
MATH 126: Partial Differential Equations Spring Semester 2022

Today’s plan

1. Go over how the class will work

2. Introduce what is a Partial Differential Equation (PDE).

3. What are examples of PDEs?

4. Where are PDEs from?

5. What else do we need to get a solution?

6. We will begin with some classification of PDEs

What are PDEs?

PDEs are a very powerful mathematical tool to describe physical, biological, and socio-
logical systems. They can accurately model VERY complicated situations.

On the flip side, PDEs are usually hard to solve. You need a mixture of: 1) experience, 2)
theory, 3) numerical simulations.

Here we will focus on the first two points. By the end of this class, for the types of equa-
tions we consider I would like you to: 1) Know what the solution is expected to look like.
2) Know how to get a solution in simple cases.

We begin by recalling a definition, that of partial derivatives.

Given a function of several variables u(x, t), we define the partial derivative with respect to
x as:

ux =
@u

@x
= lim

h!0

u(x+ h, t)� u(x, t)

h
WITH t FIXED.

A Partial Differential Equation (PDE) is an equation (what is an equation?) where a partial
derivative appears.

Here is a simple PDE, maybe your first one!

ut = 0.

What is the general solution? Any function whose partial time derivative is zero, so:

u(x, t) =

Z
ut dt =

Z
0dt = f(x)
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Where do they come up? Who cares about PDEs?
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Where do they come up? Who cares about PDEs?

Most common example: x is a spatial coordinate, t stands for time.
The unknown function u can describe:

1. Temperature

2. Price

3. Velocity

4. Population

5. Infection level

In short, they are everywhere!

In our simple example, we did not get a unique solution. For that we need some IMPOR-
TANT additional information.

1. If time is involved, we usually need some INITIAL conditions (we call those IC).

2. We need some BOUNDARY conditions on the edge of our domain (we call those
BC).

Only when we have the PDE and the proper conditions (initial, boundary) can we get a
unique solution.
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Classifying PDEs

We can solve only a relatively small number of PDEs. To know if we have a chance, we
first need to classify them. There are a few criteria we use:

1. Number of (input) variables.
If there is only 1, it is an Ordinary Differential Equation, or Differential Equation.
If there are n > 1, it is a PDE on n variables.

2. Order of the highest derivative:
u� x+ 2ut = 0 is a first order PDE.
Duxx � ut = 0 is a second order PDE.
uuxx + 4uxxt + u5 = 0 is a third order PDE.

3. Linearity, or non-linearity in the unknown function and its derivatives.
So if our function is u, for the equation to be linear u, ux, ut, etc. can only appear to
the first power. Moreover, they may NOT multiply each other.

In general, we can write PDEs using an operator, denoted by L, applied to a function u:

uxx � ut = Q(x) becomes L[u] = Q(x).

So here L is a differential operator that says: take two derivatives with respect to x and
subtract from that a derivative with respect to t:

L =
@2

@x2
� @

@t
so L[u] =

@2u

@x2
� @u

@t
.

We can now give a more precise definition of linearity. A PDE is linear if L[u] is a linear
operator in u, which is to say if, for any real numbers ↵ and � and for any functions u1

and u2 in its domain, we have

L[↵u1 + �u2] = ↵L[u1] + �L[u2].

Using this definition, you can verify if L = @2

@x2 � @
@t is a linear operator.

Note: In general, an operator is a mathematical object that operates on other mathematical
objects. Differential operators involve derivatives. Here, you can think of it as a function
of function (even though that is not formally correct because functions act on numbers
only).
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Second order PDEs classification

In this class, we will focus on linear, second order PDEs, of two variables. In general, they
look like

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G

Note that all the letters A,B,C... can be functions of x and y, but not of u or its derivatives.
Here we will assume that A 6= 0.

There is a strong analogy between PDEs and scalar equations.
Replace @/@x ! x and @/@y ! y. We then get a conic equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = G

This is a curve in space, but what does it look like? We complete the square to figure it
out:

A

✓
x2 +

B

A
xy +

C

A
y2
◆
+Dx+ Ey + F = G

A

✓
x+

B

2A
y

◆2

+ A

✓
C

A
� B2

4A2

◆
y2 +Dx+ Ey + F = G

A r2 +

✓
4AC � B2

4A

◆
y2 +D

✓
r � B

2A
y

◆
+ Ey + F = G

for a new variable r = x + B
2Ay. So what does that look like? It depends on the sign of A

and of det = 4AC � B2.

If det = 4AC � B2 > 0, we have an ellipse. The corresponding PDE is said to be elliptic.

If det = 4AC �B2 < 0, we have a hyperbola. The corresponding PDE is said to be hyper-
bolic.

If det = 4AC�B2 = 0 , we have a parabola. The corresponding PDE is said to be parabolic.

There are several features of the behavior of solutions to PDEs that are either typical of el-
liptic, hyperbolic, or parabolic systems. We will learn them so we can know what to expect.

Solving PDEs is so hard that there are many opportunities to make mistakes. It is therefore
critical to know what to expect from our solution.
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Today’s plan

1. Introduce the advection equation. What is it?

2. Describe circumstances where it occurs

3. Present a way to solve a simple advection equation

We want to study what is arguably the simplest ”true” PDE: the advection equation. Even
though it is fairly simple, the solutions can be quite varied, at least if we allow for non-
linearities.

The simplest PDE is a first order PDE, linear, of two variables. Consider the variables x
for position in space and t for time and the function u(x, t). Our PDE must involve ux and
ut, both to the first power, with coefficients that do not depend on u. A general form of
such an equation is

ut + c(x, t)ux = Q(x, t, u)

This is the advection equation (or one-dimensional wave equation, see chapter 12.2.2).
Note that if the coefficient of ut is not one, we can divide the equation by that coefficient
to recover the form above (so long as that coefficient is not zero).
Also, it is possible that the coefficient c(x, t) also depends on u. This would make the
equation non-linear (and more complicated).

When can this occur? The most common occurrence is if our function u represents an
amount or concentration that is being moved by a flux F .

Schematics of a concentration modified by a flux F .

Consider the segment between x and x + �x, and suppose that u(x, t) represents the
concentration of something (like a chemical) at that location. Because we are looking at a
1D system, we will have a concentration in mass per unit length.

The question now is how does this concentration change in time when the flux of u toward
the right is F (x, t). Recall that the flux is the rate at which the quantity of interest (like
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a chemical) moves across a location. When a concentration is advected (transported at a
speed that doesn’t depend on its derivative) the flux is a velocity c multiplied by the local
concentration:

F = c(x, t)u(x, t)

and we have, in terms of units

units of u =
M

L

units of F =
M

T

units of c =
L

T

In our segment between x and x + �x, the total amount of chemical changes because
some flows in from x and some flows out at x+�x (note that a negative flux to the right
corresponds to a positive flux to the left). So we have that the total amount in the segment
at time t+�t is

�x u(x, t+�t) = �x u(x, t) +�t (F (x, t)� F (x+�x, t))

which is: what we had before, plus what came in on the left, minus what came out on the
right.

We can now rearrange terms to try to get a PDE when we take the limits of �t ! 0 and
�x ! 0. We find:

�x u(x, t+�t)��x u(x, t) +�t (F (x+�x, t)� F (x, t)) = 0

and if we divide by �t�x

u(x, t+�t)� u(x, t)

�t
+

F (x+�x, t)� F (x, t)

�x
= 0

and taking the limits �t ! 0 and �x ! 0, we find

lim
�t!0

u(x, t+�t)� u(x, t)

�t
+ lim

�x!x

F (x+�x, t)� F (x, t)

�x
= 0

@u

@t
+

@F

@x
= 0

Finally, if we use our definition that F = cu, we find the advection equation

@u

@t
+ c(x, t)

@u

@x
= �u

@c

@x

In the simplest case, which we will study first, the velocity is constant, c(x, t) = c and
cx = 0. We then get the constant coefficient advection equation

ut + cux = 0
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Boundary and initial conditions

To have a chance of finding a solution to any PDE, including the advection equation,
we must provide initial and boundary conditions. These are often as determinant as the
equation itself.

Because the advection equation involves a first order time derivative (and no higher), we
need to provide a single initial condition. This is almost always given in the form:

u(x, t = 0) = f(x)

for a given function f(x) which is differentiable over the domain of interest. Note that
things can also be done if f(x) is not differentiable, but more theory is required.

Similarly, the advection equation involves a single spatial derivative, so a single boundary
condition can be provided. This typically takes the form

u(x = x0, t) = g(t).

However, we will see soon that this boundary cannot be just anywhere in relation to the
domain.

Lastly, it is possible to have the entire real axis as a domain, in which case, no boundary
condition is needed.

Solution to the constant coefficient advection equation

Consider the advection equation for a constant velocity c > 0

ut + cux = 0, subject to u(x, 0) = e�x2
over the entire real line

What do we expect the solution to look like?

Recall how we got this equation: it describes the concentration of a chemical subject to
a flux given by F = uc, which is moving the concentration to the right with velocity c.
What do you expect the solution to look like?

The initial condition here is a bell curve, a blob of higher concentration centered at x = 0.
As it gets pushed by the flux, it should move to the right, with speed c. Moreover, given
this flux, it should keep its shape.
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Mathematically, this is described by u(x, t) = e�(x�ct)2 , which is equivalent to moving the
location where the argument of the exponential is zero to be ct.

A Gaussian curve advected to the right at a constant speed.

More generally, we can think that any initial condition u(x, t = 0) = f(x) would have a
corresponding solution

u(x, t) = f(x� ct).

We can verify this by plugging it in our equation. We have ux = f 0(x � ct) and ut =
(�c) f 0(x� ct). So we get:

ut + cux = (�c) f 0(x� ct) + c f 0(x� ct) = 0

so indeed it works! We have solved our first non-trivial PDE.

Next time we will see what happens for a finite domain, and how we can find similar
solutions for more complicated speeds.
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Today’s plan

1. When do you use the methods of characteristics?

2. How do you use it?

3. Conceptually, what is going on?

4. What problems can it encounter?

We return now to a more general version of the advection equation, one which may have
a source term (RHS) and may be non-linear (c may depend on u).

ut + c(x, t, u)ux = Q(x, t, u)

Recall that we saw that if Q = 0 and c is constant, u(x, t) = f(x� ct) is a solution. Can we
use this result to get a more general one?

The idea of many methods to solve PDEs is to find a way to reduce them to ODEs. The
method of characteristics does this as well, by selecting curves in the domain over which
the solution is easier to describe. These curves are called characteristics.

Schematics of the method of characteristics

We want to introduce some curves in the xt-plane, our domain. We will write these curves
as functions x(t). The good news is that along these curves, our solution can be viewed
as a function of a single variable, t:

u(x(t), t) = U(t).

Can we get a differential equation for U(t)? Let’s take its (time) derivative:

dU

dt
=

d

dt
u(x(t), t) =

@u

@t
+

@u

@x

dx

dt
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The key here is to make this derivative look like our advection equation. To do so, we
pick our characteristics carefully. Here, to have dU/dt match the LHS of the advection
equation, we select

dx

dt
= c(x, t, u) = c(x(t), t, u(x(t), t)). (1)

With this choice, we get that

dU

dt
=

d

dt
u(x(t), t) =

@u

@t
+

@u

@x

dx

dt
=

@u

@t
+ c(x, t, u)

@u

@x
= Q(x, t, u)

so more simply that
dU

dt
= Q(x, t, u) (2)

We therefore have a system of two ODEs (equations 1 and 2) to solve. In general, this can
be hard, but we will focus on easier cases.
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We start by the case we have seen before: Q = 0 and c constant. Our system of ODEs is:

dx

dt
= c

dU

dt
= 0

These are decoupled, and indeed quite easy to integrate. From the first one we have

x = ct+ x0 or x0 = x� ct

for a constant x0. This means that the special curves, the characteristics, are straight lines
in the xt-plane. x0 indicates the location on the x-axis at time t = 0.

From the second one, we have that U(t) = u(x(t), t) = U0, a constant. This means that
along each characteristic, the value of u does not change (note that here u(x(t), t) = U(t)
is the value of the function u ALONG a characteristic). However, u can change from one
characteristic to another. So the initial value of u does not have to be constant, but once it
is given, it stays the same along a characteristic.

Schematics of characteristic for a constant c and Q = 0.

When c is positive, we can see that the characteristics travel to the right. You can think of
the characteristics as carrying information. In this case, the information is that u does not
change. When c > 0, this information goes to the right only. This means that if we have a
spatial boundary at x = 0, it will only have an effect on what happens for x > 0, t > 0.
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Consider the boundary condition u(x = 0, t) = g(t).
If we trace some characteristics, we can see that one goes through x = 0, t = 0. It is:
x = ct. To the right and below it, the value of u is given by the initial value at time t = 0.
However, to the left and above it, the value of u depends on the boundary value at x = 0.

More precisely, how can we express u(x, t)? It will depend on x�ct. When x0 = x�ct > 0,
the value comes from the initial conditions, f(x0).
When x0 = x � ct < 0, the value comes from the boundary conditions at the time for
which x = 0 and x� ct = x0, that is t0 = �x0

c and the value of u is , g(t0). Putting it all in a
single formula, we have

u(x, t) =

(
f(x� ct) if x� ct > 0

g(t� x
c ) if x� ct < 0

Note that for x � ct = 0, if the initial condition is different than the boundary condition,
the solution will not be continuous, and will not have a well-defined value along the line
x = ct.

Schematics of the solution to the advection equation with a boundary condition at x = 0.
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Today’s plan

1. What does a non-linear equation look like?

2. Why does it matter if the equation is non-linear?

3. Can you still use the method of characteristics?

4. What can go wrong with this method?

Recall the method of characteristics, for the advection equation:

ut + c(x, t, u)ux = Q(x, t, u)

We obtained the couple ODEs:

dx

dt
= c(x, t, u) = c(x(t), t, u(x(t), t)). (1)

dU

dt
= Q(x, t, u) for U(t) = u(x(t), t) (2)

We saw that when Q = 0 and c is constant, the characteristics are straight lines in the
xt-plane, and u remains constant along them.

