
GLADE: A Scalable Framework for Efficient Analytics

Florin Rusu
University of California, Merced

5200 N Lake Road
Merced, CA 95343

frusu@ucmerced.edu

Alin Dobra
University of Florida

PO Box 116120
Gainesville, FL 32611

adobra@cise.ufl.edu

ABSTRACT
In this paper we introduce GLADE, a scalable distributed
framework for large scale data analytics. GLADE consists
of a simple user-interface to define Generalized Linear Ag-
gregates (GLA), the fundamental abstraction at the core of
GLADE, and a distributed runtime environment that exe-
cutes GLAs by using parallelism extensively.

GLAs are derived from User-Defined Aggregates (UDA),
a relational database extension that allows the user to add
specialized aggregates to be executed inside the query pro-
cessor. GLAs extend the UDA interface with methods to
Serialize/Deserialize the state of the aggregate required
for distributed computation. As a significant departure from
UDAs which can be invoked only through SQL, GLAs give
the user direct access to the state of the aggregate, thus
allowing for the computation of significantly more complex
aggregate functions.

GLADE runtime is an execution engine optimized for the
GLA computation. The runtime takes the user-defined GLA
code, compiles it inside the engine, and executes it right near
the data by taking advantage of parallelism both inside a
single machine as well as across a cluster of computers. This
results in maximum possible execution time performance (all
our experimental tasks are I/O-bound) and linear scaleup.

1. INTRODUCTION
There is an increasing interest in large scale data ana-

lytics from the Web companies in the past years. This is
facilitated by the availability of cheap storage that allows
them to store huge amounts of user behavior data. In order
to extract value out of the data, the analysts need to apply a
variety of methods ranging from statistics to machine learn-
ing and beyond. SQL and relational database systems, the
traditional tools for managing data, do not support directly
these advanced analytical methods. Thus, multiple trends
have emerged to cope with this problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
Large-Scale Distributed Systems and Middleware Workshop, LADIS 2011.
Copyright 2011.

Related work. On one side there is the group who tries to
add analytical capabilities to relational databases by using
the extensibility features of SQL such as User-Defined Func-
tions (UDF) and User-Defined Aggregates (UDA) [14]. This
approach was taken by a series of startup companies who
transformed the open-source PostgreSQL database server
into a shared-nothing parallel system with analytical func-
tionality [5, 8].

On another side there is the Map-Reduce group [7, 1]
who proposes a simplified processing model based on user
code that is executed inside the engine. While the execution
plan of any Map-Reduce computation is fixed (a Map phase
followed by a Reduce phase), the user is allowed to inject
code in each of these two phases. Although this allows for
greater flexibility in terms of what code is executed when
compared to SQL, the need for reusable code templates and
a higher-level programming language generated a series of
new SQL-like languages such as Pig Latin [11], Hive [15],
and Sawzall [13] to be developed on top of Map-Reduce.

A third approach consists in embedding SQL-like opera-
tors inside an imperative programming language, thus al-
lowing for the full expressiveness of the host language to
be combined with SQL operators. DryadLINQ [9] is the
representative of this approach. It uses C# as the host lan-
guage and supports natively UDFs and UDAs. Essentially,
a DryadLINQ program specifies the query execution plan
as a graph of operators with corresponding data flowing on
the edges. SCOPE [4] is implemented as a SQL-like script-
ing language on top of the same infrastructure (DryadLINQ
and SCOPE are both Microsoft projects).

The last approach we mention here is Dremel [10], a sys-
tem designed specifically for aggregate queries over nested
columnar data. The Dremel query language is SQL ex-
tended with capabilities to handle nested data, while queries
are executed on a multi-level tree architecture in which par-
tial aggregates are computed at each level.

GLADE. GLADE is a system for the execution of ana-
lytical tasks that are associative-decomposable using the
iterator-based interface [17]. It exposes the UDA interface
consisting of four user-defined functions. The input con-
sists of tuples extracted from a column-oriented relational
store, while the output is the state of the computation. The
execution model is a multi-level tree in which partial ag-
gregation is executed at each level. The system is respon-
sible for building and maintaining the tree and for moving
data between nodes. Except these, the system executes only
user code. The blend of column-oriented relations with a



tree-based execution architecture allows GLADE to obtain
remarkable performance for a variety of analytical tasks—
billions of tuples are processed in seconds using only a dozen
of commodity nodes.

