
MATH 292: Special Topics: Fluid dynamics Summer Semester 2020

Lecture 1, Introduction to fluid dynamics

Goal of the course: Develop a general understanding of fluid flows through physical and
mathematical descriptions.

We begin with an introduction to some setups involving fluid dynamics. It is a VERY
broad subject. First, a fundamental question: What is a fluid?

Generally, matter exhibits a fluid behavior if an arbitrarily small force results in a dis-
placement (non-zero motion). Most fluids always exhibit this behavior, but some matter
is more complicated and does so only in certain circumstances. This definition includes both
liquids and gases.

Examples of fluids are everywhere:

• Household: Soaps/bleaches, cooking, mixology, food items.

• Biological: Swimming, flying, cellular internal motion, breathing, blood
flow, biofilm.

• Engineering: Oil recovery and treatment, heating or cooling systems (steam),
wind effect on buildings, turbines, reactors.

• Aerodynamical: Transports, rockets, sport balls.

• Environmental: Groundwater, river systems, forest fires, chemical spills, cli-
mate change.

• Geophysical: Atmospheric flows, ocean currents, magma flow, mudslides,
star dynamics, galaxies.

Fluid dynamics covers problems involving a wide range of both length scales and time
scales. And yet, they are all governed by a single set of equations: The Navier-Stokes
equations.

It is important to quantify the length and time scales in order to narrow down param-
eters for our problem.
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Our general philosophy of problem solving will be as illustrated below:

General problem solving process.
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Dimensional Analysis:

Using the dimensions of quantities involved, we may form dimensionless quantities.
They serve to:

1) Minimize the number of parameters to consider.

2) Yield basic forms of the solutions (to be further quantified using some other means).

Buckingham Pi’s ”Theorem”:
If a given physical system has m physical variables (such as volume, density, frequency,
etc) defined in terms of n physical quantities (such as mass, length, time, charge), then
the system may be uniquely represented by m − n independent dimensionless groups
(Π1,Π2, ...Πm−n).

Important notes:

1. Physical laws are independent of the UNITS chosen to represent a quantity.

2. If m− n = 1, then the only dimensionless group must be CONSTANT. This
is the most common use of this theorem.

3. If m − n = p > 1, the any dimensionless group may be expressed in terms
of the others: Πp = f(Π1,Π2, ...,Πp−1).

To obtain dimensionless groups,

1. List all relevant variables, with their physical quantities.

2. Form combination where all physical quantities cancel (these are not unique)
to reduce the number of parameters.

3. Make sure that every variable appears in at least one group.
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Let’s see some examples:

1 Pendulum Problem

A classical pendulum system.

Our variables describing the pendulum will be (other choices are possible):

• Mass m, with units [m] = M .

• Length h, with units [h] = L.

• Gravitational acceleration ~g, with units g = L/T 2.

• Period τ , with units [τ ] = T .

Note that the physical variables include τ , m, h, and g and the physical quantities include
M , L, and T . This means we have m = 4, and n = 3 (M,L, T ).

We can form a single dimensionless group Π1 = mahbτ cgd. We must find a, b, c, and d such
that the result has no units.

Starting with M , we have a = 0.
From L, we find: b+ d = 0.
From T , we find: c− 2d = 0.

This system has infinitely many solutions, but only one degree of freedom. For example,
we set c = 1 and find d = 1/2 and b = −1/2.
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Since we have a single dimensionless number, it must be some constant C (to be deter-
mined by other means):

C = τ

(
h

|~g|

)1/2

, or τ = C
(g
h

)1/2

,

Note that if we include an amplitude (A), we would have another dimensionless group

Π2 = A/h . . . τ =
(
g
h

) 1
2 f(A

L
)

In this example, we implicitly assumed that the frequency was independent of the ampli-
tude.
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Lecture 2, Dimensional analysis and scaling arguments

Third example: Drag on a sphere translating (not rotating) in a fluid.

• Radius a, with units [a] = L.

• Speed U , with units [U ] = L/T .

• Density ρ, with units [ρ] = M/L3.

• Viscosity (kinematic) ν, with units [ν] = L2/T .

• Drag D, with units [D] = ML/T 2.

Here m− n = 5− 3 = 2, so we will have two dimensionless numbers. We choose:

Π1 =
Ua

ν
and Π2 =

D

ρU2a2

These are classed Reynolds number for Π1 = Re and Drag coefficient for Π2 = CD. We
usually write CD = f(Re).
In practice, we find from measurements that at highRe, (forRe > 100) we have f(Re) ∼Constant
so D ∼ ρU2a2 and
at low Re, (for Re < 1) we have f(Re) = 1/Re so D ∼ ρUνa.

Dynamic similarity between two systems arises then the systems are described by the
same non-dimensional parameters. The dynamics are then identical when proper non-
dimensionalization is used. This allows for reduced or enlarged experiments. For exam-
ple:
1) Wind-tunnels (reduced size, increased speed matches Re).
2) Rotating tables (increased rotation speed reduced viscosity keeps U/ωL the same as in
planetary problems.
3) Low Re tanks (increased viscosity, increased size keeps Re constant).

Scaling Arguments are advanced dimensional analysis. Familiarity with the physical
concepts allows one to reduce the number of variables to consider.

Example 3, revisited:

In general, for a round object, we can estimate that the drag is proportional to the Stress
times the surface area (in general, stress is defined as a force per unit area). At low
Reynolds number, when viscous effects are large, we anticipate that the stress will be
proportional to the viscosity. The simplest way to get a stress that involves the viscosity
is:

Viscous stress ∼ ρνU

a
=
µU

a

1
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so that the drag in a viscous regime is expected to be

D ∼ µUa

a
a2 = µUa

Converting in non-dimensional form, we find CD = C/Re.

At high Reynolds number, the stress is due to due to pressure differences, caused by
balancing inertia. In that case, viscosity does not appear. We thus have that ∆P ∼ ρU2,
and therefore that D ∼ ρU2a2. In dimensionless form, that is:

CD = Constant .

Last example: Row boat speed as a function of n, the number of rowers.

Consider that the boats are shaped the same for any n, and that their size is given by a.
Here, the Reynolds number is large, so the drag to overcome is D ∼ ρU2a2. The Power
that can be generated is about proportional to the number of rowers (by observation for
group efforts in general; this is not true of the force generated). So we have:

P ∼ P0n and P = UD ∼ UρU2a2 = ρU3a2.

where P0 is the power one rower can generate (rate at which energy is used).

Finally, the size of the boat is chosen so that the volume displaced matches the weight of
the rowers. So we have

ρL3gn ∼ a3ρg and n ∼ (a/L)3 and n1/3L ∼ a.

where L is the size of a rower.

Putting it all together, we get:

P ∼ P0n ∼ ρU3a2 ∼ ρU3(n1/3L)2 so n1/3 ∼ ρU3L2

P0

Finally, if we want to solve for the speed, we find: U ∼ P
1/3
0

L2/3 ρ1/3
n1/9.

This is a very weak dependence! But it seems to be confirmed by data (www.sciencebits.com/rowers).

Note: Scaling arguments are used in COMBINATION with data to capture dominant
forces at play and to understand mechanisms. They are not sufficient by themselves as
they can be misleading...
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Very brief introduction to Einstein notation

We will use two notations in this class. One should be familiar, and the other one is Ein-
stein’s notation, which is most convenient for calculations. Most importantly, it assumes
that a repeated index is summed, from 1 to the dimension used (2 or 3 in this class.

Name Classic Einstein
Scalar a a
Vector ~v or v vi
Tensor ¯̄T Tij

Matrix Product ¯̄T~v or ¯̄T · ~v Tijvj (result has index i)
Identity ¯̄I δij

Dot product ~v · ~w viwi
Nabla ~∇ ∇i

Cross product ~v × ~w viwjεijk (result has k index)

Here εijk is the permutation tensor, or Levi-Civita tensor. It is defined as

εijk =


0 if any two indices are equal
1 if ijk are a cyclic permutation of 123 (so either 123, 231, or 312)
−1 if ijk are a non-cyclic permutation of 123 (so either 132, 321, or 213)

For example, using Einstein notation, it is easy to compute the product rule for matrix
multiplication:

d

dt
( ¯̄A(t)~x(t)) =

d

dt
(Aijxj) =

dAij
dt

xj + Aij
dxj
dt

=
d ¯̄A

dt
~x+ A

d~x

dt
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Lecture 3, The Incompressible Navier-Stokes Equations and Material Derivatives

1) Mass conservation (so-called continuity equation):

~∇ · ~u = 0

2) Momentum conservation

ρ (~ut + ~u · ~∇~u) = −~∇P + ρν ~∇2~u+ ~f

Here, our notation is:

• ~u = Fluid velocity vector at a fixed point ~x and at time t.

• P = fluid pressure at a fixed point ~x and at time t.

• ρ = fluid density at a fixed point ~x and at time t. Usually, we will consider ρ
constant.

• ν = kinematic viscosity, usually taken to be constant. Note that µ = ρν is
the dynamic viscosity.

• ~f = body force (typically gravity).

In the momentum equation, the LHS captures INERTIA.
The first term on the RHS is the PRESSURE GRADIENT.
The second term on the RHS is the VISCOUS FORCE, or friction.
The last term on the RHS is the external FORCE PER VOLUME.

With appropriate boundary conditions, this system describes the velocity field and pres-
sure field of an incompressible fluid acted upon by a force ~f . Note that we have 4 equa-
tions (mass + 3 in the momentum) and 4 unknowns (pressure + 3 components of velocity).

Fundamental notions

1. Continuum hypothesis: We assume that the fluid is a continuous medium
so flow lengthscale >> molecular lengthscale.

2. We represent space using a fixed spacial scale ~x and normal time t. This is
the Euclidian approach, where coordinates do NOT move with the flow. In
the Lagrangian approach, we follow fluid particles.

3. All our field variables are functions of space and time:
~u(~x, t), P (~x, t) and potentially ρ(~x, t).

1
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4. The equations are obtained from mass conservation and Newton’s law, (Con-
servation of linear and angular momentum).

5. The “material derivative” is an important tool. It describes the rate of change
of quantities associated to moving deforming elements.

Let Φ(~x, t) be a property of fluid at position ~xp and time t. At time t + ∆t, the same fluid
is now at position ~x+ ∆x, with property Φ(~xp + ∆x, t+ ∆t). We define

DΦ

Dt
= lim

∆t→0

Φ(~xp + ∆x, t+ ∆t)− Φ(~xp, t)

∆t

= lim
∆t→0

Φ(~xp + ∆x, t+ ∆t)− Φ(~xp + ∆x, t) + Φ(~xp + ∆x, t)− Φ(~xp, t)

∆t

=
∂Φ

∂t
+
d~xp
dt
· ∇Φ

DΦ

Dt
=
∂Φ

∂t
+ ~u · ∇Φ

In general, the material derivative is

D

Dt
=

∂

∂t
+ ~u · ∇ (1)

and it captures changes following a fluid particle:

Example: A leaf in the wind measuring sunlight exposure has material derivative:

DT

Dt
=

∂T

∂t︸︷︷︸
(A)

+~uLeaf ·
∂T

∂z︸︷︷︸
(B)

(2)

(A) Changes in exposure at a given location.

(B) Changes in exposure due to motion.
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Mass Conservation (or budget):
Consider an arbitrary, fixed volume V in space, with boundary S and outward normal n̂

Figure 1: Volume V is enclosed by boundary S with outward normal n̂.

The time rate of change of the mass in V is equal to the net flux through S.

d

dt

(∫
V

ρdV

)
= −

∫
S

ρ~u · n̂dS (3)

V is fixed so
d

dt

(∫
V

ρdV

)
=

∫
V

dρ

dt
dV (4)

Divergence theorem states ∫
V

∇ · ~FdV =

∫
S

~F · n̂dS (5)

So we have
−
∫
S

ρ~u · n̂dS = −
∫
V

∇ · (ρ~u)dV (6)

Putting it all together: ∫
V

∂ρ

∂t
+∇ · (ρ~u)dV = 0 (7)

Because V is arbitrary, we must have

∂ρ

∂t
+∇ · (ρ~u) = 0. (8)

An incompressible fluid is one where density doesn’t change as it moves:

Dρ

Dt
=
∂ρ

∂t
+ ~u · ∇ρ = 0. (9)

We can rewrite (8) as:
∂ρ

∂t
+ ~u · ∇ρ+ ρ∇ · ~u = 0. (10)

For an incompressible fluid, this simplifies to ∇ · ~u = 0 because Dρ
Dt

= 0. Note: An incom-
pressible fluid may have a non-constant (in space) density (temperature changes) but the
density of a given fluid parcel stays the same.
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Surface tension is a measure of how strongly certain fluid molecules prefer to be sur-
rounded by molecules of the same fluid.