Let’s see a more complicated example. Note that sometimes the system of ODEs cannot
be solved explicitly (or can be VERY hard to solve explicitly). The method of character-
istics can be used numerically in general, but only certain simple setups can be solved
analytically. Let’s try a case where c is a function of time, like a time dependent transport
velocity, and there is a source term proportional to the concentration. So imagine a popu-
lation walking and getting tired in which we want to keep track of the number of people
who have a virus. We will use c(x, t, u) = 1

(t+1)1/2
and Q(x, t, u) = 0.1u. Our equation is

therefore
ut +

ux

(t+ 1)1/2
= 0.1u

This example is chosen so that the system of ODEs is actually decoupled. We get for the
characteristics:

dx

dt
=

1

(t+ 1)1/2

This can be integrated with respect to t and yields

x(t) = x0 � 2 + 2(t+ 1)1/2 or t =

✓
x� x0

2
+ 1

◆2

� 1 or x0 = x+ 2� 2(t+ 1)1/2

Note that here the characteristics never cross and cover the entire domain. That is not

always the case.
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Characteristic curves following a parabola in the xt-plane.

Along the characteristics, the function u is subject to dU
dt = 0.1U . This is easily solved

to give U(t) = u0e0.1t. So along each characteristic, there is an exponential growth. The
initial value u0 is given by the initial condition, at t = 0 so u0 = f(x0). Note that along
a characteristic this completely determines the function. There is actually no dependence
on neighboring values of u.

We may therefore write an expression for our full solution. Suppose the initial condition is
u(x, t = 0) = f(x). For a given point (x, t), we need to know what characteristic we are on.
So what is the value of x0 in the expressions given above? We find x+2� 2(t+1)1/2 = x0.
Our solution is therefore

u(x, t) = u0e
0.1t = f(x0)e

0.1t = f(x+ 2� 2(t+ 1)1/2)e0.1t

Solution for initial condition f(x) = sin(2x) (left) and contour plot of this solution (right)
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Issues with the method of characteristics and traffic flow

As was hinted at earlier, some issues may occur with the method of characteristics. For a
given point (x, t), it is possible that

• One and only one characteristic goes through that point. This is good (and what we
saw so far).

• No characteristics go through this point. We have no information about u.

• More than one characteristics goes through that point. We have conflicting informa-
tion about u.

We will present brief descriptions of how to deal with the last two points. This is a com-
plex topic and the goal here is simply to give a sense of what might happen. To illustrate
those setups, we will consider a model of traffic flow, following 12.6.2 (loosely).

Consider a model in which we keep track of the density of cars, ⇢ as a function of one
spatial dimension x and of time t. Our conservation law is applicable

@⇢

@t
+

@F

@x
= 0

but we need to define a flux F . For cars on a single road, it makes sense to assume that
F = v⇢, where v is the speed of car. However, this speed with depend on the density
⇢. For simplicity, we will assume here that the speed decreases linearly with density
v = 1 � ⇢. If the density is ever greater than 1, the speed remains zero. Note here that
we are effectively looking at a rescaled density, where the maximum density has been set
to one. This could be defined as ⇢ = density

max density . We have also rescaled time so that the
maximum velocity is one.

Our flux is then F = (1� ⇢)⇢ = ⇢� ⇢2. Our PDE is therefore

@⇢

@t
+ (1� 2⇢)

@⇢

@x
= 0

Note that this is a non-linear equation. It is simple enough that we can solve it exactly
with the method of characteristics, but it can give rise to more complex solutions. Our
characteristic equations are

dx

dt
= 1� 2⇢

and
d⇢

dt
= 0.

Thankfully, this last one is easy and states that ⇢ = ⇢0 is constant along a characteristic.
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We can now solve for the shape of the characteristics, assuming a constant ⇢, and find

x(t) = x0 + (1� 2⇢)t.

These are straight lines again. However, their slope depends on the initial value of ⇢.

Subtle but important point: Here, characteristics have a slope which is different than
the speed at which cars flow. This is analogous to the difference between phase velocity
and group velocity in physics. It is basically saying that the speed of cars is different that
the speed at which information about the car density travels, which is the slope of the
characteristics.

For example, imagine you are at a protest or rally with a lot of people (all wearing masks
of course). Suppose I want to track the density of people who had heard a rumor. If the
people are standing still, the rumor may travel by word of mouth, at a certain speed. If the
people are walking, the information will be moving because of both the speed of people
AND the speed of the spread by word of mouth. But information is moving separately
from people. The same idea applies to the density of cars, which travels at a different
speed than any individual car.

Red light turns green: Expansion Fan

Because the slope of the characteristics depends on the value of ⇢, the initial conditions
play a determinant role. We consider a few examples:

Constant initial density remains constant.

First, suppose the density is constant initially: ⇢ = ⇢0. In that case, all characteristics have
the same slope and nothing changes in time. In fact, ⇢ = ⇢0 satisfies our PDE.

Suppose now that a right light at x = 0 turns green at time t = 0. We then have an initial
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density of cars given by

⇢(x, t = 0) =

(
1 if x < 0

0 if x > 0

The corresponding characteristics in each regions have slope �1 for x < 0 and 1 for x > 0.
This describes well what happens if x > t and if x < �t, no changes are seen in those
regions. But what about in between? Because the initial condition was discontinuous, the
characteristics yield no information about that region.

We therefore need to introduce a mathematical trick. We are going to think of the initial
condition as the limit of a continuous function that approaches a discontinuous function.
We will use a tanh function that gets sharper and sharper as it transitions from 0 to 1.

⇢(x, t) =

(
1 if x < 0

0 if x > 0
= lim

✏!0

1 + tanh(�x/✏)

2

As a result, we can think of ⇢ as taking ALL the values between 0 and 1 at the point

Continuous functions approaching a step function

x = 0. We therefore need to draw all the corresponding characteristics. This is convenient
as those characteristics will fan out and cover the entire region of the xt-plane between
the two regions where we already know the solution. This is called an expansion fan.
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Figure 1: Expansion fan at a red light turning green. Note that here we assumed a more
realistic density of ⇢ = 0.5 for x < 0 (the discussion above used ⇢ = 1 in that region).

Traffic jam formation: Shocks

We now consider the opposite situation, where the density of cars increases with x. Sup-
pose we start with a density of ⇢ = 0.5 for x � 1 and a density of ⇢ = 0 for x  0, and a
linear interpolation between the two

⇢(x, t = 0) =

8
><

>:

0 if x < 0

0.5 if x � 1
x
2 otherwise

Initial condition of increasing density with x.

Once again, there are regions well described by characteristics. If x � 1, the characteristics
are vertical and the density stays at ⇢ = 0.5. Note that in the case the cars are still moving
to the right (with speed 0.5). If x < t, the characteristics have slope one, and the density
stays ⇢ = 0.
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So what is the problem? The issue is that those two regions overlap. The characteristics
cross! So who are we to listen to?

In fact, with this initial condition, all the characteristics that start from 0  x  1 meet
at x = 1, t = 1. This is like an expansion fan in reverse: we are creating a point where ⇢
appears to take on many values. This is called a shock, and it corresponds to a disconti-
nuity in the function ⇢. This is how traffic jams can form from nothing in particular. See
an cool illustration of this at:

https://www.youtube.com/watch?v=7wm-pZp_mi0

Here the drivers were tasked with driving in a circle at a constant speed (maybe about
20mph), and shocks naturally formed!
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Shock speed

What happens on either side of the shock is clear: the density keeps its value, and there
is a jump at the shock. However, the position of the shock is generally going to change in
time too. To compute how it changes, we need to return to our derivation of the equation,
using the flux, and assume that a shock is present. We will look for the speed vs at which
a shock is propagating.

To compute this speed, we again consider how much flows into and out of a segment
over a short time �t. Suppose the density on the right of the shock is ⇢+ and that on the
left is ⇢�. We denote the size of the jump as

[⇢] = ⇢+ � ⇢�.

Similarly, we can speak of the flux to right of the shock as F+ and the flux coming in from
the left as F�. We have [F ] = F+ � F�.

Derivation of the speed of a shock

Because the shock moves, the amount of cars that moved to the right over �t is us[⇢]. This
has to be the same as the difference in the fluxes are either side of the shocks. We get:

Shock related flux = us[⇢] = [F ]

and solving for the shock velocity, we find the so-called Rankine-Hugoniot velocity

us =
[F ]

[⇢]
=

F+ � F�

⇢+ � ⇢�
. (3)

In our example, the flux was the density multiplied by a velocity v = 1� ⇢, so we have

us =
⇢+v+ � ⇢�v�

⇢+ � ⇢�
.
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Using the numerical values in our example, we have ⇢+ = 1/2, v+ = 1/2, ⇢� = 0, v� = 0,
we find for our example that

us =
1/2 · 1/2� 0 · 0

1/2� 0
=

1

2
.

The position of the shock starting at (1, 1) and with dxs
dt = 1/2 is therefore xs = (t + 1)/2.

After t = 1, when the shock first forms, we therefore have

for t > 1 ⇢(x, t) =

(
0 if x < t+1

2

0.5 if x > t+1
2

and prior to that

for 0 < t < 1 ⇢(x, t) =

8
><

>:

0 if x  t

0.5x�t
1�t if t < x < 1

0.5 if x � 1

Density in the presence of a shock.

Actually, because the density left of the shock is 0, the speed of the shock is the same as
the speed of the cars to the right of the shock. However, in general that will not be the
case. The shock may even go to the left (with a negative speed). For example, if ⇢+ = 0.8
and ⇢� = 0.3, the shock speed would be us = �0.1. This is the case of a traffic jam that
is spreading: even as cars keep moving to the right, so many cars arrive that the jam gets
bigger and bigger.
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Today’s plan

1. Come up with a simple system.

2. Think of all that can cause heat to change.

3. Do a heat budget for a finite time step.

4. Take the limit of time step going to zero.

To derive the Heat equation, we track the amount of heat in a thin slice of a rod.

Heat in a thin slice of a rod.

We introduce the heat density e(x, t), which is the amount of heat by volume. The heat in
our little slice is

H = e(x, t)A�x.

How does it change in time?

It depends on the FLUX: �(x, t) = time rate of change of heat per area moving to the right.

There might also be some heat creation: Q(x, t) = rate at which heat per volume is created.

What will be the heat in our slide of rod at time t+�t in terms of how things were at time
t?

2
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In words, we expect:

New total heat = Old heat + Flux in - Flux out + created heat

Mathematically, this becomes

A�xe(x, t+�t) = A�xe(x, t) + A�(x, t)�t� A�(x+�x, t)�t+Q(x, t)A�x�t

Note that here � is associated with right-going heat. If the heat flows left, � becomes
negative.

Now, we will rearrange terms to try to obtain terms that look like derivatives. First, we
can divide by A. Then we put all the e terms on the left and divide by �t�x.

e(x, t+�t)� e(x, t)

�t
=

�(x, t)� �(x+�x, t)

�x
+Q(x, t)

Now we can think of taking limits. Assume that as �t ! 0, we also have �x ! 0.
Taking those limits gives us a continuous approximation (otherwise we can try to solve
the previous equation numerically):

@e

@t
= �@�

@x
+Q(x, t)

So this is great, we now have a PDE! The only problem is that it has too many unknowns.

Usually, Q(x, t) is given, and does not have to be solved for. But what is �? This is easier
to explain in terms of temperature.

Consider the relation between heat and temperature: e(x, t) = ⇢(x)Cp(x)u(x, t) where
⇢(x) is the density of the rod, in mass per volume
Cp(x) is the specific heat in heat per mass per degree C
u(x, t) is the temperature in degree C.

Now we can try to relate the flux � to the observable property that is the temperature
u(x, t).

Following the derivation of Fourier, we will want a heat flux that satisfies:

1. If the temperature is constant, � = 0.

2. The heat should flow from hot to cold.

3. The flux should be greater when the temperature difference is greater.

4. The magnitude of the flux should depend on the material of the rod.

3
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The simplest such heat flux is

� = �K0
@u

@x
, with K0 > 0

We can check properties 1-4.
Here K0 is a material dependent constant. We usually write K0 = Cp(x)⇢(x) k, where k is
the thermal diffusivity, with units [k] = L

2
/T .

So our PDE becomes
Cp⇢

@u

@t
= � @

@x

✓
�Cp⇢k

@u

@x

◆
+Q

In most cases, we can assume that c, ⇢, and k are constant and this simplifies to

@u

@t
= k

@
2
u

@x2
+

Q

Cp⇢
the Heat Equation!!

Note that chemical concentrations diffuse the same way as heat, and satisfy the same
equation. It is also called the diffusion equation.

In many cases, there is no source term (Q = 0) and we only have to solve ut = kuxx.

So what do solutions look like? How does the temperature spread in time? Our intuition
from everyday life can help, thinking of a hot spoon and a hot pot of soup:

Illustration of the time-evolution of temperature.

4
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Today’s plan

1. Define boundary and initial conditions for the heat equation.

2. Provide example and physical interpretation of common BCs.

3. Define what an equilibrium solution is.

4. Find some equilibrium solutions.

It is IMPOSSIBLE to find a unique solution to ut = kuxx without more information. First
we need a domain where we want our solution to hold. Typically the domain is some-
thing like:

D = { (x, t) 2 R2 | t > t0, 0  x  L}
The domain may be infinite in space, but we must have a starting point in time. Most
often, it is t0 = 0.

Initial Condition (IC)

To know the temperature distribution over time, we need a starting point. We need to
know over our whole spatial domain what the temperature is at some given time:

IC: u(t0, x) = f(x) for 0  x  L

Then we can proceed to keep track of how it changes in time. In fact, this is how we
derive our PDE in the first place.

Boundary Condition (BC)

In our derivation, we did not talk about what happens at the ends of our rod. However,
this is determinant. If you heat both ends, you will get a very different temperature
profile than if you insulate both ends. This information makes up the BC and it is AS
IMPORTANT as the equation itself.

The most common setups are:

1. The temperature u is given at the ends

u(x = 0, t) = u0(T ) u(x = L, t) = uL(t)

These are also called Dirichlet boundary conditions.
Very often, u0 and uL are constant in time.

2
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2. The heat flux is given:
At the left boundary, this corresponds to heat flowing INTO the rod:

�(x = 0, t) = �0(t) = �K0
@u

@x

����
x=L

= �kc⇢
@u

@x

����
x=0

and at the right most end this corresponds to heat flowing OUT of the rod

�(x = L, t) = �L(t) = �K0
@u

@x

����
x=L

= �kc⇢
@u

@x

����
x=L

Most commonly, the flux is �0 = �L = 0 (insulated ends). This is then called a
Neumann condition, which simplifies to ux(0, t) = ux(L, t) = 0.

3. You can mix 1. and 2., most commonly in Newton’s cooling law

�0(t) = �kc⇢
@u

@x

����
x=0

= (u0(t)� u(x = 0, t))H

where H is a heat transfer constant.
In general, if both u and ux appear in the boundary condition, it is called a Robin
boundary condition.

4. If the domain is infinite, we usually require that the temperature does NOT go to
infinity anywhere in the domain (u < 1). Sometimes, we may also require that it
approaches a given value (limx!1 u = u1).

