-based cache eviction algorithm that
integrates access with the raw file read savings for each unit price
we pay, i.e., the additional cache budget we use. Specifically, the
cost of a cached chunk is defined as:

costevict(Ql , fi , {Cj }) = wQl ·
size(fi)∑

size(uncached Cj)

where {Cj } is the set of chunks from file fi accessed by query Ql .
The weight of a querywQ is defined as an exponential function of
the index l of the query in the workload, e.g.,w(1) = 21, . . . ,w(l) =
2l . Essentially, the weight generates an exponential decay for the
importance of the queries in the workload. The ratio between the
file size and the size of the uncached chunks is larger when the
number of chunks in the file required by a given query is smaller. If

Distributed Caching for Processing Raw Arrays SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

all the queried chunks are cached – the case for the current query –
the ratio is infinity, thus the file is not evicted.

Based on this eviction cost, we design an efficient greedy heuris-
tic (Algorithm 2) that evicts the chunks with the lowest cost. The
algorithm takes as input the cache state, the chunks accessed by the
current query, and the cache budget. It outputs the updated cache
state that includes the newly accessed chunks. Instead of incremen-
tally evicting chunks with the lowest cost, the heuristic selects the
chunks with the highest cost to keep from the original cache state.
This is necessary because of the correlation between chunks across
queries. For example, a chunk with a low cost in a query may be
evicted even though it is also accessed by an important query. If
we decide to include the chunk, the decision is final. Moreover, this
decision has an impact on other chunks. Thus, we increase the cost
of all the correlated chunks to boost their chance of being cached
(line 6). This is realized by evaluating the eviction cost dynamically
without materialization.

Algorithm 2 Cache Eviction
Input: Cache state as set of triples S = {(Ql , fi , {Cj })} consisting

of the chunks j accessed from file i at query l ; Set of pairs
(fi , {Cj }) consisting of the chunks j accessed from file i at
the current query Ql+1; Cumulated cache budget B =

∑
k Bk

consisting of local budgets Bk at each node
Output: Updated cache state S ′ = {(Ql+1, fi , {Cj })}

1. S ′ ← {(Ql+1, fi , {Cj })}

2. while budget(S ′) < B do
3. Extract triple t = (Ql , fi , {Cj }) from S such that budget(t ∪

S ′) ≤ B and cost(t) is maximum
4. S ′ ← S ′ ∪ t
5. S ← S \ t
6. Increase cost of triples t ′ ∈ S that contain chunks in t
7. end while

The time complexity of Algorithm 2 is proportional to the num-
ber of chunks in the cache state summed-up with the number of
chunks accessed by the current query. If the total number of chunks
– cached and accessed – is N , the complexity is O(N logN). The
most time consuming operation is finding the best chunk to cache.
This can be done by using a max binary heap having the eviction
cost as key. Binary heap supports an efficient key increase oper-
ation required in line 6 of the algorithm. Compared to LRU, the
proposed eviction algorithm also considers all the cached chunks.
Since the memory budget is bounded, the number of cached chunks
cannot grow dramatically. Moreover, we can control the number
of generated chunks by the threshold on the minimum number of
cells inside a chunk (Algorithm 1).

3.4 Cache Placement
Given the chunks selected to be cached, the next decision to make
is how to allocate them over the distributed cache budget at the
nodes. The main idea is to piggyback on the replication induced by
query execution. Specifically, chunk-based join processing requires
the chunk pairs to join to be collocated on the same node. Since
one chunk joins with several other chunks, this induces replication.

Notice that complete reshuffling is not desirable for sort-based par-
titioned arrays. The cache placement algorithm is performed after
query execution and takes as input the location of all the currently
cached chunks—including their replicas. The goal is to preserve a
single copy of every chunk to better utilize the cache. Thus, we
have to decide the node where to cache every chunk. We propose a
solution that maximizes the co-locality of correlated chunks based
on the entire query workload in order to reduce network traffic
during query processing. Moreover, the communication cost of
moving cached chunks across nodes is also considered.

To this end, we design a local search greedy algorithm for cache
placement (Algorithm 3) derived from incremental array viewmain-
tenance [66]. The algorithm takes as input the correlated chunk
pairs across the performed queries, the location of the cached
chunks, and the cache budget at every node. It outputs the up-
dated cached chunk locations determined based on a cost function
that measures the number of correlated collocated chunk join pairs:

costplacement(Ci ,n, P
′,W) =

∑
Q ∈W

wQ ·
��Cj ∈ P

′
n ∧ (Ci ,Cj) ∈ Q

��
In this equation, Ci is the current chunk to place, n is a candidate
node – typically chosen from where a replica ofCi exists – P ′ is the
location of already placed chunks, andW is the query workload.
In general, the larger the number of collocated chunks, the larger
the cost is. However, the contribution of a chunk pair is scaled
by an exponentially decayed query weight that gives priority to
recent queries. The order in which chunks are considered has an
important impact on the algorithm. Our strategy is to take the
chunks in increasing order of their number of replicas. Chunks
with more replicas have more choices without network transfer
when the local cache budget decreases.

