
Implementing the Palomar Transient Factory Real-Time
Detection Pipeline in GLADE: Results and Observations

Florin Rusu1, Peter Nugent2, Kesheng Wu2

frusu@ucmerced.edu, penugent@lbl.gov, kwu@lbl.gov

1University of California, Merced, CA 95343, USA
2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract. Palomar Transient Factory is a comprehensive detection system for
the identification and classification of transient astrophysical objects. The cen-
tral piece in the identification pipeline is represented by an automated classifier
that distinguishes between real and bogus objects with high accuracy. Given that
the classifier has to identify the most significant transients out of a large number
of candidates in near real-time, the response time it provides is of critical im-
portance. In this paper, we present an experimental study that evaluates a novel
implementation of the classifier in GLADE—a parallel data processing system
that combines the efficiency of a database with the extensibility of Map-Reduce.
We show how each stage in the classifier – candidate identification, pruning, and
contextual realbogus – maps optimally into GLADE tasks by taking advantage
of the unique features of the system—range-based data partitioning, columnar
storage, multi-query execution, and in-database support for complex aggregate
computation. The result is an efficient classifier implementation capable to pro-
cess a new set of acquired images in a matter of minutes even on a low-end server.
For comparison, an optimized PostgreSQL implementation of the classifier takes
hours on the same machine.

Keywords: parallel databases, multi-query processing, real-time classification

1 Introduction

The Palomar Transient Factory (PTF) project [1, 2] aims to identify and automatically
classify transient astrophysical objects such as variable stars and supernovae in real-
time. As a secondary objective, a catalog containing the identified transients and other
celestial objects is constructed for subsequent querying and analysis. PTF is a compre-
hensive transient detection system including a wide-field survey camera, an automated
real-time data reduction pipeline, a dedicated photometric follow-up telescope, and a
full archive of all detected sources (Figure 1 [2]). The computational system supporting
the project consists of two separate processing pipelines [2] fed with the images taken
by the camera. Between 2000 and 4000 high-resolution (2048 × 4096 pixels) images
are taken each night and fed into the two pipelines through high-speed communica-
tion links. The total amount of raw data varies between 60 and 100 GB per night. The
near-real-time transient detection pipeline [3] has the goal of identifying and classifying
transient objects within 30-45 minutes of images being taken. Observation of potential



transients by a network of follow-up telescopes is triggered immediately after detection
in order to confirm their existence. The main objective of the time-consuming archival
pipeline [4] is to create a comprehensive catalog of high-quality images and celestial
objects that can be queried using a variety of criteria. It is executed on the entire set of
images acquired during one night in order to achieve high accuracy. The execution of
the archival pipeline typically takes 4-5 hours [4], but it can extend to several days in
some cases [2].

P48 Scheduler

P48 Camera

P48 Observatory
Control System

Data Quality
Monitor

P48 Camera

High
Speed
Link

Follow-Up
Telescopes

Detailed
Processing

Image & Catalog
Server

Real-Time
Processing

Image
Subtraction

Automatic
Identification & Classification

Telescope

Real-Time Transient Detection Pipeline

Archival Pipeline

Follow-Up
Marshal

Fig. 1: PTF data flow [2].

Problem formulation. The problem we address in this paper is the identification of
real transient candidates in the near-real-time detection pipeline. Specifically, we focus
on the classification phase of the real-or-bogus classifier. The goal of this classifier is
to identify real transients with high accuracy. The input consists of a set of candidates
extracted during image subtraction and a trained random forest classifier. In the output,
the candidates are given scores, i.e., the realbogus score, quantifying the probability of
them being real. Only the candidates with realbogus scores higher than a threshold and
satisfying a set of additional constraints are considered real.

Contributions. Our objective is to design and implement a real-time classifier ca-
pable to keep-up with the continuously increasing size of the PTF repository. Our mo-
tivation is the incapacity of the existing PostgreSQL solution to identify transient can-
didates accurately due to the larger data volumes it has to handle. We present a novel



implementation for the real-or-bogus classification in GLADE [5]—a parallel multi-
query processing system targeted specifically at analytical workloads. We show how
each stage in the classification process is natively supported in GLADE – this is not
true for the existing PostgreSQL [6] solution – and prove with experimental results the
effect on query execution performance. Since the GLADE implementation reduces the
time to investigate a set of candidates to minutes – from hours in PostgreSQL – this
allows for considerably more candidates to be thoroughly evaluated, thus increasing the
likelihood to find many transients that are otherwise missed by the current solution.