2. GENERALIZED LINEAR AGGREGATES
In this section we introduce Generalized Linear Aggregates

(GLA), the main abstraction at the core of the GLADE
framework. GLAs are based on the notion of user-defined
aggregates (UDA) [16] which allow users to extend the func-
tionality of a database system with specialized aggregation
operators. While the existing database literature [16, 6] fo-
cuses mostly on how to embed UDAs into SQL, we depart
from this viewpoint and build a system that treats GLAs
as the main component. Our approach is related in spirit
with the Map-Reduce paradigm [7] which provides the user
exactly two functions (Map and Reduce) and a runtime envi-
ronment (Hadoop [1], for example). Similarly, GLADE, the
system we build to support GLAs, provides the user with
the interface to define GLAs (the UDA interface extended
with methods for serialization) and a specialized runtime
environment for aggregation. In the following, we take a
closer look at UDAs and Map-Reduce and then we focus on
GLAs. We consider two important aspects: how to define
GLAs and how to build a dedicated runtime environment
for aggregation.

2.1 User-Defined Aggregates
UDAs represent a mechanism to extend the functional-

ity of a database system with application-specific aggre-
gate operators, e.g., data mining [16], similar in nature to
user-defined data types (UDT) and user-defined functions
(UDF). A UDA is typically implemented as a class with
a standard interface defining four methods [2, 6]: Init,
Accumulate, Merge, and Terminate. These methods operate
on the state of the aggregate which is also part of the class.
While the interface is standard, the user has complete free-
dom when defining the state and implementing the meth-
ods. The execution engine (runtime) computes the aggre-
gate by scanning the input relation and calling the interface
methods as follows. Init is called to initialize the state be-
fore the actual computation starts. Accumulate takes as in-
put a tuple from the input relation and updates the state of
the aggregate according to the user-defined code. Terminate
is called after all the tuples are processed in order to finalize
the computation of the aggregate. Merge is not part of the
original specification [16] and is intended for use when the
input relation is partitioned and multiple UDAs are used to
compute the aggregate (one for each partition). It takes as
parameter a UDA and it merges its state into the state of
the current UDA. In the end, all the UDAs are merged into
a single one upon which Terminate is called.

While the UDA interface is general and in principle it
is possible to compute any aggregate, calling UDAs from
SQL imposes significant restrictions on the use of UDAs.
Essentially, UDAs, as well as all other aggregates, can return
at most a tuple as their result (Terminate is called only
once). While this is sufficient for general aggregates, it is
far too restrictive for complex aggregates (see [16] where a
temporary table named RETURN is used to store multiple
result tuples). As we will see in Section 2.3, GLAs avoid
this problem by providing users direct access to the state of
the UDA.

2.2 Map-Reduce
The Map-Reduce paradigm [7] simplifies massive data pro-

cessing on large clusters to jobs consisting of two phases. In
the Map phase, a user-defined function is applied sequen-
tially to all the tuples (key-value pairs) of the input data set
with the result of generating an intermediate set of key-value
pairs. In the Reduce phase, a second user-defined function
is applied to all the values corresponding to an intermedi-
ate key in order to aggregate them and generate an output
key-value pair. Essentially, the user is required to define
two functions, Map and Reduce, corresponding to the two
phases of the computation. The runtime system guarantees
that all the values corresponding to an intermediate key are
grouped together and passed to the same Reduce function.
Since the Map functions can run in parallel on partitioned
data and the Reduce functions can run in parallel for differ-
ent values of the intermediate key, algorithms that can be
mapped to this framework also incur high degrees of par-
allelism. While this is the case for a substantial range of
algorithms related to distributed indexing, we believe that
aggregate computation does not fit well in the Map-Reduce
paradigm. Our opinion is supported by the many languages
developed on top of Map-Reduce to incorporate SQL-style
aggregation (e.g., Pig Latin [11], Sawzall [13]).

2.3 GLA
The main contribution we propose in this paper is the con-

cept of GLA which combines the UDA interface with a run-
time environment similar in spirit with that of Map-Reduce.
From a user perspective, a GLA defines any aggregate com-
putation in terms of the UDA interface. While UDAs can
be accessed only through SQL though, a GLA provides the
user with direct access to the state of the aggregate (this is
perfectly reasonable since the user provides the GLA code
in the first place). For this to be possible, the GLA needs to
be transferred from the runtime address space to the user-
application memory space. Thus, the UDA interface needs
to be extended with methods to Serialize/Deserialize

the state. This is not a problem since the user defines the
state of the aggregate and has full knowledge on what data
is needed to recover the state.

