Sampling Estimators for Parallel Online Aggregation

Chengjie Qin and Florin Rusu

University of California, Merced
cgin3@ucmerced.edu, frusu@ucmerced. edu

Abstract. Online aggregation provides estimates to the final result of a compu-
tation during the actual processing. The user can stop the computation as soon as
the estimate is accurate enough, typically early in the execution. When coupled
with parallel processing, this allows for the interactive data exploration of the
largest datasets. In this paper, we identify the main functionality requirements of
sampling-based parallel online aggregation—partial aggregation, parallel sam-
pling, and estimation. We argue for overlapped online aggregation as the only
scalable solution to combine computation and estimation. We analyze the prop-
erties of existent estimators and design a novel sampling-based estimator that is
robust to node delay and failure. When executed over a massive 8TB TPC-H in-
stance, the proposed estimator provides accurate confidence bounds early in the
execution even when the cardinality of the final result is seven orders of magni-
tude smaller than the dataset size and achieves linear scalability.

Keywords: parallel databases, estimation, sampling, online aggregation

1 Introduction

Interactive data exploration is a prerequisite in model design. It requires the analyst to
execute a series of exploratory queries in order to find patterns or relationships in the
data. In the Big Data context, it is likely that the entire process is time-consuming even
for the fastest parallel database systems given the size of the data and the sequential
nature of exploration—the next query to be asked is always dependent on the previ-
ous. Online aggregation [1] aims at reducing the duration of the process by allowing
the analyst to rule out the non-informative queries early in the execution. To make this
possible, an estimate to the final result of the query with progressively narrower con-
fidence bounds is continuously returned to the analyst. When the confidence bounds
become tight enough, typically early in the processing, the analyst can decide to stop
the execution and focus on a subsequent query.

Online aggregation in a centralized setting received a lot of attention since its intro-
duction in the late nineties. The extension to parallel environments was mostly consid-
ered unnecessary — when considered, it was direct parallelization of serial algorithms —
given the performance boost obtained in such systems by simply increasing the physi-
cal resources. With the unprecedented increase in data volumes and the proliferation of
multi-core processors, parallel online aggregation becomes a necessary tool in the Big
Data analytics landscape. It is the combination of parallel processing and estimation
what truly makes interactive exploration of massive datasets feasible.

In this paper, we identify the main requirements for parallel online aggregation—
partial aggregation, parallel sampling, and estimation. Partial aggregation requires the
extraction of a snapshot of the system during processing. What data are included in the
snapshot is the result of parallel sampling, while estimates and confidence bounds for
the query result are computed from the extracted samples. Our specific contributions
are as follows:

— We discuss in details each stage in the parallel online aggregation process.
We analyze and thoroughly compare the existent parallel sampling estimators.
We introduce a scalable sampling estimator which exhibits increased accuracy in
the face of node delay and failure.
We provide an implementation for the proposed estimator that confirms its accuracy
even for extremely selective queries over a massive 8TB TPC-H instance.

2 Preliminaries

We consider aggregate computation in a parallel cluster environment consisting of mul-
tiple processing nodes. Each processing node has a multi-core processor consisting of
one or more CPUs, thus introducing an additional level of parallelism. Data are parti-
tioned into fixed size chunks that are stored across the processing nodes. Parallel aggre-
gation is supported by processing multiple chunks at the same time both across nodes
as well as across the cores inside a node.

We focus on the computation of general SELECT-PROJECT-JOIN (SPJ) queries
having the following SQL form:

SELECT SUM(f (t; e tj))
FROM TABLE; AS t;, TABLE, AS t, 6))
WHERE P (t; e tj)

where e is the concatenation operator, f is an arbitrary associative decomposable ag-
gregate function [2] over the tuple created by concatenating t, and t,, and P is some
boolean predicate that can embed selection and join conditions. The class of associative
decomposable aggregate functions, i.e., functions that are associative and commuta-
tive, is fairly extensive and includes the majority of standard SQL aggregate functions.
Associative decomposable aggregates allow for the maximum degree of parallelism in
their evaluation since the computation is independent of the order in which data inside
a chunk are processed as well as of the order of the chunks, while partial aggregates
computed over different chunks can be combined together straightforwardly. While the
paper does not explicitly discuss aggregate functions other than SUM, functions such as
COUNT, AVERAGE, STD DEV, and VARIANCE can all be handled easily—they are all
associative decomposable. For example, COUNT is a special case of SUM where £(-) =
1 for any tuple, while AVERAGE can be computed as the ratio of SUM and COUNT.
Parallel aggregation. Aggregate evaluation takes two forms in parallel databases.
They differ in how the partial aggregates computed for each chunk are combined to-
gether. In the centralized approach, all the partial aggregates are sent to a common node
— the coordinator — that is further aggregating them to produce the final result. As an

