
Astronomical Data Processing in EXTASCID

Yu Cheng
UC Merced

5200 N Lake Road
Merced, CA 95343

ycheng4@ucmerced.edu

Florin Rusu
UC Merced

5200 N Lake Road
Merced, CA 95343

frusu@ucmerced.edu

ABSTRACT
Scientific data have dual structure. Raw data are preponderantly
ordered multi-dimensional arrays or sequences while metadata and
derived data are best represented as unordered relations. Scientific
data processing requires complex operations over arrays and rela-
tions. These operations cannot be expressed using only standard
linear and relational algebra operators, respectively. Existing sci-
entific data processing systems are designed for a single data model
and handle complex processing at the application level.

EXTASCID is a complete and extensible system for scientific
data processing. It supports both array and relational data natively.
Complex processing is handled by a metaoperator that can execute
any user code. As a result, EXTASCID can process full scientific
workflows inside the system, with minimal data movement and ap-
plication code. We illustrate the overall process on a real dataset
and workflow from astronomy—starting with a set of sky images,
the goal is to identify and classify transient astrophysical objects.

1. INTRODUCTION
Science represents one of the most important sources of Big

Data. While effectively storing the data is a challenge in itself,
the main problem scientists face is how to efficiently process the
data in order to obtain novel insights and gain knowledge. There
are multiple reasons for this. First, the structure of the raw data and
that of metadata and derived data are different—ordered arrays and
relations, respectively. Second, processing involves complex oper-
ations that go beyond linear and relational algebra. As a result, it is
common in scientific domains to have an infrastructure consisting
of two separate systems—one for raw data and one for metadata
and derived data. The drawbacks of such a solution are evident—
two systems to manage, data residing in two separate places, and
cross-system data processing at application layer, to name a few.

To illustrate this situation, we provide a motivating example from
astronomy. The Palomar Transient Factory (PTF) project [1] aims
to identify and automatically classify transient astrophysical ob-
jects such as variable stars and supernovae in real-time. High-
resolution images of the night sky represent the raw data. The
first step in the processing pipeline is to extract a set of astrophys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SSDBM ’13, July 29 - 31 2013, Baltimore, MD, USA
Copyright 2013 ACM 978-1-4503-1921-8/13/07 $15.00.

ical objects from each image and to store them together with the
image metadata into a relational database. The images are stored
separately and processed outside of the database due to their or-
dered array structure—not a good fit for the unordered relational
data model. In subsequent pipeline stages, the bulk of the process-
ing is executed at the application layer and involves extracting the
image metadata and the identified objects from the database, read-
ing the actual image from a different storage source – typically a
file on disk – executing application code across the raw image and
the corresponding objects, and storing newly generated results into
the database. Similar situations are encountered in other scientific
projects, for example Sloan Digital Sky Survey (SDSS) [2] and the
data vaults example presented in [13].

Contributions. EXTASCID (EXTensible system for Analyzing
SCIentific Data) evolves around two fundamental design objec-
tives: completeness and extensibility. EXTASCID is a complete
system with native support both for array data as well as for rela-
tional data. EXTASCID provides unlimited extensibility by mak-
ing the execution of arbitrary user code a central part of its de-
sign through the well-established User-Defined Aggregate (UDA)
mechanism. As a result, EXTASCID supports in-database process-
ing of full scientific workflows over both raw and derived data.

EXTASCID is built around the massively parallel GLADE [8]
architecture for data aggregation. While it inherits the extensibility
provided by the original UDA interface implemented in GLADE,
EXTASCID enhances this interface considerably with functions
specific to scientific processing. This requires significant exten-
sions to the GLADE execution strategy in order to provide addi-
tional flexibility and to optimize array processing. The design of
the EXTASCID parallel storage manager with native support for
relations and arrays is entirely novel—GLADE works only for re-
lational data. As far as we know, this is the first storage manager
with native support for relations and arrays in the literature.

Given its descent from GLADE, EXTASCID also satisfies the
standard requirements for scientific data processing—support for
massive datasets and parallel processing. Contrary to existent sci-
entific data processing systems designed for a target architecture,
typically shared-nothing, EXTASCID is architecture-independent.
It runs optimally both on shared-memory, shared-disk servers as
well as on shared-nothing clusters. The reason for this is the exclu-
sive use of thread-level parallelism inside a processing node while
process-level parallelism is used only across nodes.

