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Abstract—Sampling is used as a universal method to reduce
the running time of computations – the computation is performed
on a much smaller sample and then the result is scaled to
compensate for the difference in size. Sketches are a popular
approximation method for data streams and they proved to be
useful for estimating frequency moments and aggregates over
joins. A possibility to further improve the time performance of
sketches is to compute the sketch over a sample of the stream
rather than the entire data stream.

In this paper we analyze the behavior of the sketch estimator
when computed over a sample of the stream, not the entire
data stream, for the size of join and the self-join size problems.
Our analysis is developed for a generic sampling process. We
instantiate the results of the analysis for all three major types of
sampling – Bernoulli sampling which is used for load shedding,
sampling with replacement which is used to generate i.i.d.
samples from a distribution, and sampling without replacement
which is used by online aggregation engines – and compare these
particular results with the results of the basic sketch estimator.
Our experimental results show that the accuracy of the sketch
computed over a small sample of the data is, in general, close to
the accuracy of the sketch estimator computed over the entire
data even when the sample size is only 10% or less of the dataset
size. This is equivalent to a speed-up factor of at least 10 when
updating the sketch.

I. INTRODUCTION

Data streaming has received a lot of attention from the
research community in the last decade. The requirement to
process fast data streams motivates the need for approximation
methods that make use of both small space and small time.
AGMS sketches [1], [2] and their improved variant F-AGMS
sketches [3], [4] proved to be a viable solution for estimating
aggregates over joins. The main strengths of the sketching
techniques are the simple and fast update procedure, the small
memory requirement, and provable error guarantees. When
the data streams that need to be processed are extremely
fast, for example in the case of networking data or large
datasets streamed over the Internet, it is desirable to further
reduce the update time of sketches in order to achieve the
required processing rates. Sampling is a universal method for
data reduction and, in principle, it can be used to reduce
the amount of data that needs to be sketched. If samples are
sketched instead of the original data, an immediate update time
reduction results. This is similar to the existing load shedding
techniques employed in data stream processing engines [5].
The main concern when samples rather than the original data
are sketched is how to extend the error guarantees sketches

provide to this new situation. The formulas resulting from such
an analysis could be used to determine how aggressive the load
shedding can be without a significant loss in the accuracy of
the sketch over samples estimator.

A seemingly unrelated, but, as shown in the paper, techni-
cally related, problem is analyzing streams of samples from
unknown distributions. Samples from unknown distributions
– the so called i.i.d. samples – are the input to most of the
online data-mining algorithms [6]. In this case the samples
are not used as a data reduction technique, but rather they are
the only information available about the unknown distribution.
A fundamental problem in this context is how to characterize
the unknown distribution using only the samples. This is one
of the fundamental problems in statistics [7]. If the samples
are streamed, as is the case in online data-mining, the aim
is to characterize the unknown distribution by using small
space only, thus making sketches a natural candidate for
computations that involve aggregates. It is a simple matter to
use sketches in order to estimate aggregates over the samples.
If predictions about the unknown distribution need to be
made, the problem is significantly more difficult. Interestingly,
this problem is mathematically similar to the load shedding
problem in which sampling is used to reduce the update time
of sketching. A third problem is sketching tuples that are
processed by an online aggregation engine in order to compute
statistics useful for decision making [8], [9].

In this paper we analyze the sketch over samples estimator
for generic sampling. Then we instantiate the results for three
different types of sampling. Our technical contributions are:

• We provide a generic analysis of the sketch over samples
estimator. The analysis consists in expressing the first
two frequency moments of the estimator in terms of the
moments of the sampling frequency random variables.

• We instantiate the results for sketching Bernoulli samples.
This immediately indicates how random load shedding
for sketching data streams behaves.

• We instantiate the generic analysis for sketching samples
with replacement from a large population. The analysis
generalizes to sketching i.i.d. samples from an unknown
distribution. The ability to sketch i.i.d. data is important
if sketches are to be used for data-mining applications.

• We instantiate the generic analysis for sketching samples
without replacement. Such samples are processed by
online aggregation engines. By sketching the samples,



important statistics can be derived with little computa-
tional overhead.

• We present empirical evidence that the analysis is neces-
sary since the error of the sketch over samples estimator
is not simply the sum of the errors of the two individual
estimators. The interaction, which is predicted by the
analysis, plays a major role. The experiments also point
out that in the majority of the cases a 10% sample results
in minimal error degradation – the sketching of streams
can thus be sped-up by a factor of 10.

In the rest of the paper, we introduce the formal problem
in Section II. Section III gives an overview on sampling
while Section IV introduces sketches. The formal analysis
of the combined sketch over samples estimator is detailed
in Section V. We discuss possible applications of sketching
sampled data in Section VI. The empirical evaluation of
the combined estimator is presented in Section VII, while
Section VIII concludes the paper.

Related Work

There exists a large body of work on approximate query
processing methods. The idea of combining two estimators
to capitalize on the strengths of both is not new. F-AGMS
sketches [3] are essentially a combination of random his-
tograms and AGMS sketches. [10] presents a method to build
incremental histograms from samples. To the best of our
knowledge, sketching and sampling have not been combined
in a principled fashion before. The main difficulty in charac-
terizing sketches over samples is the fact that the sampling
analysis [8], [11] is performed in the tuple domain while the
sketch analysis [1] is performed in the frequency domain. This
is the first obstacle we overcome in this paper. The work on
sketching probabilistic data streams [12], [13] is somehow
similar to our work. The important difference is the fact that
sampling is part of the estimate in our work while it represents
only a way to interpret the probabilistic data in the related
work. The results in [12] do not characterize the sketch over
sample estimator but approximate the probabilistic aggregates
using sketches. The only overlap in terms of analysis seems
to be the computation of the expected value of sketch over
samples for the second frequency moment computation in [13].
[14] presents an alternative method to improve the sketching
rate of a data stream by deterministically skipping stream
items. In our work the items that are sketched are randomly
selected through a sampling process.