intermediate step, local aggregates can be first combined together and only then sent
to the coordinator. In the parallel approach, the nodes are first organized into an aggre-
gation tree. Each node is responsible for aggregating its local data and the data of its
children. The process is executed level by level starting from the leaves, with the final
result computed at the root of the tree. The benefit of the parallel approach is that it
also parallelizes the aggregation of the partial results across all the nodes rather than
burdening a single node (with data and computation). The drawback is that in the case
of a node failure it is likely that more data are lost. Notice that these techniques are
equally applicable inside a processing node, at the level of a multi-core processor.

Online aggregation. The idea in online aggregation is to compute only an estimate
of the aggregate result based on a sample of the data [1]. In order to provide any useful
information though, the estimate is required to be accurate and statistically significant.
Different from one-time estimation [3] that might produce very inaccurate estimates
for arbitrary queries, online aggregation is an iterative process in which a series of
estimators with improving accuracy are generated. This is accomplished by including
more data in estimation, i.e., increasing the sample size, from one iteration to another.
The end-user can decide to run a subsequent iteration based on the accuracy of the
estimator. Although the time to execute the entire process is expected to be much shorter
than computing the aggregate over the entire dataset, this is not guaranteed, especially
when the number of iterations is large. Other issues with iferative online aggregation [4,
5] regard the choice of the sample size and reusing the work done across iterations.

An alternative that avoids these problems altogether is to completely overlap query
processing with estimation [6,7]. As more data are processed towards computing the
final aggregate, the accuracy of the estimator improves accordingly. For this to be true
though, data are required to be processed in a statistically meaningful order, i.e., ran-
dom order, to allow for the definition and analysis of the estimator. This is typically
realized by randomizing data during the loading process. The drawback of the over-
lapped approach is that the same query is essentially executed twice—once towards the
final aggregate and once for computing the estimator. As a result, the total execution
time in the overlapped case is expected to be higher when compared to the time it takes
to execute each task separately.

3 Parallel Online Aggregation

There are multiple aspects that have to be considered in the design of a parallel on-
line aggregation system. First, a mechanism that allows for the computation of partial
aggregates has to be devised. Second, a parallel sampling strategy to extract samples
from data over which partial aggregates are computed has to be designed. Each sam-
pling strategy leads to the definition of an estimator for the query result that has to be
analyzed in order to derive confidence bounds. In this section, we discuss in detail each
of these aspects for the overlapped online aggregation approach.

3.1 Partial Aggregation

The first requirement in any online aggregation system is a mechanism to compute par-
tial aggregates over some portion of the data. Partial aggregates are typically a superset

of the query result since they have to contain additional data required for estimation.
The partial aggregation mechanism can take two forms. We can fix the subset of the
data used in partial aggregation and execute a normal query. Or we can interfere with
aggregate computation over the entire dataset to extract partial results before the com-
putation is completed. The first alternative corresponds to iterative online aggregation,
while the second to overlapped execution.

Partial aggregation in a parallel setting raises some interesting questions. For iter-
ative online aggregation, the size and location of the data subset used to compute the
partial aggregate have to be determined. It is common practice to take the same amount
of data from each node in order to achieve load balancing. Or to have each node process
a subset proportional to its data as a fraction from the entire dataset. Notice though that
it is not necessary to take data from all the nodes. In the extreme case, the subset con-
sidered for partial aggregation can be taken from a single node. Once the data subset at
each node is determined, parallel aggregation proceeds normally, using either the cen-
tralized or parallel strategy. In the case of overlapped execution, a second process that
simply aggregates the current results at each node has to be triggered whenever a partial
aggregate is computed. The aggregation strategy can be the same or different from the
strategy used for computing the final result. Centralized aggregation might be more suit-
able though due to the reduced interference. The amount of data each node contributes
to the result is determined only by the processing speed of the node. Since the work
done for partial aggregation is also part of computing the final aggregate, it is important
to reuse the result so that the overall execution time is not increased unnecessarily.