Outline. Section 2 presents in detail automatic transient identification and real-or-
bogus classification. It also discusses the PTF solution deployed in production and the
problems it has. GLADE is introduced in Section 3. The implementation of the real-
or-bogus classifier in GLADE and the results of the experimental evaluation are given
in Section 4 which also contains a comparison with two PostgreSQL solutions. We
conclude the paper in Section 5.

2 Automatic Transient Identification & Classification

In this section, we present the details of the automatic detection and classification stage
in the real-time transient detection pipeline (Figure 1 [2]). The input to this stage is
represented by the transient candidates extracted during the image subtraction stage.
There are in the order of 105 such candidates extracted every 45 minutes. Two questions
have to be answered for every candidate:
1. Is the candidate real?
2. If real, what is the transient type of the candidate?

Both these questions are answered using automated machine learning classification
techniques, i.e., random forest classifiers [3] in this case, that require human interven-
tion only in the follow-up stage. This is necessary considering the number of candidates
– 1 to 1.5 million – extracted every night. Since the focus of this work is identifying
real candidates – the first question – we present the details and the existing solution in
the following. A description of the type classifier can be found elsewhere [3].

2.1 Real-or-Bogus Classification

Any machine learning method consists of multiple phases. First, a series of features
have to be defined for the input data. These are used as parameters for the classifier.
The features used by the real-or-bogus classifier are extracted during image subtrac-
tion and stored in the candidate database. There are 28 features used by the classi-
fier. Second, a training dataset containing labeled examples is used to compute the
parameters of the classifier—the training phase. The training dataset consists of 574
candidates manually labeled with the realbogus score by multiple human scanners. At
last, the trained classifier is presented with unlabeled examples and the class has to be
determined—the classification phase. The output consists of 5 classes, i.e., {bogus,
suspect, unclear, maybe, realish}. The probability of a candidate being
in each of these classes is returned by the random forest classifier—probabilistic model.
The score, i.e., realbogus score, for a candidate is computed as a weighted average of



the class probabilities. The final realbogus score takes into account additional informa-
tion, i.e., the scores of neighboring candidates from the same subtraction. Moreover, a
high-scoring candidate is deemed real if and only if it appears in at least two subtrac-
tions within 6 days. All the candidates identified as real at the end of the classification
phase – 30 to 150 out of 105 – are flagged for immediate follow-up and sent to the type
identification classifier. We present the exact details of the online classification phase in
the following since training is a one-time offline process.

Algorithm 1 Real-or-Bogus Classification
Input: new subtraction set (subtraction) with corresponding candidate set (candidate)
and their probabilities (rb classifier) computed by the random forest classifier
Output: a subset of real candidates (real)
1. real← IdentifyCandidates(subtraction, candidate, rb classifier)
2. for all r ∈ real do
3. if SingleAppearance(r, subtraction, candidate, rb classifier) then
4. real← real - r
5. end if
6. end for
7. for all r ∈ real do
8. ctxt score← CtxtRealBogus(r, subtraction, candidate, rb classifier)
9. if ctxt score < threshold then

10. real← real - r
11. end if
12. end for

Identify candidates. The initial realbogus score – the score returned by the random
forest classifier – corresponding to a candidate is computed during image subtraction.
It is stored together with other candidate data in the subtraction and candidate database.
Candidate identification requires a simple query that returns all the candidates with high
realbogus score extracted from subtractions computed during a specified time interval.

Prune single appearance candidates. In order to increase the probability that a
high-scoring candidate is indeed real, a candidate identified in the first query has to sat-
isfy an additional condition. The candidate has to appear at a close spatial position in
other subtractions close in time to its originating subtraction. Independent of its original
realbogus score, a single appearance candidate is pruned away. Since the area and time
interval are dependent on the candidate, pruning requires a separate query with differ-
ent space and time bounds for every candidate. The larger the number of candidates
identified in the first query, the more queries have to be executed for pruning.