II. PRELIMINARIES

The general problem we discuss throughout the paper is
how to approximate the size of join of two relations and the
self-join size or second frequency moment of a relation. Let
F and G be two streaming relations, each having a single
attribute A, with domain I . Furthermore, let fi and gi be the
frequency of the value i in F and G, respectively. With this,
the size of join of relations F and G can be written as the

dot-product of their frequency vectors:

|F onA G| =
∑
i∈I

figi (1)

When relations F and G are identical, the quantity
∑

i∈I f2
i

is known as the self-join size of F .
In order to compute the size of join exactly, the frequency

vectors of the two relations have to be stored in full. This re-
quires space proportional to the domain of the joining attribute
A, which is infeasible for large domains, e.g., |I| = 264. Thus,
randomized solutions with reduced space requirements and
provable error guarantees have been proposed. The standard
techniques [7], [15] to derive error guarantees or confidence
intervals for an estimate is to compute the expected value and
the variance and then to use either distribution-independent
bounds given by Chernoff’s and Chebyshev’s inequalities, or
to use distribution-dependent bounds. In the latter case, usually
the Central Limit Theorem or one of its generalizations is used
to argue that the distribution of the estimate has a particular
shape, and then error bounds based on the assumed distribution
with the same expected value and variance are computed. In
order to simplify the exposition, we provide results in the form
of expected values and variances throughout the paper. Actual
error guarantees can be obtained straightforwardly using the
mentioned techniques.

III. SAMPLING

Sampling as an approximation technique consists in obtain-
ing samples F ′ and G′ from relations F and G, respectively,
computing the size of join aggregate over the samples, and
applying a correction to ensure that the sampling estimator is
unbiased. This method is generic and applies to all types of
sampling. To simplify the theoretical exposition, we keep the
treatment of sampling as generic as possible.

In Section II we expressed the size of join aggregate as a
function of fi and gi, the frequencies of value i of the join
attribute in relations F and G, respectively. If we define f ′

i

and g′i to be the frequencies of i in F ′ and G′, respectively,
the size of join of the sample relations is:

|F ′ onA G′| =
∑
i∈I

f ′
ig

′
i (2)

f ′
i and g′i are random variables that depend on the type

of sampling and the parameters of the sampling process.
Interestingly, a large part of the characterization of sampling
can be carried out without specifying the type of sampling.
This is also true for sketches over samples in Section V.

A. Generic Sampling

In general, |F ′ onA G′| is not an unbiased estimator for
the size of join |F onA G|. Fortunately, in the majority of
the cases, a constant correction that scales for the difference
in size between the samples and the original relations can
be made to obtain an unbiased estimator. If we define the
estimator as X = C

∑
i∈I f ′

ig
′
i, where C is the scaling factor,

we can determine the value of C such that X is unbiased. In



order to derive error bounds for the estimator, the expectation
E [X] and the variance Var [X] have to be computed. It turns
out that expressions for E [X] and Var [X] can be written for
generic sampling in terms of the moments of the frequency
random variables f ′

i and g′i. There are two distinct cases that
need separate treatment. The first case is when relations F and
G are different and the samples are obtained independently
from the two relations. The second case is when F and G
are identical, thus only one sample is available. This situation
arises in the case of self-join size.

When F ′ and G′ are obtained independently, the random
variables f ′

i and g′i are also independent.
Proposition 1 (Size of Join): Let X = C

∑
i∈I f ′

ig
′
i be the

estimator for the size of join defined over the generic samples
F ′ and G′. Then:

E [X] = C
∑
i∈I

E [f ′
i ]E [g′i]

Var [X] =

C2

∑
i∈I

∑
j∈I

E
[
f ′

if
′
j

]
E
[
g′ig

′
j

]
−

(∑
i∈I

E [f ′
i ]E [g′i]

)2


(3)

When F and G are identical and only the sample F ′ is
available, the random variables f ′

i and g′i are also identical.
Proposition 2 (Self-Join Size): Let X = C

∑
i∈I f ′2

i be the
estimator for the self-join size defined over the generic sample
F ′. Then the expectation and the variance of X are given by:

E [X] = C
∑
i∈I

E
[
f ′2

i

]
Var [X] = C2

∑
i∈I

∑
j∈I

E
[
f ′2

i f ′2
j

]
−

(∑
i∈I

E
[
f ′2

i

])2
 (4)

A specific type of sampling determines the values of the
expectations that appear in the formulas. These expectations
are moments of the frequency random variables. They can be
derived from the moment generating function corresponding to
the sampling process. For the types of sampling we consider
in this paper the moment generating function is well known
(see for example [16]). Deriving final formulas for E [X]
and Var [X] and determining the constant C might seem just
a matter of plugging in these quantities for a specific type
of sampling, but the actual process is intricate because the
frequency moments have to be separately computed before
the algebraic manipulations are carried out.

The advantage of analyzing sampling in the frequency
domain, as we do in this section, is that it allows the analysis
to be extended to sketches over samples. Sampling estimators
like the ones considered here have been analyzed in the
published literature (the theory in [9] provides the analysis
for all types of simple uniform sampling and for an arbitrary
number of relations), but the analysis is in the tuple domain
not the frequency domain. Interestingly, the analysis in the
frequency domain is simpler than the analysis in the tuple

domain since, as we show in this paper, the frequency random
variables have easily identifiable distributions for which the
moment generating functions are available. Deriving formulas
for expected value and variance becomes just a matter of
carrying the necessary algebraic manipulations.