3.2 Parallel Sampling

In order to provide any information on the final result, partial aggregates have to be sta-
tistically significant. It has to be possible to define and analyze estimators for the final
result using partial aggregates. Online aggregation imposes an additional requirement.
The accuracy of the estimator has to improve when more data are used in the computa-
tion of partial aggregates. In the extreme case of using the entire dataset to compute the
partial aggregate, the estimator collapses on the final result. The net effect of these re-
quirements is that the data subset on which the partial aggregate is computed cannot be
arbitrarily chosen. Since sampling satisfies these requirements, the standard approach
in online aggregation is to choose the subset used for partial aggregation as a random
sample from the data. Thus, an important decision that has to be taken when designing
an online aggregation system is how to generate random samples.

Centralized sampling. According to the literature [8], there are two methods to gen-
erate samples from the data in a centralized setting. The first method is based on using
an index that provides the random order in which to access the data. While it does not
require any pre-processing, this method is highly inefficient due to the large number of
random accesses to the disk. The second method is based on the idea of storing data
in random order on disk such that a sequential scan returns random samples at any po-
sition. Although this method requires considerable pre-processing at loading time to
permute data randomly, it is the preferred randomization method in online aggregation
systems since the cost is paid only once and it can be amortized over the execution of
multiple queries—the indexing method incurs additional cost for each query.

Sampling synopses. It is important to make the distinction between the runtime sam-
pling methods used in online aggregation and estimation based on static samples taken
offline [3], i.e., sampling synopses. In the later case, a sample of fixed size is taken only
once and all subsequent queries are answered using the sample. This is typically faster
than executing sampling at runtime, during query processing. The problem is that there
are queries that cannot be answered from the sample accurately enough, for example,
highly selective queries. The only solution in this case is to extract a larger sample en-
tirely from scratch which is prohibitively expensive. The sampling methods for online
aggregation avoid this problem altogether due to their incremental design that degener-
ates in a sample consisting of the entire dataset in the worst case.

Sample size. Determining the correct sample size to allow for accurate estimations
is an utterly important problem in the case of sampling synopses and iterative online
aggregation. If the sample size is not large enough, the entire sampling process has to
be repeated, with unacceptable performance consequences. While there are methods
that guide the selection of the sample size for a given accuracy in the case of a single
query, they require estimating the variance of the query estimator—an even more com-
plicated problem. In the case of overlapped online aggregation, choosing the sample
size is not a problem at all since the entire dataset is processed in order to compute the
correct result. The only condition that has to be satisfied is that the data seen up to any
point during processing represent a sample from the entire dataset. As more data are
processed towards computing the query result, the sample size increases automatically.
Both runtime sampling methods discussed previously satisfy this property.

Stratified sampling. There are multiple alternatives to obtain a sample from a par-
titioned dataset—the case in a parallel setting. The straightforward solution is to con-
sider each partition independently and to apply centralized sampling algorithms inside
the partition. This type of sampling is known as stratified sampling [9]. While stratified
sampling generates a random sample for each partition, it is not guaranteed that when
putting all the local samples together the resulting subset is a random sample from the
entire data. For this to be the case, it is required that the probability of a tuple to be in
the sample is the same across all the partitions. The immediate solution to this problem
is to take local samples that are proportional with the partition size.

Global randomization. A somehow more complicated solution is to make sure that
a tuple can reside at any position in any partition—global randomization. This can be
achieved by randomly shuffling the data across all the nodes—as a direct extension
of the similar centralized approach. The global randomization process consists of two
stages, each executed in parallel at every node. In the first stage, each node partitions
the local data into sets corresponding to all the other nodes in the environment. In the
second stage, each node generates a random permutation of the data received from
all the other nodes—random shuffling. This is required in order to separate the items
received from the same origin.

The main benefit provided by global randomization is that it simplifies the com-
plexity of the sampling process in a highly-parallel asynchronous environment. This
in turn allows for compact estimators to be defined and analyzed—a single estimator
across the entire dataset. It also supports more efficient sampling algorithms that re-
quire a reduced level of synchronization, as is the case with our estimator. Moreover,

global randomization has another important characteristic for online aggregation—it al-
lows for incremental sampling. What this essentially means is that in order to generate
a sample of a larger size starting from a given sample is enough to obtain a sample of
the remaining size. It is not even required that the two samples are taken from the same
partition since random shuffling guarantees that a sample taken from a partition is ac-
tually a sample from the entire dataset. Equivalently, to get a sample from a partitioned
dataset after random shuffling, it is not necessary to get a sample from each partition.