Equilibrium temperature distribution

Before tackling the harder question of how temperature changes in time, we ask a simpler
question: What will happen after a very long time?

There are two main possibilities:
1) If heat is constantly inputed or removed from the system, then no equilibrium will be
reached, and we will have

lim
t!1

u(x, t) = Does not exist.

This will happen when the TOTAL heat flux is non-zero. The total flux into the system is

Total heat flux = �(x = 0, t)� �(x = L, t) +

Z L

0

Q(x) dx =

So if the Total heat flux is non-zero, no equilibrium is possible.

3
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2) If the total heat flux is 0 (a more common case for physically relevant setups), then an
equilibrium WILL be reached.

At equilibrium, nothing changes in time, so we have for the equilibrium distribution ue(x)

@ue

@t
= 0

This makes the remaining equation easier to solve because it becomes an ordinary differ-
ential equation (in x only). We then have to solve:

k
@
2
ue

@x2
+Q(x) = 0.

Depending on the boundary conditions, we can get various solutions. For example:

Ex. 1: If Q = 0, with u0 = A, uL = B, we have:
ue(x) = C1 + C2x which can be found to yield: ue(x) = B

x
L + A

L�x
L = A+ (B � A) xL .

Ex. 2: The system is insulated (@u@x = 0 at both ends) and Q = 0.
Then ue(x) = C is a solution. But what is the value of the constant? It depends on the
initial condition. Since no heat escapes our system, we must have, for a given initial
condition u(x, t = 0) = f(x).

Z L

0

Cdx = CL =

Z L

0

f(x) dx so C =

R L

0 f(x) dx

L

So really the equilibrium temperature is the average of the initial temperature, which
makes intuitive sense.

Now let’s see concrete examples:
A) ut � uxx = 0, BC: u(x = 0, t) = 1 and u(x = 2, t) = 7 and IC: u(x, t = 0) = sin x.
Here the total flux is zero, so there will be an equilibrium.
ue(x) = 1 + 6

2x = 1 + 3x

B) ut � kuxx = sin x, BC: u(x = 0, t) = 0 and u(x = ⇡, t) = 1 and IC: u(x, t = 0) = x(⇡ � x).
Here there is a source, but we have

R ⇡

0 Q(x) dx =
R ⇡

0 sin x dx = 0. So again, there will be
an equilibrium.
We find it by integrating:

@
2
ue

@x2
= �sin x

k

@ue

@x
=

cos x

k
+ C1

ue =
sin x

k
+ C1x+ C2

ue(0) = 0 = C2

ue(⇡) = 1 = C1⇡, so finally

ue(x) =
sin x

k
+

x

⇡

4
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C) ut � uxx = 0 BC: ux(x = 0, t) = 1 (influx) and ux(x = 2, t) = 0 (insulated) and IC:
u(x, t = 0) = x

3.
If we try to solve for the equilibrium, we get: ue(x) = C1x+ C2

The BC at x = 0 yields that C1 = 1, but the BC at x = 1 yields that C1 = 0. A contradiction.
So there is no equilibrium possible. This is confirmed by the fact that there is a net influx
of heat in the system.

D) ut� 4uxx = 0, BC: ux(x = 0, t) = 0 and ux(x = 2, t) = 0 (insulated) and IC: u(x, t = 0) =
(sin x)2.
Here there is no source and the system is insulated, so there is an equilibrium.
Integrating yields ue(x) = C1x+ C2.
Using the BC gets us that C1 = 0. But what about C2?
Conservation of heat in the system shows that the total heat is (⇢c times)

C2⇡

Z ⇡

0

(sin x)2 dx =
⇡

2

So C2 = 1/2 and out equilibrium is ue(x) =
1
2 .

0 0.5 1 1.5 2
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u e

0 0.5 1 1.5 2 2.5 3
x

0

0.5

1

1.5

u e

0 0.2 0.4 0.6 0.8 1
x

0

0.1

0.2

0.3

0.4

0.5

u e

0 0.5 1 1.5 2
x

0

2

4

6

8

u e

Equilibrium temperatures

E) ut � uxx = �x with BC: ux(x = 0, t) = 0 and ux(x = 1, t) = 1/2 and IC: u(x, t = 0) = x
2.

5

Francois Blanchette
Note that in class in 2022, I mistakenly used Q = x
I should have used Q/K_0 = -x
Then the total heat flux is 0 and the solution given here is correct.
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Here there is a source, and the total creation of heat is
Z L

0

Q(x) dx =

Z 1

0

�x dx = �1

2

However, there is also an inflow of heat at the right boundary of 1/2 (be careful with the
signs: � has the opposite sign of ux) which cancels the heat production.

So we expect to be able to find an equilibrium. If we integrate:

@
2
ue

@x2
= x

@ue

@x
=

x
2

2
+ C1

@ue

@x

����
x=0

= 0 = C1 using one BC

@ue

@x

����
x=1

=
1

2
=

1

2
+ C1 using there other BC ! consistent

ue =
x
3

6
+ C2 we must use conservation to find C2

Z 1

0

ue(x) dx =
x
4

24
+ C2x

����
1

0

=
1

24
+ C2

Z L

0

f(x) dx =

Z 1

0

x
2
dx =

x
3

3

����
1

0

=
1

3
=

8

24
so

C2 =
1

3
� 1

24
=

7

24
and

ue(x) =
x
3

6
+

7

24

6
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Today’s plan

1. What does it mean to separate variables to solve a PDE?

2. When can you use that?

3. How does it work?

4. What are things to watch out for?

We want to take advantage of the linearity of the heat equation:

L(u) = ut � kuxx = 0

where we consider the case without sources, which makes this equation homogeneous.

The operator L is then linear: L(c1u1 + c2u2) = c1L(u1) + c2L(u2).
Importantly, this means that if L(u1) = 0 and L(u2) = 0 (we have two solutions to our
equation) then L(c1u1 + c2u2) = 0 also.
In other words linear combinations of solutions REMAIN solutions.
This will be very useful to us when trying to match initial and boundary conditions.

We begin with the ”simplest” boundary conditions, which are homogeneous, given val-
ues of u (Dirichlet). Our problem is to solve

ut = kuxx for k > 0 subject to
u(x = 0, t) = 0

u(x = L, t) = 0

u(x, t = 0) = f(x)

We now make a pretty big assumption: We guess that the solution will be a sum of SEP-
ARABLE functions:

un(x, t) = �n(x)Gn(t)

This will not always work, but we will see theory showing that this works remarkably
often.
We proceed in a specific order:

1. We focus on the PDE first.

2. Then we will use the BC.

3. We will match the IC last.

2
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First, we need to know what derivatives of un look like. We have

@un

@t
= �n(x)

dGn

dt
= �nG

0
n

@un

@x
=

d�n

dx
Gn(t) = �0

nGn

@2un

@x2
=

d2�n

dx2
Gn(t) = �00

nGn

We can now use this in our PDE:

ut = kuxx becomes �n(x)
dGn

dt
= k

d2�n

dx2
Gn

The key step is that we now divide by kun = k�nGn (note that you don’t have to divide
by k, but it is usual)

�n(x)G0
n(t)

k�nGn
= k

�00
n(x)Gn(t)

k�nGn
�! G0

n(t)

kGn(t)
=

�00
n(x)

�n(x)
= �

So here is the whole point: Each side depends on one variable ONLY.
The only way a function of x (LHS) can equal a function of t (RHS) is for both to be
constant. We call that constant �.

In general, � is constant but can be ANY COMPLEX number, at least a priori.
We need to figure out which values of � might work. We solve in t first:

G0
n(t)

Gn(t)
= k�

so Gn(t) = Cnek�t.
What does this do as t ! 1? It blows up (tends to infinity) if Re(�) > 0.
Moreover, in this case if � is not real, the function Gn cannot be real for any choice of the
integration constant Cn. So we must have that � 2 R and � < 0. To illustrates that, we
write

Let � = �↵2, ↵ 2 R.
So out functions of time are Gn(t) = Cne�k↵2t.

Now in x, we have
�00
n(x)

�n(x)
= � = �↵2 or �00

n + ↵2�n = 0

with our boundary conditions (they only apply in x): �n(0) = 0 and �n(L) = 0.

To solve this system, we can assume �n(x) = erx and get the characteristic equation

r2 + ↵2 = 0

3
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so we must have that r = ±i↵. So our solutions are

�n(x) = A cos(↵x) + B sin(↵x).

Now we employ our boundary conditions. An important thing to recall is that we are
looking for non-trivial solutions. So here �n(x) = 0 is a solution to our system, but it is
not very interesting and we want to find other solutions. This is possible because ↵ is still
an UNDETERMINED constant.

Our BC state that:
�n(0) = 0 = A cos(0) + B sin(0) = A

so simply A = 0. Also
�n(L) = 0 = 0 +B sin(↵L)

In this case, we don’t want B = 0 (that is the trivial solution) so we must have

sin(↵L) = 0.

This is only possible if ↵L = n⇡ for an integer n. So we now have constraints on the
constant ↵. It must satisfy

↵n =
n⇡

L
for n 2 N

We will say that those ↵n are the eigenvalues of this system (can you see why we chose
that name? we will get back to this).

So overall, we found that

un(x, t) = Cne
�k n2⇡2

L2 t sin
⇣n⇡x

L

⌘
for n 2 N.

So in fact, we found infinitely many solutions (in a countable way).

We/you should try the same problem for the boundary conditions ux = 0 at x = 0 and at
x = L.

All our solutions un satisfy the PDE, and the boundary conditions, because of how we
found them. That means that if we sum them, the sum will also satisfy the PDE (because
it is linear) and the BCs (because they are homogeneous). So our current solution guess is

u(x, t) =
1X

n=1

Cne
�k n2⇡2

L2 t sin
⇣n⇡x

L

⌘

The only thing left is to satisfy the initial condition. For that, we will need to pick the
coefficients Cn carefully.

At time t = 0, we have

u(x, 0) = f(x) =
1X

n=1

Cn (1) sin
⇣n⇡x

L

⌘

4
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If we are lucky, the coefficients Cn are easy to recognize.

Ex. 1: f(x) = 4 sin(2⇡xL ).

In that case: C1 = 0, C2 = 4, C3 = 0, ...Cn = 0.

-4
3

-2

1

0u

2

2

t x

4

0.51
0 0

Solution to the heat equation, example 1 with L = ⇡.
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Ex. 2: f(x) = 7 sin(⇡xL ) + 8 sin(4⇡xL ).

In that case: C1 = 7, C4 = 8 and for all other n, we have Cn = 0.

-10

-5

3 1

0u

5

2

10

t x
0.51

0 0

Solution to the heat equation, example 2 with L = ⇡.

But what if we are not that lucky? What Cn satisfy f(x) =
P1

n=1 Cn sin(n⇡x/L)?
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Today’s plan

1. What is orthogonal expansion for vectors?

2. How can we see functions as vectors.

3. How do this relate to solving PDEs with separation of variables.

We need to make a detour via vectors and linear algebra to understand how to use or-
thogonal expansions. We’ll work in 3D.

Suppose I have an orthogonal basis in 3D, ~v1, ~v2, and ~v3.
Suppose I also have a vector ~w that I want to write in terms of my basis.

Representation of a 3D vector in a general orthogonal basis

What we want is of the form

~w = c1~v1 + c2~v2 + c3~v3 *
and we are looking for the coefficients ci. Remember that our basis is orthogonal, so
~v1 · ~v2 = 0, ~v1 · ~v3 = 0, and ~v2 · ~v3 = 0.
We will take advantage of this by taking a dot product of equation (*) with each basis
vector in turn.

If we start with ~v1, we get

~v1 · ~w = c1~v1 · ~v1 + c2~v1 · ~v2 + c3~v1 · ~v3 = c1~v1 · ~v1

2
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So we can now solve for c1, since all the other coefficients are no longer involved:

c1 =
~v1 · ~w
~v1 · ~v1

and similarly c2 =
~v2 · ~w
~v2 · ~v2

, c3 =
~v3 · ~w
~v3 · ~v3

.

In fact, our coefficients are PROJECTIONS of ~w onto each basis vector.

But this only works if our original basis is orthogonal: ~vi · ~vj = 0 if i 6= j.

In our case, we are trying to find how to write:

f(x) =
1X

n=1

Bn sin
⇣n⇡x

L

⌘

So f(x) is playing the role of ~w and sin
�
n⇡x
L

�
are the basis functions for various n. But are

they orthogonal?

What does orthogonal even mean for functions??

We need to define a dot (or inner) product. In general, dot products must satisfy 3 prop-
erties: This will ensure that they behave in a useful way.

1. f(x) · f(x) � 0 and f(x) · f(x) = 0 if and only if f(x) = 0.

2. f(x) · g(x) = g(x) · f(x), so it is symmetric.

3. (af(x) + bg(x)) · h(x) = af(x) · h(x) + bg(x) · h(x) which is to say it is linear in either
argument, or bilinear.

We will use integration as our dot product:

f(x) · g(x) =
Z L

0

f(x)g(x)r(x) dx for some given function r(x) > 0.

Importantly:

1. The interval over which we integrate is the domain of x for our problem (we don’t
care about other values of x).

2. r(x) > 0 over the whole interval is required to meet the first property of inner prod-
ucts.

3. For now, we will use r(x) = 1. So in our case f · g =
R L

0 f(x)g(x) dx.

We can now speak of two functions being orthogonal. f(x) and g(x) are orthogonal if

f(x) · g(x) =
Z L

0

f(x)g(x) dx = 0.