We consider three types of sampling: Bernoulli sampling,
sampling with replacement, and sampling without replace-
ment. We derive the formulas for expectation and variance as
a function of the sampling frequencies both for sampling and
for sketching over samples (Section V). This parallel treatment
simplifies the interpretation of the complex results obtained for
sketches over samples.

B. Bernoulli Sampling

When the sampling process is Bernoulli, each tuple in F
and G is selected independently in the sample F ′ and G′ with
probability p or q, 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, respectively. Then,
f ′

i and g′i are independent binomial random variables [16],
f ′

i = Binomial(fi, p) and g′i = Binomial(gi, q), respectively,
with expected values:

E [f ′
i ] = pfi, E [g′i] = qgi (5)

The scaling factor for the size of join estimator is in this
case C = 1

pq . The expectation and the variance for Bernoulli
sampling can be derived in a straightforward manner using
the frequency moments of the binomial random variables
corresponding to the sampling frequencies.

Proposition 3 (Size of Join): Let X = 1
pq

∑
i∈I f ′

ig
′
i be

the estimator for the size of join defined over the Bernoulli
samples F ′ and G′. Then the expectation and the variance of
X are given by:

E [X] =
∑
i∈I

figi

Var [X] =
1 − p

p

∑
i∈I

fig
2
i +

1 − q

q

∑
i∈I

f2
i gi +

(1 − p)(1 − q)
pq

∑
i∈I

figi

(6)

The situation is more complicated for self-join size because
the generic estimator X = C

∑
i∈I f ′2

i has a bias that cannot
be corrected by simply multiplying with a scaling factor.
Nevertheless, the generic formula for the variance in Equation
(4) is still applicable.

Proposition 4 (Self-Join Size): Let X = 1
p2

∑
i∈I f ′2

i −
1−p
p2

∑
i∈I f ′

i be the estimator for self-join size defined over
the Bernoulli sample F ′. Then:

E [X] =
∑
i∈I

f2
i

Var [X] =

1−p

p3

[
4p2

∑
i∈I

f3
i + 2p(1−3p)

∑
i∈I

f2
i − p(2−3p)

∑
i∈I

fi

]
(7)



C. Notation for Sampling Coefficients

In order to write compact formulas for sampling with and
without replacement, we use the following notation throughout
the rest of the paper:

α =
|F ′|
|F |

, α1 =
|F ′| − 1
|F | − 1

, α2 =
|F ′| − 1
|F |

β =
|G′|
|G|

, β1 =
|G′| − 1
|G| − 1

, β2 =
|G′| − 1
|G|

(8)

α and β are the sampling fractions from relations F and G,
respectively. α1, α2, β1, β2 are just small variations that appear
in formulas.

D. Sampling with replacement

A sample of fixed size can be generated by repeatedly
choosing a random tuple from the base relation for the
specified number of times. If the same tuple can appear
in the sample multiple times, the process is sampling with
replacement. In this case the random variables corresponding
to the frequencies in the sample, f ′

i and g′i, respectively, are
the components of a multinomial random variable [16] with
parameters the size of the sample and the probability fi

|F | and
gi

|G| , respectively, where |F | and |G| are the size of F and G.
Since each component of a multinomial random variable is a
binomial random variable, the expectations in Equation 5 still
hold but with different probabilities:

E [f ′
i ] = αfi, E [g′i] = βgi (9)

The exact formulas for expectation and variance can be derived
as for Bernoulli sampling. The moments of a multinomial
random variable have to be used instead.

Proposition 5 (Size of Join): Let X = 1
αβ

∑
i∈I f ′

ig
′
i be the

estimator for the size of join defined over the samples with
replacement F ′ and G′. Then the expectation and the variance
of X are given by:

E [X] =
∑
i∈I

figi

Var [X] =
1

αβ

[∑
i∈I

figi + |F |αβ2

∑
i∈I

fig
2
i

+|G|α2β
∑
i∈I

f2
i gi + (α2β2−αβ)

(∑
i∈I

figi

)2


(10)

An unbiased estimator for self-join size defined over the
sample with replacement F ′ is X = 1

αα2

∑
i∈I f ′2

i − 1
α2
|F |.

Notice that the estimator depends only on the size of the base
relation and the size of the sample. Var [X] can be derived from
the formula of the variance for generic sampling in Equation
(4). We omit the actual formula here due to lack of space.

E. Sampling without replacement

A sample without replacement from a relation consists of
a random subset of tuples selected from the relation. The
difference between sampling with replacement and sampling

without replacement is that a tuple can appear at most once
in a sample without replacement while it can appear multiple
times in a sample with replacement. In this case the random
variables corresponding to the frequencies in the sample, f ′

i

and g′i, respectively, are the components of a multivariate
hypergeometric random variable [16]. In order to derive the
exact formulas for expectation and variance, the actual mo-
ments of the multivariate hypergeometric distribution have to
be plugged in.

Proposition 6 (Size of Join): Let X = 1
αβ

∑
i∈I f ′

ig
′
i be the

estimator for the size of join defined over the samples without
replacement F ′ and G′. Then the expectation and the variance
of X are given by:

E [X] =
∑
i∈I

figi

Var [X] =
1

αβ

[
(1−α1)(1−β1)

∑
i∈I

figi + (1−α1)β1

∑
i∈I

fig
2
i

+α1(1−β1)
∑
i∈I

f2
i gi + (α1β1−αβ)

(∑
i∈I

figi

)2


(11)

The only difference between sampling with replacement and
sampling without replacement is the coefficients of the terms
appearing in the variance formula. While the variance of
sampling without replacement becomes 0 when the entire
relation is sampled, the variance of sampling with replacement
never becomes 0.