Related work. EXTASCID is part of a long series of parallel
systems for scientific data processing. Titan [6] and T2 [7] are the
first systems designed with extensibility in mind. They adopt an ex-
ecution strategy closely related to the Map-Reduce [10] paradigm.
More recently, SciHadoop [5] implements array processing on top
of the popular Hadoop Map-Reduce framework. The main differ-

Code
Generator

Comm
Manager

Coordinator

Query
Manager

Query
Manager

Code
Loader

Comm
Manager

Node
1

Execution
Engine

Storage
Manager

GLA
Manager

GLA
Manager

Query
Manager

Code
Loader

Comm
Manager

Node
n

Execution
Engine

Storage
Manager

GLA
Manager

...

Storage
Manager

Figure 1: EXTASCID system architecture.

ences between EXTASCID and these systems are the different ex-
ecution strategy, i.e., UDA vs. Map-Reduce, and the native sup-
port for arrays and relations in EXTASCID. RasDaMan [4] is a
general middleware for array processing with array chunks stored
as BLOBs in a back-end database. The processing is specified
through a limited number of second-order operators integrated into
SQL and executed entirely inside the middleware. RasDaMan is
targeted only at array data – relational data have to be processed
either at the application level or inside the middleware – and it is
not parallel. The RAM [17] and SRAM [9] systems provide sup-
port for array processing on top of the MonetDB [12] columnar
database. They do not provide native support for arrays since ar-
rays are represented as relations and array operations are mapped
over relational algebra operators. RAM and SRAM are not paral-
lel. SciQL [18] is an array extension to SQL integrating relations
and arrays into the same declarative language. While the language
is well-defined through examples across multiple application do-
mains, there is little known about its implementation beyond that it
is based on MonetDB. SciDB [16] is the system EXTASCID resem-
bles the most. Both are parallel systems designed to be extensible.
SciDB supports natively only arrays. EXTASCID provides native
support both for arrays and relations. The execution strategy in EX-
TASCID is well-defined through the UDA interface which makes
reasoning about parallelism clear. The same is not true in SciDB
where a series of User-Defined Functions (UDF) are arbitrarily in-
terconnected.

2. SYSTEM DESIGN
In a nutshell, EXTASCID is a parallel data processing system

that executes any computation specified as a Generalized Linear
Aggregate (GLA) [8] using a merge-oriented execution strategy
supported by a push-based storage manager. The storage manager
is designed with special consideration for multi-dimensional range-
based data partitioning in order to support efficient array process-
ing. To allow for wide extensibility in terms of the supported user
code and to extract maximum performance, GLAs are dynamically
compiled inside EXTASCID at runtime following the optimized
code generation mechanism proposed in the DataPath system [3].

As shown in Figure 1, EXTASCID consists of two types of en-
tities: a coordinator and one or more executor processes. The co-
ordinator is the interface between the user and the system. Since
it does not manage any data except the catalog metadata, the co-
ordinator does not execute any data processing task. These are
the responsibility of the executors, typically one for each physi-
cal processing node. It is important to notice that the executors act
as completely independent entities, in charge of their data and of

the physical resources. The coordinator as well as the executors
consist of multiple components, depicted in Figure 1. While the
components are inherited from the GLADE [8] architecture, signif-
icant enhancements are required to the Storage Manager and GLA
Manager modules in order to support extensible array storage and
processing in addition to the native relational data model.

2.1 Storage Manager
The storage manager is responsible for organizing data on disk,

reading, and delivering the data to the execution engine for pro-
cessing. There are multiple aspects that distinguish EXTASCID
from traditional database storage managers. First, it supports na-
tively relational data as well as multi-dimensional arrays. Second,
and most important, the storage manager operates as an indepen-
dent component that reads data asynchronously and pushes it for
processing. It is the storage manager rather than the execution en-
gine in control of the processing through the speed at which data is
read from disk. And third, in order to support a highly-parallel exe-
cution engine consisting of multiple execution threads, the storage
manager itself uses parallelism for simultaneously reading multiple
data partitions.

Chunking or tiling is the name used for range-based partitioning
in the context of multi-dimensional arrays [14]. Essentially, the ar-
ray dimensions are used as partitioning attributes and the resulting
data segments are called chunks. Possible chunking strategies for
arrays are presented in [11, 15]. Issues that need to be addressed in-
clude the shape of the chunk, the order in which to store the chunks
on disk, and how to distribute chunks across processing nodes.