3
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You can, and should, use trig identities to show that
Z L

0

sin
⇣n⇡x

L

⌘
sin

⇣m⇡x

L

⌘
dx = 0 if m 6= n and are natural numbers

Moreover, Z L

0

sin
⇣n⇡x

L

⌘2

dx =
L

2

So indeed the functions sin
�
n⇡x
L

�
form an orthogonal set. This is really convenient for us,

because we can use our projections to find the coefficients Bn in our solution.

f(x) =
1X

n=1

Bn(1) sin
⇣n⇡x

L

⌘
gives us

Z L

0

sin

✓
k⇡x

L

◆
f(x) dx =

Z L

0

sin

✓
k⇡x

L

◆ 1X

n=1

Bn sin
⇣n⇡x

L

⌘
dx

Z L

0

sin

✓
k⇡x

L

◆
f(x) dx =

1X

n=1

Z L

0

sin

✓
k⇡x

L

◆
Bn sin

⇣n⇡x
L

⌘
dx as we will see in Chap. 3

Z L

0

sin

✓
k⇡x

L

◆
f(x) dx =

LBk

2

so we can find the coefficients as:

Bk =
2

L

Z L

0

sin

✓
k⇡x

L

◆
f(x) dx

So we now have a complete solution!

u(x, t) =
1X

n=1

Bne
�k n2⇡2

L2 t sin
⇣n⇡x

L

⌘

with

Bn =
2

L

Z L

0

sin
⇣n⇡x

L

⌘
f(x) dx

Let’s pick a concrete initial condition. Let L = ⇡ and f(x) = x(⇡ � x). We can find (with
Wolfram alpha for example) that the coefficients are

Bn = � 2

⇡

(⇡n sin(⇡n) + 2 cos(⇡n)� 2)

n3
=

4

⇡

(1� (�1)n)

n3

so really B2n = 0 and B2n�1 =
8

⇡(2n�1)3 . In particular

B1 =
8

⇡
, B3 =

8

27⇡
, B5 =

8

125⇡
, B7 =

8

343⇡

4
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We can plot this, for example in Matlab:

hold off
xs = 0:pi/100:pi;
plot(xs,xs.*(pi-xs),’r’,’LineWidth’,2)
hold on
plot(xs,(8/pi)*(sin(xs)),’c’,’LineWidth’,2)
plot(xs,(8/pi)*(sin(xs)+sin(3*xs)/27),’k’,’LineWidth’,2)
plot(xs,(8/pi)*(sin(xs)+sin(3*xs)/27+sin(5*xs)/125),’g’,’LineWidth’,2)
plot(xs,(8/pi)*(sin(xs)+sin(3*xs)/27+sin(5*xs)/125+sin(7*xs)/343),’b’,
’LineWidth’,2)

0 0.5 1 1.5 2 2.5 3
x

0

0.5

1

1.5

2

2.5

3

x(
-x
)

Increasingly accurate approximations using a sine series.
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Zero-derivative BC

What happens if we change the boundary condition from u = 0 at the boundaries to
ux = 0 at the boundary?

If you recall, that BC corresponds to having no heat escaping from the domain (no flux at
the boundaries). What does it change in our separation of variables process?

Only the functions of x will be affected. We now have to solve

�n(x)
00 + ↵2�n(x) = 0 subject to

d�n

dx

����
0,L

= 0

Our general solution is the same, but there can only be cosines in the solution, since sine
has a non-zero derivative when x = 0. WE have

�n(x) = A cos(↵x) and �0
n(x) = �A↵ sin(↵x)

and we need to select ↵ so that �0
n(L) = 0. So we again have ↵ = n⇡/L for n 2 Z, and we

now also allow ↵ = 0.

Our general solution is then

u(x, t) =
1X

n=0

Ane
�k n2⇡2

L2 t cos
⇣n⇡x

L

⌘

Using trig identities, we can again show that the functions cos
�
n⇡x
L

�
form an orthogonal

set. We also still have that
Z L

0

cos2
⇣n⇡x

L

⌘
dx =

L

2
if n 6= 0

The case n = 0 is special, but easier. In the case the eigenfunction is simply �0(x) = 1, andR L

0 (�0)2 dx = L.

We can obtain the coefficients to match an initial condition f(x) in the same manner as
before. We get very similar formulas, except for n = 0:

An =
2

L

Z L

0

cos
⇣n⇡x

L

⌘
f(x) dx if n 6= 0

and

A0 =
1

L

Z L

0

f(x) dx.

6
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Periodic boundary conditions

We consider a third type of boundary condition: periodicity. This is equivalent to solving
the problem of the time-evolution of temperature when the domain is a ring of perimeter
2L. The positions x�L and x+L are then identical, and therefore u(x�L, t) = u(x+L, t)
(our domain has size 2L in this case).

Our ”boundary” conditions then become

u(L, t) = u(�L, t) and
du

dx

����
�L

=
du

dx

����
L

Note that we don’t have a value for u or its x-derivative at the boundary. We only know
that u is periodic.

Once again, this only changes our functions of x. We now have to solve

�n(x)
00 + ↵2�n(x) = 0 subject to �n having period 2L.

Our general solution remains

�n(x) = An cos(↵x) + Bn sin(↵x)

From the condition �n(�L) = �n(L), we have

An cos(↵L) + Bn sin(↵L) = An cos(�↵L) + Bn sin(�↵L)

which can be simplified because cos(x) = cos(�x) and sin(x) = � sin(x) o

An cos(↵L) + Bn sin(↵L) = An cos(↵L)� Bn sin(�↵L) or 2Bn sin(↵L) = 0

We obtain a similar condition from applying the BC or the derivative,

2↵An sin(↵L) = 0.

So once again we need sin(↵L) = 0 and therefore ↵ = n⇡/L for n 2 N. Note that here
↵ = 0 is also acceptable, giving a constant solution: �0(x) = 1.

Our general solution now has more terms, as both the sine and cosine are present:

u(x, t) = A0 +
1X

n=1

Ane
�k n2⇡2

L2 t cos
⇣n⇡x

L

⌘
+

1X

n=1

Bne
�k n2⇡2

L2 t sin
⇣n⇡x

L

⌘

The coefficients can be found as before, since cos
�
n⇡x
L

�
and sin

�
n⇡x
L

�
are also orthogonal

to each other. the coefficients are then

A0 =
1

2L

Z L

�L

f(x) dx

7
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and

An =
1

L

Z L

�L

cos
⇣n⇡x

L

⌘
f(x) dx if n 6= 0

and

Bn =
1

L

Z L

�L

sin
⇣n⇡x

L

⌘
f(x) dx if n 6= 0.

Note that here the factor in front of the integral has been halved compared to before,
because our domain now has length 2L.

You can see a summary of those coefficients on page 65 of the textbook. Learning them
by heart is not useful, and you will never be asked to give those formulas in this class.
However, you should understand how they were obtained (and you can be asked about
THAT!).

8
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Today’s plan

1. What is a Fourier Series?

2. When can you use them?

3. What does this have to do with PDEs?

We have been using Fourier Series to match ICs in our last example. These are Series of
the form

f(x) = A0 +
1X

n=1

An cos
⇣
n⇡x

L

⌘
+

1X

n=1

Bn sin
⇣
n⇡x

L

⌘

for �L  x < L. When this Series converges, we saw that the coefficients are

A0 =
1

2L

Z L

�L

f(x) dx

and

An =
1

L

Z L

�L

cos
⇣
n⇡x

L

⌘
f(x) dx if n 6= 0

and

Bn =
1

L

Z L

�L

sin
⇣
n⇡x

L

⌘
f(x) dx if n 6= 0.

But when DOES it converge? Does it always converge to f(x)?
Does it take many terms to get there, or to get close?
Basically, does it work in any useful way?

To answer this, we begin with a definition: A function f(x) is piecewise smooth over a
domain D if D can be broken into a finite number of intervals inside each of which:
- f(x) is continuous and bounded.
- f 0(x) is continuous and bounded.

On the left, at the junction x = a, we need

lim
x!a+

f(x) = f
+ to exist

and
lim
x!a+

f
0(x) = f

+
p to exist

and we have a similar condition at the right end.

2
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Examples of a piecewise smooth function (left) and a not piecewise smooth function (right)

Two more examples: piecewise smooth on the left, not piecewise smooth on the right.

Second definition: A function is said to be periodic with period 2L if for any x 2 R it is
true that

f(x) = f(x) + 2L

Periodic Extension

If a function is defined over an interval [�L,L) only, we can construct its periodic exten-

sion by copying the part of the graph that is given over and over. So for any x, we can
find n 2 Z such that �L  x + n(2L) < L. The periodic extension, called pef(x), of the
function f(x) is then, for that same n

pef(x) = f(x+ n(2L)) for n 2 Z such that �L  x+ n(2L) < L

Note that this is not continuous if limx!L� f(x) 6= f(�L).

3
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A function constructed by periodic extension

Even Extension

We can also introduce an Even extension. Recall that a function is said to be even if for
any x, we have f(x) = f(�x).

so if f(x) is defined over [0, L] only, we can construct its odd extension by symmetry about
the y-axis

Eef(x) =

(
f(x) if 0  x  L

f(�x) if �L  x < 0

We can then extend this using a periodic extension as well. Note that an even extension

A function constructed by even extension, and then periodic extension.

is continuous if f(x) is continuous.

4
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Odd Extension

We can also introduce an Odd extension. Recall that a function is said to be odd if for any
x, we have f(x) = �f(�x).

so if f(x) is defined over [0, L] only, we can construct its odd extension by symmetry about
the x-axis followed by symmetry about the y-axis

Oef(x) =

(
f(x) if 0  x  L

�f(�x) if �L  x < 0

We can then extend this using a periodic extension as well. Note that an odd extension is

A function constructed by odd extension, and then periodic extension.

not continuous if f(0) 6= 0. For the periodic extension to be continuous, we also need that
f(L) = 0.

Now we can talk about our big results: Fourier’s theorem.

5
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Fourier’s Theorem

If f(x) has a piecewise smooth periodic extension with period 2L, denoted by pef(x), then

A0+
1X

n=1

An cos
⇣
n⇡x

L

⌘
+

1X

n=1

Bn sin
⇣
n⇡x

L

⌘
=

(
f(x) if pef(x) is continuous at x
1
2 (limx0!x+ f(x0) + limx0!x� f(x0)) otherwise

Convergence of Fourier Series

Note: If the original function f(x) is not continuous, the Fourier Series doesn’t converge
to a continuous function, but it tries for the next best thing, aiming for the middle of the
discontinuities.

We did not really answer what Fourier Series have to do with PDEs. You may recall that
our solution to the heat equation may look like a Fourier Series for the periodic case. We
will see this in more details in the coming lectures.

U N
. U N
. U T
So for now, we P T.

6
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Today’s plan

1. What is the difference between a Fourier Series and a Sine or Cosine series?

2. When can you get a Sine or Cosine Series?

3. What does that have to do with PDEs?

As the name implies, Sine and Cosine Series are Series that involve only one type of
trigonometric function. As a result, the overall Series shares some properties of the func-
tion it is made of.

Fro example, consider a Sine Series. We consider a function f(x) defined on the interval
[0, L], and we expand it as a Sine Series:

f(x) =
1X

n=1

Bn sin
⇣n⇡x

L

⌘

Note that here the domain size L corresponds to the distance between zeros of the func-
tion with the smallest index n = 1 (it is not the same as the period of that same function,
it’s actually half of the period).

This is not exactly a Fourier Series, but we can turn it into one. We consider the ODD
extension of f(x) to [�L,L], and then the periodic extension of the resulting function,
which we call pef(x). The Sine Series then has the same convergence properties as the
regular Fourier Series applied to pef(x).

An important point to note is that if f(x) is defined over [0, L], its odd extension will only
be continuous if f(x) is continuous itself and if f(0) = 0 (by odd symmetry) and f(L) = 0
(so that we can have f(�L) = �f(L) = f(L).

For Cosine Series, we need to consider first the EVEN extension of the original function,
and then the periodic extension of that. In that case, if f(x) is continuous, its even, peri-
odic extension will be too.

Why do we care so much about continuity? Because when a function is not continuous,
its Fourier Series does not converge to the original function at the points of discontinuity.

Examples:
1) f(x) = 3, We look for a Fourier, Sine, and Cosine Series.

1. For a Fourier Series, we consider that f(x) = 3 is defined over [0, 2⇡).
In fact, the periodic extension remains the very same, and we have that f(x) = 3 is
valid for any x.
The coefficients are:

An =
1

⇡

Z ⇡

�⇡

3 cos (nx) dx = 0

2
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Original function over [0, L], odd extension over �[L,L], periodic odd extension.

and
Bn =

1

⇡

Z ⇡

�⇡

3 sin (nx) dx = 0

But the constant coefficient is different:

A0 =
1

2⇡

Z ⇡

�⇡

3 dx = 3

So the Fourier Series is actually just 3, the original function itself. So things are
simple.

2. For a Cosine Series, consider that f(x) = 3 is defined over [0, ⇡]. The even extension
remains just f(x) = 3, now valid over [�⇡, ⇡]. So the coefficients are:

An =
2

⇡

Z ⇡

0

3 cos (nx) dx = 0

and
A0 =

1

⇡

Z ⇡

0

3 dx = 3

So the Cosine Series is also just 3.

3
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3. For a Sine Series, consider that f(x) = 3 is defined over [0, ⇡]. The odd extension is
not continuous, as shown below. The coefficients are:

Bn =
2

⇡

Z ⇡

0

3 sin (nx) dx =
�6

⇡

cos(nx)

n

����
⇡

0

=
�6

⇡

✓
cos(n⇡)� cos(0)

n

◆

This can be further simplified to

Bn =
6

⇡

(
2
n if n is odd
0 if n is even.

So if we let n = 2k � 1, we find Bk =
12

⇡(2k�1) .
So finally, our Sine Series is

3 =
1X

k=1

12

⇡(2k � 1)
sin((2k � 1)x)

Note that at x = 0, the Sine Series is equal to 0 (the average between f(x) and its
odd extension). Similarly, we also get 0 at x = ⇡.
Note also that in between the function is approaching 3. But it is not doing great at
the ends eh? We will get back to that.

C=0
C=1

Elastic membrane

loli
m

S µo
µi

Deformable
object (drop)

Odd extension of f(x) = 3 defined over [0, ⇡]

We will do one more example of a Sine Series: f(x) = x2(⇡ � x)2 over the interval [0, ⇡].
Note that this was chosen so that the odd extension is continuous. In fact, it is also differ-
entiable everywhere. The formula for the coefficients remains:

Bn =
2

⇡

Z ⇡

0

x2(⇡ � x)2 sin(nx) dx =
2

n5
(⇡2n2 � 12)(cos(n⇡)� 1)

4
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Note that this integral does not require any particular trick (so it is not hard) but it is long.
This is perfect for computer programs.
Once again, we only get non-zero results for odd coefficients. Letting n = 2k� 1, we have

B2k�1 =
4

(2k � 1)5
(12� ⇡2(2k � 1)2)

and the Series is

x2(⇡ � x)2 =
1X

k=1

(48� 4⇡2(2k � 1)2)

(2k � 1)5
sin((2k � 1)x)

Note that here, we have convergence to the original function everywhere, including at
the end points.

Odd extension of f(x) = x2(⇡ � x)2 defined over [0, ⇡]

5
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Today’s plan

1. How can you manipulate Fourier Series?

2. When do you have to be careful (when does it not work?)

3. How best can you approximate discontinuous functions.

Term-by-term operations

In many instances, you can differentiate or integrate a Fourier series term-by-term. The
key here is to verify that the RESULT of that operation is piecewise smooth.