For miscible fluids, like water and alcohol, there is no preference and we say that the
surface tension is 0 or we simply do not speak of surface tension.

For immiscible fluids, like air and water or oil and water, it is energetically favorable
to minimize contacts between molecules of different types. In other words, there is an
energy cost to the presence of an interface. For example, a higher energy is associated to
a system with a wavy interface that to one with a flat interface.

Physical systems naturally tend to minimize their energy. So in the presence of an inter-
face, they will do so by minimizing the surface area of the interface.

- When there are no constraints, the system prefers to have a flat interface.

- When there is a volume to conserved, the system prefers to have a spherical interface.

Surface tension, usually denoted as σ (or µ sometimes but not in this class) is the energy
cost per area associated to having an interface:

σ =
Surface Energy

Surface Area
.

Its units are therefore:

[σ] =
ML2/T 2

L2
=
M

T 2
.

As a result there is a force tangent to a surface trying to flatten any bump in an interface.

For a portion of an interface as shown above, ~n is a unit vector normal to the surface, ~t
is tangent vector to the arbitrary boundary C, and therefore also to the surface S, and
~m = ~t ∧ ~n is the binormal vector, which is tangent to the surface S and also normal to the
curve C.
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Lecture 4, The Momentum Equation
We apply Newton’s Second Law to a fixed fluid element first, then to a moving one later.

d

dt

∫
V

ρu dV =
∑

All Forces (Internal and External)

In words:

{Rate of change of momentum in V} = {Body Forces}+ {Rate of Inflow of momentum through S}
+ {Surface Forces Acting on S}

∂

∂t

∫
V

ρu dV =

∫
V

f dV︸ ︷︷ ︸
I

+

(
−
∫
S

ρu(u · n̂) dS

)
︸ ︷︷ ︸

II

+

∫
S

t(n̂) dS︸ ︷︷ ︸
III

Where t(n̂) is the surface stress.

Note on the stress:

• Stress is a force per unit area, and it is thus a vector t;

• It depends on the normal to the surface n̂;

• t(n̂) is the force exerted from outside (+) on inside (-);

• In general, stress has both a tangential and a normal component.

1
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Again, we keep V fixed so

∂

∂t

∫
V

ρudV =

∫
V

∂

∂t
(ρu)dV =

∫
V

(
ρ
∂u

∂t
+ u

∂ρ

∂t

)
dV.

We apply the divergence theorem to II:

−
∫
S

ρu(u · n̂)dS = −
∫
V

∇ · (ρuu)dV

Now

∇ · (ρuu) = ∇i(ρuiuj) = ujui∇iρ+ ρuj∇iui + ρui∇iuj

= u(u ·∇ρ) + ρu(∇ · u) + ρu · (∇u)

Sending II to the left-hand side:

∫
V

dV

ρ∂u∂t + ρu ·∇u + u

(
∂ρ

∂t
+ (u ·∇ρ) + ρ(∇ · u)

)
︸ ︷︷ ︸

0 by continuity


We are then left with: ∫

V

ρ
Du

Dt
dV =

∫
V

fdV +

∫
S

t(n̂)dS.

To obtain a PDE, we must express the surface integral as a volume integral. We assume
that the stress may be expressed as:

t(n̂) = n̂ ·T.

The stress tensor T is a second order tensor (two indices), and for now we do not know
its components. They will depend on u and ρ but not on n̂.
Note: T1,2 is the force per area in the direction of ê2, on a surface perpendicular to ê1:

The justification for writing t = n̂ · T was developed
by Cauchy (Handout 3). One may then write III as∫

S

t(n̂)dS =

∫
S

n̂ · TdS =

∫
V

∇ · TdV.

2
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Putting it all together ∫
V

ρ
Du

Dt
dV =

∫
V

fdV +

∫
V

∇ · TdV,

and since V is arbitrary, we have the Cauchy momentum equation

ρ
Du

Dt
= f + ∇ · T .

Note: this result can also be obtained by following a moving fluid element (HW3).

Reynolds Transport Theorem:

d

dt

∫
V (t)

ψ(x, t)dV =

∫
V (t)

∂ψ

∂t
+ ∇ · (uψ)dV,

where V (t) is a moving, deforming fluid volume with velocity u.

• This is proven for a scalar ψ in handout #4;

• A more general result can be obtained by setting ψ = a ·ψ, for a general a;

• For the special case ψ = ρf , you will see in HW2 that

d

dt

∫
V (t)

ψdV =
d

dt

∫
V (t)

ρfdV =

∫
V (t)

ρ
Df

Dt
dV.

We proceed by deducing the form of T by expressing it in terms of u and ρ. Using con-
servation of angular momentum, we fist show that T is symmetric.

Conservation of Angular Momentum
In words:

{Time rate of change of angular momentum of a material volume} = {Sum of all torques}

d

dt

∫
V (t)

x× ρudV︸ ︷︷ ︸
I

=

∫
V (t)

((x× f) + G)dV︸ ︷︷ ︸
II

+

∫
S(t)

x× t(n̂)︸ ︷︷ ︸
From Surface Shear

dS

︸ ︷︷ ︸
III

.
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Note:

• G is a body couple torque, very rarely non-zero

• G 6= 0 in ferro-fluids, particles with dipole moments.

For I: We use Reynolds Transport Theorem (RTT)

d

dt

∫
V (t)

x× (ρu)dV =
d

dt

∫
V (t)

ρ(x× u)dV =

∫
V (t)

ρ
D

Dt
(x× u)dV (RTT special case)

=

∫
V (t)

ρ

(
Dx

Dt
× u + x× Du

Dt

)
dV =

∫
V (t)

(
x× ρDu

Dt

)
dV.

4
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Lecture 5

Conservation of Angular Momentum

To learn something about the stress tensor, namely that it is symmetric, we consider the
conservation of angular momentum.

In words:

{Time rate of change of angular momentum of a material volume} = {Sum of all torques}

d

dt

∫
V (t)

x ∧ ρudV︸ ︷︷ ︸
I

=

∫
V (t)

((x ∧ f) + G)dV︸ ︷︷ ︸
II

+

∫
S(t)

x ∧ t(n̂)︸ ︷︷ ︸
From Surface Shear

dS

︸ ︷︷ ︸
III

.

Note:

• G is a body couple torque, very rarely non-zero

• G 6= 0 in ferro-fluids, particles with dipole moments.

For I: We use Reynolds Transport Theorem (RTT)

d

dt

∫
V (t)

x ∧ (ρu)dV =
D

Dt

∫
V (t)

ρ(x ∧ u)dV =

∫
V (t)

ρ
D

Dt
(x ∧ u)dV (RTT special case)

=

∫
V (t)

ρ

(
Dx

Dt
∧ u + x ∧ Du

Dt

)
dV =

∫
V (t)

(
x ∧ ρDu

Dt

)
dV.

For III: #»x ∧ t(n̂) = #»x ∧ (n̂ ·T) = −n̂ ·T ∧ #»x

So,∫
S(t)

#»x ∧ t(n̂)dS = −
∫

S(t)

n̂ ·T ∧ #»xdS = −
∫

V(t)

#»∇ · (T ∧ #»x)dV (by Divergenge Theorem)

1
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Aside:

T ∧ #»x = Tklxmεlmn

#»∇ · (T ∧ #»x) = ∇kTklxmεlmn

= xm∇kTklεlmn + Tkl(∇kxm)εlmn

= (
#»∇ ·T) ∧ #»x + Tml : εlmn︸ ︷︷ ︸

−T : ε

where we used that∇kxm = δkm.

So we have: ∫
V(t)

#»x ∧ #»∇ ·T + T : εdV

All together: ∫
V(t)

#»x ∧
(
ρ
D #»u

Dt
− #»∇ ·T− #»

f

)
︸ ︷︷ ︸

=0 from linear momentum conservation

−T : εdV = 0

Since V (t) is arbitrary, we must have T : ε = 0.
That is Tijεijk = 0 for any k.
Expanding, we find

k = 1 T23 − T32 = 0

k = 2 T31 − T13 = 0

k = 3 T12 − T21 = 0

so T is symmetric (T = T
T

). We therefore have “only” 6 independent components to
determine:
Those on the diagonal (3)
Those off diagonal (3).

Stress in a fluid: we begin with STATIC fluids stresses (at rest).
When #»u = 0, the stress tensor is simplified. It is ISOTROPIC (no dependence on orienta-
tion). This implies that is has the form

T = −P I,
where

−P I =

−P 0 0
0 −P 0
0 0 −P


2
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with “-” because pressure is compressive. So our momentum equation is

0 =
#»

f +
#»∇ ·T =

#»

f − #»∇P.

Letting
#»

f = ρ #»g , we find ρ #»g =
#»∇P . For constant ρ, we have ∂P

∂z
= ρg.

A criteria for a static fluid is therefore that:

#»∇ ∧ ρ #»g = 0

so
#»∇ρ ∧ #»g = 0.

Thus, if
#»∇ρ is not parallel to #»g , there must be motion!

Also, in a static fluid,
#»∇P||

#»∇ρ.
So, if #»u = 0, we have T = −P I. We write T = −P I+τ where τ is the deviatoric stress tensor.
Since T is symmetric so is τ .
Note also that τ is independent of #»u itself, to be translationally invariant. So we antici-
pate that τ depends on

#»∇ #»u (first derivatives of #»u). But how?
Note that

#»∇ #»u =
1

2
(

#»∇ #»u + (
#»∇ #»u)T )︸ ︷︷ ︸

E, symmetric
Rate of Strain

+
1

2
(

#»∇ #»u − (
#»∇ #»u)T )︸ ︷︷ ︸

Ω, antisymmetric
Vorticity (rotation tensor)

Taylor Series:

#»u = #»u0 + δ #»x · #»∇ #»u = #»u0 + ( δ #»x︸︷︷︸
translation

·
Strain︷︸︸︷
E ) + δ #»x · Ω︸︷︷︸

rotation

.
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Lecture 6, Newtonian Fluids and Stress Tensor

Assumptions for Newtonian Fluids:

1. Relation between ¯̄τ and ¯̄E is local in space and time.

2. Relation to linear: ¯̄τ =
¯̄̄̄
A : ¯̄E. (Note:

¯̄̄̄
A is a 4th order tensor)

3. Fluid is isotropic→ so
¯̄̄̄
A is isotropic, too.

Note: Non-Newtonian fluids exist! Custard, elastic fluids, polymer, blood, toothpaste,
paint, liquid crystals, ketchup, etc.

So we need a symmetric isotropic tensor A.

2nd Rank: → only δij

3rd Rank: → only εijk

4th Rank: → δijδkl, δikδjl, and δilδjk

So we let A = λ1δijδkl + λ2δikδjl + λ3δilδjk and τij = AijklEkl.

For ¯̄τ to be symmetric, we need Aijkl = Ajikl so λ2 = λ3 since ¯̄E is already symmetric.