The shape of the chunk can be fixed across the entire array –
regular chunking – or there can be multiple shapes, each of them
containing the same number of array cells—irregular chunking [11,
15]. Regular chunking is better suited for dense arrays, also known
as grids, since each cell in the array contains the same data. The
main issue with regular chunking is how to determine the optimal
shape. The immediate alternative is to make the size of the chunk
along each dimension proportional to the domain size of the corre-
sponding dimension—aligned tiling [11] uses the same scaling fac-
tor across each dimension. Another alternative is to determine the
shape based on the query workload as the solution to the optimiza-
tion formulation that minimizes the overall number of chunks read
from disk [14]. Irregular chunking is better suited to sparse arrays.
The objective is to create chunks that contain the same number of
data points rather than to have chunks with the same shape. This
results in similar processing time across chunks and load balanc-
ing across processes—an important aspect for parallel processing.
EXTASCID supports all these types of chunking. It chooses the
appropriate strategy based on the type of data and other available
information such as the query workload.

Once the chunk shape is determined, two additional problems
require attention—how to order the chunks on disk and how to
distribute the chunks across multiple processing nodes. It is im-
portant to notice that no matter what order is chosen, there will
be tasks with suboptimal performance. Thus, the idea is to opti-
mize the placement for a given workload or in the average case.
Random placement of chunks on disk and across nodes is optimal
in the average case. When workload information is available, the
order of chunks on disk – the order in which dimensions are con-
sidered – can be chosen such that chunks that are accessed together
are placed continuously on disk. This results in larger sequential
scans and fewer seeks, thus better I/O performance. Larger chunk
sizes have a somehow similar effect. The assignment of chunks to
nodes involves a more complicated tradeoff. On one side, we aim
for maximum parallelism. On the other, the amount of data trans-

Att
1

Att
2

Att
n

Dim
1

Max

Min

Max

Min

Max

Min

Max

Min

Metadata

Data

Dim
k

Max

Min

Figure 2: Chunk structure.

ferred between nodes has to be minimized. Thus, it is not clear if
chunks that are accessed together should be assigned to the same
or different nodes. It depends on the actual task to be executed.
The problem becomes even more complicated in EXTASCID due
to the thread-level parallelism inside each processing node. In this
situation, we opt for random chunk placement on disk and random
chunk assignment to processing nodes as our default strategy. The
user is given the possibility to change this and specify an arbitrary
placement though.

Figure 2 depicts the generic structure of an EXTASCID chunk
containing metadata to support range-based data partitioning. It
is important to point out that this structure is directly applicable
both to arrays as well as relational data. The metadata contain the
minimum and maximum values for each dimension and attribute
and are stored in the system catalog. This information is computed
at loading time – it does not require maintenance since the data are
read-only – and it is sufficient to determine if a chunk is required for
processing in a subsample query. The actual data are vertically par-
titioned, with each column stored in a separate set of disk blocks.
This allows only for the required columns to be read for each query,
thus minimizing the I/O bandwidth required for processing.

Given the generic chunk structure, it is important to determine
what optimizations can be applied for different types of data. We
are specifically interested in sparse and dense ordered arrays and
unordered relations. While in the case of sparse arrays and rela-
tions there is not much beyond using the metadata to determine if a
chunk is required for processing in a subsample or selection query,
dense arrays provide further optimization opportunities. To be pre-
cise, the dimensions can be discarded altogether if the data inside
the chunk are stored sorted along a known order of the dimensions.
This optimization is known as dimension or index suppression and
can reduce the amount of data read from disk even further. No-
tice that although index suppression reduces the amount of stored
data, we do not consider it as a compression method. Compression
techniques are orthogonal to chunk organization and they can be
applied at column level. Currently, EXTASCID does not support
compression.