Compute contextual realbogus score. The final realbogus score of a candidate
takes into consideration the score returned by the random forest classifier for the clos-
est k other candidates extracted from the same subtraction. This is called the contextual
realbogus score. It is based on this score that the final classification decision is made.
Computing the contextual realbogus score is a rather complicated process that involves
a nearest-neighbor query followed by a complex aggregate computation. Unlike prun-
ing, the nearest-neighbors are computed only along the spatial dimension, i.e., in the



same subtraction. Nonetheless, a separate query has to be executed for every candidate
that survives pruning—a considerable problem when the number of candidates is large.
Algorithm 1 summarizes formally the stages of the real-or-bogus classification.

2.2 Existing Solution

The current solution implemented in the PTF pipeline is a standard Python [7] ap-
plication with a PostgreSQL [6] database backend. The database contains 3 tables –
subtraction, candidate, and rb classifier – storing subtractions, candi-
dates, and the scores returned by the random forest classifier. subtraction and
candidate are wide tables having 51 and 46 columns, respectively. Many of the
columns are never used in queries. The number of rows in these tables increases con-
tinuously as more observations are taken daily. candidate and rb classifier
already contain a few billion tuples each. Data corresponding to a new set of images
are added to the tables during the image subtraction stage. Transient identification and
classification execute as database queries. Possible candidates in a given time window
are identified with a complex query over the 3 tables. For each such candidate, a time
and space nearest-neighbor query is executed from the application to find additional
appearances of the candidate. These queries are executed iteratively. For the remaining
candidates, another spatial nearest-neighbor query is executed to find close candidates
in the same subtraction. The contextual realbogus score is computed in the application
by combining the score of the candidate with those of its neighbors. This is another
iterative process that goes over the non-pruned candidates one at a time.

Problems with the existing solution. The existing approach suffers from a series
of problems that make real-time candidate identification and classification in the limited
time interval between two subtraction sets – approximately 45 minutes [3] – difficult.
Experimental results over a relatively small snapshot of the database from the early
stages of the project confirm this problem (Section 5). As the size of the repository in-
creases with the acquisition of new images, the situation will become only worse. As
a result, many of the transients are missed simply because there is not enough time to
carefully investigate them.
The fundamental limitation is raised by the need to evaluate each candidate sequentially
even though the same query template is used across all the candidates. Essentially, two
passes over the candidates extracted based on the realbogus score are required to take
a decision. And in each pass, a complicated nearest-neighbor query is executed for
each candidate. Since the time taken to process one query over the increasingly larger
candidate table grows continuously with the size of the table, the number of candi-
dates that can be inspected between two subtractions decreases.
The PostgreSQL row-based storage format affects query performance negatively con-
sidering the width of subtraction and candidate tables and the number of at-
tributes used in the query—a small fraction out of the overall number of attributes.
While query execution speed can be improved with appropriate indexes, this results in
data ingestion time increase due to index maintenance, thus limiting the time available
for querying. Essentially, indexing moves the bottleneck from querying to data inges-
tion. With the increase in repository size, index maintenance under data ingestion only
becomes worse.



Data transfer between the database and the application is another limitation that is a
direct consequence of the large number of queries that have to be executed. The rea-
son for this is the lack of support for complex computations inside the database. While
user-defined functions (UDF) and user-defined aggregates (UDA) provide extensibility
to in-database complex computations, the exclusive SQL invocation limits their appli-
cability. As a result, these complex computations are executed in the application in the
current PTF solution.

3 GLADE

Given the aforementioned problems of the existing solution and the incapacity to accu-
rately identify some highly-probable candidates, novel solutions have to be explored.
The approach we take in this paper is a novel implementation of the real-or-bogus
classifier in GLADE—a parallel data processing prototype we have developed from
scratch over the past few years. Although we showed the considerable performance
gains GLADE provides over PostgreSQL and Hadoop on a limited set of tasks [5],
we have not evaluated GLADE on a complex real-life application yet. Moreover, the
characteristics of the PTF real-or-bogus classifier map perfectly on the GLADE archi-
tectural features. While these are compelling reasons to carry out such an investigation,
the experimental results in Section 5 prove that GLADE is indeed a suitable solution
that outperforms the existing PostgreSQL implementation.