So if you have

f(x) =
1X

n=1

Bn sin
⇣
n⇡x

L

⌘
for x 2 [0, L]

and you know that f 0(x) is piecewise smooth over [0, L], then

f
0(x) =

1X

n=1

Bn

h
sin

⇣
n⇡x

L

⌘i0
=

1X

n=1

Bn
n⇡

L
cos

⇣
n⇡x

L

⌘

Note that in this case the behavior at the boundary changes.

But for which f(x) will f 0(x) be piecewise smooth?

When f
0(x) is continuous, nothing special happens and you can integrate it to obtain f(x).

When f(x) is continuous but not differentiable at a point x0, and has well-defined slopes
on either side.

A function with a derivative having a jump discontinuity at x = x0.

2
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Here, f 0(x) is not defined at x = x0. But we have that

lim
x!x+

0

f
0(x) exists, and lim

x!x�
0

f
0(x) exists

The actual value of f 0(x) at x0 is unimportant, and the results is that f 0(x) is piecewise
smooth. more precisely, we have the definitions

f
0(x0) = lim

h!0

f(x0 + h)� f(x0)

h

f
0(x+

0 ) = lim
h!0+

f(x0 + h)� f(x0)

h

f
0(x�

0 ) = lim
h!0�

f(x0 + h)� f(x0)

h

Note that, importantly, we subtracted the same value f(x0), in all cases.

Things are different if f(x) is not continuous: In that case,

Step-function, with a jump discontinuity.

f
0(x+

0 ) = lim
h!0+

f(x0 + h)� f(x0)

h
= 1

This does not result in a piecewise smooth derivative, and we may not differentiate term-
by-term the Fourier series of a discontinuous function.

For example, consider the Sine series of f(x) = 3 that we saw before over [0, ⇡]. Recall
that the odd extension is not continuous. We had

3 =
1X

k=1

12

⇡(2k � 1)
sin((2k � 1)x)

3
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Also, the derivative of f(x) = 3 is f
0(x) = 0, which we can obtain as a Cosine series (all

coefficients are simply zero). However, if we try to differentiate term-by-term, we get

f
0(x) =

1X

k=1

12(2k � 1)

⇡(2k � 1)
cos((2k � 1)x) =

1X

k=1

12

⇡
cos((2k � 1)x)

This is not the zero function. In fact, this is not even convergent, as the coefficients do not
even become smaller as k increases.

However, we had for f(x) = x
2(⇡ � x)2 over [0, ⇡] that the Sine series was

x
2(⇡ � x)2 =

1X

k=1

(48� 4⇡2(2k � 1)2)

(2k � 1)5
sin((2k � 1)x)

In this case, the derivative exists and is even continuous:

f
0(x) = [x2(⇡�x)2]0 = 2x(⇡�x)2� 2x2(⇡�x) = 2x(⇡�x)[(⇡�x)�x] = 2x(⇡�x)(⇡� 2x)

We can differentiate term-by-term in this case, so we will have that

2x(⇡�x)(⇡�2x) =
1X

k=1


(48� 4⇡2(2k � 1)2)

(2k � 1)5
sin((2k � 1)x)

�0
=

1X

k=1

(48� 4⇡2(2k � 1)2)

(2k � 1)4
cos((2k�1)x)

This last series is convergent, and the coefficients decay like ⇠ 1/k2.

Aside: representing discontinuous functions

One way to think of functions with a jump discontinuity is as a limit of progressively
steeper functions. If we have the Heaviside function

H(x) =

(
0 if x < 0

1 if x � 0

and
fk(x) =

tanh(kx) + 1

2

then we have
lim
k!1

fk(x) = H(x)

What about the derivative of the functions we just looked at? Well H 0(x) = 0 everywhere,
except at x = 0 where it is not defined.

4
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Steeper and steeper tanh(kx) functions converging to a step function.

Derivative of a step function

We also have

f
0
k(x) =

k sech2(kx)

2

As k ! 1, we get what is called a � function

lim
k!1

f
0
k(x) = �(x)

which is actually not a function at all (it is a distribution). It satisfies two big properties:

�(x) = 0 if x 6= 0Z ✏

�✏

�(x) dx = 1 for any ✏ > 0

This is a very useful distribution, especially because
Z L

�L

f(x)�(x� x0) dx = f(x0) for any continuous function f(x).

5
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Derivative of a steeper and steeper tanh functions

However, the delta function does not have a Fourier series... sorry!

Integration of Fourier series

Integration is much simpler. If f(x) is piecewise smooth, then

F (x) =

Z x

0

f(s) ds

is also piecewise smooth. In fact, it is continuous. Note that at a discontinuity, the actual
value of f(x) has no effect on its integral.

So for any piecewise smooth f(x), we have

f(x) =
1X

n=1

Bn sin
⇣
n⇡x

L

⌘
impliesF (x) =

Z x

0

f(s) ds =
1X

n=1

�BnL

n⇡
cos

⇣
n⇡x

L

⌘
+ C

We use our same example of the Sine series of f(x) = 3 over [0, ⇡].

3 = f(x) =
1X

k=1

12

⇡(2k � 1)
sin((2k � 1)x)

so the EVEN continuation of its integral F (x) = 3x satisfies

3x = F (x) =
1X

k=1

�12

⇡(2k � 1)2
cos((2k � 1)x) + C

To find the constant, you can integrate the sum and plug in x, or (usually it is easier to)
use the regular formula for the constant, using the average value of F (x):

C = A0 =
1

⇡

Z ⇡

0

3x dx =
3

2
⇡

6
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so altogether

3x = F (x) =
3⇡

2
�

1X

k=1

12

⇡(2k � 1)2
cos((2k � 1)x)

Even periodic extension of f(x) = 3x over [0, ⇡].

7
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Today’s plan

1. What is Gibbs’ phenomena?

2. Do the coefficients in a Fourier Series always decay as the index gets bigger?

3. What controls the decay rate (when there is one)?

4. Does it matter?

We saw in our examples that near jump discontinuities, our Fourier Series don’t do such
a good job. However, the theorem we saw predicted convergence, so how are both possi-
ble?

The issue is that what we looked at were FINITE series, not the full infinite series. How-
ever, in practice, we ALWAYS look at finite series. So even if the infinite series converges,
it is important that the finite series approaches the function with an error that gets smaller
as more terms are included. But what error do we mean?

As the number of terms in our series, N , grows we will have near a discontinuity that
1) The region that it not approximating the function well shrinks in width.
2) The height of the overshoot DOES NOT shrink.

-4 -2 0 2 4
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.5 0 0.5 1
0.9

0.95

1

1.05

1.1

Convergence (?) of a Fourier Series near a discontinuity.

This overshoot at discontinuities is about 9% of the height of the jump, and is there for
ANY finite series. This is known as Gibbs’ phenomena.

It is a problem, at least sometimes, that this overshoot does not go away. So usually,
Fourier series are not used to approximate discontinuous functions.

Fortunately for us, the heat equation is very forgiving and will smooth small features very
quickly.

2
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In general, we only ever use finite series. So it is important to know the size of what we
are neglecting. How big the the ”tail” of the series or REMAINDER, the part that we don’t
compute?

f(x) =
1X

n=1

Cn sin
⇣n⇡x

L

⌘
=

NX

n=1

Cn sin
⇣n⇡x

L

⌘
+ Remainder(N)

The size of the remainder is usually similar to that of CN+1. So if we know how Cn de-
pends on n, we can estimate the remainder.

For any piecewise smooth function f(x), let ”p” be the smallest integer for which:
f (p)(x) is discontinuous, and f (p�1)(x) is continuous.

If f(x) itself is discontinuous, we say that p = 0. If f(x) 2 C1, we say that p ! 1.

The coefficients of a Fourier Series are then bounded by

|Cn| <
�

np+1
for some constant �

Moreover, if p ! 1, we have

|Cn| < e�↵n ḟor some constant ↵ > 0

Note that in some cases, all the coefficients for n > N are 0, which is even better than the
bounds given here.But you have to reach that N first. These decay rates are particularly
important when using numerical methods to solve PDEs.

For example, we found a few series so far:
Sine series for f(x) = 3:

f(x) = 3 =
1X

k=1

12

⇡(2k � 1)
sin((2k � 1)x)

Does this match with the rule give above? Yes, as here the periodic odd extension of f(x)
is discontinuous, so p = 0.

The Sine Series is of f(x) = x2(⇡ � x)2 is

x2(⇡ � x)2 =
1X

k=1

(48� 4⇡2(2k � 1)2)

(2k � 1)5
sin((2k � 1)x)

Here we have

f 0(x) = 2x(⇡ � x)(⇡ � 2x) = 2x(2x2 � 3⇡x+ ⇡2) = 4x3 � 6⇡x2 + 2⇡2x

and
f 00(x) = 12x2 � 12⇡x+ 2⇡2

The even extension of f 0(x) is continuous, but the odd extension of f 00(x) is not, since
f 00(0) = 2⇡2 6= 0. Therefore p = 2.
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Today’s plan

1. What is the wave equation?

2. What does it describe?

3. What kind of boundary conditions can it have?

The wave equation is used to describe... waves! We will start in one dimension, so we
will consider a vibrating string. Its height will be denoted by u(x, t)

Schematics of a vibrating string

We will assume that when the string it at rest (flat), we have u = 0.

The string is subject to Newton’s law F = ma. Here the force we focus on is the TENSION
of the string. This is a force pulling on the string with a constant magnitude. However, its
direction may vary. There could also be a load, like a weight, pulling on the string, which
we will return to later.

We will focus on a short piece of the string, located at a position x and with length �x.

More precise schematic of a vibrating string.

Our small portion of string has mass m = ⇢�x, where ⇢ is the linear density (mass per
unit length).
The vertical acceleration of the string is a = @2u

@t2 .

2
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We will now concentrate on the vertical component of the tension. The magnitude of the
tension, T , is constant. But the direction in which it is acting is not. What is its vertical
component?

Components of the tension

The vertical component is F = T sin ✓. To relate this to u, we use the slope

tan ✓ =
@u

@x
= ux =

sin ✓

cos ✓
=

sin ✓p
1� sin2 ✓

So if we solve for sin ✓ we find

sin ✓ =
uxp
1 + u2

x

⇡ ux for small angles

So the force acting on our piece of string is:

F = T sin(✓(x+�x))� T sin ✓(x) ⇡ Tux(x+�x)� Tux(x)

Now we could consider an additional load, which we would often write as

Load = �x ⇢(x)Q(x, t)

where, for example, Q could be the gravitational acceleration.

So Newton’s law, F = ma becomes in our case:

T [sin ✓(x+�x)� sin ✓(x)] + ⇢�xQ(x, t) = ⇢�x
@2u

@t2

Now we make use of our small slope approximation and get

T [ux(x+�x)� ux(x)] + ⇢�xQ(x, t) = ⇢�x
@2u

@t2

3
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If we divide by ⇢�x, we find

T

⇢

ux(x+�x)� ux(x)

�x
+Q(x, t) =

@2u

@t2

Finally, we take the limit of �x ! 0 to get our WAVE EQUATION

T

⇢

@2u

@x2
+Q(x, t) =

@2u

@t2

Usually, we denote T/⇢ = c2, where c has the units of speed.

c2
@2u

@x2
+Q(x, t) =

@2u

@t2

Overall, the units involved in this derivation are (with M=mass, L=length, T=time):
[⇢] = M/L
[T ] = F = ML/T2

[T/⇢] = c2 = L2/T2, so
[c] = L/T, a speed
[uxx] =L2/L=1/L
[utt] = L/T2

[Q] = L/T2

All the units must match in our equation. Do they?
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Boundary Conditions

There are two commonly occurring types of BC.

Clamped boundaries are ones where the level of the string is fixed, usually at zero:

u(x = 0, t) = A and u(x = L, t) = B

Free boundaries are ones where the vertical force applied at either end is prescribed,
usually to be zero

Tux(x = 0, t) = F0 and Tux(x = L, t) = FL

When the force is zero, it corresponds to having a string that can freely move up or down
(while tied to a metal ring on a pole, for example). This forces the string to be flat at the
ends.

Initial Conditions

To completely prescribe our system, we also need to provide some initial conditions.
Since we now have a second order equation in time, we will need to provide two ini-
tial conditions. Usually, this takes the form:

u(x, t = 0) = f(x) the initial position
ut(x, t = 0) = g(x) the initial velocity

5
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Today’s plan

1. Can we use our same method of separation of variables for the Wave Equation?

2. What stays the same?

3. What changes?

Let’s try our favorite method again: separation of variables. To begin with, we set the

load, Q(x, t) to 0. We will also ouse fixed, homogeneous boundary conditions

utt = c2uxx subject to u(x = 0, t) = u(x = L, t) = 0

Note that if we have BCs other than zero, we could subtract an equilibrium solution

(which would be a linear function of x and the remaining problem would be of the form

considered here.

So we assume a separable solution,un(x, t) = Gn(t)�n(x) and substitute that into

our system.

We obtain

G00
n�n = c2Gn�

00
n

and dividing by c2un, we can separate variables:

G00
n�n

c2Gn�n
=

c2

c2
Gn�00

n

Gn�n
= �.

In space (in x), this is the same equation and BC that we had for the wave equation. So

the solution is once again that � must be real and negative. We had

�n = �
⇣n⇡
L

⌘2

and �n(x) = sin
⇣n⇡x

L

⌘

In time, we therefore have to solve

G00
n + c2

⇣n⇡
L

⌘2

Gn = 0

This also has a trigonometric solution, and the general solution is

Gn(t) = An cos
⇣n⇡
L

c t
⌘
+Bn sin

⇣n⇡
L

c t
⌘

Note that here n � 1, as for n = 0, you have �0 = 0.

2
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Again, because the system is linear, the sum of solutions is a solution. We thus get as our

most general solution

u(x, t) =
1X

n=1

An cos
⇣n⇡
L

c t
⌘
sin

⇣n⇡x
L

⌘
+Bn sin

⇣n⇡
L

c t
⌘
sin

⇣n⇡x
L

⌘

We still don’t know the coefficients An and Bn. These will be determined by the initial

conditions.

Suppose we are given as initial conditions that u(x, t = 0) = f(x) and ut(x, t = 0) = g(x).
How do we use them?