An unbiased estimator for self-join size defined over the
sample without replacement F ′ is X = 1

αα1

∑
i∈I f ′2

i −
1−α1
α1

|F |. The variance of X can be derived from the formula
of the variance for generic sampling in Equation (4). We do
not include the actual formula here.

IV. SKETCHES

While sampling techniques select a random subset of tuples
from the input relation, sketching techniques summarize all
the tuples as a small number of random variables. This is
accomplished by projecting the domain of the input relation
on a significantly smaller domain using random functions.
Multiple sketching techniques are proposed in the literature
for estimating the size of join and the second frequency
moment (see [4] for details). Although using different random
functions, i.e., {+1,−1} or hashing, the existing sketching
techniques have similar analytical properties, i.e., the sketch
estimators have the same variance. For this reason we focus
on the basic AGMS sketches [1], [2] throughout the paper.

The basic AGMS sketch of relation F consists of a single
random variable S that summarizes all the tuples t from F . S
is defined as:

S =
∑
t∈F

ξt.A =
∑
i∈I

fiξi (12)

where ξ is a family of {+1,−1} random variables that are
4–wise independent. Essentially, a random value of either +1
or −1 is associated to each point in the domain of attribute A.



Then, the corresponding random value is added to the sketch
S for each tuple t in the relation. We can define a sketch T
for relation G in a similar way and using the same family ξ.

Proposition 7 (Size of Join): The sketch-based estimator X
defined as:

X = S · T =
∑
i∈I

fiξi ·
∑
j∈I

gjξj (13)

is an unbiased estimator for the size of join |F onA G|. The
variance of the sketch estimator is given by:

Var [X] =
∑
i∈I

f2
i

∑
j∈I

g2
j +

(∑
i∈I

figi

)2

− 2
∑
i∈I

f2
i g2

i (14)

Proposition 8 (Self-Join Size): The unbiased estimator for
the self-join size is defined as:

X = S2 =
∑
i∈I

∑
j∈I

fifjξiξj (15)

The variance of the sketch estimator is given by:

Var [X] = 2

(∑
i∈I

f2
i

)2

−
∑
i∈I

f4
i

 (16)

A common technique to reduce the variance of an estimator
is to generate multiple independent instances of the basic
estimator and then to build a more complex estimator as the
average of the basic estimators. While the expected value
of the complex estimator is equal with the expectation of
one basic estimator, the variance is reduced by a factor of
n since Var

[
1
n ·
∑n

k=1 Xk

]
= 1

n2

∑n
k=1 Var [Xk] = Var[Xk]

n ,
where n is the number of basic estimators being averaged.
This technique can be applied to reduce the variance of the
sketch estimator if different families ξ are used for the basic
estimators (see [1], [2] for details).

V. SKETCHES OVER SAMPLES

Given the ability of sampling to make predictions about
an entire dataset from a randomly selected subset and that
sketches require the entire dataset in order to determine any of
its properties, an interesting question that immediately arises is
how to combine these two randomized techniques. Although
the intuitive answer to this question seems to be simple –
the sketch is computed over a sample of the data instead of
the entire dataset – the behavior of the combined estimator
is not the simple composition of the individual behavior of
the ingredients. A careful analytical characterization of the
estimator needs to be carried out. Furthermore, the sampling
process can be either explicit and executed as an individ-
ual step before sketching is done, or implicit, situation in
which the input dataset is assumed to be a sample from
a large population. In the first case, a significant speed-
up in updating the sketch structure can be obtained since
only a random subset of the data is actually sketched. This
process is essentially a load shedding technique for sketching
extremely fast data streams that cannot be otherwise sketched.
It can be implemented as an explicit Bernoulli sampling that

randomly filters the tuples that update the sketch structure. In
the second case, the data is assumed to be a sample from
a large population and the goal is to determine properties
of the population based on the sample. The sample itself is
assumed to be large enough so it cannot be stored explicitly,
thus sketching is required. If the population is infinite, the
entire process can be seen as sketching i.i.d. samples from
an unknown distribution. We provide the analysis both for
sampling with replacement and sampling without replacement.
The analysis straightforwardly extends to i.i.d. samples if all
estimators are normalized by the size of the population and
the limit, when the population size goes to infinity, is taken. In
such a circumstance, the frequencies in the original unknown
population become densities of the unknown population, but
everything else remains the same.

In this section, we provide a generic framework for sketch-
ing sampled data streams in order to estimate the size of
join and the self-join size. Then we compute the first two
frequency moments of the combined estimator for the most
common types of sampling – Bernoulli sampling, sampling
with replacement, and sampling without replacement. This
provides sufficient information to allow the derivation of
confidence bounds for the combined estimator.

A. Sketches over Generic Sampling

Consider F ′ to be a generic sample obtained from relation
F . Sketching the sample F ′ is similar to sketching the entire
relation F and consists in summarizing the sampled tuples t′

as follows:
S =

∑
t′∈F ′

ξt′.A =
∑
i∈I

f ′
iξi (17)

where ξ is a family of {+1,−1} random variables that are
4–wise independent. A sample G′ from relation G can be
sketched in a similar way using the same family ξ:

T =
∑

t′∈G′

ξt′.A =
∑
i∈I

g′iξi

Size of Join

We define the estimator X for the size of join |F onA G|
based on the sketches computed over the samples as follows:

X = C · ST = C ·
∑
i∈I

f ′
iξi ·

∑
j∈I

g′jξj (18)

Notice that the estimator is similar to the sketch estimator
computed over the entire dataset in Proposition 7 multiplied
with a constant scaling factor C that compensates for the
difference in size.