The GLA runtime environment operates on similar prin-
ciples to Map-Reduce and supports a maximum degree of
parallelism. It takes as input the GLA definition and calls
the user-defined interface methods. The execution though is
targeted for aggregate computation with multiple instances
of the GLA being created, one for each data partition. The
GLA instances Accumulate the data in the partitions in
parallel, then Merge is called along an aggregation tree to
put all the partial states together (again in parallel) before
Terminate computes the final aggregate state.

While the idea on which the GLAs are founded might
seem intuitive, GLAs can express a large class of aggregates
that are hard to express both in SQL enhanced with UDAs
as well as in Map-Reduce. We present multiple examples of
GLAs to show their expressiveness in the following.

Average. The state consists of sum and count.
Init: sum = 0.0, count = 0.
Accumulate(Tuple t): sum += t.x, count++.
Merge(AverageGLA o): sum += o.sum, count += o.count.
Terminate returns sum/count.



Group By. Consider a relation R(A1, A2) and the SQL
statement: SELECT A1, SUM(A2) FROM R GROUP BY A1. We
define the state of this GLA to be a hash table having as key
attribute A1 and as value the sum. Init creates an empty
hash table. Accumulate first tries to find an entry with the
same key in the hash table, case in which adds the value
of A2 to the corresponding sum. If the key is not found,
a new entry is created. Essentially, Accumulate is nothing
more than a hash-based group-by algorithm. Merge(other)

merges all the groups in other into the current state by
scanning the hash in other element by element. Merging
consists in adding up the sum terms. The result is given to
the user so it can use a specialized Terminate.

Top-K. Given a set of tuples, we need to find the k best
tuples. In this case, state is a min-heap with k entries.
Accumulate(t) compares t with the worst tuples in the heap
and, if better, removes the worst and inserts t (the heap is
reorganized). Merge(other) iterates through the tuples in
the heap of other and calls Accumulate for each of them.
Terminate gives the user the final min-heap that contains
the top-k items and allows extraction in order.

K-Means. In K-Means, we want to determine k centers
such that the sum of the distances between each value and
the closest center is minimized. K-Means is an iterative al-
gorithm that starts with some pre-defined centers, assigns
each input data point to the closest center, and then re-
computes the center of each group from the corresponding
points. This process is repeated until the assignment pro-
ducing the minimal distance is found. Although not imme-
diately clear, K-Means has a straightforward representation
in the GLA framework. A GLA is defined for each itera-
tion of the algorithm. state consists of the k pre-defined
centers – centers are shared as read-only objects among all
GLA instances – and k average ((sum, count) pair) GLAs,
one for each center. Init remembers the centers (passed
as arguments). Accumulate finds the closest center and up-
dates the corresponding average GLA (call Accumulate on
it). Merge combines the states of the corresponding cen-
ters, while Terminate computes the new centers by calling
Terminate on each average GLA. In order to properly follow
the K-Means algorithm, the computed centers are passed to
the Init function of the GLA corresponding to the next
iteration. In summary, the K-Means GLA consists of k Av-
erage GLAs, each corresponding to a different partition of
the original data.

3. SYSTEM ARCHITECTURE
In this section, we present GLADE (Generalized Linear

Aggregate Distributed Engine), the system we have de-
signed in order to implement the GLA framework. GLADE
is a relational execution engine derived from DataPath [3],
a highly efficient multi-query processing database system.
Since DataPath is a shared-memory system, the first step
is to implement GLA in such a server environment. The
second step is to extend DataPath GLA from a server to
a shared-nothing cluster architecture (GLADE) which of-
fers higher scalability. Given the properties of GLA, this
extension requires only architectural changes to transform
a single-node processing system to a multi-node distributed
system. The resulting system is an architecture-independent

execution engine with both high scalability and performance
(see the experimental results in Section 4) across a large class
of aggregation problems.