Algorithm 3 Cache Placement
Input: SetW = {(Ql , {(Ci ,Cj)})} consisting of chunk pairs (i, j)

that join at query l ; Set of locations P = {(Ci , {Nk })} specifying
all the nodes k that have a copy of cached chunk i at current
query Ql+1; Cache budget Bk at node k

Output: Updated locations P ′ = {(Ci ,Nk)}

1. P ′ ← {p ∈ P}, where p has no replicas
2. for each p = (Ci , {Nk }) ∈ P with multiple replicas do
3. Select node n ∈ {Nk } such that budgetn (Ci) ≤ Bn and

cost(Ci ,n, P ′,W) is maximum
4. P ′ ← P ′ ∪ (Ci ,n)
5. end for

The complexity of Algorithm 3 is O(|P | · N + |W |), where |P |
is the number of cached chunks, N is the number of nodes, and
|W | is the size of the query workload. Since N is a small constant
and |P | can be bounded during the chunking process, the first term
cannot become too large. |W | can also be bounded by considering a
limited number of previous queries. Moreover, the weightw of “old”
queries is small enough to be ignored due to exponential decay.

4 EXPERIMENTAL EVALUATION
The objective of the experimental evaluation is to investigate the
overall query processing performance and the overhead of cost-
based caching for two types of array similarity join queryworkloads

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent

80 GB40 GB

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350
file_lru chunk_lru evict

Query

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350
file_lru chunk_lru evict

Query

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350
file_lru chunk_lru evict

Query

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400
file_lru chunk_lru evict

Query

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400
file_lru chunk_lru evict

Query

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400
file_lru chunk_lru evict

Query

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

file_lru chunk_lru evict

Query

E
x

ec
u

ti
o

n
 t

im
e

 (
se

co
n

d
s) 1044 973 1026 1010 986 878 956 972 937 1027

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

file_lru chunk_lru evict

Query

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

1044 968 943 950 977 985 931 937 961 966

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

file_lru chunk_lru evict

Query

E
x

ec
u

ti
o

n
 t

im
e

 (
se

co
n

d
s) 1044 892 850 843 848 866 871 859 855 836

160 GB

PTF-2: FITS

GEO: CSV

PTF-1: HDF5

Figure 5: Query execution time as a function of the cache memory budget. Three caching strategies – file_LRU, chunk_LRU,
and cost-based caching (evict) – are compared across three workloads and three file formats. The time for cost-based caching
includes raw file chunking, cache eviction, and cache placement. Chunk_LRU includes only raw file chunking, while file_LRU
is the time for caching complete raw files using LRU.

over the PTF catalog stored in two different file formats. These are
real queries executed in the PTF pipeline for transient detection.
We use the CSV LinkedGeoData dataset6 in order to confirm the
behavior of array caching on another file format. Specifically, the
experiments are targeted to answer the following questions:
• Does the proposed cost-based distributed caching improve upon
file- and chunk-level LRU for a query workload?
• How sensitive is cost-based caching to query patterns, cache
budgets, and file formats?
• How effective is query-driven array chunking?
• Does the cache assignment improve the query communication
time across a series of queries?
• What is the execution time of the cost-based caching heuristics?

4.1 Setup
Implementation.We implement caching for raw arrays as a C++11
distributed multi-thread prototype that supports executing the ar-
ray similarity join operator proposed in [65]. The catalog is stored
at the coordinator. The distributed caching heuristic is also exe-
cuted at the coordinator. It takes the input query from the query

6http://linkedgeodata.org

engine and generates the data communication plan containing in-
formation on chunk transfer and cache placement as output to the
query engine. The query engine transfers chunks among nodes
according to the data communication plan. The similarity join op-
erator runs as a server on each node in the cluster. It manages a
pool of worker threads equal to the number of CPU cores on each
node. A worker thread is invoked with a pair of chunks that have
to be joined. Chunks are retrieved directly from memory since the
cache coordinator has already instructed each node to load the
relevant chunks. This happens concurrently across all the workers.
We use the CFITSIO7 and HDF5 libraries to read FITS and HDF5
files, respectively. Data serialization for network communication is
optimized with the ProtoBuffers8 library.