While random shuffling in a centralized environment is a time-consuming process
executed in addition to data loading, global randomization in a parallel setting is a
standard hash-based partitioning process executed as part of data loading. Due to the
benefits provided for workload balancing and for join processing, hash-based partition-
ing is heavily used in parallel data processing even without online aggregation. Thus,
we argue that global randomization for parallel online aggregation is part of the data
loading process and it comes at virtually no cost with respect to sampling.

3.3 Estimation

While designing sampling estimators for online aggregation in a centralized environ-
ment is a well-studied problem, it is not so clear how these estimators can be extended
to a highly-parallel asynchronous system with data partitioned across nodes. To our
knowledge, there are two solutions to this problem proposed in the literature. In the
first solution, a sample over the entire dataset is built from local samples taken indepen-
dently at each partition. An estimator over the constructed sample is then defined. We
name this approach single estimator. In the single estimator approach, the fundamental
question is how to generate a single random sample of the entire dataset from samples
extracted at the partition level. The strategy proposed in [4] requires synchronization
between all the sampling processes executed at partition level in order to guarantee that
the same fraction of the data are sampled at each partition. To implement this strategy,
serialized access to a common resource is required for each item processed. This results
in unacceptable execution time increase when estimation is active.

In the second solution, which we name multiple estimators, an estimator is defined
for each partition. As in stratified sampling theory [9], these estimators are then com-
bined into a single estimator over the entire dataset. The solution proposed in [10] fol-
lows this approach. The main problem with the multiple estimators strategy is that the
final result computation and the estimation are separate processes with different states
that require more complicated implementation.

We propose an asynchronous sampling estimator specifically targeted at parallel
online aggregation that combines the advantages of the existing strategies. We define
our estimator as in the single estimator solution, but without the requirement for syn-
chronization across the partition-level sampling processes which can be executed in-
dependently. This results in much better execution time. When compared to the multi-
ple estimators approach, our estimator has a much simpler implementation since there
is complete overlap between execution and estimation. In this section, we analyze the
properties of the estimator and compare it with the two estimators it inherits from. Then,
in Section 4 we provide insights into the actual implementation, while in Section 5 we

present experimental results to evaluate the accuracy of the estimator and the runtime
performance of the estimation.

Generic Sampling Estimator To design estimators for the parallel aggregation prob-
lem we first introduce a generic sampling estimator for the centralized case. This is
a standard estimator based on sampling without replacement [9] that is adequate for
online aggregation since it provides progressively increasing accuracy. We define the
estimator for the simplified case of aggregating over a single table and then show how
it can be generalized to GROUP BY and general SPJ queries.

Consider the dataset D to have a single partition sorted in random order. The number
of items in D (size of D) is |D|. While sequentially scanning D, any subset S C D
represents a random sample of size |S| taken without replacement from D. We define
an estimator for the SQL aggregate in Eq. 1 as follows:

D
X||S|| Z £(s))
s€S,P(s)

where f and P are the aggregate function and the boolean predicate embedding selection
and join conditions, respectively. X has the properties given in Lemma 1:

Lemma 1 X is an unbiased estimator for the aggregation problem, i.e., E[X]| =
>deD,p(a) £(d), where E[X] is the expectation of X. The variance of X is equal to:

r(X) = g = Il Y 2@-| Y s ®

deD,P(d) deD,pP(d)

It is important to notice the factor | D| — | S| in the variance numerator which makes
the variance to decrease while the size of the sample increases. When the sample is
the entire dataset, the variance becomes zero, thus the estimator is equal to the exact
query result. The standard approach to derive confidence bounds [11-13] is to assume
a normal distribution for estimator X with the first two frequency moments given by
E [X] and Var (X). The actual bounds are subsequently computed at the required con-
fidence level from the cumulative distribution function (cdf) of the normal distribution.
Since the width of the confidence bounds is proportional with the variance, a decrease
in the variance makes the confidence bounds to shrink. If the normality condition does
not hold, more conservative distribution-independent confidence bounds can be derived
using the Chebyshev-Chernoff inequalities, for example.

A closer look at the variance formula in Eq. 3 reveals the dependency on the entire
dataset D through the two sums over all the items d € D that satisfy the selection pred-
icate P. Unfortunately, when executing the query we have access only to the sampled
data. Thus, we need to compute the variance from the sample. We do this by defining a
variance estimator, Estyy,(x), with the following properties:

Lemma 2 The estimator

D|(|D| —1|S)
e e [CED DRESC I D DR Ol I BT

s€S,P(s) sES,P(s)
is an unbiased estimator for the variance in Eq. 3.