GLADE. GLADE [5, 8] is a parallel data processing system specifically designed
for the execution of analytical tasks specified in SQL enhanced with Generalized Linear
Aggregates (GLA). This allows for the execution of a much larger class of analytical
computations beyond the standard SQL aggregates. Essentially, GLADE provides an
infrastructure abstraction for parallel processing that decouples the algorithm from the
runtime execution. The algorithm has to be specified in terms of a clean interface –
SQL + GLA – while the runtime takes care of all the execution details including data
management, memory management, and scheduling. Contrary to existent parallel data
processing systems designed for a target architecture, typically shared-nothing, GLADE
is architecture-independent. It runs optimally both on shared-disk servers as well as on
shared-nothing clusters. The reason for this is the exclusive use of thread-level par-
allelism inside a processing node while process-level parallelism is used only across
nodes. There is no difference between these two in the GLADE infrastructure.

Architecture. GLADE consists of two types of entities—a coordinator and one or
more executor processes (Figure 2). The coordinator is the interface between the user
and the system. Since it does not manage any data except the catalog metadata, the
coordinator does not execute any data processing task. These are the responsibility of
the executors, typically one for each physical processing node. It is important to notice
that the executors act as completely independent entities, in charge of their data and of
the physical resources. Each executor runs an instance of the DataPath [9] relational
execution engine enhanced with a GLA metaoperator for the execution of arbitrary user
code specified using the GLA interface.
Communication Manager is in charge of transmitting data across process boundaries,
between the coordinator and the executors, and between individual executors. Different



Code
Generator

Comm
Manager

Coordinator

Query
Manager

Query
Manager

Code
Loader

Comm
Manager

Node
1

DataPath
Exec. Engine

Storage
Manager

GLA
Manager

GLA
Manager

Query
Manager

Code
Loader

Comm
Manager

Node
n

DataPath
Exec. Engine

Storage
Manager

GLA
Manager

...

Catalog

Fig. 2: GLADE architecture.

inter-process communication strategies are used in a centralized environment with the
coordinator and the executor residing on the same physical node and for a distributed
shared-nothing system. The communication manager at the coordinator is also respon-
sible for maintaining the list of active executors. This is realized through a heartbeat
mechanism in which the executors send alive messages at fixed time intervals.
Query Manager is responsible for admission, setup, and query processing coordination
across executors and queries. This is a particularly important task since processing is
asynchronous both with respect to executors as well as to queries.
Code Generator fills pre-defined M4 templates with macros specific to the actual pro-
cessing requested by the user generating highly-efficient C++ code similar to direct
hard-coding of the processing for the current data. The resulting C++ code is subse-
quently compiled together with the system code into a dynamic library. This mecha-
nism allows for the execution of arbitrary user code inside the execution engine through
direct invocation of the GLA interface methods.
Code Loader links the dynamic library to the core of the system allowing the execution
engine and the GLA manager to directly invoke user-defined methods. While having
the code generator at the coordinator is suitable for homogeneous systems, in the case
of heterogeneous systems both the code generator and the code loader can reside at the
executors.
DataPath Execution Engine implements a series of relational operators – SELECT,
PROJECT, JOIN, AGGREGATE – and a special GLA metaoperator for the execution
of arbitrary user code specified using the GLA interface. They are all configured at run-
time with the actual code to execute based on the requested processing. The execution
engine has two main tasks—manage the thread pool of available processing resources



and route data chunks generated by the storage manager to the operators in the query
execution plan. Parallelism is obtained by processing multiple data partitions – chunks
– simultaneously and by pipelining data from one operator to another.
GLA Manager executes Merge at executors and Terminate at coordinator, respec-
tively. These functions from the GLA interface [5] are dynamically configured with the
code to be executed at runtime based on the actual processing requested by the user.
Notice that the GLA manager merges only GLAs from different executors, with the
local GLAs being merged inside the execution engine.
Catalog maintains metadata on all the objects in the system such as table names and
attribute names and their partitioning scheme. These data are used during code gener-
ation, query optimization, and execution scheduling. In addition to the global catalog,
each executor has a local catalog with metadata on how its corresponding data partition
is organized on disk.
Storage Manager is responsible for organizing data on disk, reading, and delivering
the data to the execution engine for processing. The storage manager operates as an
independent component that reads data asynchronously from disk and pushes it for pro-
cessing. It is the storage manager rather than the execution engine in control of the
processing through the speed at which data are read from disk. In order to support a
highly-parallel execution engine consisting of multiple execution threads, the storage
manager itself uses parallelism for simultaneously reading multiple data partitions.