System.We execute the experiments on a 9-node cluster. The
coordinator runs on one node while the other 8 nodes are work-
ers. Each node has 2 AMD Opteron 6128 series 8-core processors
(64 bit) – 16 cores – 28 GB of memory, and 4 TB of HDD storage.
The number of worker threads is set to 16—the number of cores.
Ubuntu 14.04.5 SMP 64-bit with Linux kernel 3.13.0-43 is the oper-
ating system. The nodes are mounted inside the same rack and are
inter-connected through a Gigabit Ethernet switch. The measured

7https://heasarc.gsfc.nasa.gov/fitsio/
8https://developers.google.com/protocol-buffers/

http://linkedgeodata.org
https://heasarc.gsfc.nasa.gov/fitsio/
https://developers.google.com/protocol-buffers/

Distributed Caching for Processing Raw Arrays SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

network bandwidth on a link is 125 MB/second. Since the disk
bandwidth is in the same range, there is not a significant difference
between the network and disk I/O.

Data. We use the same two real datasets as in [65] for experi-
ments. The PTF catalog consists of 1 billion time-stamped objects
represented in the equatorial coordinate system (ra, dec). The range
of the time coordinate spans over 153,064 distinct values, while
for ra and dec we use ranges of 100,000 and 50,000, respectively. In
array format, this corresponds to:
PTF[time=1,153064;ra=1,100000;dec=1,50000]

which is a sparse array with density less than 10−6. Objects are
not uniformly distributed over this array. They are heavily skewed
around the physical location of the acquiring telescope—latitude
corresponds to dec. Since HDF5 does not support sparse arrays
natively, we store the PTF objects as an HDF5 table, i.e., relation.
In FITS, data are stored as a binary table. Each tuple in HDF5 and
FITS contains the dimensions and attributes for each cells in the
original sparse array. The size of the PTF catalog is 343 GB in CSV,
262 GB in HDF5, and 221 GB in FITS.

LinkedGeoData stores geo-spatial data used in OpenStreetMap.
We use the “Place” dataset which contains location information on
roughly 3 million 2-D (long, lat) points-of-interest (POI). Since this
is a too small dataset, we synthetically generate a larger dataset by
adding 9,999 synthetic points with coordinates derived from each
original point using a Gaussian distribution with µ = 0 and σ = 10
miles [21]. In array format, this corresponds to:
GEO[long=1,100000;lat=1,50000]

With this replication, the size of GEO in CSV format is 1.6 TB. We
split the entire dataset into 8,000 files with equal sizes.

Query workloads.We extract 3 query workloads from the orig-
inal datasets using four methods—PTF-1, PTF-2, and GEO. Each
workload contains 10 queries. PTF-1 takes data exploration queries
from the real workload that performs array similarity joins through
all the detections on the time dimension. For PTF-2, we simulate
a typical data exploration pattern—shifting ranges and alternat-
ing queries. We extract 4 range shifting queries from real work-
loads, enlarge the query ranges by a factor of 4 – 2X on ra × 2X
on dec – and let them appear in the workload alternatively, e.g.,
1, 2, 3, 4, 1, 2, 3, 4, 1, 2. GEO is a workload that contains queries with
shifting ranges. The size of the query range is fixed. During query
1 through 5, the queried range shifts in the same direction—we in-
crease latitude with a constant, e.g., 3, 000. Then we shift them back
to the original position, e.g., 1, 2, 3, 4, 5, 5, 4, 3, 2, 1. Our small-size
workloads mimic a data exploration behavior over raw arrays. In
addition, the caching mechanism plays an even more important role
when dealing with small workloads. Nonetheless, we also extract
100 queries from the real PTF workload and perform a stress test
of our caching algorithms.

4.2 Results
The code contains special functions to harness detailed profiling
data. We perform all experiments at least 3 times and report the
average value as the result. We always enforce data to be read from
disk in the first query, i.e., cold caches.

4.2.1 Execution Time. The execution time for caching is the
time to read the raw files, extract queried data, and execute the

query. The execution time is depicted in Figure 5 for each individual
query in the workload. We use file-level LRU – denoted file_lru
– as the baseline. It utilizes all the memory across the cluster as
a unified distributed memory and caches the least recent used
files that contain queried data. file_lru works at file granularity
because caching a subset of a file without the uncached bounding
box still requires a full scan of the entire file—we have insufficient
information to determine whether all the required data in the file
are cached. chunk_lru computes bounding boxes during the query-
driven chunking (Algorithm 1). It works at chunk level—caching
the most recent queried chunks. evict is the proposed cost-based
caching that includes both cache eviction (Algorithm 2) and cache
placement (Algorithm 3) on top of chunk_lru. We use a cache budget
of 40 GB, 80 GB, and 160 GB, respectively, to evaluate the scalability
and behavior of the proposed algorithms. 40 GB is for the entire
8-node cluster, i.e., 5 GB for each node.