Self-Join Size

The self-join size or second frequency moment of a relation
is the particular case of size of join between two instances
of the same relation. One way of analyzing the sketches over
samples estimator for the self-join size problem is to build two
independent samples and two independent sketches from the
same base relation and then to apply the results corresponding
to size of join. Although sound from an analytical point of



view, this solution is inefficient in practice. In the following
we consider a practical solution that requires the construction
of only one sample and one sketch from the base relation. A
new estimator for the self-join size has to be defined instead,
but the analysis is closely related to the analysis of the size of
join estimator. With S defined in Equation 17, we define the
self-join size estimator X as follows:

X = S2 = C ·

(∑
i∈I

f ′
iξi

)2

= C ·
∑
i∈I

f ′
iξi ·

∑
j∈I

f ′
jξj (19)

where C is the same scaling factor compensating for the
difference in size. Notice that the difference between the size
of join estimator and the self-join size estimator is only at the
sampling level since the same family of ξ random variables is
used for sketching in both cases. For this reason we carry out
the analysis for the two estimators in parallel and make the
distinction only when necessary.

In order to derive confidence bounds for the estimator X ,
the first two moments, expected value and variance, have to
be computed. Intuitively, the scaling factor C should com-
pensate for the difference in size and make the estimator
unbiased. Since the two processes, sampling and sketching,
are independent and sequential, the interaction between them
is minimal and the sum of the two variances should be a good
estimator for the variance of the combined estimator. In the
following, we derive the exact formulas for the expectation
and the variance in the generic case. The independence of
the families of random variables corresponding to sampling
and sketching, f ′

i , g
′
i and ξ, respectively, plays an important

role in simplifying the computation. This independence is due
to the independence of the two random processes. While the
computation of the expectation is straightforward, the compu-
tation of the variance is more intricate since the interaction
between sketching and sampling is more complex and it can
be characterized only through a detailed analysis.

The first step in our analysis is to derive the formulas for
the moments of the basic estimator. Proposition 9 and 10
characterize the behavior of the basic sketch over samples
estimator.

Proposition 9 (Size of Join): Let the sketch over samples
estimator for the size of join to be defined as X = C ·∑

i∈I f ′
iξi ·

∑
j∈I g′jξj . Then, the expectation and the variance

of X are given by:

E [X] = C ·
∑
i∈I

E [f ′
i ]E [g′i]

Var [X] =

C2 ·

∑
i∈I

E
[
f ′2

i

]∑
j∈I

E
[
g′2j
]
+ 2 ·

∑
i∈I

∑
j∈I

E
[
f ′

if
′
j

]
E
[
g′ig

′
j

]

−2 ·
∑
i∈I

E
[
f ′2

i

]
E
[
g′2i
]
−

(∑
i∈I

E [f ′
i ]E [g′i]

)2


(20)

Proposition 10 (Self-Join Size): Let the sketch over sam-
ples estimator for the self-join size to be defined as C ·∑

i∈I f ′
iξi ·

∑
j∈I f ′

jξj . Then, the expectation and the variance
of X are given by:

E [X] = C ·
∑
i∈I

E
[
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i

]
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Notice that the variance of sketching over generic sampling
is an expression depending only on the properties of the
sampling process. More precisely, in order to evaluate the
variance, only expectations of the form E [f ′

i ] and E
[
f ′

if
′
j

]
have to be computed, where f ′

i and f ′
j are random variables

corresponding to the frequencies in the sample.
The averaging technique applied to reduce the variance of

basic sketches in Section IV cannot be used straightforwardly
in the case of sketches computed over samples. This is the
case since, although the basic sketch estimators are built
independently using different ξ families of random variables,
they are computed over the same sample and this introduces
correlations between any two estimators. The variance of the
average estimator is in this case:

Var

[
1
n
·

n∑
k=1

Xk

]
=

1
n

[Var [Xk] + (n − 1) · Covk 6=l [Xk, Xl]]

(22)
where n is the number of basic estimators being averaged and
Cov [Xk, Xl] = E [XkXl] − E [Xk]E [Xl] is the covariance
between any two basic estimators.

The next step in our analysis is to derive the formulas for
the variance of the average sketch over samples estimator.
Proposition 11 and 12 contain the derived formulas.

Proposition 11 (Size of Join): The variance of the average
sketch over samples size of join estimator is given by:
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(23)

Essentially, the variance of the average estimator is the sum of
the variance of the generic sampling estimator in Equation 3,
the variance of the sketch estimator in Equation 14, and a



term corresponding to the interaction between the two random
processes. For the particular types of sampling considered
in this work, we derive the exact formula of the interaction
term. Notice that the improvement obtained by averaging is
less significant than a factor of n obtained in the case of
independent estimators.

Proposition 12 (Self-Join Size): The variance of the aver-
age sketch over samples self-join size estimator is given by:
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1
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(24)

The independence of sketching and sampling plays an im-
portant role in deriving the formulas for expectation and
variance. The independence has the effect of factorizing the
expectations over products of random variables corresponding
to sketching and sampling. Thus, only expectations involving
the sampling frequency random variables appear in the final
formulas since the expectations corresponding to sketches are
either 0 or 1, i.e., E [ξiξj ] = E [ξi] · E [ξj ] = 0 whenever
i 6= j due to the 4–wise independence of the family ξ,
and E

[
ξ2
i

]
= 1. Using these equalities and some complex

algebraic manipulations, the given formulas are obtained. The
dominant factor that simplifies the analysis is the modeling
of sampling as frequency random variables. This is our main
contribution.