Range-based data partitioning. Parallel execution is supported in GLADE through
data partitioning, i.e., multiple partitions are processed simultaneously by different ex-
ecutors. The tuples of a relation are divided horizontally into chunks containing thou-
sands to a few million tuples. Chunks are stored continuously on disk. The larger the
size of the chunk, the longer the size of sequential scans, thus the smaller the number
of disk seeks. While tuples can be assigned to chunks in arbitrary order, it is particu-
larly useful for many workloads to have tuples with close values along some attributes
grouped together in the same chunk. This corresponds to range-based data partitioning.
Generating range-partitioned chunks is typically more complicated since data have to
be partially ordered along the partitioning attributes. The benefit is faster execution for
range queries since a reduced number of chunks have to be processed.

Column-oriented storage. Inside a chunk the columns of a relation are further par-
titioned vertically, with a disk page storing only values from the same column. Attribute
values corresponding to the same tuple are stored at the same relative position inside
each column. This allows for immediate tuple reconstruction in memory. The benefit of
column-oriented storage is evident in the case of wide relations containing a large num-
ber of attributes with only a few of them accessed by every query. When range-based
partitioning is combined with columnar storage – the case in GLADE – the amount of
data read from disk is minimized since only the chunks and the columns required by
the query are retrieved.

Multi-query processing. GLADE supports concurrent execution of multiple queries
by sharing data access across the entire hierarchy—from disk to CPU registers through
memory and cache. All the queries reading data from the same relation are connected to
a single circular shared scan operator that reads a chunk only once and distributes it to
all the queries that require it. While this is standard practice in any multi-query process-



ing system, chunk sharing in GLADE is taken considerably further. Essentially, chunks
are shared across all the common operators in the query execution trees corresponding
to two queries. This requires merging separate operators with similar functionality into
a single mega-operator that combines the operations corresponding to each query. For
example, instead of having two selection operators with different predicates – one for
each query – a single operator containing both predicates is created in GLADE. The new
combined operator is responsible for identifying what queries a chunk is valid for and
for setting the correct tuple validity based on the query predicates. The same logic can
be applied to other relational operators, including JOIN, GROUP BY, AGGREGATE,
and the GLA metaoperator. The code executed by each operator is dynamically gener-
ated at runtime based on the running queries.

Complex aggregates. The GLA metaoperator supports the execution of arbitrary
user code specified using the abstract GLA interface [10]. This allows for the execu-
tion of complex computations far beyond standard SQL aggregates inside the execution
engine without the need to extract data into an application with more powerful com-
putational capabilities. This paradigm shift – bring the code near the data instead of
moving data to the code – results in considerable gains especially in the cases where a
large amount of data have to be moved.

4 Experimental Evaluation

In this section, we present the GLADE implementation for real-or-bogus classification.
We show how data are mapped onto the GLADE storage model, how each task in the
classification is expressed as GLADE computations, and how native GLADE features –
range-based data partitioning, columnar storage, multi-query processing, and complex
aggregate computation – are used in this workload. We provide measurement results
that prove a significant improvement over the existing solution and we analyze the rea-
sons for this.

Data. The data we use in the experiments are a snapshot of the subtraction and can-
didate database. The 3 tables referenced in real-or-bogus classification and their char-
acteristics are given in Table 1. The overall size of the 3 tables when loaded in GLADE
is 161 GB. Notice that approximately 5,000 candidates are not classified by the random
forest classifier—rb classifier contains less tuples than candidate. There are
647 candidates per subtraction on average.
The maximum chunk size is fixed at 220 ≈ 1 million tuples across all the tables. This
generates a single subtraction chunk and 642 chunks for the other two tables.
The size of a full chunk is different though across tables since they contain a differ-
ent number of columns. Notice that only the columns required in query processing are
read for a chunk – not the entire chunk – due to the columnar storage. Thus, even
the subtraction table is never read in full unless all the columns are requested by
the query. candidate and rb classifier are range-based partitioned along the
subtraction id attribute. This guarantees that all the candidates extracted from
the same subtraction end up in the same chunk. Moreover, candidates from subtractions
close in time are also co-located in the same chunk with high probability. This partition-
ing has two benefits. It minimizes the number of chunks read from disk. And it isolates



processing to the chunk level, thus increasing the amount of parallelism achieved by
processing multiple chunks simultaneously.

Table name Columns Rows Chunks
subtraction 51 1,039,758 1
candidate 46 672,912,156 642
rb classifier 9 672,906,737 642

Table 1: Tables used in real-or-bogus classification.