2.2 GLA Execution
EXTASCID adopts a merge-oriented execution strategy, facili-

tated by the push-based storage manager and the GLA interface for
complex task specification. Merging is supported by two compo-
nents of the system—a GLA metaoperator that is part of the exe-
cution engine and the GLA manager. As all the other operators in
the execution engine, the GLA metaoperator takes as input chunks.
Unlike other operators though, its functionality is not restricted to
a pre-determined template with a reduced number of configuration
parameters. Instead, the GLA metaoperator can execute arbitrary
user code as long as it is expressed using the GLA interface [8].
The role of the GLA manager is to merge together GLAs created

Result

GLA
1

GLA

Local
Term

Acc

Begin
Chunk

Local
Merge

Chunk1

G
L

A
1

G
L

A
2

G
L

A
k

G
L

A

GLA
m

Node1

Chunkr

End
Chunk

Remote
Merge

Terminate

Acc

Begin
Chunk

GLA
n

End
Chunk

Local
Term

Acc

Begin
Chunk

Local
Merge

Chunk1

G
L

A
1

G
L

A
2

G
L

A
l

G
L

A

GLA
p

Noden

Chunks

End
Chunk

Acc

Begin
Chunk

GLA
q

End
Chunk

GLA
n

Figure 3: EXTASCID merge-oriented execution strategy. The gray
rectangles correspond to methods specific to array processing in the
extended GLA interface.

at different nodes. Merging is executed on arbitrary tree structures,
determined independently for each query.

Figure 3 depicts the stages of the merging strategy expressed
in terms of the extended GLA interface specific to array process-
ing. The semantic of the standard GLA methods is presented else-
where [8]. In the following, we focus on the array-specific GLA
methods we propose starting from the PTF use case. BeginChunk
is invoked before the data inside the chunk are processed, once for
every chunk. EndChunk is similar to BeginChunk, invoked af-
ter processing the chunk instead. These two methods operate at
chunk granularity. They are the places where side-effect opera-
tions are executed. For example, in BeginChunk data can be
sorted according to a dimension that makes the processing more
efficient. In EndChunk, data that are part of the GLA state and
do not require further merging can be materialized to disk result-
ing in significant reduction in memory usage. Merging is invoked
in two places. In the GLA metaoperator, LocalMerge puts to-
gether local GLAs created on the same processing node, while in
the GLA manager RemoteMerge is invoked for GLAs computed
at different nodes. This distinction provides optimization oppor-
tunities depending on the chunking strategy—when chunks cor-
responding to the same array are stored on the same node, only
LocalMerge is required. Terminate is called after all the
GLAs are merged together in order to finalize the computation,
while LocalTerminate is invoked after the GLAs at a process-
ing node are merged. LocalTerminate allows for optimiza-
tions when the processing is confined to each node and no data
transfer is required. It is important to notice that not all the inter-
face methods have to be implemented for every type of processing.

3. SYSTEM IMPLEMENTATION
EXTASCID is implemented as a GLADE [8] extension. The

storage manager and the GLA metaoperator are the components
that require significant re-implementation efforts since in GLADE
relations are fully scanned from disk for every query and opera-
tors do not consider the order when iterating over tuples. The EX-
TASCID storage manager has to support arrays and range-based
data partitioning. Arrays are stored using the generic chunk struc-
ture depicted in Figure 2. Range information is included in the
dimension metadata. It is used to determine which chunks have
to be processed for a query given a range condition on dimen-
sions. This is an array-specific optimization – a lightweight form
of spatial indexing – to reduce the amount of data read from disk.
Dimensional range pruning is implemented using the same prin-
ciples of dynamic code generation and compilation present in the
execution engine since it is a runtime operation specific to every
query and it depends on the data at each node. The implementation
of the GLA metaoperator is enhanced with calls to the methods
in the extended GLA interface (Figure 3). To optimize execution
based on the internal chunk organization, the order of the cells,
e.g., row-major or column-major, and their absolute coordinates
have to be known in the GLA methods. They are available in the
chunk metadata and can be extracted by the GLA metaoperator in
BeginChunk. Moreover, even the chunk organization can be al-
tered in BeginChunk prior to iterating over the array cells.

4. THE DEMONSTRATION
Demo participants are presented the entire process EXTASCID

performs for the detection and classification of astrophysical tran-
sient objects in the PTF project1. The input to the entire process is
represented by a series of reference images of the sky and a set
of newly acquired images. The goal is to identify and classify
astrophysical objects visible in the new images and inexistent in
the corresponding reference image in real-time. Since the images
have high resolution and the processing is complex, extensive use
of parallelism is required to make this possible, as reflected by the
deep pipeline consisting of multiple applications that is currently
in place. In our solution, the entire pipeline is executed inside EX-
TASCID, thus reducing the management complexity considerably.
The GLA implementation and the execution inside EXTASCID are
shown for each task in the pipeline. The following processing steps
are presented to the demo audience:

• Image subtraction and calibration. A new image is gener-
ated by subtracting the reference image from the newly ac-
quired image. Then it is calibrated using a series of complex
image processing algorithms. This is an array operation that
preserves the original chunking. It is implemented entirely
inside EXTASCID by parallelizing the execution across mul-
tiple chunks of the same image and across multiple images.