PTF-1. The workload execution time for PTF-1 on HDF5 format
exhibits large variations among queries. This is mostly due to the
skewed nature of the dataset—some regions of the sky contain more
detections than others. Some of the query execution times are very
close to 0 because raw file reading is not performed and the cache
layout is not changed when all the queried data hit the cache. evict
always outperforms both LRU solutions. When we have 40 GB as
cache budget, the difference varies across queries and is larger for
the queries that share ranges—by as much as a factor of 20X for
query 2, 6, 7, and 10. chunk_lru and evict improve upon file_lru for
all the queries, except the first—when they cannot even be applied.
In the case of a larger cache budget, the difference between the
LRU solutions and our cost-based caching is reduced because more
available caching space makes the cache selection problem easier.
In this case, evict outperforms chunk_lru by 10-40%.

PTF-2. The execution time for PTF-2 on FITS format exhibits
higher variance across the caching algorithms—especially when
we have a small cache budget. The difference between file_lru and
chunk_lru is smaller than for PTF-1 because the query ranges are
enlarged and we only have a small budget. Since LRU always caches
the most recent queried file, chunk_lru degenerates into file_lru.
evict outperforms chunk_lru starting at query 3 and becomes 5-10X
faster after query 4. This is because evict eliminates the case when
large files are fully read only to extract a small amount of data.
After increasing the cache budget to 160 GB, chunk_lru gets closer,
however, evict is still more than 3X faster on query 5, 6, and 10.

GEO. Unlike the chunks in the real PTF dataset, chunking GEO
files generates larger and sparser bounding boxes. file_lru cannot
take advantage of the small cache budget. It is more than 10X slower
than evict which manages to decrease the chunk size whenever no
overlaps are detected. Moreover, evict outperforms chunk_lru by
considering a weighted workload history to cover and read less
files. This is exemplified by queries 6-10 which are the repetition of
queries 1-5 in reverse order, where evict is 10X faster than chunk_lru.

4.2.2 Scalability with the Number of Queries. Figure 6 depicts
the improvement in execution time generated by chunk_lru and
cost-based caching over file_lru for every query in a workload of
100 PTF real queries. The cache budget is 160 GB, thus it favors
the LRU algorithms. We observe that cost-based caching always
outperforms the LRU algorithms by at most 20%. This is a significant

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent

0

5

10

15

20

25

30

35

40
chunk_lru evict

Query

R
e

la
ti

ve
 im

p
ro

v
e

m
e

n
t

(%
)

50 10025 75

Figure 6: Execution time improvement over file_lru on PTF
in HDF5 format with 160 GB cache budget.

value for such a large cache budget and such a large number of
queries since LRU has sufficient time to optimize its execution.
Moreover, the chunks are dense enough to generate overlap with
the queries.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
evict+place chunking

Query

O
p

ti
m

iz
a

ti
o

n
 t

im
e

 (
s

e
c

o
n

d
s

)

Figure 7: Optimization time on LinkedGeoData.

4.2.3 Optimization Time. The time to compute raw file chunk-
ing, eviction plan, and placement plan on LinkedGeoData with
40 GB cache budget is depicted in Figure 7. chunking is the time
used to generate and look-up query-driven chunking for raw files.
evict+place corresponds to the cost-based eviction and placement
algorithms. Since the chunking is updated while we extract data
from raw files, the updating time for splitting chunks is included
in chunking. For the first query, it takes 8 seconds to compute
the original chunking and fill the cache budget. After that, all the
optimizations finish within 1.5 seconds. The optimization time is
acceptable considering the significant reduction in execution time
it brings—as much as 800 seconds or more.

4.2.4 Impact of Chunk Placement on Query Execution. Figure 8
shows the reduction in similarity join execution time due to cost-
based cache placement. static is the time without the cost-based
cache placement, while dynamic employs Algorithm 3 to cache
chunks considering query co-locality. Since we process queries in
a multi-thread pipeline that overlaps CPU computation and net-
work communication, the execution is I/O-bound with 16 threads
enabled on each node—the network communication time is the
bottleneck. Cache placement piggybacks on the join data transfer
and reassigns cached chunks to other nodes. Thus, the placement
algorithm improves the cache organization and alleviates the net-
work I/O by assigning the data required to be joined on the same

node. As expected, there is no difference for the first query because
cache placement is not invoked in the beginning. For PTF-1 the
effect of placement is not significant since there is no pattern in
the workload. In contrast, for PTF-2 and GEO that have a shifting
range query workload, dynamic is 2-10X faster than the distributed
LRU cache placement static. This gap clearly proves the benefit of
the placement algorithm.