3.1 The DataPath Database System
DataPath is a relational multi-query database system ca-

pable of providing single-query performance even when a
large number of (different) queries are run in parallel. The
DataPath design brings multiple novel ideas, the most im-
portant being to share the data across all stages of query
execution. In order to maximize performance, once data are
loaded in memory, the data movement is minimized every-
where in the system.

DataPath has a complex storage manager in charge of
data partitioned (striped) across a large number of disks.
The data of a relation is first horizontally partitioned into
fixed size chunks, large enough to provide high sequential
scan performance. The chunks are evenly distributed across
all the disks in the system by the storage manager. This
allows data to be read in parallel from multiple disks, thus
providing high I/O throughput. Inside a chunk, data is ver-
tically partitioned into columns, each of them stored in a
separate set of pages. This minimizes the amount of data
read from the disk to only the columns required by the run-
ning queries.

The DataPath execution engine has at its core two com-
ponents: waypoints and work units. A waypoint manages
a particular type of computation, e.g., selection, join, etc.
The code executed by each waypoint is configured at run-
time based on the running queries. In DataPath, all the
queries are compiled and loaded in the execution engine at
runtime rather than being interpreted. This provides a sig-
nificant performance improvement at the cost of some neg-
ligible compilation time. A waypoint is not executing any
query processing job by itself. It only delegates a particular
task to a work unit. A work unit is a thread from a thread
pool (there are a fixed number of work units in the system)
that can be configured to execute tasks. At a high level, the
way the entire query execution process happens is as follows:
1. When a new query arrives in the system, the code to

be executed is first generated, then compiled and loaded
into the execution engine. Essentially, the waypoints are
configured with the code to execute for the new query.

2. Once the storage manager starts to produce chunks for
the new query, they are routed to waypoints based on the
query execution plan.

3. If there are available work units in the system, a chunk
and the task selected by its current waypoint are sent to
a work unit for execution.

4. When the work unit finishes a task, it is returned to the
pool and the chunk is routed to the next waypoint.

3.2 GLADE
The first step we take in the design and implementation of

GLADE is to integrate generalized linear aggregates (GLA)
in DataPath. For this, we create a new type of waypoint
called GLA Waypoint that is in charge of GLAs. A GLA
Waypoint is not aware of the exact type of GLA it is execut-
ing since all it has to do is to relay chunks and tasks to work
units that execute the actual work. To accomplish this,
a GLA Waypoint is configured with the tasks to execute
through the process of code generation and loading based
on the actual query. Once this is done, the GLA Waypoint



Chunk

GLA

Chunk Chunk

GLA GLA

GLA

GLA
1

1. Init()

2. Accumulate(t)

3. Merge(GLA)

4. Serialize()
Node

1

Chunk

GLA

Chunk Chunk

GLA GLA

GLA

GLA
2

1. Init()

2. Accumulate(t)

3. Merge(GLA)

4. Serialize()
Node

2

Chunk

GLA

Chunk Chunk

GLA GLA

GLA

GLA
0

1. Init()

2. Accumulate(t)

3. Merge(GLA)

4. Deserialize()

Node
0

GLA
1

GLA
2

GLA

5. Merge(GLA)

6. Terminate()

Figure 1: GLADE architecture and execution for an aggregation tree composed of three workers.

can start processing chunks to compute the GLA. A GLA
Waypoint needs to store though the state of the GLA it is
computing. More precisely, a list of states is stored to allow
multiple chunks to be processed in parallel. With these, the
computation of a GLA is as follows:
1. When a chunk needs to be processed, the GLA Waypoint

extracts a GLA state from the list and passes it together
with the chunk to a work unit. The task executed by the
work unit is to call Accumulate for each tuple such that
the GLA is updated with all the tuples in the chunk. If no
GLA state is passed with the task, a new GLA is created
and initialized (Init) inside the task, such that a GLA is
always sent back to the GLA Waypoint.

2. When all the chunks are processed, the list of GLA states
has to be merged. Notice that the maximum number of
GLA states that can be created is bounded by the number
of work units in the system. The merging of two GLA
states is done by another task that calls Merge on the two
states.