B. Bernoulli Sampling

We instantiate the formulas derived for generic sampling
in Section V-A with the moments of the binomial random
variables corresponding to the Bernoulli sampling frequencies.

Proposition 13 (Size of Join): Let the unbiased sketch over
Bernoulli samples size of join estimator to be defined as X =
1
pq

∑
i∈I f ′

iξi ·
∑

j∈I g′jξj . Then, the variance of the average
estimator is given by:
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Proposition 14 (Self-Join Size): The variance of the aver-
age unbiased self-join size estimator X = 1

p2

(∑
i∈I f ′
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)2 −
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∑
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i is given by:
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The variance of the average estimator is, as derived for
generic sampling, the sum of the average sketch estimator
individual variance, the Bernoulli sampling estimator indi-
vidual variance, and an interaction term. Since deriving an
exact analytical relation between these terms is a daunting
task, we consider some extreme scenarios that allow a partial
characterization. First notice that n, the number of estimators
being averaged, can be ignored when comparing the sketch
variance and the interaction variance because it has the same
effect on both (the variance is reduced by a factor of n). When
the distribution of the frequencies is uniform, the interaction
variance is the dominant term whenever the unique frequency
has a smaller value than the size of the domain |I|. At the
other extreme, when the distribution of the frequencies is
skewed, the sketch variance is the dominant term by far. These
results suggest that the interaction variance could represent a
problem for uniform-like data. This is not necessarily the case
because the value of the variance for uniform distributions is
significantly smaller than for skewed data, thus, although the
interaction variance is the dominant term, its absolute value is
not large.

To better understand the exact significance of each of the
terms appearing in the variance and to confirm the analysis
for the extreme cases, we designed a set of simulations to
determine the relative contribution of each of the terms. The
experimental setup is described in Section VII. Figure 1
and 2 depict the relative contribution of each of the three
terms appearing in the variance of the average estimator
over Bernoulli samples (Equation 26 and 25). The relative
contribution is represented as a function of the data skew for
different sampling probabilities. A common trend both for size
of join and self-join size is that the interaction term is highly
significant for low skew data. This completely justifies the
analysis we develop throughout the paper since an analysis
assuming that the variance of the composed estimator is
the sum of the variances of the basic estimators would be
incorrect. At the same time, this suggests that the accuracy
of the sketch over samples estimator can be significantly



worse than the accuracy of the sketch estimator for non-
skewed data. As already explained, this is not necessarily true.
Moreover, the experimental results we provide in Section VII
show that this is not the case for practical scenarios. As
expected, the impact of the variance of the sampling estimator
is more significant as the size of the sample is smaller.
For self-join size (Figure 2), the variance is dominated by
the term corresponding to the sampling estimator, while for
size of join (Figure 1) the variance of the sketch estimator
quantifies for almost the entire variance irrespective of the
sampling probability. This is entirely supported by the existing
theoretical results which show that sketches are optimal for
estimating the second frequency moment while sampling is
optimal for the estimation of size of join [2].

C. Sampling with replacement

In a similar way to Bernoulli sampling, we instantiate the
formula for the size of join estimator derived for generic sam-
pling with the moments of the multinomial random variables
corresponding to the sampling frequencies. The interaction
between two different sampling frequencies makes the deriva-
tion of the formula more complicated. We do not provide the
formula for self-join size variance due to space constraints.

Proposition 15 (Size of Join): Let the unbiased sketch over
samples with replacement size of join estimator to be defined
as X = 1

αβ

∑
i∈I f ′

iξi ·
∑

j∈I g′jξj . Then, the variance of the
average estimator is given by:
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D. Sampling without replacement

We apply the same procedure for sampling without replace-
ment. We obtain similar results to the other types of sampling
– the terms in the variance are the same, only the coefficients
are dependent on the sampling procedure. The formula for
self-join size is not provided due to space limitations.

Proposition 16 (Size of Join): Let the unbiased sketch over
samples without replacement size of join estimator to be
defined as X = 1

αβ

∑
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∑

j∈I g′jξj . Then, the variance

of the average estimator is given by:
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E. Discussion

The result we derived in this section is somewhat surprising:
the variance of the combined sketch-sampling estimator can be
written as the sum of the variance of the sketch estimator, the
variance of the sampling estimator, and an interaction term.
This separation of the variance formula was accomplished
for all three types of sampling and both size of join and
self-join-size problems. Although the sketch variance seems
to be the dominant term, the exact significance of each of
the terms is dependent on the actual distribution of the data
(see the experimental results for Bernoulli sampling). When
multiple sketch estimators are averaged in order to decrease
the variance, the covariance must also be considered since
the sketch estimators are computed over the same sample,
thus they are correlated. Our results show that the variance
of the combined estimator does not decrease by a factor equal
to the number of averages, only the sketch variance and the
interaction term do.

VI. APPLICATIONS

In this section, we identify applications for sketching sam-
pled data for each of the types of sampling discussed in the
paper. We also delve into the algorithmic issues corresponding
to the combined randomized process.

A. Bernoulli Sampling

Even though sketching can be implemented for fairly high-
speed data streams, the update time could still become the
limiting factor if all the tuples need to be sketched. In order to
alleviate this problem, some of the tuples need to be dropped.
Bernoulli sampling provides a principled approach to drop
tuples and still be able to characterize the result. Sketching
Bernoulli samples is a method to further increase the rate of
the data streams that can be sketched. Used along hashing,
sketching over Bernoulli samples allows the processing of
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Fig. 2. Self-join size variance

data streams having arrival rates of billions of tuples per
second encountered in the existing networking equipment. The
analysis in Section V-B provides a complete characterization
of the error behavior for the overall process. The experimental
results in Section VII-A show that for a sampling fraction of
1% the decrease in accuracy over sketching the entire data
stream is insignificant.