Having the two estimators X and Esty,(x) computed over the sample S, we are
in the position to provide the confidence bounds required by online aggregation in a
centralized environment. The next step is to extend the generic estimators to a parallel
setting where data are partitioned across multiple processing nodes.

Before that though, we discuss on how to extend the generic estimator to GROUP
BY and general SPJ queries. For GROUP BY, a pair of estimators X and Esty,(x) can
be defined independently for each group. The only modification is that predicate P in-
cludes an additional selection condition corresponding to the group. A detailed analysis
on how X and Esty,(x) can be extended to general SPJ queries is given in [11]. The
main idea is to include the join condition in predicate P and take into consideration the
effect it has on the two samples. We do not provide more details since the focus of this
paper is on parallel versions of X and Esty,(x).

Single Estimator Sampling When the dataset D is partitioned across N processing
nodes, i.e., D = D1 UDyU---UDpy,asample S;, 1 < i < N is taken independently at
each node. These samples are then put together in a sample S = S;US;U- - -USy over
the entire dataset D. To guarantee that S is indeed a sample from D, in the case of the
synchronized estimator in [4] it is enforced that the sample ratio [S) is the same across
all the nodes. For the estimator we propose, we let the nodes run independently and
only during the partial aggregation stage we combine the samples from all the nodes
as S. Thus, nodes operate asynchronously at different speed and produce samples with
different size. Global randomization guarantees though that the combined sample S is
indeed a sample over the entire dataset. As a result, the generic sampling estimator in
Eq. 2 can be directly applied without any modifications.

Multiple Estimators Sampling For the multiple estimators strategy, the aggregate
>_dep,p(a) £(d) can be decomposed as DO >_dep, »(a) £(d), with each node com-
puting the sum over the local partition in the first stage followed by summing-up the
local results to get the overall result in the second stage. An estimator is defined for

each partition as X; = % >_scs:p(s) £(s) based on the generic sampling estimator

in Eq. 2. We can then immediately infer that the sum of the estimators X, Zf\il X,
is an unbiased estimator for the query result and derive the variance Var (Zf;l X;) =

Zil Var (X;) if the sampling process across partitions is independent. Since the sam-
ples are taken independently from each data partition, local data randomization at each
processing node is sufficient for the analysis to hold.

Discussion We propose an estimator for parallel online aggregation based on the sin-
gle estimator approach. The main difference is that our estimator is completely asyn-
chronous and allows fully parallel evaluation. We show how it can be derived and ana-
lyzed starting from a generic sampling estimator for centralized settings. We conclude
with a detailed comparison with a stratified sampling estimator (or multiple estimators)
along multiple dimensions:

Data randomization. While the multiple estimators approach requires only local
randomization, the single estimator approach requires global randomization across all
the nodes in the system. Although this might seem a demanding requirement, the ran-
domization process can be entirely overlapped with data loading as part of hash-based
data partitioning.

Dataset information. Multiple estimators requires each node to have knowledge of
the local partition cardinality, i.e., |D;|. Single estimator needs only full cardinality
information, i.e., | D|, where the estimation is invoked.

Accuracy. According to the stratified sampling theory, multiple estimators provides
better accuracy when the size of the sample at each node is proportional with the local
dataset size [9]. This is not true in the general case though with the variance of the
estimators being entirely determined by the samples at hand. In a highly asynchronous
parallel setting, this optimal condition is hard to enforce.

Convergence rate. As with accuracy, it is not possible to characterize the relative
convergence rate of the two methods in the general case. Nonetheless, we can argue that
multiple estimators is more sensitive to discrepancies in processing across the nodes
since the effect on variance is only local. Consider for example the case when one
variance is considerably smaller than the others. Its effect on the overall variance is
asymptotically limited by the fraction it represents from the overall variance rather than
the overall variance.

Fault tolerance. The effect of node failure is catastrophic for multiple estimators.
If one node cannot be accessed, it is impossible to compute the estimator and provide
bounds since the corresponding variance is infinite. For single estimator, the variance
decrease stops at a higher value than zero. This results in bounds that do not collapse
on the true result even when the processing concludes.

4 Implementation

We implement the sampling estimators for online aggregation in GLADE [2, 14], a
parallel processing system optimized for the execution of associative-decomposable
User-Defined Aggregates (UDA). In this section, we discuss the most significant exten-
sions made to the GLADE framework in order to support online aggregation. Then, we
present the implementation of the single estimator as an example UDA.