3. In the end, Terminate is called on the last state inside
another task submitted to a work unit.
The reason behind designing GLADE for a shared-nothing

architecture is the simplicity of the GLA framework which
supports distribution natively. Intuitively, the same way we
generate GLA states from chunks in a shared-memory sys-
tem, we can think of generating GLAs at each processing
node in a distributed environment. Merging the states to-
gether in a final GLA is almost identical in both scenar-
ios. The only difference is that in a distributed system
we first need to bring the GLAs on the same node, thus
we need to be able to move GLAs between nodes. The
Serialize/Deserialize methods are in charge of transfer-
ring GLAs. When writing these methods, the user needs
to identify what data is required to recover the state of the
GLA rather than to focus on the communication details,
task done automatically by GLADE.

GLADE consists of two types of nodes: a coordinator
and workers (as in parallel databases and distributed frame-
works like Map-Reduce). The coordinator is in charge of
scheduling the GLA computation and managing the execu-
tion across the workers. Each worker runs an instance of

DataPath GLA enhanced with communication capabilities.
When a job is received by the coordinator, the following
steps are executed (Figure 1):
1. The coordinator generates the code to be executed at

each waypoint in the DataPath execution plan. A single
execution plan is used for all the workers.

2. The coordinator creates an aggregation tree connecting
all the workers. The tree is used for in-network aggrega-
tion of the GLAs.

3. The execution plan, the code, and the aggregation tree
information are broadcasted to all the workers.

4. Once the worker configures itself with the execution plan
and loads the code, it starts to compute the GLA for its
local data. This happens exactly in the same manner as
for DataPath GLA.

5. When a worker completes the computation of the local
GLA, it first communicates this to the coordinator—the
coordinator uses this information to monitor how the ex-
ecution evolves. If the worker is a leaf, it sends the seri-
alized GLA to its parent in the aggregation tree immedi-
ately.

6. A non-leaf node has one more step to execute. It needs
to aggregate the local GLA with the GLAs of its children.
For this, it first deserializes the external GLAs and then
executes another round of Merge functions. In the end, it
sends the combined GLA to the parent.

7. The worker at the root of the aggregation tree calls the
function Terminate before sending the final GLA to the
coordinator who passes it further to the client who sent
the job.
There are a few design decisions that require further dis-

cussion. We decided to use an aggregation tree to put the
GLAs together due to the minimal communication it re-
quires and the balanced fashion in which the aggregation is
executed: all the nodes execute the same amount of work
and data transmission (except, of course, for the leaf nodes).
Notice though that all the workers communicate with the
coordinator, but only short control messages are changed,
without significant impact on the communication bandwidth.
A disadvantage of using an aggregation tree comes into play
when we consider the failure of nodes. If an internal node



in the tree fails, all the GLAs below are lost. A simple re-
covery strategy for this is to save on disk (using the same
Serialize function) the local GLA at each node. When the
coordinator detects the failed node and fixes the tree, there
is no work to be redone.

By implementing the GLA abstraction, GLADE manages
to exploit parallelism at all levels, inside a single worker
node as well as across all the workers. And everything is
completely transparent to the user who needs to specify only
the GLA interface: the state and six functions. The rest is
done by the system automatically and very efficiently.

4. EMPIRICAL EVALUATION
In this section, we evaluate the performance of GLADE

on four aggregation tasks: average, group by, top-k, and k-
means. We are interested in measuring two parameters: the
total execution time and the scaleup. While the execution
time shows us how fast is GLADE in executing a large range
of aggregate tasks, the scaleup measures how well GLADE
executes larger tasks on a correspondingly larger system.

Data. We use in our experiments the HTML data gener-
ator introduced in [12]. All our queries are defined over
UserVisits, the largest relation (155 million tuples ≈ 20GB)
in the benchmark:
CREATE TABLE UserVisits (

sourceIP VARCHAR(16),

destURL VARCHAR(100),

visitDate DATE,

adRevenue FLOAT,

userAgent VARCHAR(64),

countryCode VARCHAR(3),

languageCode VARCHAR(6),

searchWord VARCHAR(32),

duration INT );

Tasks. We run experiments to evaluate the performance of
GLADE on four aggregation tasks:
• Average – computes the average time a user spends on a

web page. This task measures the throughput of the I/O
system (storage manager) since Accumulate executes only
two simple arithmetic operations, thus the CPU usage is
minimal.

• Group By – computes the ad revenue generated by a user
across all the visited web pages. Since Accumulate for
this GLA needs to update a hash table with 2.5 million
distinct keys (groups), this task puts a significant stress
on the memory hierarchy. It also tests the speed of the se-
rialization/deserialization functions (CPU) and the com-
munication because the GLA state is significantly large.