The basic Bernoulli sampling algorithm consists in gen-
erating a random number for each tuple in the dataset. The
tuples for which the random value is smaller than the sampling
probability are included in the sample. The main drawback of
Bernoulli sampling is that the size of the sample is unknown
prior to running the process. This is not a problem anymore
when the sample is sketched instead of being explicitly stored.

The algorithm for sketching Bernoulli samples is a simple
extension of the basic Bernoulli sampling algorithm. The
tuples that are selected in the sample are inserted into the
sketch data structure instead of being explicitly stored. Since
updating the sketch is an extremely fast operation [17], it could
be doubtful that the extra sampling is indeed beneficial for
speeding the entire process. Fortunately, there exist algorithms
that avoid the coin tossing for each tuple by generating the in-
tervals between the tuples that are selected in the sample [18].
This way there is work to be done only for the tuples that are
actually sampled and subsequently sketched. In this situation
the speedup over sketching the entire data stream is clearly
proportional with the sampling fraction.

B. Sampling with replacement

Consider a generative model that draws samples from a
finite population. The samples are draw with replacement.
A data stream containing all the samples is generated. The
objective is to determine properties, e.g., the second frequency
moment, of the generative model, or correlations between two
different generative models, e.g., the size of join, from the
stream of samples. An additional requirement is that the stream
is large enough that it cannot be stored in full. These kind of
scenarios are frequent in data-mining applications [6].

Sketching the stream of samples obtained with replacement
from the finite population whose size is known represents a
solution to determining properties of the generative model.
The input stream is the actual sample in this case, so no
explicit sampling of the stream is required. Thus, the standard
updating algorithm for sketches can be used in this case.
The estimation algorithm is though different because it has
to take into consideration that the stream is only a sample.
The formulas derived in Section V-C have to be used for
estimation in this case. The important question in this case
is how accurate is the combined estimator. And how large
has to be the sketched sample in order to obtain accurate
estimations. The experimental results in Section VII-B show
that for a sampling fraction of 10% the estimation is accurate
and stable. No significant increase in accuracy is obtained if
the sample size is larger.

C. Sampling without replacement

The application we have in mind for sketching samples
obtained without replacement is online aggregation. In a tradi-
tional database engine, the exact answer to a query is provided
only after the entire data is processed. The user does not get
any clues about the result during the query execution. This may
take a long time for complex queries over a datawarehouse.
Online aggregation has a different strategy. Partial approximate
answers are provided to the user while the query is processed
by executing equivalent queries on a smaller fraction of the
entire data and then scaling the result. As more data is
processed, the accuracy of the approximate result increases
to the point where the exact answer is returned (when the
entire data is processed). The fundamental requirement for
the partial results to be estimates of the final result is that
the portions of the data the equivalent queries are executed
on to represent random samples without replacement from the
entire data. More details on online aggregation can be found
in the literature[8], [11], [9].

Sketching samples obtained without replacement represents
a fast and inexpensive method to gather some of the statistics



(second frequency moment, correlation between attributes)
used by an online aggregation engine to take decisions and to
compute the approximate results. The idea is to build sketches
for the desired statistics while the relations (materialized or
intermediary results) are scanned. The fraction of the relation
seen at each point during the scan represents a sample without
replacement of the entire relation as long as the order of the
tuples is random. More accurate estimates for the computed
statistics are available as the scanning advances. The goal
is to obtain stable estimators as early as possible such that
the online aggregation engine takes the optimal decisions
and provides estimates as accurate as possible. The analysis
in Section V-D provides a complete characterization of the
combined estimators. In Section VII-C we show experimental
results for which accurate estimates are available after only
10% of the relations is scanned.

From an algorithmic point of view, sketching a relation
while it is scanned incurs almost no additional cost. The
advantage over using the samples to provide estimates is that
the samples do not have to be explicitly stored and processed.
There is extra memory required only to store the sketches.
Sketching can be done for arrival rates of tens of millions
of tuples per second without any time penalty. Or it can be
executed as a separate thread in parallel with scanning, which
is necessary. On the modern multi-core processors, sketching
can be done essentially for free.

VII. EXPERIMENTAL EVALUATION

We pursue two main goals in the experimental evaluation
of the sketching over samples estimators. First, we want to
determine the behavior of the error of the sketch over samples
estimator when compared with the error of the sketch esti-
mator. And second, we want to identify what is the behavior
of the estimation error as a function of the sample size. We
design experiments to determine these relations for all three
types of sampling presented in the paper. And both for the size
of join and the self-join size problems. In order to accomplish
these goals, we designed a series of experiments over both
synthetic datasets and the TPC-H dataset. Synthetic datasets
allow a better control of the important parameters that affect
the results, while the TPC-H dataset validates the results for
large scales.

The synthetic datasets used in our experiments contain
either 10 or 100 million tuples generated from a Zipfian
distribution with the coefficient ranging between 0 (uniform)
and 5 (skewed). The domain of the possible values is 1 million.
In the case of size of join, the tuples in the two relations are
generated completely independent. For the experiments over
the TPC-H dataset, we used the scale 1 benchmark data. We
used F-AGMS sketches [3] in all of the experiments due to
their superior performance both in accuracy and update time
(see [4] for details on sketching techniques). The number
of buckets is either 5, 000 or 10, 000. This is equivalent to
averaging 5, 000 or 10, 000 basic estimators. In order to be
statistically significant, all the results presented in this section
are the average of at least 100 independent experiments.