Extended UDA Interface Table 1 summarizes the extended UDA interface we propose
for parallel online aggregation. This interface abstracts aggregation and estimation in a
reduced number of methods, releasing the user from the details of the actual execution
in a parallel environment which are taken care of transparently by GLADE. Thus, the
user can focus only on estimation modeling.

lMethod HUsage

Init () Basic interface
Accumulate (Item d)

Merge (UDA inputi,UDA inputz, UDA output)

Terminate ()

Serialize () Transfer UDA
Deserialize () across processes
EstTerminate () Partial aggregate
EstMerge (UDA inputi;,UDA inputz, UDA output) computation
Estimate (estimator, lower, wupper, confidence) Online estimation

Table 1: Extended UDA interface.

The first extension is specifically targeted at estimation modeling for online aggre-
gation. To support estimation, the UDA state needs to be enriched with additional data
on top of the original aggregate. Although it is desirable to have a perfect overlap be-
tween the final result computation and estimation, this is typically not possible. In the
few situations when it is possible, no additional changes to the UDA interface are re-
quired. For the majority of the cases though, the UDA interface needs to be extended
in order to distinguish between the final result and a partial result used for estima-
tion. There are at least two methods that need to be added to the UDA interface—
EstTerminate and EstMerge. EstTerminate computes a local estimator at
each node. It is invoked after merging the local UDAs during the estimation process.
EstMerge is called to put together in a single UDA the estimators computed at each
node by Est Terminate. It is invoked with UDAs originating at different nodes. No-
tice that Est Terminate is an intra-node method while EstMerge is inter-node. It
is possible to further separate the estimation from aggregate computation and have an
intra-node EstMerge and an inter-node Est Terminate.

The second extension to the UDA interface is the Est imate method. It is invoked
by the user application on the UDA returned by the framework as a result of an estima-
tion request. The complexity of this method can range from printing the UDA state to
complex statistical models. In the case of online aggregation, Est imate computes an
estimator for the aggregate result and corresponding confidence bounds.

Example UDA We present the UDA corresponding to the proposed asynchronous es-
timator for single-table aggregation — more diverse examples of higher complexity are
presented in [15] — having the following SQL form:

SELECT SUM(f(t)) FROM TABLE AS t WHERE P (t) o)

which computes the SUM of function £ applied to each tuple in table TABLE that
satisfies condition P. It is straightforward to express this aggregate in UDA form. The
state consists only of the running sum, initialized at zero. Accumulate updates the
current sum with £ (t) only for the tuples t satisfying the condition P, while Merge
adds the states of the input UDAs and stores the result as the state of the output UDA.

Algorithm 1 UDASum-SingleEstimator

State: sum; sumSq; count
Init ()

1. sum = 0; sumSq = 0; count = 0

Accumulate (Tuple t)
1. if P(t) then
2. sum = sum + £(t); sumSq = sumSq + £2(t); count = count + 1
3. end if
Merge (UDASum inputi, UDASum inpute, UDASum output)
1. output.sum = inputy.sum + inpute.sum
2. output.sumSq = inputi.sumSq + inputs.sumSq
3. output.count = inputi.count + inputs.count
Terminate ()

Estimate (estimator, lowerBound, upperBound, confLevel)
|D]

count

D|*(|D|—count
2. estVar = Blx(Dl—count) (count * sumSq — sumz)
count?*(count—1)

3. lower Bound = estimator + NormalCDF (%, vV estVar)

1. estimator =

* sum

4. upper Bound = estimator + NormalCDF (confLevel + %M, vV estVaT)

UDASum-SingleEstimator implements the estimator we propose. No modifications
to the UDA interface are required. Looking at the UDA state, it might appear erroneous
that no sample is part of the state when a sample over the entire dataset is required
in the estimator definition. Fortunately, the estimator expectation and variance can be
derived from the three variables in the state computed locally at each node and then
merged together globally. This reduces dramatically the amount of data that needs to be
transferred between nodes. To compute the estimate and the bounds, knowledge of the
full dataset size is required in Est imate.

Parallel Online Aggregation in GLADE At a high level, enhancing GLADE with
online aggregation is just a matter of providing support for UDAs expressed using the
extended UDA interface in Table 1 in order to extract a snapshot of the system state
that can be used for estimation. While this is a good starting point, there are multiple
aspects that require careful consideration. For instance, the system is expected to pro-
cess partial result requests at any rate, at any point during query execution, and with
the least amount of synchronization among the processing nodes. Moreover, the system
should not incur any overhead on top of the normal execution when online aggregation
is enabled. Under these requirements, the task becomes quite challenging.