• Top-K – determines the users who generated the largest
one hundred (top-100) ad revenues on a single visit. This
task reads the same data as Group By and executes a more
complicated Accumulate than Average, thus it is not clear
apriori what is the limiting factor.

• K-Means – calculates the five most representative (5 cen-
ters) ad revenues. What we want to show with this task
is the GLA composition property and how efficient it is to
execute a task that incurs multiple passes over the data.

Methodology. For each configuration, we run each exper-
iment ten times and report the median value, more stable

to extreme behavior. The difference between the mean and
the median was insignificant though.

4.1 Results
We evaluate GLADE on a shared-nothing cluster consist-

ing of 17 nodes. Each node has 4 AMD Opteron cores run-
ning at 2.4GHz, 4GB of memory, and a single disk with a
maximum bandwidth of 50MB/s. The nodes are connected
through a 1Gb/s (125GB/s) switch. Ubuntu 7.4 Server with
kernel version 2.6.20-16 is the operating system for all the
nodes. We use in our experiments a variable number of
nodes, 1 to 16, each node storing a different instance of
UserVisits (20GB). This is similar to evenly (round-robin)
partitioning a 320GB UserVisits instance across 16 nodes.
The coordinator runs on a separate node. The results for
each task are depicted in Figure 2. The execution time is
plotted as a function of the number of nodes.

From Figure 2a we can see that GLADE computes the
average of 155 million integers residing on disk in 15 seconds.
This is possible because GLADE uses vertical partitioning
at the storage level and reads only the columns required
by the executed query. In this case, 155M * 4B = 620MB
of data are read from the disk at 50MB/s in 12.5 seconds
while the rest of the time (more than 2 seconds) is spent for
compiling and loading the query at runtime (this cost is paid
for all the queries). In essence, this query is entirely I/O-
bound while the CPU usage is minimal. When increasing
the number of nodes, the execution time stays almost flat
and the system achieves linear scaleup since the data that is
serialized/deserialized and transfered is minimal (the state
is only 8 bytes). The small increase is due to the overhead
incurred by control messages, loading the code on each node,
and the difference in processing across the nodes.

Similar results are obtained for K-Means (Figure 2d) which
consists of a set of Average GLAs. Notice though that the
impact of making multiple passes over the data, one for each
iteration of the algorithm (the algorithm converges in ap-
proximately 80 iterations), is minimal on the execution time
per iteration.

The results for Top-K are presented in Figure 2c. Since
the amount of data read from the disk doubles, we also ex-
pect the execution time to double. The results in Figure 2c
are better though because the compilation and loading time
is incurred only once (2s for compilation + 2 * 12.5 = 25s
for I/O for a total of 27s). Since the state of the GLA is
small (800B), the time to serialize/deserialize and transfer it
is negligible. This results in the almost constant execution
time when the number of execution nodes increases, thus
almost linear scaleup. The larger increase when compared
to the Average GLA is due to the more complicated work
that needs to be executed in Merge.

The experiments for Group By (Figure 2b) show the largest
increase in execution time when the number of nodes in-
creases. This is equivalent to poor scaleup. The reason for
this lies in the large state of the GLA. There are 2.5 million
distinct groups out of the 155 million tuples in UserVisits.
These amount to more than 20MB per state. While the
transfer of such a state across the network used in the ex-
periments takes a quarter of a second and the time to serial-
ize/deserialize it adds a similar amount, the main bottleneck
for this query is the memory bandwidth. The state does not
fit in cache anymore, thus a large number of probes in the
hash table need to access the main memory, much slower.



1 2 4 8 16

0

4

8

12

16

20

Average

No of machines

T
im

e
 (

se
co

n
d

s)

(a)

1 2 4 8 16

0

10

20

30

40

50

60

Group By

No of machines

T
im

e
 (

se
co

n
d

s)

(b)

1 2 4 8 16

0

5

10

15

20

25

30

35

Top-K

No of machines

T
im

e
 (

se
co

n
d

s)

(c)

1 2 4 8 16

0

4

8

12

16

20

K-Means Average Time per Iteration

No of machines

T
im

e
 (

se
co

n
d

s)

(d)

Figure 2: Execution time for a cluster with a variable number of nodes. Each node stores 20GB of data.