• Object identification. Candidate objects are extracted from
the subtracted images using a parametrized clustering-based
algorithm operating at array cell level. The resulting can-
didates and their corresponding properties are stored as re-
lations in EXTASCID. Identification takes as input a chun-
ked array and generates as output a partitioned relation. It
is a perfect representative for the merge-oriented processing
strategy implemented in EXTASCID.

• Object classification. The set of transient objects determined
at the previous step is further processed to identify and clas-

1The authors would like to thank Kesheng Wu and Peter Nugent
from Lawrence Berkeley National Laboratory for introducing the
PTF project and providing the dataset.

sify only the real objects. This is a multi-stage operation
over relational data that consists in selecting only those can-
didate objects appearing in multiple images. Once identified,
a scoring function is applied to compute the likelihood that
the object is real.

A demo participant can execute the above tasks on a set of real
PTF images based on a pre-defined script. Starting with a set of sky
images, the participants experience each step of the processing, ob-
serve the intermediate results, and obtain the most likely transient
objects in the end. Participants can also customize different param-
eters of the processing during the demonstration. For example, they
can choose the set of images and regions where to search for tran-
sient objects. Or they can test the effect different data partitioning
and chunking strategies have on the execution.

A second demo scenario explores the EXTASCID storage man-
ager. Specifically, we evaluate possible array implementations in-
side a parallel relational storage manager. The first alternative, and
most common, is to represent arrays on top of relations. Dimen-
sions have to be represented explicitly in this case since there is no
ordering information available. The second alternative is to support
arrays directly by preserving the order—the EXTASCID solution.
Dimensions can be discarded altogether in this case since the order-
ing information is implicit. Demo participants are shown the effects
each representation has on data organization, I/O throughput, and
execution time.

5. REFERENCES
[1] Palomar Transient Factory. www.astro.caltech.edu/ptf.
[2] Sloan Digital Sky Survey. www.sdss3.org.
[3] S. Arumugam and al. The DataPath System: A Data-Centric Analytic

Processing Engine for Large Data Warehouses. In SIGMOD 2010.
[4] P. Baumann and al. The Multidimensional Database System

RasDaMan. In SIGMOD 1998.
[5] J. B. Buck and al. SciHadoop: Array-based Query Processing in

Hadoop. In SC 2011.
[6] C. Chang and al. Titan: A High-Performance Remote Sensing

Database. In ICDE 1997.
[7] C. Chang and al. T2: A Customizable Parallel Database for

Multi-Dimensional Data. SIGMOD Rec., 27(1), 1998.
[8] Y. Cheng and al. GLADE: Big Data Analytics Made Easy. In

SIGMOD 2012.
[9] R. Cornacchia and al. Flexible and Efficient IR using Array

Databases. VLDBJ, 17, 2008.
[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters. Commun. ACM, 51(1), 2008.
[11] P. Furtado and P. Baumann. Storage of Multidimensional Arrays

Based on Arbitrary Tiling. In ICDE 1999.
[12] S. Idreos and al. MonetDB: Two Decades of Research in

Column-oriented Database Architectures. IEEE Data Eng. Bull.,
35(1), 2012.

[13] M. Ivanova and al. Data Vaults: A Symbiosis between Database
Technology and Scientific File Repositories. In SSDBM 2012.

[14] S. Sarawagi and M. Stonebraker. Efficient Organization of Large
Multidimensional Arrays. In ICDE 1994.

[15] E. Soroush and al. ArrayStore: A Storage Manager for Complex
Parallel Array Processing. In SIGMOD 2011.

[16] M. Stonebraker and al. The Architecture of SciDB. In SSDBM 2011.
[17] A. R. van Ballegooij. RAM: A Multidimensional Array DBMS. In

EDBT Workshops 2004.
[18] Y. Zhang and al. SciQL: Bridging the Gap between Science and

Relational DBMS. In IDEAS 2011.