A. Bernoulli Sampling

The experimental relative error, i.e., |estimation−true result|
true result , of

the sketch over Bernoulli samples estimator is depicted in
Figure 3 and 4 as a function of the data skew for different
sampling probabilities. Probability p = 1.0 corresponds to
sketching the entire dataset. These experimental results show
that, with some exceptions, the sampling rate does not signif-
icantly affect the accuracy of the sketch estimator. For Zipf
coefficients smaller than 1, in the case of self-join size, and
smaller than 3, in the case of size of join, the error of the
sketch estimator is almost the same both when the entire
dataset is sketched or when only one tuple out of a thousand
is sketched. The impact of the sampling rate is significant only
for high skew data in the case of self-join size. This is to be
expected from the theoretical analysis (Figure 2). What cannot
be explained from the theoretical analysis is the effect of the
sampling rate for skewed data in the case of size of join. As
shown in [4], the experimental behavior of F-AGMS sketches
is in some cases orders of magnitude better than the theoretical
predictions, thus although the theoretical variance is dominated
by the variance of the sketch estimator, the empirical absolute
value is small when compared to the variance of the sampling
estimator. In the light of [4], the empirical results for high
sampling rates are much better than the theoretical predictions,
increasing thus the significance of the sampling rate for highly
skewed data.

B. Sampling with replacement

In Figure 5 and 6 we depict the experimental relative error
as a function of the sample size for sampling with replacement.
Since the actual size of the sample is different for different Zipf
coefficients, we represent on the x axis the size of the sample
as a fraction from the population size, with 1 corresponding
to a sample with replacement of size equal to the population
size. As expected, the error is decreasing as the sample size
becomes larger, but it stabilizes after a certain sample size (a
0.1 fraction of the population size for the included figures).
Thus, sketching more samples does not provide any increase
in the accuracy after a certain point. For the situations depicted
in Figure 5 and 6, the edge sampling fraction is around 0.1.

C. Sampling without replacement

We used the scale 1 TPC-H data for our experiments on
sketching samples without replacement. Figure 7 depicts the
error as a function of the sampling rate for the size of join
between the relations lineitem and orders. In Figure 8 we plot
the error of the second frequency moment of relation lineitem
on the l orderkey attribute. As expected, the error of the self-
join size estimator decreases while increasing the sample size
and it becomes stable for sampling rates larger than 10%. For
size of join, the behavior of the error is somehow unexpected.
The smallest error in Figure 7 is obtained for a sampling rate
of 10%. Then, the error starts to increase while increasing the
sampling rate. This behavior is due to F-AGMS sketches.
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D. Extreme behavior of F-AGMS sketches

An interesting trend in Figure 7 is the increase of the error as
the sampling rate increases over 10%. This is counter intuitive
since we would expect smaller error as more data is sketched.
This behavior is not predicted by the theory and it must be due
to the fact that the theoretical formulas are derived for AGMS
sketches, but F-AGMS sketches are used in the experiments.
To understand why this is happening we have to reffer to the
analysis of F-AGMS sketches in [4]. F-AGMS sketches use a
combination of hashes and AGMS sketches within each hash
bucket. As more data is sketched, the contention in buckets
increases and this produces a wider variance of the estimates.
This suggests that in some situations it is better to sketch only
a sample of the data rather than the entire data for F-AGMS
sketches.

E. Discussion

We provide experimental results for each of the types of
sampling presented in the paper. The goal is to compare
the combined sketch over samples estimator with the sketch
estimator and to determine their relation. Our experiments for
Bernoulli sampling show that a significant speed-up (a factor
of 10 in general and a factor of up to 1000 in some cases)
can be obtained by sketching only a small sample of the data
instead of the entire data. The decrease in accuracy due to
sampling seems to be insignificant. For sampling with replace-
ment, the difference in accuracy between sketching only a
small sample (a fraction of 0.1 or less from the population
size) and sketching the entire data is minimal. Moreover,
the error becomes stable and it does not decrease anymore
if the sample size is increased above a certain threshold
(10% in our results). Although the situation is almost similar
for sampling without replacement, we also observed some
unexpected results for this type of sampling. The smallest error
is obtained when only a sample of the data (10%) is sketched,
not the entire dataset. This is due to the extreme behavior of F-
AGMS sketches in some particular situations [4]. Essentially,
sketching more data can actually decrease the accuracy of F-
AGMS sketch estimators if the sketched sample captures well
enough the distribution of the entire dataset. Summarizing,
the experimental results show that the sketch over samples
estimator has almost similar accuracy to the sketch estimator
starting with sampling rates of 10% or smaller.

VIII. CONCLUSIONS

In this paper we introduce the sketch over samples estimator
for size of join and self-join size. We provide a detailed
analysis of the error of this estimator for generic sampling
based on the moment generating function of the sampling
frequencies. Then, we instantiate the general results for three
different types of sampling: Bernoulli sampling, sampling
with replacement, and sampling without replacement. Our
results show that it is possible to express the variance of
the combined estimator as the sum of the variance of the
sampling estimator, the variance of the sketch estimator, and
an interaction term. Although the sketch variance seems to

be the dominant term, the exact importance of each of the
terms is highly dependant on the exact distribution of the
actual data. We provide experimental results that show that
the accuracy of the combined estimator is almost similar (and
sometimes better) to the accuracy of the sketch estimator even
for small sampling rates of 10%. We also identify possible
applications of the sketch over samples estimator for each type
of sampling. In conclusion, we believe that the sketch over
samples estimator can be used instead of the sketch estimator
without a significant degradation in accuracy and with a clear
gain in processing time as long as the sample rate is around
10%.
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