On top of this, the number of TLB page misses add the
extra time when compared to the Top-K results (the same
amount of data is read from the disk). Also, Merge needs to
merge large hash tables that do not fit in cache.

Remarks. The experimental results confirm the scalability
of GLADE across a different mix of tasks and for a different
number of nodes. They also confirm the efficiency of the
system which is I/O-bound (memory-bound) across all the
tasks, even when the state of the aggregate is large and the
computation done in the GLA methods is complex. Based
on other published results [12] and our investigation on the
system used throughout the experiments, we believe that
GLADE offers top performance for the tasks at hand.

5. CONCLUSIONS
In this paper we present GLADE, a scalable distributed

framework for analytical tasks. GLADE exposes the UDA
iterator interface and uses a multi-level tree as execution
model. Partial aggregates are computed at each level of the
tree, thus the amount of data transferred between nodes
is minimized. Having as input relational data in column-
oriented format, GLADE returns the final state of the com-
putation to the user. The experimental results show the re-
markable performance GLADE is obtaining on a variety of
analytical tasks—billions of tuples are processed in seconds
across a small cluster consisting of only a dozen commodity
machines. The blend of column-oriented storage, user code
compiled inside the execution engine, and an architecture
that takes full advantage of the thread-level parallelism in-
side a single machine are behind these results limited only
by the physical hardware resources.

In future work, we plan to address some of the limitations
of GLADE and to add new functionality to the framework.
Currently, the system executes a single task and then it re-
turns the resulting state to the user. It is not clear how
to pass the state as input to a new task. Existing systems
choose to either materialize the result and then to re-read
it in the new task (Map-Reduce) or to define a standard
interface between tasks (operators in relational databases).
A related problem is passing input parameters to tasks. In
the current implementation, GLADE queries correspond to
Map-Reduce jobs. Similar to the languages built on top
of ensembles of Map-Reduce jobs, we can think of imple-
menting libraries of standard GLAs. In order to be reusable
at large scale, these GLAs need to be templated. Thus, our
goal is to be able to create programs with composable GLAs

that are linked together in such a way that the resulting
states flow from one to another.

6. REFERENCES
[1] Hadoop. http://hadoop.apache.org/. [Online;

accessed July 2011].

[2] Microsoft SQL Server.
http://msdn.microsoft.com/en-us/library/ms131057.aspx.
[Online; accessed July 2011].

[3] S. Arumugam and al. The DataPath System: A
Data-Centric Analytic Processing Engine for Large
Data Warehouses. In SIGMOD 2010.

[4] R. Chaiken and al. SCOPE: Easy and Efficient
Parallel Processing of Massive Data Sets. In VLDB
2008.

[5] J. Cohen and al. MAD Skills: New Analysis Practices
for Big Data. In VLDB 2009.

[6] S. Cohen. User-Defined Aggregate Functions:
Bridging Theory and Practice. In SIGMOD 2006.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI 2004.

[8] E. Friedman and al. SQL/MapReduce: A Practical
Approach to Self-Describing, Polymorphic, and
Parallelizable User-Defined Functions. In VLDB 2009.

[9] M. Isard and Y. Yu. Distributed Data-Parallel
Computing Using a High-Level Programming
Language. In SIGMOD 2009.

[10] S. Melnik and al. Dremel: Interactive Analysis of
WebScale Datasets. In VLDB 2010.

[11] C. Olston and al. Pig Latin: A Not-So-Foreign
Language for Data Processing. In SIGMOD 2008.

[12] A. Pavlo and al. A Comparison of Approaches to
Large-Scale Data Analysis. In SIGMOD 2009.

[13] R. Pike and al. Interpreting the Data: Parallel
Analysis with Sawzall. In Scientific Programming
Journal 2003.

[14] L. A. Rowe and M. Stonebraker. The POSTGRES
Data Model. In VLDB 1987.

[15] A. Thusoo and al. Hive – A Warehousing Solution
Over a MapReduce Framework. In VLDB 2009.

[16] H. Wang and C. Zaniolo. Using SQL to Build New
Aggregates and Extenders for Object-Relational
Systems. In VLDB 2000.

[17] Y. Yu and al. Distributed Aggregation for
Data-Parallel Computing: Interfaces and
Implementations. In SOSP 2009.