For the initial position, f(x), we can simply plug in t = 0 into our solution. This leaves:

f(x) = u(x, 0) =
1X

n=1

An sin
⇣n⇡x

L

⌘

Conveniently, the only the coefficients An appear. We therefore have a sine series for An,

so that

An =
2

L

Z L

0

f(x) sin
⇣n⇡x

L

⌘
dx

For the initial velocity, we first need to differentiate with respect to time,. If g(x) is piece-

wise smooth, we can do this term-by-term.

g(x) =
@u

@t

����
t=0

=
1X

n=1

n⇡c

L
Bn sin

⇣n⇡x
L

⌘

This too is a sine series, but with coefficients
n⇡c
L Bn. The coefficients are therefore

Bn =
2

L

Z L

0

g(x)
L

n⇡c
sin

⇣n⇡x
L

⌘
dx

and with that, we finally have the whole solution!

But what does it actually look like?

Let’s try some concrete examples. Consider that L = ⇡. Also, use as an initial position

f(x) = 4 sin 3x, and an initial velocity g(x) = 7 sin 2x
(these choices will make it easy to find the sine series, but capture the essence of what is

going on).

We find from the initial condition that A3 = 4 and all other An = 0.

We find from the initial velocity that B2 = 7/2c and all other Bn = 0.
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So altogether, we have

u(x, t) = 4 sin 3x cos 3ct+
7

2c
sin 2x sin 2ct

The eigenmodes found here have a special interpretation. They are harmonics, or STAND-

ING WAVES. The solutions therefore look like the eigenmodes (sine or cosine) changing

in amplitude over time.

0 0.5 1 1.5 2 2.5 3
x

-1

-0.5

0

0.5

1

si
n(

x)
 s

in
(c

t)

0 0.5 1 1.5 2 2.5 3
x

-1

-0.5

0

0.5

1

si
n(

3x
) s

in
(3

ct
)

Eigenmodes seen as standing waves changing amplitude in time.

The ”nodes” are points where u = 0. For harmonics, they do not move in time. However,

when the solution is a sum of harmonics, the nodes will move in time.

The frequency of oscillation is
n⇡c
L , which increases with n. In reality, there is usually some

damping in the system as well, so that oscillations decay over time. This takes the form:

utt = c2uxx � ⌘ut

As a result the time dependence includes an exponential damping

sin(nx) sin(nct)e�⌘n2t

so that high frequency modes (large n) become small very quickly. The harmonics sur-

viving the longest are the ones with small n (which is why bass travels further than high-

pitched notes).
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Today’s plan

1. What does having an infinite domain change?

2. Can we still do separation of variables if L ! 1? Not directly...

3. What can we do instead?

In an infinite domain, our usual approach fails. If we apply separation of variables to

utt = c2uxx

using un = �n(x)Gn(t) as L ! 1, we can’t find any non-trivial solution to

�00
n + ��n = 0

that goes to zero at the ”ends” of the domain.

This doesn’t mean that there are no solutions, simply that the method of separation of

variables can’t find them. We need something else.

Consider a function of one variable: R(⇠). We want to use this, but set the variable to a

special combination of x and t: ⇠ = x+ ct.
So try the function

u(x, t) = R(x+ ct)

into to the wave equation. When is it a solution to the PDE?

So long as R(⇠) is twice differentiable, R(x + ct) is a solution to the wave equation. Can

you think of another solution using this first one as a guide?

A second solution can be found in the form S(x � ct)! we now have two family of so-

lutions, which are valid everywhere. What do they look like? What does it do to have

arguments x+ ct or x� ct?

Let’s try a function f(x) = 1�x2
and see what it does in time when its argument is x� ct.

As time passes, if you want to keep the same value of the function, like if you want to

follow the maximum, the position x must change.

To keep the function value unchanged from f(x0) at time 0, you must use

x� ct = x0 or equivalently x = x0 + ct.

So you must move to the right, with a speed c. The curve is thus a traveling wave (it

keeps its shape), moving to the right, with speed c.
Similarly, if the argument is x+ ct, the curve is a traveling wave toward the left. Does this

remind you of anything we did before?

2
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Wave traveling to the right solution

How can we satisfy some given initial conditions with our solution of the form

u(x, t) = R(x+ ct) + S(x� ct)

Suppose we have

u(x, 0) = f(x)

ut(x, 0) = g(x) with G(x) =

Z
g(x) dx an antiderivative

If we plug in our form of the solution, we get

u(x, 0) = f(x) = R(x) + S(x)

ut(x, 0) = g(x) = cR0(x)� cS 0(x) so
G(x)

c
= R(x)� S(x)

We can now solve for R and S. If you add the two equations above and divide by 2, you

find

R(x) =
f(x)

2
+

G(x)

2c
and if you subtract the two equations above and divide by 2, you find

S(x) =
f(x)

2
� G(x)

2c

Putting it all together, we get what is known as D’Alembert’s solution

u(x, t) =
f(x+ ct)

2
+

G(x+ ct)

2c
+

f(x� ct)

2
� G(x� ct)

2c

So our general solution is the sum of two traveling waves, one going left, and one going

right. Both waves travel with speed c.
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Sum of two travelling waves

This idea also works in the presence of boundaries, but you then need to incorporate the

reflection of waves. In general, this appears as though a similar but different wave was

sent in the domain from outside the domain. This is known as the method of images.

A wave reflected by a boundary where the function takes a fixed value.
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Today’s plan

1. What changes about the heat equation in higher dimension?

2. What stays the same about the heat equation in higher dimension?

Recall our 1D derivation of the heat equation We had that the heat rate of change in time

Heat flux in a rod.

is minus the derivative of the heat flux �:

⇢Cp
@u

@t
= �@�

@x

where we had � = �K
@u
@x .

We want to use the same principle, but instead of using a segment, we will use a small
solid, like a cube.

Heat flux into a cube.

Our cube has volume �V and surface area �S made of 6 faces. We denote the outer
normal by n̂.

The heat flux is now a vector field ~�(x, y, z) giving the direction and rate at which the heat
is transferred.

2
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So over a time �t, the heat flux OUT of our volume is

F =

Z Z

�S

~� · n̂ dS �t = � ( Heat(t+�t)� Heat(t) )

where the integral is taken over the 6 faces and all those contributions are added up.

Recalling the divergence theorem, we can rewrite the integral as

F =

Z Z Z

�V

div ~� dV �t.

In the limit of a small volume, the integrand above will be basically constant over the
volume (Riemman sum with only one term) and we get the approximation

F ⇡ div~�|center �V �t

We also have that the heat is
Heat(t) = ⇢Cp�V u(t).

So putting it all together, we have

�⇢Cp ( u(t+�t)� u(t) ) = �t �V div ~�

and finally if we lake the limit of small time step and volume, we can find

⇢Cp
@u

@t
= �div ~�

This is basically the same result we obtained in 1D, but the flux is now a vector, and the
spatial derivative has been replaced by a divergence.

Once again, we need to determine the flux, this time in vector form. We still want

1. Heat to flow from hot to cold.

2. Heat to flow faster for larger temperature differences.

3. No heat flow when the temperature is uniform.

The simplest vector flux satisfying all three conditions is based on the gradient of the
temperature.

~� = �Kru(x, y, z, t).

This give us our heat equation in any dimension:

⇢Cp
@u

@t
= div (Kru) = r · (Kru)

3
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In the most common case where K is constant, this simplifies to

⇢Cp
@u

@t
= Kdiv (ru) = Kr2

u

A few remarks:

1. ru is a coordinate independent physical vector (not always one derivative of each
component).

2. div = r· is a coordinate independent operator (not always the sum of a derivative
of each variable).

3. As a result, r2 is also coordinate independent.

4. We can still add a source/sink, in a manner similar to what we did in 1D.

5. Boundary conditions will be of a similar form as before: either u is given or the flux,
�K

@u
@n̂ , is given.

4



MATH 126: Partial Differential Equations Spring Semester 2022

Setting the heat equation in higher dimensions

As you can imagine, it is more work to solve the diffusion equation in higher dimensions
than in lower dimension. We will therefore simplify matters a little. Assume first that ⇢,
Cp and K are constant.

@u

@t
= r2

u+Q = (uxx + uyy) +Q

where  = K/⇢Cp.

For our domain, we will use a rectangle: 0  x  L and 0  y  H . We will specify the
value of the temperature at each boundary:

u(x, 0) = f1(x)

u(x,H) = f2(x)

u(0, y) = g1(y)

u(L, y) = g2(y)

Our domain and boundary conditions

5
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Today’s plan

1. What is Laplace’s equation?

2. Can we solve it by separation of variables?

3. How it is different from the heat or wave equations?

4. How many named equations are there??

We derived last time a higher dimensional version of the heat equation:

ut = r2
u + Q

The first step to finding a solution to the heat equation is to look for an equilibrium solu-
tion, to which our final solution will tend as t ! 1. For the moment, we will not consider
a source term, and therefore, we first need to solve what is known as Laplace’s equation:

0 = (uxx + uyy) subject to
u(x, 0) = f1(x)

u(x, H) = f2(x)

u(0, y) = g1(y)

u(L, y) = g2(y)

General approach: one non-homogeneous term at a time

To solve this problem, we will actually consider 5 simpler problems. There are 4 terms
that may be non-zero in this system without changing the nature of the equation: each
of the boundary conditions. We will solve in turn a system where only one of them is
non-zero at a time, and where all the others have been set to zero. More precisely:

1. u1 will solve our system with no source, and all BC zero except for u(x, 0) = f1(x).

2. u2 will solve our system with no source, and all BC zero except for u(x, H) = f2(x).

3. u3 will solve our system with no source, and all BC zero except for u(0, y) = g1(y).

4. u4 will solve our system with no source, and all BC zero except for u(L, y) = g2(y).

Once we have all these sub-solutions, we will obtain our final solution by taking u =
u1 + u2 + u3 + u4. This is possible because the original equation is linear, so the sum of

2
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solutions is also a solution. Moreover, the sum u will satisfy the sum of the BC, which
here adds up to the original problem.

Let us consider u1 first. Note that because they are so similar, we won’t solve for u2, u3

and u4 explicitly. Our system is (using u instead of u1 to simplify the notation)

0 = uxx + uyy subject to
u(x, 0) = f1(x)

u(x, H) = 0

u(0, y) = 0

u(L, y) = 0

MATH 126: Partial Differential Equations Spring Semester 2021

solutions is also a solution. Moreover, the sum u will satisfy the sum of the BC, which
here adds up to the original problem.

Let us consider u1 first. Note that because they are so similar, we won’t solve for u2, u3

and u4 explicitly. Our system is (using u instead of u1 to simplify the notation)

0 = uxx + uyy subject to
u(x, 0) = f1(x)

u(x, H) = 0

u(0, y) = 0

u(L, y) = 0

C=0
C=1

Elastic membrane
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m

S µo
µi

Deformable
object (drop)

Domain and BC for u1.

Laplace’s equation is an elliptic equation, as the corresponding algebraic equation is x
2 +

y
2 = C. In general, this means that the entire solution depends on all the boundary

conditions. You can think of such systems as ones where the information travels infinitely
quickly in space, so the whole domain knows about what is going on instantaneously.

We will try separation of variables again: u(x, y) = X(x)Y (y). Our equation is then:

0 = X
00
Y + XY

00 or

0 =
X

00

X
+

Y
00

Y
or

�X
00

X
=

Y
00

Y
= � a constant

Note that we placed the minus sign with X , the variable for which we have 2 homoge-
neous BC, for convenience. We solve that system first:

X
00 + �X = 0 subject to X(0) = X(L) = 0.

3

x

y

u(x,0) = f (x)1

u(x,H) = 0

u(y,L) = 0u(y,0) = 0

x=L

y=H

Domain and BC for u1.

Laplace’s equation is an elliptic equation, as the corresponding algebraic equation is x
2 +

y
2 = C. In general, this means that the entire solution depends on all the boundary

conditions. You can think of such systems as ones where the information travels infinitely
quickly in space, so the whole domain knows about what is going on instantaneously.

We will try separation of variables again: u(x, y) = X(x)Y (y). Our equation is then:

0 = X
00
Y + XY

00 or

0 =
X

00

X
+

Y
00

Y
or

�X
00

X
=

Y
00

Y
= � a constant

Note that we placed the minus sign with X , the variable for which we have 2 homoge-
neous BC, for convenience. We solve that system first:

X
00 + �X = 0 subject to X(0) = X(L) = 0.
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We find a well-known solution:

X(x) = C sin
⇣

n⇡x

L

⌘
and � =

⇣
n⇡

L

⌘2

We can now move to the equation in y, which we haven’t solved recently:

Y
00 �

⇣
n⇡

L

⌘2

Y = 0

The corresponding algebraic equation is r
2 �

�
n⇡

L

�2
= 0 so we find r = ±n⇡

L
. Our general

solution is thus
Y (y) = C1e

n⇡y/L + C2e
�n⇡y/L

We use the homogeneous boundary condition first: Y (H) = 0 to find :

0 = C1e
n⇡H/L + C2e

�n⇡H/L so C1 = �C2e
�2n⇡H/L

So we get a one-parameter family of solution. We will denote the remaining constant as
Cn:

Yn(y) = Cn

�
�e

n⇡(y�2H)/L + e
�n⇡y/L

�

Finally, we are ready to put all those solutions together,

u1(x, y) =
1X

n=1

Cn

�
�e

n⇡(y�2H)/L + e
�n⇡y/L

�
sin

⇣
n⇡x

L

⌘

and try to satisfy the remaining boundary condition

u1(x, 0) = f1(x) =
1X

n=1

Cn

�
�e

�2n⇡H/L + 1
�

sin
⇣

n⇡x

L

⌘

But we know this problem! This is a Sine series for f1(x), with an extra factor. So we have

Cn

�
�e

�2n⇡H/L + 1
�

=
2

L

Z
L

0

f1(x) sin
⇣

n⇡x

L

⌘
dx

So finally, we find for u1 that

u1(x, y) =
1X

n=1

Cn

�
�e

n⇡(y�2H)/L + e
�n⇡y/L

�
sin

⇣
n⇡x

L

⌘
with

Cn =
2

L(1 � e�2n⇡H/L)

Z
L

0

f1(x) sin
⇣

n⇡x

L

⌘
dx
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In general, we will have one variable with oscillations, here x which has the two homo-
geneous BCs, and one variable with exponential growth or decay.

As an exercise, you should try to find u4, and verify that you get:

u4(x, y) =
1X

n=1

Fn

�
e

n⇡x/H � e
�n⇡x/H

�
sin

⇣
n⇡y

H

⌘
with

Fn =
2

H(en⇡L/H � e�n⇡L/H)

Z
H

0

g2(y) sin
⇣

n⇡y

H

⌘
dy
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Today’s plan

1. What can we do if the domain is a disk?

2. Can we solve it by separation of variables?
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Laplace’s equation over a disk

We will now consider a different domain: a disk of radius a. We will therefore have only
one boundary, the circle of radius r = a.