So

τij =λ1δijδklEkl + 2λ2δikδjlEkl

=λ1δijEkk︸ ︷︷ ︸
*

+2λ2Eij

* Tr
¯̄E =∇iui = ∇ · ~u

Usually we use λ2 = µ = ρν, the dynamic viscosity. λ1 = κ− 2
3
µ, where κ = bulk viscosity

and ¯̄τ =
(
κ− 2

3
µ
)
∇ · ~u ¯̄I + 2µ ¯̄E. For incompressible fluids, ∇ · ~u = 0 so ¯̄τ = 2µ ¯̄E. Navier-

Stokes Equation:

ρ
D~u

Dt
= ~f +∇ · ¯̄T = ~f −∇P + 2∇ ·

(
2µ ¯̄E

)
(1)

Finally, if µ is constant with flow,

∇ ·
(

2µ ¯̄E
)

=2µ∇ ·
(

1

2

(
∇ · (∇~u) + (∇~u)T

))
(2)

=
2µ

2
(∇i∇iuj +∇i∇jui) (3)

=µ∇2~u+ µ∇����(∇ · ~u) (4)
=µ∇2~u (5)

1
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and we finally arrive to:

∇ · ~u =0 (6)

ρ
D~u

Dt
=−∇P + µ∇2~u+ ~f. (7)

Remarks on the stress tensor ¯̄T For an incompressible Newtonian fluid, we had:

¯̄T = −P ¯̄I + 2µ ¯̄E, ¯̄E =
1

2
((∇~u) + (∇~u)) (8)

What does this look like? In Cartesian:

∇iuj =



∂u1

∂x1

∂u2

∂x1

∂u3

∂x1

∂u1

∂x2

∂u2

∂x2

∂u3

∂x2

∂u1

∂x3

∂u2

∂x3

∂u3

∂x3

 (9)

¯̄E = ¯̄ET =


∂u1

∂x1

1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)
1
2

(
∂u1

∂x3
+ ∂u3

∂x1

)
1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)
∂u2

∂x2

1
2

(
∂u2

∂x3
+ ∂u3

∂x2

)
1
2

(
∂u1

∂x3
+ ∂u3

∂x1

)
1
2

(
∂u2

∂x3
+ ∂u3

∂x2

)
∂u3

∂x3

 (10)

¯̄T = ¯̄T T =


−P + 2µ∂u1

∂x1
µ
(

∂u1

∂x2
+ ∂u2

∂x1

)
µ
(

∂u2

∂x3
+ ∂u3

∂x2

)
µ
(

∂u1

∂x2
+ ∂u2

∂x1

)
−P + 2µ∂u2

∂x2
µ
(

∂u2

∂x3
+ ∂u3

∂x2

)
µ
(

∂u2

∂x3
+ ∂u3

∂x2

)
µ
(

∂u2

∂x3
+ ∂u3

∂x2

)
−P + 2µ∂u3

∂x3

 (11)

Note: ¯̄T is a mess in other coordinates. See Batchelor’s appendix.

Recall Tij = force per unit area, acting in the direction ~ej on a face ⊥ to ~ei.

1. Normal stresses (diagonal) involve both pressure and velocity gradients.

2. Tangential stresses depend only on velocity gradients.

2
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y

x

u(x,y) = k y

Consider for example a basic shear flow, in which the fluid velocity’s horizontal compo-
nent is u(x, y) = ky for a constant k, and all other components are zero, as shown in the
figure above.

In that case, the stress tensor only has two non-zero components: T12 = T21 = µ∂u
∂y

= µk.
This corresponds to the horizontal component (in the direction of ~e1) of the force per unit
area exerted by the fluid on a horizontal surface (with normal in the direction of ~e2).

3
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We now have our Navier-Stokes (N-S) equations, with four equations and four unknowns.
We need to apply the correct Boundary Conditions (B.C.) to allow us to find solutions.

Type A: B.C. on velocity.

1. Far-field condition (at∞)

2. Kinematic condition: Condition on the normal component of the velocity
require continuity (no penetration) #»u · n̂ = û · n̂

3. Dynamic Condition: Postulate stating that the tangential velocity is also
continuity

(a) Fluid-Solid: If solid has velocity #»v , then #»u = #»v at the solid
surface (no-slip)

(b) Fluid-Fluid: #»u = û at the interface→ In this case, the interface
may be deformed, and this is not described by this condition.
Stresses need to be considered

Type B: Stress Conditions at a Fluid-Fluid interface.
Background: Because of surface tension (σ), work is needed to deform an interface (σ =
Energy
Area

or Force
length

)

• A surface S is bound by a curve C

• n̂ is normal to the surface

• t̂ is tangent to S and C

• λ̂ is tangent to S and orthogonal to C

1
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Here σ is a force per unit length acting everywhere along C
to flatten S, pulling in the direction of λ̂ ; σ is also the energy cost per area associated to
creating an intercase between two fluids.

We perform a force balance on a volume element V of size ε enclosing a portion on the
interface S, with intersection curve C.

∫
V

ρ
D #»u

Dt
dV =

∫
V

#»

f dV +

∫
S

#»
t (+)n̂ +

#»
t (−)︸︷︷︸

surface forces

dS +

This cancels out where T is continuous, or scales as volume︷ ︸︸ ︷∫
∂V

#»
t (n̂)dS +

∫
C

σλ̂︸︷︷︸
surface tension

dl, (1)

as ε → 0, the volume forces scale as ε3, and vanish faster than the surface stress (scaling
as ε2). So surface forces must balance each other:∫

S

n̂(+) ·T
(+)

+ n̂(−) ·T
(−)
dS +

∮
C

σλ̂dl = 0 (2)

From Handout 5, we may write∮
C

σλ̂dl =

∫
S

#»∇σ − σn̂(
#»∇ · n̂)dS, (3)

where
#»∇σ is a gradient taken along S only, often denoted

#»∇Sσ, and (
#»∇ ·n̂) is a divergence

along the surface only too. (
#»∇S · n̂) is also

2 · (mean curvature) =

(
1

R1

+
1

R2

)
, (4)

2
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where R1, R2 are the principal radii of curvatures. So, we get

0 =

∫ 2κ

S

n̂(+)(T
(+)
− T

(−)
) +

#»∇Sσ + n̂σ(
#»∇S · n̂)dS (5)

and

n̂(+) · (T
(+)
−T

(−)
) = n̂(+)σ(

#»∇S · n̂(+))− #»∇Sσ

= 2κσn̂(+)︸ ︷︷ ︸
normal curvature force

−

Tangential stress associated to gradient of σ︷︸︸︷
#»∇Sσ (∗)

Normal stress balance gives: ((∗) · #»n)

#»n · (T
(+)
−T

(−)
) · #»n(+)︸ ︷︷ ︸

Normal stress jump

= 2σκ, because
#»∇Sσ ⊥ #»n (6)

For a drop or bubble at rest:

T
(+)

= −P (+)I, T
(−)

= −P (−)I (7)

and we have:
P (−) − P (+) = 2σκ =

2σ

a
(8)

(Note:
#»∇S · #»n =

#»∇S ·
#»r
R

= 1
r2

∂
∂r

(r2) = 2
R

).
So we have the Laplace pressure jump

P (−) − P (+) =
2σ

a
,
(

Dimensional Analysis gives ∆P ∼ σ

a

)
(9)

Tangential stress balance ((∗) · λ̂)

#»n(+) · (T
(+)
−T

(−)
) · λ̂ = − #»

λ · #»∇Sσ

Tangential Stress jump = Stress jump in tangential direction︸ ︷︷ ︸
due to surface tension gradients (Marangoni effect)

3
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Note: There are no pressure terms on the LHS. This implies that any
#»∇Sσ 6=

#»
0 implies

MOTION.
Dynamic vs. regular pressure (Pd vs. P )

Suppose the fluid is under the influence of gravity so
#»

f = ρ #»g in NS:

ρ
D #»u

Dt
= − #»∇P + ρ #»g + µ∇2 #»u. (10)

Recall that at rest, we found
#»∇PH = ρ #»g (Hydrostatic pressure). Define

P = Pd︸︷︷︸
dynamic

+

hydrostatic︷︸︸︷
PH

= Pd + ρ #»g · #»x ,

then we get

ρ
D #»u

Dt
= − #»∇Pd + µ∇2 #»u. (11)

By definition, if
#»∇Pd 6= 0→motion.

Note: #»g does not appear in our equation anymore. In the presence of a free surface it
would appear in the boundary condition.

4



MATH 292: Special Topics: Fluid dynamics Summer Semester 2020

Lecture 8, Non-dimensionalization, Vorticity and Strain

1 Non-dimensionalization

We would like to rewrite our equations and Boundary Conditions in dimensionless terms.
Consider a flow characterized by a velocity U , length L, and density ρ0. Change variables
as follows:

~u∗ =
~u

U
, x∗ =

x

L
, t∗ =

tU

L
, ∇∗ = L∇, P ∗ =

P

Π
, ρ∗ =

ρ

ρ0

where Π is still unknown at this time. We find

ρ0ρ
∗ · U

2

L

(
∂~u∗

∂t∗
+ ~u∗ · ∇∗~u∗

)
= −Π

L
∇∗P ∗ + ρ0ρ

∗ν
U

L2
(∇∗)2 ~u∗ (1)

1.1 Case 1:

Inertial forces� Viscous forces.

Pick Π = ρ0U
2. Let ρ∗ = 1 here leaves

D~u∗

Dt∗
= −∇∗P ∗ +

1

Re
(∇∗)2 ~u∗, (2)

where

Re =
UL

ν
= Reynolds number =

Inertial Forces
Viscous Forces

=
U2/L

νU/L2
. (3)

Note: As Re → ∞, we get D~u∗

Dt∗
= −∇∗P ∗. Euler’s equation a singular (highest derivative

gone) limit, for inviscid flow.

1.2 Case 2:

Inertial forces� Viscous forces.

Pick Π = ρν U
L

leaves

Re
D~u∗

Dt∗
= −∇∗P ∗ +∇2~u∗. (4)

In the limit Re→ 0, we have

∇∗P ∗ = ∇2~u∗, ∇∗ · ~u∗ = 0 or ∇P = ν∇2~u, (5)

1
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Stoke’s equation. This is relevant to flows dominated by viscosity.
Some typical Re:

Bacteria swimming in water : Re =
10µm/s · 1µm

10−6m2/s
=

10−11m2/s
10−6m2/s

= 10−5 small

Airplane in air : Re =
100m/s · 10m

10−5m2/s
= 108 large

1.3 Case 3:

Flows are defined by a time scale rather than a velocity (periodic forcing). Use t∗ = ωt,
and keep ~u∗ = ~u/U.

Consider Re� 1, so Π = ρU2 to find St.

St
∂~u∗

∂t∗
+ ~u∗ · ∇∗~u∗ = −∇∗P ∗ +

1

Re
(∇∗)2 ~u∗ (6)

St =
ωL

U
=

convective time
forcing time

=
L/U

1/ω
= Strouhal number (7)

2 Vorticity and Strain

Recall our decomposition:

∆~u = ∆~x · ∇~u = ∆~x · E + ∆~x · Ω =
D∆~x

Dt
(8)

Or use

~r = ∆~x :
D~r

Dt
= ~r · E + ~r · Ω. (9)

Take ~r · (??):

~r · D~r
Dt

=
1

2

D|~r|2

Dt
= ~r · E · ~r +��

���:
0 (antisymmetry)

~r · Ω · ~r (10)

So E causes changes in the length of fluid elements.

The vorticity tensor Ω may be written as

Ω =
1

2
ε · ~ω =

1

2
ε · (∇× ~u) (11)

2
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where ~ω is the vorticity vector.

Vorticity is a measure of the local angular velocity:

~r · Ω =
1

2
~r · ε · ~ω =

1

2
riεijkωk (12)

=
1

2
riωkεkij =

~ω

2
× ~r. (13)

This component of ∆~u is a solid body rotation, with angular velocity 1
2
~ω. This illustrates

that Ω does not change lengths, or cause stress.

Example: Rigid body solution ~u = ~Ω0 × ~x,
~ω = ∇× ~u = 2~Ω0, and uniform everywhere.

We can sometimes gain valuable insight, or numerical convenience, by studying the evo-
lution of vorticity:

Start from N-S, with ρ =constant and ~f = ρ~g.