4.3 Discussion
The experimental results show that the proposed cost-based caching
provides considerable improvement over distributed LRU for a
query workload. Query-driven chunking improves over file-level
LRU by 10-100X. On top of this improvement, the cost-based evic-
tion algorithm accelerates caching by up to 100X. The file format
has only a constant factor impact on data chunking—caused by the
I/O format API libraries. When the cache budget is increased to 160
GB, the proposed algorithm is still more than 2X faster than chunk-
level LRU. The cost-based cache placement algorithm improves the
query communication time across a series of queries by a factor of
2-10X. The time taken by the optimizations is a small fraction of
the data chunking time—more so when compared to the reduction
it generates.

5 RELATEDWORK
Array databases.While many array databases have been proposed
over the years, they implement caching following the standard par-
allel database approach. That is, LRU is executed locally at each
node and only for the chunks assigned to the node. In the following,
we focus only on how these systems handle caching and point the
interested reader to [50] for a comprehensive discussion on array
database systems in general. RasDaMan [8] is a general middleware
for array processing with chunks stored as BLOBs in a back-end
relational database. RAM [57] and SRAM [17] provide support for
array processing on top of the MonetDB [28] columnar database.
They do not provide native support for arrays since arrays are
represented as relations and array operations are mapped over re-
lational algebra operators. While caching can be implemented in
the middleware, this would replicate the functionality of the buffer
manager in the back-end database system used to store the chunks.
With integrated memory management and careful mapping from
array chunks to disk pages, it is conceivable that an optimized
array cache manager can be designed. RIOT [62] is a prototype sys-
tem for linear algebra operations over large vectors and matrices
mapped into a standard relational database representation. Linear
algebra operations are rewritten into SQL views and evaluated lazily.
Caching is offloaded entirely to the underlying database. SciDB [10]
is the most advanced shared-nothing parallel database system de-
signed specifically for dense array processing. It supports multi-
dimensional nested arrays with cells containing records, which in
turn can contain multi-dimensional arrays. The buffer manager in
SciDB is independent for each node and caches only local chunks.
In order to support non-chunked sparse arrays, these have to be
projected to a single dimension. During the loading process, SciDB
performs repartitioning to create compact chunks. This process
is extremely inefficient [14, 61], though. SciHadoop [11] imple-
ments array processing on top of the popular Hadoop Map-Reduce

Distributed Caching for Processing Raw Arrays SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50
static dynamic

Query

E
x

ec
u

ti
o

n
 t

im
e

 (
se

co
n

d
s)

(a)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100
static dynamic

Query

E
x

ec
u

ti
o

n
 t

im
e

 (
se

co
n

d
s)

(b)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60
static dynamic

Query

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

(c)

Figure 8: Reduction in similarity join execution time with cache placement (40 GB cache): (a) PTF-1, (b) PTF-2, and (c) GEO.

framework which has only primitive caching support—the cache is
replicated across all the nodes. ArrayStore [52], TrajStore [19], and
TileDB [49] are storage managers optimized for multi-dimensional
arrays and trajectories, respectively. They rely on the file system
buffer manager for caching.

Raw data processing. At a high level, we can group raw data
processing into two categories. In the first category, we have ex-
tensions to traditional database systems that allow raw file pro-
cessing inside the execution engine. Examples include external
tables [6, 36, 59] and various optimizations that eliminate the re-
quirement for scanning the entire file to answer the query [4, 29, 32].
Modern database engines – e.g., Oracle, MySQL, Impala – pro-
vide external tables as a feature to directly query flat files using
SQL without paying the upfront cost of loading the data into the
system. NoDB [4] and Proteus [33] enhance external tables by
extracting only the attributes required in the query and caching
them in memory for use in subsequent queries. Data vaults [32]
and SDS/Q [9] apply the same idea of query-driven just-in-time
caching to scientific repositories. OLA-RAW [15] caches samples
rather than full columns. Adaptive partial loading [29] material-
izes the cached data in NoDB to secondary storage before query
execution starts—loading is query-driven. ReCache [7] chooses the
format in which to cache nested in-memory data adaptively. SCAN-
RAW [13] is a super-scalar adaptive external tables implementation
that materializes data only when I/O resources are available. Instant
loading [44] introduces vectorized SIMD implementations for tok-
enizing. RAW [35] and its extensions VIDa [33, 34] generate scan
operators just-in-time for the underlying data file and the incoming
query. The second category is organized around Hadoop MapRe-
duce which processes natively raw data by including connector
code in the Map and Reduce functions. Invisible loading [2] focuses
on eliminating the connector code by loading the already converted
data inside a database. While similar to adaptive partial loading,
instead of saving all the tuples into the database, only a fraction of
tuples are stored for every query. None of these solutions supports
in-situ processing over sparse arrays—the central contribution of
this work. SciDB connectors for multi-dimensional arrays stored in
HDF5 are introduced in [26, 61]. They allow SciDB to execute declar-
ative array queries over dense arrays stored in HDF5 format by
pushing down the subarray operator into the HDF5 read function.
However, they do not support sparse arrays and caching—pushed
to SciDB.