Our solution overlaps online estimation and actual query processing at all levels of
the system and applies multiple optimizations. Abstractly, this corresponds to execut-
ing two simultaneous UDA computations. Rather than treating actual computation and
estimation as two separate UDAs, we group everything into a single UDA satisfying the
extended interface. More details can be found in an extended version of the paper [15].

S Empirical Evaluation

We present experiments that compare the asynchronous single estimator we propose
in this paper and the multiple estimators approach. We evaluate the “time ’til utility”
(TTU) [13] or convergence rate of the estimators and the scalability of the estimation
process on a 9-node shared nothing cluster—one node is configured as the coordinator
and the other 8 nodes are workers. The dataset used in our experiments is TPC-H scale
8,000 (87B)—each node stores 17B. For more details on the experimental setup, we
refer the reader to our extended report [15].
The aggregation task we consider is given by the following general SPJ query:

SELECT n_name, SUM(l_extendpricex (l-1l_discount)* (l+1l_tax))
FROM lineitem, supplier, nation

WHERE l_shipdate = 1993-02-26 AND l_quantity = 1 AND
1_discount between [0.02,0.03] AND

1_suppkey = s_suppkey AND s_nationkey = n_nationkey

GROUP BY n_name

To execute the query in parallel, supplier and nation are replicated across all the
nodes. They are loaded in memory, pre-joined, and hashed on s_suppkey.lineitem
is scanned sequentially and the matching tuple is found and inserted in the group-by
hash table. Merging the GLA states proceeds as in the group-by case. This join strategy
is common in parallel databases.

What is important to notice about this query is the extremely high selectivity of
the selection predicates. Out of the 48 x 10° tuples in 1ineitem, only 35,000 tuples
are part of the result. These tuples are further partitioned by the GROUP BY clause
such that the number of tuples in each group is around 1, 500. This corresponds to a
selectivity of 29 x 10~"—a veritable needle in the haystack query. Providing sampling
estimates for so highly selective queries is a very challenging task.

Single Estimator, High Selectivity Multiple Estimators, High Selectivity
40 1 node 40 1 node
Q e 2nodes - 9 L 2nodes -
S 30 vy 4 nodes < 307 4 nodes
S vk 8 nodes <] [8 nodes
w20 | w20 |
(0] [0
2 2
3 10} 3 10}
o o
0 ‘ ‘ ‘ 3 0 ‘ ‘ ‘
100 200 300 400 100 200 300 400
Time (seconds) Time (seconds)
(a) (b)

Fig. 1: Comparison between single estimator and multiple estimators. The plots print
the results corresponding to the PERU group.

The results are depicted in Figure 1. As expected, the accuracy of the two estimators
increases as more data are processed, converging on the correct result in the end. The
effect of using a larger number of processing nodes is also clear. With 8 nodes more
result tuples are discovered in the same amount of time, thus the better accuracy. Since
the query takes the same time when proportionally more data and processing nodes
are used, the scaleup of the entire process is also confirmed. What is truly remarkable
though, is the reduced TTU even for this highly selective query. Essentially, the error is
already under 10% when less than half of the data are processed. The reason for this is
the effective tuple discovery process amplified by parallel processing.

When comparing the two estimators, there is no much difference—both in accuracy
and in execution time. This confirms the effectiveness of the proposed estimator since
the multiple estimators approach is known to have optimal accuracy in this particularly
balanced scenario. It is also important to notice that the execution time is always limited
by the available I/O throughput. The difference between the two estimators is clear
when straggler nodes are present or when nodes die. Essentially, no estimate can be
computed by the multiple estimators approach when any node dies. We refer the reader
to the extended version of the paper [15] for experiments concerning the reliability of
the estimators—and many other empirical evaluations.

6 Related Work

There is a plethora of work on online aggregation published in the database literature
starting with the seminal paper by Hellerstein et al. [1]. We can broadly categorize
this body of work into system design [16, 6], online join algorithms [17, 11, 18], and
methods to derive confidence bounds [17, 11, 12]. All of this work is targeted at single-
node centralized environments.

The parallel online aggregation literature is not as rich though. We identified only
three lines of research that are closely related to this paper. Luo et al. [10] extend the
centralized ripple join algorithm [17] to a parallel setting. A stratified sampling estima-
tor [9] is defined to compute the result estimate while confidence bounds cannot always
be derived. This is similar to the multiple estimators approach. Wu et al. [4] extend
online aggregation to distributed P2P networks. They introduce a synchronized sam-
pling estimator over partitioned data that requires data movement from storage nodes
to processing nodes. This corresponds to the synchronized single estimator solution.