Setup. The machine used in the experiments is a low-end server with an Intel Core2
Quad CPU running at 2.66 GHz, 4 GB of memory, and a single 1 TB disk with sequen-
tial I/O throughput of 100 MB/s. Ubuntu SMP 10.10 64-bit is the operating system.
There is a single GLADE executor in this configuration. It is co-located with the co-
ordinator. Only thread-level parallelism is employed. The DataPath execution engine
is configured to use 4 worker threads – one for each core – while the storage manager
corresponding to every table assembles 4 chunks simultaneously. The reader might be
surprised by our modest system choice given that the PTF pipeline is running in produc-
tion on a powerful NERSC supercomputer. Nonetheless, our results confirm that even
on such a low-end machine GLADE manages to load and classify the candidates in a
set of subtractions in less than 20 minutes.

Data ingestion. The time it takes to ingest the entire dataset depicted in Table 1 in
GLADE is 8,222 seconds (≈ 2 hours 15 minutes) out of which 7,056 are spent loading
the candidate table. This dataset corresponds though to many nights of observa-
tions. To determine how long it takes to ingest a set of subtractions generated at one
instance in time, we chose a random night in the dataset, i.e., the night of October 10,
2011, compute its corresponding statistics, and then extrapolate the loading time based
on these statistics. There are 2,997 subtractions taken during this night and 1,939,059
candidates at an average rate of 647 candidates per subtraction. The time taken to ingest
these data into GLADE is only 24 seconds. Considering that the ingestion is distributed
over 10 periods of 45 minutes each, the average ingestion time for a set of subtractions
is less than 3 seconds.

Candidate identification. The first stage in real-or-bogus classification is to iden-
tify candidates with high realbogus score assigned by the random forest classifier. The
corresponding query (1) contains a 3-way join between subtraction, candidate,
and rb classifier and a series of selection predicates on each of the tables. The
most important predicate is a range selection on subtraction that limits the search
to the images acquired most recently. Due to range-based partitioning and columnar
storage, in the GLADE implementation this query reads only the chunks and columns
that generate results. In the optimal situation, a single chunk is processed from each of
the 3 tables. Out of the almost 2 million candidates detected during the night of October
10, 2011, only 40,087 are classified as real by the random forest classifier. This is only



2%. The number can be easily increased by relaxing the conditions in the query. It takes
GLADE only 9.2 seconds to find the real candidates, i.e., 0.92 seconds per subtraction.

SELECT s.ujd, c.sub id, c.id, c.ra, c.dec,
c.xint new, c.yint new, c.pos sub

FROM
subtraction s JOIN candidate c ON (c.sub id = s.id)
JOIN rb classifier rbc ON
(rbc.sub id = c.sub id AND rbc.candidate id = c.id)
WHERE s.ujd > 2455844 AND s.ujd < 2455845 AND
rbc.realbogus > 0.17 AND rbc.bogus < 0.35 AND
c.b image > 0.7 AND c.pos sub = ’True’ AND
(c.a image < 3.0 OR c.mag < 15.0)

(1)

Candidate pruning. Each of the candidates identified by the random forest classi-
fier is further checked before deemed real. The first condition a candidate has to pass is
that it appears in more than one subtraction at a position close to the original position
where it was first spotted. This is expressed as a complex nearest-neighbor query (2)
along the space and time attributes. In the current implementation of the PTF pipeline,
one such query is executed sequentially for every candidate. This is 40,087 queries for
our example night or approximately 4,000 queries for every subtraction set. Since all
these queries have to be executed in less than 45 minutes, this step is by far the bot-
tleneck of the entire process. GLADE multi-query processing kicks in perfectly in this
situation thus allowing for multiple candidates to be checked at the same time. Most
importantly though, the time to check many candidates – up to 64 candidates in the cur-
rent GLADE implementation – is the same as checking a single candidate. The reason
for this is that the queries have identical execution plans – more or less some constants
– which allows for maximum data access sharing. When coupled with range-based par-
titioning and columnar storage, it takes only 18 minutes to check the 4,000 candidates
identified in a subtraction set—18 seconds for a group of 64 candidates. 560 candidates
survive pruning on average for each subtraction set.