∂~u

dt
+ ~u · ∇~u =

−1

ρ
∇P + ν∇2~u+ ~g, ∇ · ~u = 0. (14)

Take the curl of the equation, and note that

∇× ~u · ∇~u = ~u · ∇ (∇× ~u)− (∇× ~u) · ∇~u+���
�(∇ · ~u)∇× ~u (15)

We get the vorticity equation

D~ω

Dt︸︷︷︸
Advection of ~ω

=

Vortex Stretching︷ ︸︸ ︷
~ω · ∇~u + ν∇2~ω︸ ︷︷ ︸

Dissipation of ~ω

. (16)

Vortex Stretching: In an inviscid fluid,

D~ω

Dt
= ~ω · ∇~u (17)

Recall∇~u = Ω + E and take (??) · ~ω. We find

1

2

D|~ω|2

Dt
= ~ω ·

(
Ω + E

)
· ω =���

��:
0 (antisymmetric)

~ω · Ω · ~ω + ~ω · E · ~ω (18)

3
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1

2

D|~ω|2

Dt
= ~ω · E · ~ω (19)

So vorticity can be amplified by local strain. This may be thought of in terms of conser-
vation of angular momentum. For example, a flame vortex:

Toilet, bathtub flushing rotate because of that, too.

4
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Lecture 9
Typically in solving fluid dynamics problems we do:

1. Write N-S Equations and appropriate BCs

2. Non-dimensionalize equations

3. Compute the magnitude of dimensionless #→ simplify equations as much as pos-
sible

4. Solve simplified systen

In our N-S equation

ρ(~ut + ~u · ~∇~u) = −~∇P + µ∇2~u+ ~f

~∇ · ~u = 0,

the biggest complication is the NON-LINEARITY ~u · ~∇~u.
For uni-directional flows, the nonlinearity vanishes, at any Re:~u ⊥ ~∇~u.

~u = (u,

by assumption︷ ︸︸ ︷
v = 0 )

Because ~∇ · ~u = ux + vy = 0, we must have ux = 0, so

~u · ~∇~u =

(
uux + vuy = 0
uvy + vvy = 0

)
,

For any Re. So we are left with:

ρ
∂u

∂t
= −∂P

∂x
+ µ

∂2u

∂x2︸︷︷︸
0

+
∂2u

∂y2

 (1)

ρvt = −Py + µ(vxx + vyy)→ Py = 0, P = P (x)

1
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∂

∂x
(1)→ 0 =

∂2P

∂x2

so
P (x) = −Gx+ C, (2)

where C is an unimportant constant.

Steady uni-directional flow:

A Couette flow (simple shear flow)

1. u(y=0) = 0

2. u(y=d) = V

3. We assume that the pressure is the same and both ends of the container, so P = C.

uyy = 0→ u = Ay +B = V y
d
.

What is the tangential stress?

t̂ · ~~T = x̂ · ~~T · ŷ
= Txy

= µ

(
∂u

∂y
+
∂v

∂x

)
= µ

V

d
(same everywhere)

This geometry is used to measure µ in viscometers.

2
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B Poiseuille Flow (pronounced Pwazoı̈) (pipe flow)

Constant pressure gradient:

∂P

∂x
= −G =

(
P0 − PL

L

)
(3)

In cylindrical coordinates we have only

µ
1

r

∂

∂r

(
r
∂u

∂r

)
=
∂P

∂x
= −G. (4)

Integrate once:

r
∂u

∂r
= −r

2G

2µ
+ A (5)

and we have ∂u
∂r

= 0 at r = 0 by symmetry, so A = 0. Dividing both sides by r and
integrating once more yields

u = −r
2G

4µ
+B (6)

To find B

u(r = a) = 0 = B − a2G

4µ

Thus,

u(r) =
G

4µ
(a2 − r2). (7)

What is the volumetric flow rate?∫ ∫
A

u(r)dA = 2π

∫ a

0

− G
4µ

(r2 − a2)rdr

= −Gπ
2µ

(
r4

4
− a2r2

2

) ∣∣∣∣a
0

=
Gπ

8µ
a4

3
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What is the rate of viscous dissipation?

φtotal = 2µ

∫
V

~~E : ˜̃EdV, Bachelor Appendix: ˜̃E : Erz =
1

2

∂u

∂r
, ˜̃E : ˜̃E = 2

(
1

2

∂u

∂r

)2

= 2µ

∫
V

2

(
1

2

(
∂u

∂r

))2

dV

= 2µ

∫
2

(
1

2

(
−2Gr

4µ

))2

dV

= µ

∫ a

0

dx · 2π
∫ a

0

G2r2

4µ2
rdr

= L
G2

µ

π

2

a4

4

=
G2πa4

8µ
L

What is the rate of work done by pressure? (Recall: Force·~u =
∫ ∫

A
∆P dA u)

dW

dt
= A ·∆P

=

∫
V

~u~∇PdV

= Q · L∂P
∂x

= Q ·∆P ,

which is
πGa4

8µ
GL,

which is the same as the viscous dissipation.
What is the shear on the boundaries?
Over a length L, we have

L2πa

(
µ
∂u

∂r

∣∣∣∣
r=a

)
= −2πaLµ

Ga

2µ

= −πa2LG
= πa2∆P

So the force on the pipe is (Pipe area)·∆P .

4
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Unsteady Unidirectional flows:
(1) The Raleigh Problem (Stokes first problem)

A fluid in a semi-infinite container is initially at rest, and started impulsively. Because of
the infinite domain, there is no steady-state. From vertical momentum

Py = gρ

From ∂
∂x

(horizontal momentum)

∂2

∂x2
(P ) = 0, in infinite ambient Px = 0

So we have only

x̂−momentum : ρ
∂u

∂t
= µ

∂2u

∂x2
,

or
ut = νuxx. (8)

The Heat Equation to solve with:

I.C. : u(x, t = 0) = 0

B.C. : u(0, t) = V, for t > 0

u(y, t) <∞, as y →∞

Note: There is no characteristic length scale here, and so no good non-dimensionalization.
In such cases we often look for a similarity solution.

5
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Lecture 10, The Y of Z

Unsteady Unidirectional flows:
(1) The Rayleigh Problem (Stokes first problem)

A fluid in a semi-infinite container is initially at rest, and started impulsively. Because of
the infinite domain, there is no steady-state. From vertical momentum

Py = gρ

From ∂
∂x

(horizontal momentum)

∂2

∂x2
(P ) = 0, in infinite ambient Px = 0

So we have only

x̂−momentum : ρ
∂u

∂t
= µ

∂2u

∂y2
,

or
ut = νuyy. (1)

The Heat Equation to solve with:

I.C. : u(y, t = 0) = 0

B.C. : u(0, t) = V, for t > 0

u(y, t) <∞, as y →∞

Note: There is no characteristic length scale here, and so no good non-dimensionalization.
In such cases we often look for a similarity solution.

So we seek a solution u = f(y, t, ν, V ) or by linearity u
V

= f(y, t, ν).

By Buckingham Pi Theorem: n = 4, m = 2. So,

Π1 =
u

V
, Π2 =

y√
νtc

= η (2)

with c to be determined later, and we look for Π1 = F (Π2) so u
V

= F (η). So we rewrite the
heat equation:

ut = V
∂u

∂η

∂η

∂t
= V

y√
νtc

(
−1

2

)
1

t
Fη = −V η

2t
Fη

1
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uyy = V
∂

∂y
(Fηηy) = V

∂

∂y

(
1√
νtc

Fη

)
= V

1

νtc
Fηη

All together we get

− η
2�t
Fη =

�ν

�ν�tc
Fηη

We get the ODE
− ηFη = Fηη (3)

What about our B.C.? y = 0→ η = 0, y =∞→ η =∞, t = 0→ η =∞,

so F (0) = 1, F (∞)→ 0.

−ηFη = Fηη implies − η2

2
+ C1 = logFη.

Fη = C2e
− η

2

2

Finally,

F (η) = C2

∫ η

0

e−
s2

2 ds+ C3. (4)

F (0) = C3 = 1, F (∞) = 1 + C2

√
π

2
= 0, so C2 = − 2√

π
.

So

F (η) = 1− 2√
π

∫ η

0

e−
s2

2 ds,

u(y, t) = 1− 2√
π

∫ y√
2νt

0

e−
s2

2 ds

= 1− erf
(

y√
4νt

)
.

2
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Oscillatory flate plate (Stoke’s 2nd problem)

With no applied pressure gradient,

ut = νuyy

with

u→ 0 as y →∞
u(y = 0, t) = V0 cos (ωt) (No-slip)
u(y, t = 0) = 0.

We try to separate variables: u(y, t) = Re (eiωtf(y))

To find ut = Re
(
iωeiωtf(y)

)
uyy = Re

(
eiωtf ′′(y)

)
.

So iωf = νf ′′ and f ′′ − iωf
ν

= 0.

Note:
√
i = 1+i√

2
or −1−i√

2
. We have

f(y) = C1exp
(

1 + i√
2

√
ω

ν
y

)
+ C2exp

(
−1− i√

2

√
ω

ν
y

)
. (5)

Note: δ =
√

2ν
ω

, the decay length.
u→ 0 as y →∞ implies C1 = 0.
u(y = 0, t) = V0 cos (ωt) implies C2 = V0 and

and u(y, t) = Re
(
eiωt · V0e

−1−i√
2

√
ω
ν
y
)

= Re
(
V0e

−
√

ω
2ν
yei(ωt−

√
ω
2ν
y)
)

u(y, t) = V0e
−
√

ω
2ν
y cos

(
ωt−

√
ω

2ν
y

)
= V0e

− y
δ cos

(
ωt− y

δ

)
What is the dissipation rate? φ = 2µ

∫
V
E : EdV = µ

∫ (
∂u
∂y

)2
dV .

uy = Re
((
−1− i√

2

)(ω
ν

)2
V0e

− y
δ ei(ωt−

y
δ )
)

= Re
((
−1− i
δ

)
e−

y
δ ei(ωt−

y
δ )
)
,

uy =
1

δ
e−

y
δ V0

(
− cos (ωt− y

δ
) + sin

(
ωt− y

δ

))
,

u2y =
1

δ2
e−

2y
δ V 2

0

(
1− 2 cos

(
ωt− y

δ

)
sin
(
ωt− y

δ

))
3
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< φ >= µ

∫ ∞
0

dy

∫ 2π
ω

0

( ω
2π

)
dt(uy)

2dy =
µ

δ2
δ

2
V 2
0 =

µV 2
0

2δ
. (6)

Compare this to the rate of work done by the bottom stress:

u · µ∂u
∂y

= V0e
− y
δ cos

(
ωt− y

δ

)
µ · 1

δ
e−

y
δ V0

(
− cos

(
ωt− y

δ

)
+ sin

(
ωt− y

δ

))
µu
∂u

∂y
= µ

V 2
0

δ

(
− cos

(
ωt− y

δ

)
+ sin

(
ωt− y

δ

))
.

Averaged over time:

ω

2π

∫ 2π
ω

0

(
µu
∂u

∂y

)
dt =

µV 2
0

2δ
→ The same!

So all the work done at the boundary gets dissipated.
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Streak, Path, and Streamlines

There are 3 important types of curves that can help visualize a flow. They often get con-
fused with each other because at steady-state, the are all the same. But in time-dependent
flow, they are different.

Streak Lines: Location of all particles having passed through a point.
In experiments, this corresponds to a dye or smoke line. The special point is the source of
dye or smoke, and what we can see is where all the dye/smoke gets transported to.

Note that you can write a mathematical expression for a streak line, but it involves tricky
notation as you need to be able to invert a function that tracks particles over time.

Path line: Trajectory of a single particle over time.
This is mathematically easier to describe. Is you record a video of an experiment where
you can follow a specific particle, this is the path, xp(t), traced by that particle over time.
We then have

dxp
dt

= ~u(~xp, t)

Streamline: This is the most commonly used curve to represent a flow. These are curves
that are everywhere tangent to the instantaneous velocity field. So you can parametrize
such a curve with a parameter s that is different from time. As a certain time t0, a stream-
line ~xs(s) then satisfies

dxs
ds

= ~u(~xs, t0)

This provides a snapshot of what the flow looks like, though it is tricky to interpret when
the flow is not steady.

As mentioned above, if the flow is steady, streamlines, path lines, and streak lines all
overlap.

Inviscid Flow and Bernoulli’s law

We now turn to inviscid flow, which will be our approximation to High Reynolds number
flow (Re� 1).

In this regime, the Navier-Stokes equations become Euler’s equations

ρ
D~u

Dt
= −∇P + ~f, ∇ · ~u = 0

This is only directly applicable to superfluids, such as liquid Helium at very cold temper-
atures. But it is a good approximation at high Reynolds numbers away from boundaries.