Distributed caching. In the context of relational databases and
storage systems, there is extensive work on cache eviction algo-
rithms such as the LRU-K [47], DBMIN [16], and LRFU [38]. Unlike
our framework, these algorithms operate on fixed size pages –
not raw files of sparse arrays – or for semantic caching [20]. In
the web context, many caching policies have been developed for
variable-size objects. Some of the most well-known algorithms in
this space are LRU-Threshold [3], Lowest-Latency-First [60], and
Greedy-Dual-Size [12]. In the context of Hadoop systems, Impala9
and Hortonworks10 allow users to manually pin HDFS files or par-
titions in the HDFS cache. This can be done automatically with
adaptive algorithms in [23]. In Spark11, RDDs can be cached manu-
ally in Tachyon [39], a distributed in-memory file system. While
these solutions work for raw files, they do not consider the multi-
dimensional structure of arrays—they simply cache non-structured
chunks. Distributed caching for spatial mobile data is considered
in [41] and [27]. They cache the chunks based on the spatial dis-
tance between chunks over the non-overlapping partition of the
data—that is not applicable to the unorganized raw arrays.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we introduce a distributed framework for cost-based
caching of multi-dimensional arrays in native format. The frame-
work computes an effective caching plan in two stages. First, the
plan identifies the cells to be cached locally from each of the in-
put files by continuously refining an evolving R-tree index. In the
second stage, a cost-based assignment of cells to nodes that collo-
cates dependent cells in order to minimize the overall data trans-
fer is determined. We provide a cost-based formulation for cache
eviction that considers the historical query workload. A thorough
experimental evaluation over two real datasets in three file formats
confirms the superiority of the proposed framework over existing
techniques in terms of caching overhead and workload execution
time by as much as two orders of magnitude. In future work, we
plan to explore how the proposed framework can be integrated
with high-performance computing caching architectures such as
the Burst Buffer12 and with the SciDB buffer manager.

9https://impala.apache.org/
10https://hortonworks.com/
11https://spark.apache.org/
12www.nersc.gov/users/computational-systems/cori/burst-buffer

https://impala.apache.org/
https://hortonworks.com/
www.nersc.gov/users/computational-systems/cori/burst-buffer

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy W. Zhao, F. Rusu, B. Dong, K. Wu, A. Ho, and P. Nugent

Acknowledgments. This work is supported by a U.S. Department
of Energy Early Career Award (DOE Career).

REFERENCES
[1] M. Abadi et al. TensorFlow: A System for Large-Scale Machine Learning. In

OSDI 2016.
[2] A. Abouzied et al. Invisible Loading: Access-Driven Data Transfer from Raw

Files into Database Systems. In EDBT/ICDT 2013.
[3] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox. Caching

Proxies: Limitations and Potentials. 1995.
[4] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. NoDB: Efficient

Query Execution on Raw Data Files. In SIGMOD 2012.
[5] M. Altinel, C. Bornhövd, S. Krishnamurthy, C. Mohan, H. Pirahesh, and B. Rein-

wald. Cache Tables: Paving the Way for an Adaptive Database Cache. In VLDB
2003.

[6] N. Alur et al. IBM DataStage Data Flow and Job Design. 2008.
[7] T. Azim, M. Karpathiotakis, and A. Ailamaki. ReCache: Reactive Caching for Fast

Analytics over Heterogeneous Data. PVLDB, 11(3), 2017.
[8] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The Multidi-

mensional Database System RasDaMan. In SIGMOD 1998.
[9] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani. Parallel Data Analysis

Directly on Scientific File Formats. In SIGMOD 2014.
[10] P. Brown et al. Overview of SciDB: Large Scale Array Storage, Processing and

Analysis. In SIGMOD 2010.
[11] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N. Polyzotis, and

S. Brandt. SciHadoop: Array-based Query Processing in Hadoop. In SC 2011.
[12] P. Cao and S. Irani. Cost-Aware WWW Proxy Caching Algorithms. In USENIX

ITS 1997.
[13] Y. Cheng and F. Rusu. Parallel In-Situ Data Processing with Speculative Loading.