The third piece of relevant work is online aggregation in Map-Reduce. In [19],
stock Hadoop is extended with a mechanism to compute partial aggregates. In sub-
sequent work [7], an estimation framework based on Bayesian statistics is proposed.
BlinkDB [20] implements a multi-stage approximation mechanism based on precom-
puted sampling synopses of multiple sizes, while EARL [5] is an iterative online ag-
gregation system that uses bootstrapping to produce multiple estimators from the same
sample. Our focus is on sampling estimators for overlapped online aggregation. This is
a more general problem that subsumes sampling synopses and estimators for iterative
online aggregation.

7 Conclusions

We propose the combination of parallel processing and online aggregation as a feasi-
ble solution for Big Data analytics. We identify the main stages — partial aggregation,
parallel sampling, and estimation — in the online aggregation process and discuss how
they can be extended to a parallel environment. We design a scalable sampling-based
estimator with increased accuracy in the face of node delay and failure. We implement
the estimator in GLADE [2] — a highly-efficient parallel processing system — to confirm
its accuracy even for extremely selective queries over a massive TPC-H 8TB instance.

Acknowledgments This work was supported in part by a gift from LogicBlox.

References

1. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online Aggregation. In: SIGMOD 1997

2. Rusu, F, Dobra, A.: GLADE: A Scalable Framework for Efficient Analytics. Operating
Systems Review 46(1) (2012)

3. Cormode, G., Garofalakis, M.N., Haas, P.J., Jermaine, C.: Synopses for Massive Data: Sam-
ples, Histograms, Wavelets, Sketches. Foundations and Trends in Databases 4(1-3) (2012)

4. Wu, S., Jiang, S., Ooi, B.C., Tan, K.L.: Distributed Online Aggregation. PVLDB 2(1) (2009)

5. Laptev, N., Zeng, K., Zaniolo, C.: Early Accurate Results for Advanced Analytics on
MapReduce. PVLDB 5(10) (2012)

6. Rusu, F, Xu, F, Perez, L.L., Wu, M., Jampani, R., Jermaine, C., Dobra, A.: The DBO
Database System. In: SIGMOD 2008

7. Pansare, N., Borkar, V.R., Jermaine, C., Condie, T.: Online Aggregation for Large MapRe-
duce Jobs. PVLDB 4(11) (2011)

8. Olken, F.: Random Sampling from Databases. Ph.D. thesis (1993) UC Berkeley.

9. Cochran, W.G.: Sampling Techniques. Wiley (1977)

10. Luo, G., Ellmann, C.J., Haas, P.J., Naughton, J.F.: A Scalable Hash Ripple Join Algorithm.
In: SIGMOD 2002

11. Jermaine, C., Dobra, A., Arumugam, S., Joshi, S., Pol, A.: The Sort-Merge-Shrink Join.
TODS 31(4) (2006)

12. Jermaine, C., Arumugam, S., Pol, A., Dobra, A.: Scalable Approximate Query Processing
with the DBO Engine. In: SIGMOD 2007

13. Dobra, A., Jermaine, C., Rusu, F., Xu, F.: Turbo-Charging Estimate Convergence in DBO.
PVLDB 2(1) (2009)

14. Cheng, Y., Qin, C., Rusu, F.: GLADE: Big Data Analytics Made Easy. In: SIGMOD 2012

15. Qin, C., Rusu, F.: PF-OLA: A High-Performance Framework for Parallel On-Line Aggrega-
tion. CoRR abs/1206.0051 (2012)

16. Avnur, R., Hellerstein, J.M., Lo, B., Olston, C., Raman, B., Raman, V., Roth, T., Wylie, K.
CONTROL: Continuous Output and Navigation Technology with Refinement On-Line. In:
SIGMOD 1998

17. Haas, PJ., Hellerstein, J.M.: Ripple Joins for Online Aggregation. In: SIGMOD 1999

18. Chen, S., Gibbons, P.B., Nath, S.: PR-Join: A Non-Blocking Join Achieving Higher Early
Result Rate with Statistical Guarantees. In: SIGMOD 2010

19. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: MapReduce
Online. In: NSDI 2010

20. Agarwal, S., Panda, A., Mozafari, B., Iyer, A.P., Madden, S., Stoica, I.: Blink and It’s Done:
Interactive Queries on Very Large Data. PVLDB 5(12) (2012)