We consider first a simpler set-up where we have:

1. Constant density ρ.

1
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2. Still inviscid (µ = 0).

3. Steady Flow ( ∂
∂t

= 0).

Our momentum equation reduces to

ρ ~u · ∇~u = −∇P + ~f. (1)

We further assume that the body force is conservative, we have ~f = −∇Ψ. For example,
for gravity Ψ = ~g · ~x.
We also make use of the identity:

1

2
(~u ∧ (∇∧ ~u)) = ∇

(
|~u|2

2

)
− ~u · ∇~u

We may now rewrite equation (1) as

ρ(∇
(
|~u|2

2

)
− 1

2
(~u ∧ (∇∧ ~u))) = −∇P −∇Ψ. (2)

Finally, we may take ~u·(2) and group terms to find

~u · ∇
(
ρ
|~u|2

2
+ P + Ψ

)
= 0

Therefore, following a streamline (parallel to ~u), we obtain Bernoulli’s Law:

ρ|~u|2

2
+ P + Ψ = Constant along a streamline (3)

Note that this is a statement of conservation of energy, and can only be applied when
viscous dissipation can be ignored (so no turbulence).

Let’s see some applications of Bernoulli’s law.

Example 1: Egyptian water clock.

Here the body force is simply gravity, so Ψ = ρgz. Bernoulli’s law thus becomes:

ρU2

2
+ P + ρgz = C.

where we use U = |~u|. We consider that points A and B are joined by a streamline so that
we have

ρU2
A

2
+ PA + ρgh =

ρU2
B

2
+ PB.

2
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Schematics of an Egyptian water clock

Because both A and B are exposed to the atmospheric pressure (neglecting surface ten-
sion), we must have that PA = PB.
To close the problem, we consider mass conservation:

L2UA = πR2UB or UA =
πR2

L2
UB � UB

Solving for UB, we have

UB =

√
2

ρ

√
ρgh+

1

2
ρU2

A ≈
√

2gh.

Note that this is not convenient, as the rate of change of the height depends on the water’s
depth. What shape should the vessel have so that the height changes at a constant rate?

3
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Example 2: Wind past a house with open doors.

Points A and C are stagnation points, where |~u| = 0. Therefore, PA and PC are high. Points
B and D see a large wind speed, and thus PB and PD are low. This generates flow within
the house, and opens doors (which ones depends on how the doors are setup).

Example 3: Ping-pong ball in a funnel and in a jet

The ball tends to stick to the sides of the funnel and is not blown off
A ping-pong ball in a jet is stable to perturbations

4
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Example 4: Canoe (or other boat) in the wind

Points A and B are stagnation points, where P is maximum. Torque is thus induces on
the canoe until it is perpendicular to the wind.

Example 5: Sand-dollars in flow.

Suction is created into a sand-dollar as flow goes over it.

5
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Lecture 11: Kelvin Circulation Theorem
Consider a simple closed curve C that is deforming with the (inviscid) fluid. Recall that
circulation is

Γ =

∮
C(t)

#»u · #»
t dl =

∮
C(t)

#»u · #  »

dx =

∫
S(t)

(
#»∇ ∧ #»u) · n̂dA (1)

where S is any smooth surface (with normal n̂) that has C as its only boundary. Kelvin’s
Circulation Theorem states that (if µ = 0), for ρ = constant,

#»

f = − #»∇ψ we have

dΓ

dt
= 0→ Γ = constant (2)

Proof: We first introduce useful notation. We consider that the curve C(t) is parametrized
in terms of a parameter s as #»x(s, t). We also define a differential element for any quantity,
scalar or vector, Z along this curve as

dZ =
dZ

ds
ds, so notably

#  »

dx =
d #»x

ds
ds

Also, we consider that the force field applied to the fluid is conservative ~f = − #»∇Ψ.
We also consider a fluid of constant density so that the Euler’s equation describing the
evolution of the velocity field is

D #»u

Dt
=
∂ #»u

∂t
+ #»u · #»∇ #»u = − #»∇(

P + Ψ

ρ
)

We begin by computing the time derivative of the circulation, using the definition of
derivative

dΓ

dt
= lim

∆t→0

Γ(t+ ∆t)− Γ(t)

∆t

= lim
∆t→0

∮
C(t+∆t)

#»u( #»x(s, t+ ∆t), t+ ∆t) · #  »

dx(s, t+ ∆t)−
∮
C(t)

#»u( #»x(s, t), t+ ∆t) · #  »

dx(s, t)

∆t

where #»x(s, t+ ∆t) is the parametrisation of C(t+ ∆t).

Our main goal is to rewrite Γ(t + ∆t) as an integral of C(t) so that we can rewrite the
derivative of Γ as a single integral.

1
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We begin by approximating ~x(x, t+ ∆t):

#»x(s, t+ ∆t) = #»x(s, t) + ∆t
d #»x

dt

∣∣∣∣
(s,t)

+O((∆t)2) = #»x(s, t) + ∆t #»u(s, t) +O((∆t)2) (3)

We can apply a similar expansion to a curve element
#  »

dx

#  »

dx(s, t+ ∆t) =
#  »

dx(s, t) + ∆t
#  »

du(s, t) +O((∆t)2) (4)

and to the velocity vector at #»x(s, t+ ∆t) as well

#»u( #»x(s, t+ ∆t), t+ ∆t) = #»u( #»x(s, t+ ∆t), t) + ∆t
∂ #»u

∂t

∣∣∣∣
( #»x(s,t+∆t),t)

+O((∆t)2) (5)

We now use equation (3) to expand #»u further

#»u( #»x(s, t+ ∆t), t+ ∆t) = #»u( #»x(s, t), t) +
d #»x

dt
· #»∇ #»u

∣∣∣∣
(s,t)

+ ∆t
∂ #»u

∂t

∣∣∣∣
( #»x(s,t),t)

+O((∆t)2) (6)

So the integrand of Γ(t+ ∆t) can be rewritten in terms of the parametrization of C(t) as

#»u( #»x(s, t+ ∆t), t+ ∆t) · #  »

dx(s, t+ ∆t) = #»u( #»x(s, t), t) · #  »

dx(s, t) + #»u( #»x(s, t), t) · #  »

du( #»x(s, t) ∆t+

#»u · #»∇ #»u
∣∣∣
(s,t)

+

∂ #»u

∂t

∣∣∣∣
( #»x(s,t),t)

· #  »

dx(s, t) ∆t+O((∆t)2)

We can therefore write

Γ(t+ ∆t) =

∮
C(t)

#»u · #  »

dx + #»u · #  »

du ∆t+

(
∂ #»u

∂t
+ #»u · #»∇ #»u

)
· #  »

dx ∆t+O((∆t)2)

Going back to the derivative of Γ, we get some cancellations are and left with

dΓ

dt
=

∮
C

#»u · #  »

du +
D #»u

Dt
· #  »

dx

Now, because we consider an inviscid fluid, we have

D #»u

Dt
= −1

ρ

#»∇(P + Ψ)

and we may also write that #»u · #  »

du = 1
2

#»∇( #»u · #»u) · #  »

dx. This leaves

dΓ

dt
=

∮
C

#»∇
(

1

2
#»u · #»u − 1

ρ
(P + Ψ)

)
· #  »

dx = 0

Where the last equaloty comes from Stokes theorem applied to a gradient field.

2
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Irrotational Flows

(Helmoltz decomposition: if #»u ∈ C2, then #»u =
#»∇φ+

#»∇ ∧ #»

A is always possible).

Special class of flows where #»ω =
#»∇ ∧ #»u =

#»
0 . Key point: Because of Kelvin’s Circulation

Theorem, if a fluid is inviscid and irrotational, then it will remain irrotational forever.
Velocity potential: All irrotational velocity fields may be written as the gradient of a po-

tential: #»u =
#»∇φ. Because

#»∇ · #»u = 0, we have∇2φ = 0, so φ is an harmonic function.
The boundary conditions on φ are that of no penetration: #»u · n̂ = n̂ · #»∇φ = 0. One usually
solves for φ via:

1. Separation of variables

2. Complex potentials

3. Fourier Transforms

4. Numerics

Ex: Irrotational flow past a sphere

∇2φ = 0,with
#»∇φ→ 0 as r̂→∞

n̂ · #»∇φ =
#»

V · n̂ on r = a

In spherical coordinates:

∇2φ =
1

r2

∂

∂r

(
r2 ∂

∂r
φ

)
= 0 (assume φ = φ(r) only) (7)

Solving directly, we may find a scalar solution: φ−1 = C
r
→ 1

r
.

Note: ∇2∇iφ = ∇i∇2φ, ∇2∇i∇jφ = ∇i∇j∇2φ.
So we can use this to find vector, tensor solutions to∇2φ = 0.

φ−2 =
#»∇φ−1 =

#»x

r3
is a vector solution

φ−3 =
#»∇φ−2 =

I

r3
− 3 #»x #»x

r5
is a tensor solution.

3
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Here, we need a scalar solution, linear in
#»

V . Try:

φ =
#»

V · φ−2 = C

#»

V · #»x

r3
(8)

This implies that #»u =
#»∇φ = C

#»

V ·
(

I
r3
− 3 #»x #»x

r5

)
Our B.C. says that

#»u · n̂|r=a = C

(
#»

V

r3
· n̂− 3

#»

V · #»x( #»x · n̂)

r5

)
=

#»

V · n̂

On the boundary n̂ =
#»x
a

, so

#»u · n̂|r=a = C

(
#»

V · n̂
a3
− 3

#»

V · an̂(an̂ · n̂)

a5

)
= C

#»

V · n̂
a3

(−2)︸ ︷︷ ︸
→C=−a3

2

=
#»

V · n̂

4
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Lecture 13: Unsteady Invisid Flows, Irrotational
Assume we have an inviscid limit

µ = 0

and irrotational flow such that
#»ω = ∇× #»u = 0
#»u = ∇φ.

The the Navier-Stokes equations reduce to

#»∇2φ = 0 (1)

ρ
∂φ

∂t
+
ρ

2
∇φ · ∇φ+ P + ψ = f(t) (2)

if
#»

f = −∇ψ. For us, ψ = ρgh where g is gravity and h is height. Note also that f(t) is in
time only.

To simplify the problem, we can absorb f(t) into φ( #»x , t) as seen below.

φ( #»x , t) = φ( #»x , t) +

∫ t

0

f(s)ds

Using this, Eqs. (1)-(2), now becomes Eqs. (3)-(4).

#»∇2φ = 0 (3)

ρ
∂φ

∂t
+
ρ

2
∇φ · ∇φ+ P + ψ = 0 (4)

Let’s apply this to water waves as seen in Fig. 1.

Figure 1: Water Waves set-up

To a good approximation, small amplitude waves are irrotational and inviscid.

Previously, we derived a stress jump condition for constant surface tension σ

n̂ · (Ta − Tw) = n̂σ(∇S · n̂)

1
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where Ta = −P0I and Tw = −PI . We know P0 and want to find P . So,

P = P0 + σ(∇S · n̂).

We need a normal vector:
n̂ =

(−ζx, 1)
(1 + ζ2x)

−1/2 .

And we need to compute the curvature:

∇S · n̂ =
∂

∂x
n̂x

=
ζxx

(1 + ζ2x)
3/2
.

So,

P = P0 −
σζxx

(1 + ζ2x)
3/2
. (5)

We can plug Eq. (5) into Eqs. (3)-(4) to find the final system of equations that we are
solving.

What are the relevant Boundary Conditions?

1. at z = −h, v = ∂φ
∂z

2. As x→ ±∞, φ, h are finite

3. At z = ζ :

n̂ · ∇φ = n̂
∂ζ

∂t
· k̂

∂ζ

∂t
= −∂φ

∂x

∂ζ

∂x
+
∂φ

∂x

• This is also known as the kinematic condition

4. ρ∂φ
∂t

+ ρ
2
∇ · φ∇ · ∇φ+ P0 + σ( ζxx

(1+ζ2x)
3/2 ) + ρgh = 0

• This is also known as the dynamic condition

We now need to make some simplifications:

1. Assume small waves, where ζ2 << ζ , φ2 << φ, φζ < ζ

2. Assume that boundary conditions at z = ζ can be applied at z = 0

2
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We then have:
∇2φ = 0

∂φ

∂z
= 0 at z =-h

∂ζ

∂t
=
∂φ

∂z
at z = 0

Linearizing the dynamic condition:

ρ
∂φ

∂t
+ P0 − σζxx + ρgζ = 0 at the interface.