SELECT COUNT(*)
FROM
subtraction s JOIN candidate c ON (c.sub id = s.id)
JOIN rb classifier rbc ON (rbc.candidate id = c.id)
WHERE c.ra BETWEEN (%1f,%2f) AND
c.dec BETWEEN (%3f,%4f) AND
(s.ujd BETWEEN (%5f,%6f) OR s.ujd BETWEEN (%7f,%8f))
AND (rbc.realbogus > 0.07 OR c.pos sub <> ’True’) AND

c.b image > 0.7 AND (c.a image < 3.0 OR c.mag < 15.0)

(2)

Contextual realbogus computation. For the surviving candidates, the contextual
realbogus score is computed based on the probability of being real of their nearest-
neighbor candidates in the subtraction. This requires another iterative process in which



each surviving candidate is examined independently. The difference from pruning is
that the contextual realbogus score cannot be computed inside the database. Instead
it is computed in a Python script that extracts the necessary data from the database
using query (3). This is not required in GLADE though since complex aggregates can
be expressed as GLAs and executed inside the system without moving data between
processes. In addition to the savings in execution time, the GLA mechanism allows
for all the computation to be confined to the database engine—a cleaner and easier to
understand solution. In GLADE, the contextual realbogus score for the 560 candidates
surviving pruning in a subtraction set is computed in 88 seconds—it takes 10 seconds
on average to compute the score for a group of 64 candidates.
Table 2 summarizes the results we obtained for processing the October 10, 2011 data
in GLADE. These are average results for processing a subtraction set. The overall time
to classify the candidates is less than 20 minutes. This is less than half the length of the
interval between two sets of images are ingested, i.e., 45 minutes. The remaining time
can be used either to increase the rate at which images are ingested or to analyze more
candidates—some of the conditions based on which candidates are pruned are arbitrary
and they are targeted at reducing the overall classification time. This is not a problem
in the GLADE implementation though.

SELECT c.id,√
(c.xint new-%1f)2 + (c.yint new-%2f)2 AS dist

FROM
subtraction s JOIN candidate c ON (c.sub id = s.id)
JOIN rb classifier rbc ON
(rbc.sub id = c.sub id AND rbc.candidate id = c.id)
WHERE s.id = %3i AND c.pos sub = ’%4s’
ORDER BY dist

(3)

PostgreSQL solutions. In order to compare the proposed GLADE approach with
the existent solution, we devise two alternative PostgreSQL databases. The first database
does not contain any optimizations. There are no indexes or any other structures for en-
hancing query performance. The second database defines indexes for all the attributes
used in selection predicates or join conditions across the three workload queries. This is
the solution implemented in the PTF production pipeline. We deploy these two databases
on a PostgreSQL 8.4 server running on the same test machine. We modify the server
configuration in order to maximize usage of the available memory resources in the sys-
tem, e.g., we set shared buffers to 3 GB.
Table 2 contains the results for the two PostgreSQL database implementations. The
indexed implementation outperforms the non-indexed version considerably at query
processing. The gap is as much as 6 orders of magnitude for the contextual realbo-
gus computation. The reason for this is that the non-indexed database has to read all
data from all the tables in order to perform any query. Since no indexes are available,
sequential scan is the only feasible path access strategy. Indexes reduce dramatically
query execution time since the tuples satisfying the highly-selective predicates can be
identified with as little as a single disk access. Due to the large buffer pool, disk access



is not even required at all in many situations. Indexes also play an important role in the
selection of the join algorithms used in query execution plans. The situation is radically
different though for data ingestion. While it takes less than a minute to load a new set
of candidates in the non-indexed database, it takes 68 minutes to do so in the indexed
version. This 61 factor difference is entirely due to index maintenance. Adding tuples
to the candidate table requires insertions in each of the 9 indexes defined over it.
Although this might not seem such a difficult problem at first, in the case of a batch of
200,000 insertions the probability to encounter some time-consuming index reorgani-
zations is quite high.
Overall, none of the PostgreSQL solutions meets the requirement to ingest and identify
a new set of candidates in less than 45 minutes. The index-based solution deployed in
production takes 75 minutes on our test machine—out of which 60 minutes are spent
for data ingestion. The non-indexed version is far from this requirement. A possible
solution to decrease the loading time for the indexed database is to reduce the number
of indexes. The expectation is that the decrease in loading time offsets the increase in
query execution time and for some combination of indexes the overall time drops below
45 minutes. Finding the optimal index combination is a hard problem that requires the
investigation of an exponential number of alternatives.