As you can imagine, polar coordinates are well suited for this problem. So we need to
convert our equation to polar coordinates. Recall that we have:

x = r cos ✓, y = r sin ✓, r2 = x2 + y2, tan ✓ =
y

x

We need to know the following derivatives:

@r

@x
=

x

r
= cos ✓

@r

@y
=

y

r
= sin ✓

@✓

@x
=

�y cos2 ✓

x2
=

� sin ✓

r

@✓

@y
=

cos2 ✓

x
=

cos ✓

r

Importantly, we also need to know the unit vectors conversion:

r̂ = x̂ cos ✓ + ŷ sin ✓ ✓̂ = x̂(� sin ✓) + ŷ cos ✓ or
✓

r̂
✓̂

◆
=

✓
cos ✓ sin ✓

� sin ✓ cos ✓

◆ ✓
x̂
ŷ

◆

This relation, especially in matrix form, can also be inverted to find
✓

x̂
ŷ

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆ ✓
r̂
✓̂

◆
or x̂ = r̂ cos ✓ + ✓̂(� sin ✓) ŷ = r̂ sin ✓ + ✓̂ cos ✓

2

a

x

y
2
u = 0 u(a,0) = 0

Laplace’s equation over a disk

We will now consider a different domain: a disk of radius a. We will therefore have only
one boundary, the circle of radius r = a.

As you can imagine, polar coordinates are well suited for this problem. So we need to
convert our equation to polar coordinates. Recall that we have:

x = r cos ✓, y = r sin ✓, r2 = x2 + y2, tan ✓ =
y

x

We need to know the following derivatives:

@r

@x
=

x

r
= cos ✓

@r

@y
=

y

r
= sin ✓

@✓

@x
=

�y cos2 ✓

x2
=

� sin ✓

r

@✓

@y
=

cos2 ✓

x
=

cos ✓

r

Importantly, we also need to know the unit vectors conversion:

r̂ = x̂ cos ✓ + ŷ sin ✓ ✓̂ = x̂(� sin ✓) + ŷ cos ✓ or
✓

r̂
✓̂

◆
=

✓
cos ✓ sin ✓

� sin ✓ cos ✓

◆ ✓
x̂
ŷ

◆

This relation can also be inverted (this easier to do in matrix form) to find
✓

x̂
ŷ

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆ ✓
r̂
✓̂

◆
or x̂ = r̂ cos ✓ + ✓̂(� sin ✓) ŷ = r̂ sin ✓ + ✓̂ cos ✓
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Note that here the unit vectors change with position. They are independent of r, as chang-
ing the radius keep the orientations of r̂ and ✓̂ the same. But they change with ✓. We have

@✓̂

@✓
= x̂(� cos ✓) + ŷ(� sin ✓) = �r̂

and
@r̂

@✓
= x̂(� sin ✓) + ŷ cos ✓ = ✓̂

We are now ready to convert the gradient, divergence, and Laplace operators. In Carte-
sian coordinates, we had:

grad =
@

@x
x̂ +

@

@y
ŷ

This converts in polar coordinates to, using the chain rule,

grad =

✓
@r

@x

@

@r
+

@✓

@x

@

@✓

◆
x̂ +

✓
@r

@y

@

@r
+

@✓

@y

@

@✓

◆
ŷ

grad =

✓
cos ✓

@

@r
� sin ✓

r

@

@✓

◆
x̂ +

✓
sin ✓

@

@r
+

cos ✓

r

@

@✓

◆
ŷ

grad =

✓
cos ✓

@

@r
� sin ✓

r

@

@✓

◆
(r̂ cos ✓ + ✓̂(� sin ✓)) +

✓
sin ✓

@

@r
+

cos ✓

r

@

@✓

◆
(r̂ sin ✓ + ✓̂ cos ✓)

grad = r̂(cos2 ✓ + sin2 ✓)
@

@r
+ ✓̂

1

r
(sin2 ✓ + cos2 ✓)

@

@✓

grad = r̂
@

@r
+ ✓̂

1

r

@

@✓

Thankfully, there were trig identities! Note that this kind of conversion can be done in
general for other coordinate systems, but usually things don’t simplify.

We can now convert the Lapacian, which we need in Laplace’s equation:

r2 = r · r =

✓
r̂

@

@r
+ ✓̂

1

r

@

@✓

◆
·
✓

r̂
@

@r
+ ✓̂

1

r

@

@✓

◆

r2 =
@2

@r2
+ ✓̂ · 1

r

@

@✓

✓
r̂

@

@r

◆
+ ✓̂ · @✓̂

@✓

1

r2

@

@✓
+

1

r2

@2

@✓2

r2 =
@2

@r2
+

1

r
✓̂ · ✓̂

@

@r
+ ✓̂ · (�r̂)

1

r2

@

@✓
+

1

r2

@2

@✓2

r2 =
@2

@r2
+

1

r

@

@r
+ r2 @2

@✓2

r2 =
1

r

@

@r

✓
r

@

@r

◆
+

1

r2

@2

@✓2

3
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So we finally have our Laplacian in polar coordinates.

0 = r2u =
1

r

@

@r

✓
r
@u

@r

◆
+

1

r2

@2u

@✓2
=

@2u

@r2
+

1

r

@u

@r
+

1

r2

@2u

@✓2

A simple and useful way to check if we did not make a mistake along the way is to
make sure the units work out. Recall that angles are no units, and differentiating is like
dividing, in terms of units. So we usually have that the Laplacian corresponds to dividing
the a length squared (in fact, I found I made a mistake in those very notes that way).

We will now have our boundary condition at r = a in the form u(r = a, ✓) = f(✓). This
corresponds to fixing the temperature at the edge of the domain for the heat equation, or
fixing the height of a membrane for the wave equation. Note that we could have had a
BC on @u

@r instead.

We will also assume that u remains finite over the domain. If we want to maintain that u is
differentiable, we also need to have f(✓) be smooth, and PERIODIC. This last requirement
is new for us.

Separation of variables in polar coordinates

We will try our trusted separation of variables method (there are other ways too, such as
Poisson’s formula and boundary integral methods). We assume u(r, ✓) = �(✓)R(r).
We will have that �(✓) is periodic with period 2⇡.

Plugging in, we get

0 = r2u =
@2u

@r2
+

1

r

@u

@r
+

1

r2

@2u

@✓2

= R00� +
1

r
R0� +

1

r2
R�00 so dividing by u/r2 we get

0 = r2R00

R
+ r

R0

R
+

�00

�
and therefore

� = ��00

�
= r2R00

R
+ r

R0

R

We first consider the equation in ✓

�00 + �� = 0

which has a periodic general solution when � is positive:

�(✓) = A cos(
p

�✓) + B sin(
p

�✓).

4
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For the period to be 2⇡, we need � = n2. We therefore find, for n � 1

�(✓) = A cos(n✓) + B sin(n✓)

Note that �(✓) = A0 is also a solution.

In r, we have a more complicated (and less familiar) equation:

r2R00 + rR0 � n2R = 0.

This is a special ODE, where every term has a power in r which is the same as the number
of derivatives. These are called equi-dimensional, or Euler or Cauchy equation (but don’t
worry about the name). The solutions will be of the form: R(r) = rp, for some power p.
We have

R(r) = rp R0(r) = prp�1 R00(r) = p(p � 1)rp�2

Plugging those into our ODE, we get

0 = r2p(p � 1)rp�2 + rprp�1 � n2rp = rp (p2 � p + p � n2) = rp (p2 � n2)

So we find that p = ±n. Our general solution is therefore, if n > 0

R(r) = D1r
n + D2r

�n

and in the case n = 0, we have R(r) = D0 + D2 log r.

We need our solution to remain finite at the origin, where r = 0. So all the coefficients D2

must be 0 to avoid having a function that goes to infinity. We have

R(r) = Dnr
n for n = 0, 1, 2, ...

Putting our solution together, we get

u(r, ✓) = A0 +
1X

n=1

rn (An cos n✓ + Bn sin n✓)

The coefficients will come from the boundary condition. At r = a, we have:

f(✓) = A0 +
1X

n=1

an (An cos n✓ + Bn sin n✓)

This is exactly a Fourier Series! So we can find the coefficients as before with:

anAn =
1

⇡

Z 2⇡

0

f(✓) cos(n✓) d✓

5
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anBn =
1

⇡

Z 2⇡

0

f(✓) sin(n✓) d✓

and

A0 =
1

2⇡

Z 2⇡

0

f(✓) d✓

So we have a complete solution to Laplace’s equation on a disk.

Can we plot some examples?

6
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Today’s plan

1. How can we solve the heat and wave equations in higher dimensions?

2. Does separation of variables still work?

3. What changes?

4. Which one is the Helmholtz equation?

We are now ready to tackle the heat and wave equations in higher dimension. We will do
both in parallel, as many things are the same for both. So we want to solve:

@u

@t
= Kr2

u with
@

2
u

@t2
= c

2r2
u with

u(x, y, t = 0) = u0(x, y) u(x, y, t = 0) = u0(x, y)

ut(x, y, t = 0) = v0(x, y)

+B.C. + B.C.

For both equations, we will start by separating time and space variables, by assuming
u(x, y, t) = H(t)�(~x).
Here ~x is the position vector, in whichever coordinates we like (such as (x, y) or (x, y, z)
or (r, ✓) ).

We get:
H

0
� = KHr2

� or H
00
� = c

2
Hr2

�

and dividing by u we find

H
0
�

H�
= K

Hr2
�

H�
or

H
00
�

H�
= c

2Hr2
�

H�

so we can separate the time variable from the space variables

H
0

KH
=

r2
�

�
= �� or

H
00

c2H
=

r2
�

�
= ��

In time, we get the same equation, and solution, as before:

H(t) = Ce
��Kt or H(t) = A cos(

p
�tc) + B sin(

p
�tc)

and all the � are determined by the spatial problem.
Note that so far, this is exactly the same as when there was only one spatial variable (and
that is good!).

2
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In space, we have a generalization of the problem we encountered before. This is the
same equation for the heat or wave equation:

r2
� + �� = 0.

This is known as the Helmhotz equation. It must now be solved! How to do that depends
on the shape of the domain.

Helmholtz equation over a rectangle

We solve first r2
� + �� = 0 over a rectangle of size L ⇥ H . We consider the B.C. that

� = 0 over the whole boundary. Once again, we separate variables: �(x, y) = X(x)Y (y).
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on the shape of the domain.

Helmholtz equation over a rectangle

We solve first r2
� + �� = 0 over a rectangle of size L ⇥ H . We consider the B.C. that

� = 0 over the whole boundary. Once again, we separate variables: �(x, y) = X(x)Y (y).
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Helmholtz equation, rectangular domain, Dirichlet B.C.

plugging in, we get:
X

00
Y + XY

00 + �XY = 0

and dividing by �,
X

00

X
= �Y

00

Y
� � = �µ

where µ is another constant. Because we have 2 spatial dimensions, we will have to
families of possible constants (or eigenvalues).

In X, we have the now familiar equation:

X
00 + µX = 0 with X(0) = X(L) = 0

This has solution
X(x) = Bn sin

⇣
n⇡x

L

⌘
with µn =

⇣
n⇡

L

⌘2

.

3

x

y

ϕ(0,y) = 0

ϕ(x,H) = 0

ϕ(L,y) = 0

ϕ(x,0) = 0 L

H

Helmholtz equation, rectangular domain, Dirichlet B.C.

plugging in, we get:
X

00
Y + XY

00 + �XY = 0

and dividing by �,
X

00

X
= �Y

00

Y
� � = �µ

where µ is another constant. Because we have 2 spatial dimensions, we will have two
families of possible constants (or eigenvalues).

In X, we have the now familiar equation:

X
00 + µX = 0 with X(0) = X(L) = 0

This has solution
X(x) = Bn sin

⇣
n⇡x

L

⌘
with µn =

⇣
n⇡

L

⌘2

.
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In y, we have
Y

00 + (� � µ)Y = 0 with Y (0) = Y (H) = 0

This has solutions only if � > µ. we find that � � µ =
�

m⇡

H

�2 and

Y (y) = Dm sin
⇣

m⇡y

H

⌘
with �m,n =

⇣
n⇡

L

⌘2

+
⇣

m⇡

H

⌘2

.

We can now assemble our solutions. We have, for the heat equation

u(x, y, t) =
1X

n=1

1X

m=1

Cm,ne
�
h
(n⇡

L
)
2
+(m⇡

H
)
2
i
Kt

sin
⇣

n⇡x

L

⌘
sin
⇣

m⇡y

H

⌘

with ”only” the coefficients Cm,n left to find. These will come from the initial condition,
and from the orthogonality of the eigenfunctions we found. We have

Z Z

D

�i�j dA = 0

for any eigenfunctions corresponding to different eigenvalues, so long as the B.C. are
homogeneous.

So at t = 0, we have

u0(x, y) =
1X

n=1

1X

m=1

Cm,n sin
⇣

n⇡x

L

⌘
sin
⇣

m⇡y

H

⌘

Using orthogonality, we find:
Z

L

0

Z
H

0

u0(x, y) sin

✓
j⇡x

L

◆
sin

✓
k⇡y

H

◆
dydx

=

Z
L

0

Z
H

0

1X

n=1

1X

m=1

Cm,n sin
⇣

n⇡x

L

⌘
sin
⇣

m⇡y

H

⌘
sin

✓
j⇡x

L

◆
sin

✓
k⇡y

H

◆
dydx

= Cj,k

Z
L

0

Z
H

0

sin2

✓
j⇡x

L

◆
sin2

✓
k⇡y

H

◆
dydx

= Cj,k

L

2

H

2

So we can find the coefficients as

Cm,n =

✓
2

L

◆✓
2

H

◆Z
L

0

Z
H

0

u0(x, y) sin
⇣

m⇡x

L

⌘
sin
⇣

n⇡y

H

⌘
dydx

Note that the first part of this formula is the inverse of the integral of the eigenfunction
squared. The integral itself is always taken over the spatial domain under consideration.
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We have now finished solving the Heat Equation in 2 spatial dimensions!

For the wave equation, we have one more set of constants to find. Our solution is:

u(x, y, t) =
1X

n=1

1X

m=1

(Am,n cos(
p

�m,ntc) + Bm,n sin(
p

�m,ntc)) sin
⇣

n⇡x

L

⌘
sin
⇣

m⇡y

H

⌘

with �m,n =
�

n⇡

L

�2
+
�

m⇡

H

�2.

For the coefficients Am,n, the formula is the same as that of the coefficients of the heat
equation (at t = 0, Bm,n contributes nothing). For the coefficients Bm,n, we use the second
initial condition:

ut(x, y, 0) =
1X

n=1

1X

m=1

Bm,n

p
�m,nc sin

⇣
n⇡x

L

⌘
sin
⇣

m⇡y

H

⌘
= v0(x, y).