And linearizing the kinematic condition:

∂ζ

∂t
=
∂φ

∂y
at the interface.

To describe waves, we seek solutions of the form:

ζ = ζ̂eik(x−ct)

φ = φ̂eik(x−ct)

Where k = 2π
λ

is the wave number, λ is the wave length, and c = ω
k

is the speed at which
the wave travels.

From ∇2φ, we find
φ̂′′ − k2φ̂ = 0

so
φ̂(z) = c1 cosh zk + c2 sinh zk.

Using ∂φ̂
∂z
|z=−h = 0, we get φ̂(z) = c1 cosh k(z + h).

Using ∂φ̂
∂z
|z=0 =

∂φ
∂z

, we get −ikcζ̂ = c1k sinh kh.

Finally from the dynamic condition, we find −ρikcc1 cosh(kh) + ρgζ̂ + σk2ζ̂ = 0.

Combining:
(−kρc2 tanh−1(kh) + ρg + σk2)ζ̂ = 0

c2 =
σk2 + ρg

kρ
tanh kh

ω2 =

(
gk +

σk3

ρ

)
tanh kh

Physical Interpretation:

3
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Consider the Bond number:

Bo =
ρg

σk2
=

gravity
surface tension

=
ρg

k2σ

We can use this to re-write ω2

ω2 = gk

(
1 +

1

Bo

)
tanh(kh)

For air-water, if Bo 1, λc ≈ 1.7cm→ capillary wave.

For Bo >> 1 (or λ >> λc, surface tension is negligible→ gravity wave

For gravity waves: Bo >> 1, c2 = g
k
tanh kh

a In shallow water, kh << 1, tanh kh ≈ kh

So , c =
√
gh, ω =

√
ghk, meaning all waves travel at the same speed

One can only reliable surf in shallow water!

b In deep water, kh >> 1, tanh kh ≈ 1

So , c =
√

g
k
, ω =

√
gk, meaning long waves travel faster

For capillary waves: Bo << 1, c2 = σk
ρ
tanh kh

a In shallow water, kh << 1, tanh kh ≈ kh

So , c =
√

σh
ρ
k, ω =

√
σh
ρ
k2, meaning short wavelengths travel faster

b In deep water, kh >> 1, tanh kh ≈ 1

So , c =
√

σ
ρ
k1/2, ω =

√
σ
ρ
k3/2, meaning short wavelengths travel faster

This relationship is plotted in Fig. 2

A note on dispersive systems:

Whenever c depends on k, the system is called dispersive and the various modes (Fourier
components) separate (disperse). In these systems, the ENERGY on the waves travel at
a speed different than the phase speed c = ω

k
. Instead they travel at the group velocity

cg =
dω
dk

. This is the velocity at which a wave-packet travels.

For each of the regimes above, the group velocities are:

• Shallow gravity waves: cg = c

4
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Figure 2: Plotting c vs λ

• Deep gravity waves: cg = 1
2
c

• Shallow capillary waves: cg = 2c

• Deep Capillary waves cg = 3
2
c

Consider flow past a submerged obstacle, such as a rock in a river, as depicted in Fig. 3.

Figure 3: Flow past a submerged obstacle.

If v < cmin, no steady waves are generated.

If v > cmin, there are 2 k values for which c = v and the waves appear steady. In this case,
the smaller k (bigger λ) is a gravity wave. It will have cg < c = v, meaning the energy will
be swept downstream. The larger k (smaller λ) is a capillary wave. It will have cg > c = v,
meaning the energy will travel upstream.
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Lecture 13: Kelvin-Helmholtz Instability

Introduction: The question is whether the perturba-
tion will grow or decay over time. Consider inviscid
layers moving with velocityU1 andU2 parallel to their
interface (shown on right). We will use inviscid limit,
and look at small perturbation of an interface moving
with velocity (U1 + U2)/2 as shown below.

With interface moving at Us = (U1 + U2)/2, let U =
U1 − U2 and Us = 0, we get the setup as shown on the
left. From this point on, we will denote the velocity of
top layer as U1 = U/2 and velocity of bottem layer as
U2 = −U/2 (obtained by plugging in U1 and U2).

Setup: First consider an interface y = η(x, z, t). When interface is unperturbed, η = 0.

Assume irrotational and inviscid flow tells us that with Helmhold decomposition, we get

#»u i = ∇Φi with i = 1, 2 (1)
∇2Φi = 0 with i = 1, 2. (2)

We can write the velocity potential that describe the perturbed flow above and below the
interface as

Φi = ΦiB + Φio with i = 1, 2

where ΦB is the base-state and Φo is the perturbation.

If we are at base-state (when surface is unperturbed) we have

η = 0, (3)

Φ1B =
Ux

2
, (4)

Φ2B =
−Ux

2
. (5)

Boundary Conditions: We consider following boundary condition

Φ1 →
Ux

2
as y →∞,Φ2 →

−Ux
2

as y → −∞, (6)

n̂ · ∇Φ1 = n̂ · ∇Φ2 = n̂ · #»us Kinematic B.C. on y = η, (7)
P1 − P2 = σ · curvature ≈ −σ∇2η Dynamic B.C.. (8)

1
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where σ is the surface tension, n̂ is the normal of the interface, and #»us is the surface
velocity. The surface is y = η(x, z, t) or f(x, z, y, t) = y − η = 0. Since we assume small
perturbation, we can assume velocity of the surface is purely vertical

#»us =
∂η

∂t
ey. (9)

Also, normal vector n̂ is

n̂ =
∇f
|∇f |

=
−(∂η/∂x)ex − (∂η/∂z)ez + ey√

1 + (∂η/∂x)2 + (∂η/∂z)2
(10)

Bernoulli’s relation: Here we still consider the Bernoulli’s relation, which gives us

ρ1
∂Φ1

∂t
+ ρ1
|∇Φ1|2

2
+ P1 + ρ1gy = f1(t), (11)

ρ2
∂Φ2

∂t
+ ρ2
|∇Φ2|2

2
+ P2 + ρ2gy = f2(t). (12)

At base-state, we have

0 + ρ1
U2

8
+ P1 + 0 = f1(t), (13)

0 + ρ2
U2

8
+ P2 + 0 = f2(t). (14)

At base-state, P1 = P2 so subtrating the two equations at base-state gives us

f1 − f2 = (ρ1 − ρ2)
U2

8
. (15)

We apply the dynamic boundary condition to Eq. 11 and Eq. 12 and get

P1 − P2 = −σ∇2η = (f1 − f2) + ρ2
∂Φ2

∂t
− ρ1

∂Φ1

∂t
+ (ρ2 − ρ1)gη (16)

+
ρ2
2
|∇Φ2|2 −

ρ1
2
|∇Φ1|2.

Before we plug in the base-state function, linearize the following by droopping quadratic
terms

Φ = ΦB + Φo

∇Φ = ∇ΦB +∇Φo

|∇Φ|2 = |∇ΦB|2 + 2∇ΦB · ∇Φo + |∇Φo|2

=
U2

4
+ U

∂Φo

∂x
+ small.

2
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After plugging in, we get

P1 − P2 = −σ∇2η =
���

����

(ρ1 − ρ2)
U2

8
+ ρ2

∂Φ2

∂t
− ρ1

∂Φ1

∂t
+ (ρ2 − ρ1)gη +

���
����

(ρ2 − ρ1)
U2

8
(17)

+ ρ2
U

2

∂Φ2o

∂x
+ ρ1

U

2

∂Φ1o

∂x
(18)

= ρ2
∂Φ2o

∂t
− ρ1

∂Φ1o

∂t
+ (ρ2 − ρ1)gη + ρ2

U

2

∂Φ2o

∂x
+ ρ1

U

2

∂Φ1o

∂x

Note that this is the equation perturbed equation Φio has to satisfy since by plugging
in base state, we are basically subtraction the requirement of the base-state out of the
equation.

Method of Normal Modes: Here we look for oscillatory solution for perturbed equation
Φ1o and Φ2o

Φ1 =
Ux

2
+ Φ1oe

iαx+iβz+ωte−ky (19)

Φ2 =
−Ux

2
+ Φ2oe

iαx+iβz+ωte−ky (20)

η = 0 + η0e
iαx+iβz+ωt. (21)

Here by using Laplace’s equation∇2Φ1 = 0, we can deduce that α2 + β2 = k2.

Next, we apply the Kinematic B.C.:

∂η

∂t
ey · n̂ = ∇Φ1 · n̂

ωη0 = −iαU
2
η0 + Φ1oα

2η0 + Φ1oβ
2η0 − kΦ1o

Ignoring the product of quadratic terms since small perturbations

ωη0 = −U
2
η0 − kΦ1o

Φ1o =
−1

k

(
ωη0 +

iαU

2
η0

)
.

Doing the same steps, we get

Φ2o =
1

k

(
ωη0 −

iαU

2
η0

)
.

3
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From balancing the stress:

+σ(ηxx + ηzz) = ρ2Φ2oω − ρ1Φ1oω + (ρ2 − ρ1)gη0 +
ρ2
2

U2

4
+
ρ2
2

(−2
U

2
iαΦ2o)

− ρ1
2

U2

8
− ρ1

2
(2
U

2
iαΦ1o) +

U2

8
(ρ1 − ρ2)

−σ∇2η0 = (ρ2 − ρ1)gη0 + ω(ρ2Φ2o − ρ1Φ1o) +
Uiα

2
(−ρ2Φ2o − ρ1Φ1o)

so we get

0 = η0

[
σ∇2 + (ρ2 − ρ1)g +

ω

k
(ρ2

(
ω − iαU

2

)
+ ρ1

(
ω +

iαU

2

)
) (22)

+
Uiα

2k
(−ρ2

(
ω − iαU

2

)
+ ρ1

(
ω +

iαU

2

)
)

]

and, finally, (Phew...)

0 = ω2 + ω

(
ρ1 − ρ2
ρ1 + ρ2

)
iαU +

σk2

ρ1 + ρ2
+
ρ1 − ρ2
ρ1 + ρ2

gk − U2α2

4
. (23)

If we solve for ω, we get

ω =

[
iαU(ρ2 − ρ1)

2(ρ1 + ρ2)
±
(
α2U2ρ1ρ2
(ρ1 + ρ2)2

− σk3 + (ρ2 − ρ1)gk
ρ1 + ρ2

)1/2
]
. (24)

The stability of the system is determined by the

sgn

(
α2U2ρ1ρ2
(ρ1 + ρ2)2

− σk3 + (ρ2 − ρ1)gk
ρ1 + ρ2

)
. (25)

Note that β does not appear here. The most unstable modes will be those where β = 0, α
is maximize, α = k

There are modes parallel to shear U

We have instability if Re(ω) > 0, so ∇ > 0 so(
α2U2ρ1ρ2
(ρ1 + ρ2)2

>
σk3 + (ρ2 − ρ1)gk

ρ1 + ρ2

)
(26)

so if

U >
(ρ1 + ρ2)

ρ1ρ2
(σk + (ρ2 − ρ1)

g

k
)1/2. (27)

4
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In a Special case: At rest U = 0 (neglecting diffusion), we have instability if σk2 + (ρ2 −
ρ1)g < 0 or σk2 < (ρ1 − ρ2)g. So if the upper layer is heavier (ρ1 − ρ2) > 0, then surface
tension stabilizes large k (small wavelengths) If the horizontal extent is too small (λ =
2π/k)

k >

(
(ρ1 − ρ2)g

σ

)1/2

, λ < 2π

(
σ

(ρ1 − ρ2)g

)1/2

(28)

5
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Stokes Flow
We now turn to the opposite limit where Re� 1, and inertial effects become negligible.