Phase GLADE PostgreSQL PostgreSQL + indexes
Data ingestion 3 sec 59 sec 1 hour 8 sec
Identification 0.92 sec 45 sec 4.67 sec
Pruning 18 min 607 hours 15 min 39 sec
Contextual realbogus 1 min 30 sec 68 hours 0.79 sec

Table 2: Average results for processing a subtraction set on October 10, 2011.

Observations. When we compare the proposed GLADE solution to the PostgreSQL
indexed database, we remark some interesting aspects. Overall, GLADE outperforms
PostgreSQL by a factor of 3.88. This is entirely due to the efficient GLADE data loading
mechanism which is faster by 3 orders of magnitude. Since GLADE does not employ
any secondary data structures to enhance query performance, it is not as efficient as
indexed PostgreSQL in answering queries. The difference between the two systems
– only 24% – is considerably smaller when compared to the basic PostgreSQL im-
plementation. The GLADE architecture specifically targeted at analytical processing
and optimized for read-mostly workloads is responsible for providing similar query
performance to indexed PostgreSQL but without the associated increase in database
size – the indexed PostgreSQL database is twice as large as GLADE – and ingestion
time—GLADE loads new candidates a factor of 60 faster. Range-based partitioning
and columnar storage combine together in order to minimize the amount of data read
from disk across all types of range queries. Dedicated support for the execution of any
user code inside the system eliminates data movement almost entirely and allows for
complex computations to be executed right near the data. For the PTF workload though,



the most significant gains are due to multi-query processing. Instead of verifying each
candidate one at a time, GLADE allows for up to 64 candidates to be evaluated simul-
taneously in the same amount of time. This is because all the queries have identical
execution plans and GLADE is capable to combine them into a single plan in which the
operators share access along the entire data path—from disk to CPU registers through
main memory and cache.

5 Conclusions

In this paper, we present a novel implementation for the real-or-bogus classification
in GLADE—a parallel multi-query processing system targeted specifically at analyt-
ical workloads. We show how each stage in the classifier – candidate identification,
pruning, and contextual realbogus – maps optimally into GLADE tasks by taking ad-
vantage of the unique features of the system—range-based data partitioning, columnar
storage, multi-query execution, and in-database support for complex aggregate compu-
tation. The result is an efficient classifier implementation capable to process a new set
of acquired images in a matter of minutes even on a low-end server. For comparison,
the existing optimized PostgreSQL implementation of the classifier is a factor of 3.88
slower. Due to this reduction in the time to investigate a set of new candidates, consid-
erably more candidates can be thoroughly evaluated, thus increasing the likelihood to
find many transients that are otherwise missed by the current solution.

References

1. Palomar Transient Factory. www.astro.caltech.edu/ptf/ [November 2013].
2. Law, N.M., al.: The Palomar Transient Factory: System Overview, Performance and First

Results. CoRR abs/0906.5350 (2009)
3. Bloom, J.S., al.: Automating Discovery and Classification of Transients and Variable Stars

in the Synoptic Survey Era. CoRR abs/1106.5491 (2011)
4. Grillmair, C.J., al.: An Overview of the Palomar Transient Factory Pipeline and Archive at

the Infrared Processing and Analysis Center. In: ASP Conf. Ser. 434, Astronomical Data
Analysis Software and Systems XIX. (2010) 28–36

5. Cheng, Y., Qin, C., Rusu, F.: GLADE: Big Data Analytics Made Easy. In: Proceedings of
2012 ACM SIGMOD International Conference on Management of Data. (2012) 697–700

6. PostgreSQL: http://www.postgresql.org/ [November 2013].
7. Python Programming Language. http://www.python.org/ [November 2013].
8. Cheng, Y., Rusu, F.: Astronomical Data Processing in EXTASCID. In: Proceedings of 2013

SSDBM Conf. on Sci. and Stat. Database Management. (2013) 387–390
9. Arumugam, S., Dobra, A., Jermaine, C., Pansare, N., Perez, L.: The DataPath System: A

Data-Centric Analytic Processing Engine for Large Data Warehouses. In: Proceedings of
2010 ACM SIGMOD International Conference on Management of Data. (2010) 519–530

10. Rusu, F., Dobra, A.: GLADE: A Scalable Framework for Efficient Analytics. Operating
Systems Review 46(1) (2012) 12–18