The same approach can be used with v0. So we can find the coefficients as

Bm,n

p
�m,nc =

✓
2

L

◆✓
2

H

◆Z
L

0

Z
H

0

v0(x, y) sin
⇣

m⇡x

L

⌘
sin
⇣

n⇡y

H

⌘
dydx

or if you prefer

Bm,n =

✓
2

L

◆✓
2

H

◆
1p

�m,nc

Z
L

0

Z
H

0

v0(x, y) sin
⇣

m⇡x

L

⌘
sin
⇣

n⇡y

H

⌘
dydx
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Different Boundary Conditions

MATH 126: Partial Differential Equations Spring Semester 2021
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� + �� = 0 over a rectangle of size L ⇥ H . We consider the B.C. that

� = 0 over the whole boundary. Once again, we separate variables: �(x, y) = X(x)Y (y).
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Helmholtz equation, rectangular domain, Dirichlet B.C.

plugging in, we get:
X

00
Y + XY

00 + �XY = 0

and dividing by �,
X

00

X
= �Y

00

Y
� � = �µ

where µ is another constant. Because we have 2 spatial dimensions, we will have to
families of possible constants (or eigenvalues).

In X, we have the now familiar equation:

X
00 + µX = 0 with X(0) = X(L) = 0

This has solution
X(x) = Bn sin

⇣
n⇡x

L

⌘
with µn =

⇣
n⇡

L

⌘2

.

3

x

y

ϕ (0,y) = 0

ϕ (x,H) = 0

ϕ(L,y) = 0

ϕ(x,0) = 0 L

H y

x

Our rectangular domain, with different boundary conditions

When giving Flux boundary conditions, the conditions are always given on the NORMAL
derivative: n̂r� = @�

@n̂
. To see a more complicated case, we will use different types of

boundary conditions (flux or value) at different boundary conditions. Consider

@�

@x
(x = 0, y) = 0

�(x = L, y) = 0

�(x, y = 0) = 0
@�

@y
(x, y = H) = 0

Our separated equation is the same

X
00

X
= �Y

00

Y
� � = �µ or

Y
00

Y
= µ � � = ��

but the BC are different. In x, we have

X
00 + µX = 0 subject to X

0(0) = 0 and X(L) = 0

Our general solution is still

X(x) = A cos(
p

µx) + B sin(
p

µx) with X
0(x) = �A

p
µ sin(

p
µx) + B

p
µ cos(

p
µx)

So at x = 0, we have 0 = B
p

µ so B = 0 or µ = 0.
At x = L, we have 0 = A cos(

p
µL).

We therefore need
p

µL = n⇡ +
⇡

2
and µ =

✓
⇡(n + 1

2)

L

◆2

6
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Note that µ = 0 forces A = 0, which is a trivial solution.
In y, we have

Y
00 + �Y = 0 subject to Y (0) = 0 and Y

0(H) = 0

From Y (0) = 0, we find that Y (y) = C sin(
p

�y).
From Y

0(H) = 0, we must have
p

�C cos(
p

�H) = 0

This can only give a non-trivial solution if

H
p

� = ⇡/2 + m⇡ or � =

✓
⇡(1

2 + m)

H

◆2

.

Note that we have to use a different index (m instead of n) because the function in y is not
related to the function in x. Also, we can express the original eigenvalue � as

� = ⇡
2

 ✓
(1

2 + n)

L

◆2

+

✓
(1

2 + m)

H

◆2
!

Putting is all together, our eigenfunction is therefore

�m,n(x, y) = Cm,n cos

✓
⇡(n + 1

2)x

L

◆
sin

✓
⇡(m + 1

2)y

H

◆

7
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Today’s plan

1. Can you separate variable for Helmholtz on a disk?

2. What is the Bessel equation?

3. How do you solve it?

We begin by giving some general properties of the eigenfunctions of Helmholtz equation.
This can be thought of as an eigenfunction problem, and many of those properties come
the study of the Sturm-Liouville problem (chap 5, which we skipped).

We want to study

r2
� + �� = 0 over a domain R, with given BC

Here the domain must be simply connected (one piece), and can be of any dimension. We
also need the BC to be homogeneous, of the form

a(~x)� + b(~x)
@�

@n̂
= 0

Note that the coefficients a and b may depend on location, but not on the function �.
This setup is used for both the heat equation and the wave equation.
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The solutions then have the following properties:

1. The eigenvalues � are real (� 2 R).

2. There are an infinity of �, with one that is the smallest but no largest one.

3. There may be more than one eigenfunction per eigenvalue, but usually there is only
one.

4. Eigenfunctions of different eigenvalues are orthogonal: if �i 6= �j , then �i ? �j ,
i.e.

R R
R �i�j dA = 0.

5. The series below is convergent

f(~x) =
X

�i

ai�i(~x) with ai =

R R
R �if(~x) dAR R

R �
2
i dA

Note that if an eigenvalue is repeated, the corresponding coefficients will have a
different formula because the eigenfunction will be different.

Helmholtz equation on a disk

We can check that the rectangular domain we looked at before confirms the properties
listed above. Let’s see now what happens on a disk.

For context, we start by considering the wave equation on a disk of radius a, which can
be thought of a tracking the height of the membrane of a vibrating drum

@
2
u

@t2
= c

2r2
u

subject to (in polar cooordinates)

u(r, ✓, t = 0) = ↵(r, ✓)

ut(r, ✓, t = 0) = �(r, ✓)

u(r = a, ✓, t) = 0

We will again separate variables: u(r, ✓, t) = H(t)�(r, ✓) and get, after plugging in

H
00

c2H
=

r2
�

�
= ��

and we find H(t) = A cos(
p

�ct) + B sin(
p

�ct).
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In space, we get our Helmholtz equation: r2
� + �� = 0. In polar coordinates, that is

1

r

@

@r

✓
r
@�

@r

◆
+

1

r2

@
2
�

@✓2
+ �� = 0

Once again, we try to separate variables: �(r, ✓) = f(r)g(✓). Note that here g(✓) must be
periodic with period 2⇡.

Plugging in, we find

g(f 00 +
1

r
f
0) +

1

r2
fg

00 + �fg = 0.

If we divide by � = fg and multiply by r
2, we get:

r
2
f
00 + rf

0

f
+

g
00

g
+ �r

2 = 0.

We can separate r and ✓ again

r
2
f
00 + rf

0

f
+ �r

2 = �g
00

g
= µ

where we introduced another constant µ.

The equation in ✓ is familiar:
g
00 + µg = 0.

To get a period of 2⇡, we must have µ = n
2, and the eigenfunctions are:

gn(✓) = Cn cos(n✓) + Dn sin(n✓).

In r, however, we get a new equation:

r
2
f
00 + rf

0

f
+ �r

2 = n
2 or r

2
f
00 + rf

0 + (�r
2 � n

2)f = 0

with its boundary condition f(a) = 0. We also want |f | < 1 for r < a (the drum doesn’t
burst).

This is not an easy equation to solve. In fact, it has no elementary solution (no sine, cosine,
exponential, polynomial... solution).

However, it has been VERY well studied. It is known as the Bessel equation. For example,
you can solve it with Series solutions around r = 0.

Usually, the constant � is moved from the equation to the BC using the change of variable
z =

p
�r. We then have:

d

dr
=

dz

dr

d

dz
=

p
�

d

dz
, and

d
2

dr2
= �

d
2

dz2

4
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Using this change of variables, we get

�

�
z

2d
2
f

dz2
+

p
�p
�

z
df

dz
+ (z2 � n

2)f(z) = 0

so
z

2 d
2
f

dz2
+ z

df

dz
+ (z2 � n

2)f(z) = 0

with boundary condition f(z =
p

�a) = 0.
This is the Bessel equation of order n.

The solutions of the Bessel equation are, shockingly, called Bessel functions. There are
two kinds (as we have a second order equation):
Jn(z) is the Bessel function of the first kind.
Yn(z) is the Bessel function of the second kind.
So a general solution is: �1Jn(z) + �2Yn(z), or using r:

f(r) = �1Jn(
p

�r) + �2Yn(
p

�r)

Ok, that was convenient, we just gave the unknown solutions a name... For this to be
useful, we need to have some information about the solutions. So let’s start by looking at
the Bessel functions.

Bessel functions behaviors

What do solutions of the Bessel equation look like?

z
2
f
00 + zf

0 + (z2 � n
2)f = 0

We can look for them using a power series centered at z = 0. Unfortunately, the coefficient
of f

00 is zero when z = 0, so we need to look for solutions of the form:

f(z) =
1X

m=0

amz
m+p

for some undetermined p. We need to find p, and then we expect 2 solutions. We can
differentiate term-by-term (noting that the sums always start at 0)

f
0(z) =

1X

m=0

am(m + p)zm+p�1 and f
00(z) =

1X

m=0

am(m + p)(m + p � 1)zm+p�2

Plugging into the Bessel equation, we get:

z
2

1X

m=0

am(m + p)(m + p � 1)zm+p�2 + z

1X

m=0

am(m + p)zm+p�1 + (z2 � n
2)

1X

m=0

amz
m+p = 0

5
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and rearranging terms:
1X

m=0

am(m + p)(m + p � 1)zm+p + am(m + p)zm+p + amz
m+p+2 � n

2
amz

m+p = 0

The coefficient of every power on the left side must be zero, to match the RHS. So we start
with the lowest power, which is p, for m = 0:

a0[(m + p)(m + p � 1) + (m + p) � n
2]zm+p = 0 m = 0

We assume that a0 6= 0 (otherwise the series doesn’t really start there) and get the condi-
tion that

[p(p � 1) + p � n
2] = p

2 � n
2 = 0

So we find p ± n. We found our two values of p, except when n = 0. If n 6= 0, we find that
the first term of the series, which will be the dominant term for small z, is:

Jn(z) ⇠ z
n near z = 0, for n > 0.

and
Yn(z) ⇠ z

�n near z = 0, for n > 0

For the case n = 0, the first solution has p = 0, and so the first term of the series is a
constant. The second solution is log z times a series that starts with a constant (why log z?
Because it works when you plug it into the equation).

J0(z) ⇠ C near z = 0

and
Y0(z) ⇠ log z near z = 0

We could continue and find all the terms of the series. For the moment, we have all the
information we need. In particular, we see that all the solutions Yn(z) tend to infinity as
z ! 0. So those solutions cannot contribute to our system where z = 0 is within our
domain. Note that if we want to solve the wave equation outside away from the origin,
like in an annulus, we would need to keep them.

Our solution to the Helmholtz equation within the disk is therefore, putting everything
together,

�(r, ✓) =
1X

n=0

Jn(
p

�nr) [Cn cos(n✓) + Dn sin(n✓)]

and we know Jn(r) ⇠ r
n near r = 0. Also, note that for n = 0, there is no ✓ dependence.

Also, note that here n counts the number of oscillations as you go around the drum.

We now have to determine the values of �n that satisfy the boundary condition Jn(
p

�na) = 0.
To do so, we first look at a few Bessel functions (for example in matlab).
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We note a few things:

1. They all oscillate.

2. If n 6= 0, the all go through the origin (consistent with our analysis).

3. As n ! 1, the oscillation wavelength decreases.

4. The amplitude of the oscillations decay as z ! 1. The amplitude decays like z
�1/2.

The fact that the Bessel function oscillate means that there are infinitely many zeroes of
the Bessel function, so infinitely many solutions to Jn(

p
�na) = 0. We will use the notation

that znj is the the j
th root of Jn(z). We therefore have

Jn(
p

�na) = 0 if
p

�n,ja = znj for some j, or �n,j =
z

2
nj

a2

So we found infinitely many eigenvalues, and we will need to sum over all of them. Recall
that � is related to the time frequency of the oscillations. So the frequency you hear from a
drum is determined by the zeroes of a Bessel function. The lowest frequency comes from
the oscillations that do not depend on ✓ (only going up and down) and so are the zeros of
J0(z).

The eigenfunctions we get are therefore of the form:

�(r, ✓) =
1X

j=1

1X

n=0

Jn(
znj

a
r) [Cn cos(n✓) + Dn sin(n✓)]

Wave equation solution

Finally, we can put together our entire solution to the wave equation. It requires two
sums:

u(r, ✓, t) =
1X

j=1

1X

n=0

Jn

⇣
znjr

a

⌘
[Cnj cos(n✓)+Dnj sin(n✓)][An,j cos

✓
znjct

a

◆
+Bn,j sin

✓
znjct

a

◆
]

You can see a nice illustration of what these modes look like as they oscillate at:

https://en.wikipedia.org/wiki/Vibrations_of_a_circular_membrane
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where, in their notation the mode um,n corresponds to our mode (n, j).

To determine the coefficients, we need to use the initial conditions, and the nice property
that the eigenfunctions of any Helmholtz equation satisfy an orthogonality relation. It
takes the form: Z a

0

Jn

⇣
znjr

a

⌘
Jn

⇣
znk

r

a

⌘
r dr = 0 if j 6= k

so we can finally determine the coefficients. We find, for the cosine coefficient in time and
in ✓:

AnjCnj =

R 2⇡

0 d✓
R a

0 r drJn

⇣
znj r

a

⌘
cos(n✓) u0(r, ✓)

R 2⇡

0 cos2(n✓) d✓
R a

0 r dr[Jn

⇣
znj r

a

⌘
]2

and for the cosine coefficient in time and sine in ✓:

AnjDnj =

R 2⇡

0 d✓
R a

0 r drJn

⇣
znj r

a

⌘
sin(n✓) u0(r, ✓)

R 2⇡

0 sin2(n✓) d✓
R a

0 r dr[Jn

⇣
znj r

a

⌘
]2

The results are similar for Bnj using the initial condition on the time derivative, v0(r, ✓),
for the cosine coefficient in time and cosine in ✓:

BnjCnj

⇣
znjc

a

⌘
=

R 2⇡

0 d✓
R a

0 r drJn

⇣
znj r

a

⌘
cos(n✓) v0(r, ✓)

R 2⇡

0 cos2(n✓) d✓
R a

0 r dr[Jn

⇣
znj r

a

⌘
]2

and for the cosine coefficient in time and sine in ✓:

BnjDnj

⇣
znjc

a

⌘
=

R 2⇡

0 d✓
R a

0 r drJn

⇣
znj r

a

⌘
sin(n✓) v0(r, ✓)

R 2⇡

0 sin2(n✓) d✓
R a

0 r dr[Jn

⇣
znj r

a

⌘
]2
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