The limit case where Re = 0 is known as Stokes Flow. Note that this is not a singular
limit. Recall that

Re =
Diffusive time scale
Intertial time scale

and we can also introduce a Strouhal number, St

St =
Inertial time scale
Forcing time scale

The non-dimensional momentum equation the becomes

Re St
∂~u

∂t
+Re ~u · ∇~u = −~∇P +∇2~u+ ~f

If the forcing is sufficiently fast, the time dependent term may have to be kept even at
small Reynolds number. We will focus here on situations where that is not the case and
consider the Stokes equations

0 = −~∇P +∇2~u+ ~f and ~∇ · ~u = 0

or in dimensional form
0 = −~∇P + µ∇2~u+ ~F (1)

Note that even if there are no time derivatives, unsteady flows may arise due to time-
dependent boundary conditions.

A few things to consider for Stokes flow:

1. Taking the divergence of (1) yields ∇2P = 0.

2. Taking the curl of (1) yields ∇2~ω = 0. This can be thought of as ∂~ω
∂t

= D∇2ω
in the limit of D going to infinity. So the vorticity diffuses instantaneously
in Stokes flow.

3. Taking the curl of the curl of (1) yields∇2∇2~u = 0. This can be used to solve
for Stokes flow, especially when combined with a streamfunction ~Ψ that we
define such that ~u = ~∇ ∧ ~Ψ with ~∇ · ~Ψ = 0. In that case, we also have the
biharmonic equation for Ψ: ∇2∇2Ψ = 0.

1
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There are a few important General Properties of Stokes Flow:

1. No inertia

2. Quasi-Steady

3. Linearity

4. Time reversibility

1. No inertia: Because inertia plays no role, the flow is completely determined
by the instantaneous forces (no memory/history).
Consider the translation of an object due to a force

#»

F

Hydrodynamic Drag at low Re

D = 6µπUaC (For a sphere C = 1, proof to come)
= Force in steady motion

If we now set F = 0, how long does it take for the body to stop? Roughly:

m
du

dt
= −6µUaπ, (2)

which is readily solved

U(t) = U0e
−6µaπt/m

= U0e
−t/τ ,

where τ = m
6πµa

= 2a2

ν
.

Compare τ to the time taken to travel one particle size:

ta =
a

U
,

so
τ

ta
=

2a2

ν

U

a
= 2Re. (3)

For example, for an organism of 10µm, with U ∼ 10−3cm/s, ν = 10−2cm2/s,
we get

τ =
2 · 10−10m2

10−6m2/s
= 2 · 10−4s,

2
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and a distance travelled of

d = Uτ ≈ 10−5m/s · 2 · 10−4s = 2 · 10−9m = 2nm← very tiny

Do not be confused: The absence of inertia does not mean that acceleration
does take place. It only says that those accelerations are not dynamically
significant.

2. Quasi-steady: There are no time derivatives in the Stokes equations. How-
ever, the B.C. may be time-dependent.
Because of the instantaneous diffusion of momentum and vorticity, the ve-
locity is completely prescribed by the force and B.C. at any given time.
You can think of boundaries as a source of vorticity.

3
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Ex.: For a streamlined body

For a low Re flow the whole domain is a viscous boundary layer.

3. Linearity: The Stokes equation are linear. So if we have solutions u(1), P (1)

and u(2), P (2), then c1u(1) + c2u
(2), c1P

(1) + c2P
(2) are solutions too.

Example: Sphere in a linear shear flow→ is there lift

B.C.:

1. u→ u∞ = #»u + Γ · #»x︸ ︷︷ ︸
Linear shear

as x→∞;

2. u = Ω ∧ #»x on S.

4
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Solve
µ∇2 #»u =

#»∇P,
#»∇ · #»u = 0.

Break it down

• Sphere rotating in a stagnant fluid: u∞ → 0, #»u = Ω∧ #»x on S. So Lift = 0 by
symmetry;

• Sphere in uniform flow: u∞ = #»u . So Lift = 0 by symmetry;

• Non-rotating flow centered on a particle Lift = 0 by symmetry.

So adding it up, we must have Lift = 0 in our problem.

5
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Lecture 14

Further consequence of linearity:

Consider the motion ~U(t) of an arbitrary rigid particle.
The fluid response ~u(~x, t), P (~x, t) are forced by the motion
of the boundary ~U(t).

~u, P are lineary related to ~U . The stress tensor T = −PI +

µ
(
∇~u+ (∇~u)T

)
is also linearly related to ~U .

So ~FH =
∫
S
n̂ · T = −PTdS is also linearly related to ~U , so may write ~FH = µA · ~U , where

A depends on the particle shape. Drag ∝ ~U.

If the particle also rotates with angular velocity Ω, we can write ~FH = µA · ~U and similarly
for the torque.

(4) Time reversibility (symmetry in time):

We saw that ~u ∝ applied forces. So if we reversed forces, we would reverse the velocities
→ time reversed.

Note: For regular Navier-Stokes, this is not true because of inertia.

Using time reversibility and spacial symmetries, it is possible to rule out certain flows.

1
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Ex: 1) Sphere falling near a wall:

Figure 1: So the sphere must fall vertically.

Ex: 2) Ellipsoid falling under gravity, does it rotate?

Figure 2: Try clockwise ~u , we must have counterclockwise ~u for reversed gravity, but this
is the same system rotated, so no rotation is possible.

2
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Vector methods for solving Stokes flow problems

Ref. Disorder and Mixing, Guyon, Chap 3, Hinch’s Method.

Preliminaries: We distinguish between ”true” and ”pseudo” vectors.

Ex: True vectors are ~u, ~x, ~F ,∇.

Pseudo-vectors are obtained via a cross-product, which involves a ”right-hand” rule,
which has an arbitrary direction. So angular velocity ~ω, torque ~L are pseudo-vectors.

Relation between true vectors T and pseudo-vectors P :

(i) T × T = P ; ~x× ~F = ~L, ∇× ~u = ~ω

(ii) P × T = T, and T × P = T ; ~Ω× ~x = ~u, ∇× ~ω = ∇2~u

(iii) • T · P = pseudo-scalar, because the sign is arbitrary.

• T · T = true scalar

• P · P = true scalar

(iv) P × P = P of arbitrary sign. (Count ”signs”, with × counting as one, · not counting
as one.)

3
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Vector methods for solving Stokes flow problems, continued

Consider a sphere and look for spherically symmetric solu-
tions.
Validity region:

Exterior Interior
(r 6= 0, r →∞) (r < R0, r = 0)

φ−1 = 1/r 1 = φ0 = ∇ · ~φ1

~φ−2 = ∇~φ−1 = ~x/r3 ~x = ~φ1

φ−3 =
I

r3
− 3~x~x

r5
r2I − 3~x~x = φ2

We are now ready to use the Hinch Method for Stokes flow.
We are solving

µ∇2~u = ~∇P, ~∇ · ~u = 0.

We postulate the following forms of the velocity and pressure:

~u(~x) = ~∇φ+ ~x ∧ ~∇ψ + ~∇(~x · ~A)− 2 ~A,

P (~x) = 2µ~∇ · ~A,

where ∇2φ = ∇2ψ = ∇2 ~A = 0 (you will verify the two equations above in your home-
work).
Note that here ψ is a pseudo-scalar, φ is a true scalar and ~A is true vector.
We want to exploit the linearity of the Stokes equations to solve for φ, ψ and ~A. We can
then compute ~u and P from there. We will separate the homogeneous and the inhomoge-
neous parts:

~u = ~uH + ~ui µ∇2~uH = 0 µ∇2~ui = ~∇P
~∇ · ~uH = 0 ~∇ · ~uP = 0

1
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Example: Sphere translating in a fluid
In non-dimensional form:

∇2~u = ~∇P B.C ~u = ~Uon S
~∇ · ~u = 0 ~u→ 0 as r →∞

We look for φ, ~A, ψ that are linear in ~U and the exterior harmonics φ(n+1). We must
choose:

φ = α~U · ~φ−2 = α
~U · ~x
r3

ψ = 0 (Nothing else works)

~A = β~Uφ−1 + γ~U · φ−3 = β
~U

r
+ γ~U · φ−3.

Note:

~U · φ−3 = ~U · ~∇~∇φ−1 = ~U · ~∇~∇
(

1

r

)
and

~∇ · (~U · φ−3) = ~U · ~∇
(
∇2

(
1

r

))
= 0,

so this does not change P . In general, any divergece-free contribution to ~A can be ab-
sorbed into terms involving ~ψ or φ, so they may be neglected. So

φ = α
~U · ~x
r3

, ~A = β~U/r

~u = ~∇φ+ ~∇(~x · ~A)− 2 ~A

Note:

~∇(~x · ~A)− 2 ~A = I · ~A+ ~x · ~∇ ~A− 2 ~A = ~x · ~∇ ~A− ~A,

which gives:

β~U ·

(
−~x~x
r3
− I

r

)
and ~∇φ = α~U ·

(
I

r3
− 3

~x~x

r5

)

2
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So

~u = ~U ·

(
α

(
I

r3
− 3

~x~x

r5

)
− β

(
I

r
+
~x~x

r3

))
(1)

At r = 1, we have ~u = ~U , which gives

(α− β)I + (−3α− β)~x~x = I

So,
α− β = 1, − 3α− β = 0

we find α = 1/4, β = −3/4. So overall, in dimensional form:

P (~x) = 2µ~∇ ·

(
β
~U

r

)
=

3

2
µ ~Ua · ~x

r3

~u(~x) = ~U ·

(
3a

4

(
I

r
+
~x~x

r3

)
+
a3

4

(
I

r3
− 3~x~x

r5

))
Note: As r →∞, this decays only as a/r (very slow).
For irrotational flow, we had

~u = ~∇φ =
a3

2

(
~U ·

(
~x~x

r5
− I

r3

))
,

which decays as a3/r3. Now

~u ∼ ~Ua ·

(
3

4

(
I

r
+
~x~x

r3

))
∼ Ua

r

Stokes Drag

Importantly, we can now calculate the hydrodynamic drag on a sphere

~FH =

∫
S

n̂ · TdS =

∫
S

n̂ · (−PI + µ(~∇~u+ (~∇~u)T ))dS

On the surface, n̂ = ~x/a and one finds

n̂ · T |r=a = −3

2

~Uµ

a
,

so
~FH = −3

2

~Uµ

a

∫
S

dS = −3

2

~Uµ

a
· 4πa2 = −6πµ~Ua

3
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For a sphere sedimentary under gravity:

~FH + Bouyancy + Gravity = 0 (No acceleration if Re = 0)

−6πµ~Ua− 4π

3
a3~gρw +

4π

3
a3~gρS = 0

So
~U =

1

6πµa

4π

3
a3~g(ρS − ρw) =

2

9

a2~g(ρS − ρw)

µ
← Stokes Settling speed

and the flow around it is

~u(~x) =
3a

4
~U ·

(
I

r
+
~x~x

r3

)
+
a3

4
~U ·

(
I

r3
− 3~x~x

r5

)

~FH = −6πµU~a

If we let ~F fix, but let a→ 0, we find the response to a POINT FORCE

~u = −
~FH

8πµ

(
I

r
+
~x~x

r3

)

this is called a STOKESLET.

Second Example: Rotating sphere in our infinite fluid

Figure 1: *

Solve:
∇2~u = ∇P, ∇ · ~u = 0, (2)

with boundary conditions:

~u = ~Ω× ~x on S, (r = 1, n̂ = ~x) (3)

~u→ 0 as |~x| → ∞. (4)

4
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We seek φ, ψ, ~A linear in the pseudo-vector ~Ω and φ−n.

φ = 0, φ = α
~Ω · ~x
r3

, ~A = β
~Ω× ~x
r3

+

(
γ
~Ω

r

)
︸ ︷︷ ︸

pseudo, so no.

(5)

But

∇ · ~A = β∇i

(
Ωjxk
r3

εjki

)
= βΩjεjki

(
δik
r3
− 3xjxk

r5

)
= 0. (6)

So ~A will not contribute and we have:

~u(~x) = ~x×∇ψ = α

(
~x×∇

~Ω · ~x
r3

)
= αxi∇j

(Ωkxk)

r3
εijm

= αxiΩk

(
δjk
r3
− 3xkxj

r5

)
εijm = α

xiΩk

r5
εikm −

��
�
��
�*0

3Ωkxixjxk
r5

εijm


= α

~x

r3
× ~Ω.