In SIGMOD 2014.
[14] Y. Cheng and F. Rusu. Formal Representation of the SS-DB Benchmark and

Experimental Evaluation in EXTASCID. Distrib. and Parallel Databases, 2014.
[15] Y. Cheng, W. Zhao, and F. Rusu. Bi-Level Online Aggregation on Raw Data. In

SSDBM 2017.
[16] H.-T. Chou and D. J. DeWitt. An Evaluation of Buffer Management Strategies for

Relational Database Systems. Algorithmica, 1(1-4):311–336, 1986.
[17] R. Cornacchia, S. Héman, M. Zukowski, A. P. de Vries, and P. Boncz. Flexible and

Efficient IR using Array Databases. VLDB Journal (VLDBJ), 17, 2008.
[18] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, S. Madden, M. Stonebraker,

S. B. Zdonik, and P. G. Brown. SS-DB: A Standard Science DBMS Benchmark.
http://www.xldb.org/science-benchmark/.

[19] P. Cudre-Mauroux, E. Wu, and S. Madden. TrajStore: An Adaptive Storage System
for Very Large Trajectory Data Sets. In ICDE 2010.

[20] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, M. Tan, et al. Semantic Data
Caching and Replacement. In VLDB 1996.

[21] A. D. Sarma, Y. He, and S. Chaudhuri. ClusterJoin: A Similarity Joins Framework
using MapReduce. PVLDB, 7, 2014.

[22] J. Duggan, O. Papaemmanouil et al. Skew-Aware Join Optimization for Array
Databases. In SIGMOD 2015.

[23] A. Floratou, N. Megiddo, N. Potti, F. Özcan, U. Kale, and J. Schmitz-Hermes.
Adaptive Caching in Big SQL using the HDFS Cache. In SoCC 2016.

[24] P. Furtado and P. Baumann. Storage of Multidimensional Arrays Based on
Arbitrary Tiling. In ICDE 1999.

[25] A. Guttman. R-trees: A Dynamic Index Structure for Spatial Searching. In
SIGMOD 1984.

[26] D. Han, Y.-M. Nam, and M.-S. Kim. A Distributed In-Situ Analysis Method for
Large-Scale Scientific Data. In BigComp 2017.

[27] H. Hu, J. Xu, W. S. Wong, B. Zheng, D. L. Lee, and W.-C. Lee. Proactive Caching
for Spatial Queries in Mobile Environments. In ICDE 2005.

[28] S. Idreos et al. MonetDB: Two Decades of Research in Column-Oriented Database
Architectures. IEEE Data Eng. Bull., 35(1), 2012.

[29] S. Idreos, I. Alagiannis et al. Here Are My Data Files. Here Are My Queries.
Where Are My Results? In CIDR 2011.

[30] S. Idreos, M. L. Kersten, and S. Manegold. Database Cracking In CIDR 2007.
[31] S. Irani. Page Replacement with Multi-Size Pages and Applications to Web

Caching. In STOC 1997.
[32] M. Ivanova, M. L. Kersten, and S. Manegold. Data Vaults: A Symbiosis between

Database Technology and Scientific File Repositories. In SSDBM 2012.
[33] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki. Fast Queries over Heteroge-

neous Data through Engine Customization. PVLDB, 9(12):972–983, 2016.

[34] M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, and A. Ailamaki. Just-In-
Time Data Virtualization: Lightweight Data Management with ViDa. In CIDR
2015.

[35] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki. Adaptive Query
Processing on RAW Data. PVLDB, 7, 2014.

[36] M. Kornacker et al. Impala: A Modern, Open-Source SQL Engine for Hadoop. In
CIDR 2015.

[37] N. M. Law et al. The Palomar Transient Factory: System Overview, Performance
and First Results. CoRR, abs/0906.5350, 2009.

[38] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. LRFU: A
Spectrum of Policies that Subsumes the Least Recently Used and Least Frequently
Used Policies. IEEE Trans. on Computers, 50(12):1352–1361, 2001.

[39] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon: Reliable, Memory
Speed Storage for Cluster Computing Frameworks. In SoCC 2014.

[40] K.-T. Lim, D. Maier, J. Becla, M. Kersten, Y. Zhang, and M. Stonebraker. ArrayQL
Syntax. http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL-Draft-4.pdf.
[Online; February 2017].

[41] C. Lübbe. Issues on Distributed Caching of Spatial Data. University of Stuttgart,
Germany, 2017.

[42] Y. Ma, F. Rusu, and M. Torres. Stochastic Gradient Descent on Highly-Parallel
Architectures. CoRR, abs/1802.08800, 2018.

[43] D. Maier. ArrayQL Algebra: version 3. http://www.xldb.org/wp-content/uploads/
2012/09/ArrayQL_Algebra_v3+.pdf. [Online; February 2017].

[44] T. Muhlbauer, W. Rodiger, R. Seilbeck et al. Instant Loading for Main Memory
Databases. PVLDB, 6(14), 2013.

[45] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin. Latency-
Tolerant Software Distributed Shared Memory. In USENIX ATC 2015.

[46] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and A. Ailamaki.
Slalom: Coasting through Raw Data via Adaptive Partitioning and Indexing.
PVLDB, 10(10):1106–1117, 2017.

[47] E. J. O’Neil, P. E. O’Neil, and G.Weikum. The LRU-K Page Replacement Algorithm
for Database Disk Buffering. In SIGMOD 1993.

[48] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières,
S. Mitra, A. Narayanan, D. Ongaro, and G. Parulkar. The Case for RAMCloud.
Communications of the ACM, 54(7):121–130, 2011.

[49] S. Papadopoulos, K. Datta, S. Madden, and T. Mattson. The TileDB Array Data
Storage Manager. PVLDB, 10(4):349–360, 2016.

[50] F. Rusu and Y. Cheng. A Survey on Array Storage, Query Languages, and Systems.
CoRR, abs/1302.0103, 2013.

[51] S. Sarawagi andM. Stonebraker. Efficient Organization of LargeMultidimensional
Arrays. In ICDE 1994.

[52] E. Soroush, M. Balazinska, and D. Wang. ArrayStore: A Storage Manager for
Complex Parallel Array Processing. In SIGMOD 2011.

[53] E. Sparks et al. MLI: An API for Distributed Machine Learning. In ICDM 2013.
[54] V. Sourlas, L. Gkatzikis, P. Flegkas, and L. Tassiulas. Distributed Cache Man-

agement in Information-Centric Networks. IEEE Trans. on Network and Service
Management, 10(3):286–299, 2013.

[55] D. Tahara, T. Diamond, and D. J. Abadi. Sinew: A SQL System forMulti-Structured
Data. In SIGMOD 2014.

[56] F. Tauheedy, T. Heinis, and A. Ailamaki. THERMAL-JOIN: A Scalable Spatial
Join for Dynamic Workloads. In SIGMOD 2015.

[57] A. R. van Ballegooij. RAM: A Multidimensional Array DBMS. In EDBT 2004.
[58] X. Wang, T. Malik, R. Burns, S. Papadomanolakis, and A. Ailamaki. A Workload-

Driven Unit of Cache Replacement for Mid-Tier Database Caching. In DASFAA
2007.

[59] A. Witkowski, M. Colgan, A. Brumm, T. Cruanes, and H. Baer. Performant and
Scalable Data Loading with Oracle Database 11g, 2011. Oracle Corp.

[60] R. P. Wooster and M. Abrams. Proxy Caching that Estimates Page Load Delays.
Computer Networks and ISDN Systems, 29(8):977–986, 1997.

[61] H. Xing, S. Floratos, S. Blanas, S. Byna, K. Wu, P. Brown, et al. ArrayBridge:
Interweaving Declarative Array Processing with High-Performance Computing.
arXiv preprint arXiv:1702.08327, 2017.

[62] Y. Zhang, H. Herodotos, and J. Yang. RIOT: I/O-Efficient Numerical Computing
without SQL. In CIDR 2009.

[63] Y. Zhang, M. Kersten, M. Ivanova, and N. Nes. SciQL: Bridging the Gap between
Science and Relational DBMS. In IDEAS 2011.

[64] W. Zhao, Y. Cheng, and F. Rusu. Vertical Partitioning for Query Processing over
Raw Data. In SSDBM 2015.

[65] W. Zhao, F. Rusu, B. Dong, and K. Wu. Similarity Join over Array Data. In
SIGMOD 2016.

[66] W. Zhao, F. Rusu, B. Dong, K. Wu, and P. Nugent. Incremental View Maintenance
over Array Data. In SIGMOD 2017.

http://www.xldb.org/science-benchmark/
http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL-Draft-4.pdf
http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL_Algebra_v3+.pdf
http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL_Algebra_v3+.pdf

	Abstract
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Multi-Dimensional Arrays
	2.2 Array Similarity Join
	2.3 In-Situ Processing over Raw Data
	2.4 Caching

	3 Raw Array Distributed Caching
	3.1 Raw Array Chunking
	3.2 Cost-Based Chunk Caching
	3.3 Cache Eviction
	3.4 Cache Placement

	4 Experimental Evaluation
	4.1 Setup
	4.2 Results
	4.3 Discussion

	5 Related Work
	6 CONCLUSIONS AND FUTURE WORK
	References