So at r = 1, ~u(~x) = −α(~Ω× ~x) and α = −1 (or dimensionally −a3).

So we find a uniform pressure (P = 0) and a (dimensional) velocity of

~u(~x) =
~Ω× ~x
r3

a3 (7)

Note: This decays as 1
r2

as r →∞.

What is the torque?

~LH =

∫
S

~x× n̂ · TdS, ~A = 0 so P = 0. (8)

uk = Ωi
xj
r3
εijk, ∇~u = ∇muk = Ωi

(
δmj

r3
− 3xjxm

r5

)
εijk

and

(∇~u)T = Ωi

(
δjk
r3
− 3xjxk

r5

)
εijm.

So

Tmk = Ωi
���

���
���:0(εikm

r3
+
εimk

)
− 3

Ωi

r5
(xjxmεijk + xjxkεijm)

5
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and

n̂ · T
∣∣∣∣
r=1

= xm (−3Ωi (xjxmεijm + xjxkεijm))

= −3Ωi

(
xjεijk +���

��:0xjxkxmεijm

)
= −3

(
~Ω× ~x

)
So

~L =

∫
S

n̂× (−3Ω× n̂) dS = 3

∫
S

n̂
(
n̂ · ~Ω

)
− ~ΩdS

= 3

∫
S

(
n̂n̂− I

)
· ~ΩdS = 3

(∫
V

∇~xdV −
∫
S

IdS

)
· ~Ω

= 3

(
4π

3
I − 4πI

)
· ~Ω = −8π~Ω.

In dimensional form, ~LH = −8πµa3~Ω. (opposes rotation)
So

~u(~x) = −
~LH

8πµ
× ~x

r3︸︷︷︸
rotlet

(9)

6
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Rayleigh-Taylor Linear Stability Analysis
We now turn to study the instabilities generally called convection, which arise (literally)
when a fluid is heated from below. This is a large class of problems and the observed
flows are typically far from the onset of instability and thus non-linear. We focus here on
the linear regime that captures the boundary between stable and unstable systems.

We first assume that the density of the fluid is linearly related to the temperature

ρ = ρ0(1− α(T − T0))

where T0 is a reference temperature at which the density is ρ0. Here α = 1
ρ0

dρ
dT

is the thermal
expansion coefficient. For example in water at room temperature, α ≈ 10−4/◦K.

We consider a two-dimensional system (it can be shown that the instability is triggered
by two-dimensional disturbances, first. We denote the horizontal coordinate as x and the
vertical as z, increasing upward. We assume a layer of thickness h bound by two horizon-
tal boundaries. The equilibrium temperature profile will be chosen to vary linearly

Te(x, z) = T0 − Γz

where Γ is a positive constant.

The fluid is thus hot and light at the bottom and cold and heavy at the top, an unstable
configuration under the influence of gravity (the system wants to reduce its potential
energy). However, diffusive and viscous effects will act to stabilize the system. We will
begin with a scaling analysis to quantify these effects.

In a layer of thickness h, the relative density difference is at most

∆ρ

ρ0

= hΓα.

A fluid blob of size h with this density difference but resisted by viscous effects would
rise at speed (as we found when studying Stokes flow)

Us ∼
∆ρ

ρ0

gh2

ν
=
gαhΓh2

ν

To travel a distance h would therefore require a time (an advective time)

ta =
h

Us
=

hν

gαΓh3
=

ν

gαΓh2

On the other hand, diffusive effects may dissipate the density difference. Denoting the
temperature diffusivity as κ, the time associated to the heat dissipation over a thickness
h is

td =
h2

κ
.

1
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The ratio of these time scales should dictate if an instability can develop. We define the
Rayleigh number as

Ra =
td
ta

=
gαΓh4

κν
.

We expect instability if this ratio is large, meaning that the fluid can move before losing
its density difference. So we anticipate that the system will be unstable if Ra > Racr, for
some number Racr.

The exact value of Racr depends on the boundary conditions but it is always of order
about 1000.

Governing Equations

We now apply the method of normal modes to determine the stability of the system. Our
governing equations are:

∇ · ~u = 0

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
= −∇Pd + ρν∇2~u− gρk̂

∂T

∂t
+ ~u · ∇T = κ∇2T

ρ = ρ0(1− α(T − T0))

Here the third equation is the advection-diffusion equation, which describes the behavior
of a scalar quantity moving by a velocity field ~u and while undergoing diffusion.

We will first use the Boussinesq approximation, which states that density variations only
have a non-negligible effect when multiplied by the gravitational acceleration. In all other
instances where the density appears, we will use ρ = ρ0. This approximation is typically
valid provided ∆ρ/ρ ≤ 5% to 10%.

We will also introduce the dynamic pressure, which we define as the difference between
the pressure and the static pressure

Pd = P −
∫
ρegdz = P − ρ0g(z − αΓ

z2

2
).

where ρe is the density associated with the equilibrium temperature distribution Te. We
also introduce the perturbed temperature Tp = T − (T0−Γz). Our equations then become

∇ · ~u = 0

ρ0

(
∂~u

∂t
+ ~u · ∇~u

)
= −∇Pd + ρ0ν∇2~u+ gρ0αTpk̂

∂Tp
∂t

+ ~u · (∇Tp − Γk̂) = κ∇2Tp.

2
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Our base (equilibrium) state is a static one where ~ue = ~0, Pd,e = 0, and Tp,e = 0. Note that
these are all zero because of our choices of dynamic pressure and temperature perturba-
tions. Other choices would have been fine as well, and they would instead have led to
non-zero equilibrium values.

In general, we would now write our variables as the sum of equilibrium values and per-
turbations:

~u = ~ue + ~u′ , Pd = Pd,e + P ′, and Tp = Tp,e + T ′.

However, since all equilibrium quantities are zero here, we do not need to introduce the
primed quantities.

Our goal is now to linearize the governing equations. In practice, we will neglect all the
products of the variables we are solving for because they are all assumed to be small
(because they are perturbations of the equilibrium value). We are then left with

∇ · ~u = 0

ρ0
∂~u

∂t
= −∇Pd + ρ0ν∇2~u+ gρ0αTpk̂

∂Tp
∂t
− Γ~u · k̂ = κ∇2Tp.

We will focus on the vertical component of the momentum equation

ρ0
∂w

∂t
= −∂Pd

∂z
+ ρ0ν∇2w + gρ0αTp (1)

where w = ~u · k̂.

We would now like to eliminate the pressure term, which we can do at the expense of an
increase in the order of the equations. To do so, we first take the Laplacian of equation (1)

ρ0
∂∇2w

∂t
= −∂∇

2Pd
∂z

+ ρ0ν∇2∇2w + gρ0α∇2Tp (2)

We now seek another way to produce ∂∇2Pd

∂z
. To get it, we first take the divergence of the

vector form of the momentum equation and take advantage of∇ · ~u = 0. We are left with

ρ0
∂∇ · ~u
∂t

= −∇2P + ρ0ν∇2(∇ · ~u) + gρ0α
∂Tp
∂z

k̂

0 = −∇2Pd + gρ0α
∂Tp
∂z

k̂

and we differentiate the result with respect to z to find

∂∇2Pd
∂z

= gρ0α
∂2Tp
∂z2

k̂.

3
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We can now replace the pressure term in equation (2) to find

ρ0
∂∇2w

∂t
= −gρ0α

∂2Tp
∂z2

k̂ + ρ0ν∇2∇2w + gρ0α∇2Tp

which we rewrite as
∂∇2w

∂t
= ν∇2∇2w + gα∇2

HTp

where we introduced the horizontal Laplacian∇2
H = ∇2 − ∂2

∂z2
.

Our system of equation now only has two unknowns: w and Tp:

∂∇2w

∂t
= ν∇2∇2w + gα∇2

HTp (3)

∂Tp
∂t
− κ∇2Tp = Γw (4)

Finally, we apply the operator ∂
∂t
− κ∇2 to equation (3) to allow us to substitute for Tp

using equation (4). We get

∂( ∂
∂t
− κ∇2)∇2w

∂t
= ν(

∂

∂t
− κ∇2)∇2∇2w + gα∇2

H(
∂

∂t
− κ∇2)Tp

∂( ∂
∂t
− κ∇2)∇2w

∂t
= ν(

∂

∂t
− κ∇2)∇2∇2w + gαΓ∇2

Hw (5)

Cleaning things up a little, we get a single, sixth order equation, in the unknown w:

∂

∂t

[(
∂

∂t
− κ∇2

)
∇2w

]
− ν

(
∂

∂t
+ κ∇2

)
∇2∇2w − gαΓ

(
∇2 − ∂2

∂z2

)
w = 0. (6)

Method of normal modes

We are now ready to use the method of normal modes by considering an expansion of the
form

w = f(z)eikx+σt

We will determine f(z) and impose constraints on k based on the boundary conditions
chosen. We are interested in the stability boundary of the system, where Re(σ) changes
sign.

In general, this corresponds to solving a a 6×6 linear system. However, we will focus here
on a particularly convenient set of boundary conditions that allow us to obtain an exact
solution.

We consider the case of stress-free, no penetration, fixed temperature boundary conditions.
Both are very reasonable, but they don’t often come together. Stress-free makes sense at a

4
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free air-liquid surface, while fixed-temperature requires some control that would typically
involve a solid surface.

The fixed-temperature BC implies that our perturbations Tp must be zero at the bound-
aries z = 0 and z = h. In addition, the no-penetration condition implies that w(z = 0) =
w(z = h) = 0.

The stress-free condition implies that ρν ∂u
∂z

= 0 at the top and bottom. We will combine
this with the divergence-free equation

∂(∇ · ~u)

∂z
=

∂2u

∂x∂z
+
∂2w

∂z2
= 0.

We remark that at the boundaries, where ∂u
∂z

= 0, this implies that ∂2w
∂z2

= 0. This is in
addition to the boundary condition w = 0.

Lastly, because Tp = 0, and w = 0 and ∂2w
∂z2

= 0, at the boundaries, the equation

∂∇2w

∂t
= ν∇2(∇2w) + gα∇2

HTp

implies that ∂4w
∂z4

= 0 at the boundaries as well. So we have 6 boundaries conditions on w:

At z = 0 and z = h: w = 0,
∂2w

∂z2
= 0, and

∂4w

∂z4
= 0.

As you can see, these boundary conditions are very convenient as a simple function of z
can satisfy them all. We will use f(z) = sin(nπz/h) for n = 1, 2, ....

Before we go further, we will non-dimensionalize our equation. We could have done this
from the beginning, the result would have been the same. Note that in equation (6), the
only physical quantities that appear are time and length. We select as a typical length the
height of the layer, L∗ = h, and we use a diffuse time scale t∗ = h2/κ. We then define
dimensionless quantities, denoted with a prime:

~x′ =
~x

h
, ∇′ = h∇, t′ = κt

h2
,

∂

∂t′
=
h2

κ

∂

∂t
, w′ =

h

κ
w

and

~x = h~x′, ∇ =
∇′

h
, t =

h2t′

κ
,
∂

∂t
=

κ

h2

∂

∂t′
, w =

κ

h
w′, ∇2 =

∇′2

h2

We then rewrite equation (6)

∂

∂t

[(
∂

∂t
− κ∇2

)
∇2w

]
− ν

(
∂

∂t
− κ∇2

)
∇2∇2w − gαΓ

(
∇2 − ∂2

∂z2

)
w = 0.

as

κ

h2

∂

∂t′

[(
κ

h2

∂

∂t′
− κ∇

′2

h2

)
∇′2

h2

κ

h
w′
]
−ν
(
κ

h2

∂

∂t′
− κ∇

′2

h2

)
∇′2

h2

∇′2

h2

κ

h
w′−gαΓ

(
∇′2

h2
− 1

h2

∂2

∂z′2

)
κ

h
w′ = 0.

5
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Simplifying and grouping terms, we get

κ3

h7

∂

∂t′

[(
∂

∂t′
−∇′2

)
∇′2
]
w′ − νκ2

h7

(
∂

∂t′
−∇′2

)
∇′2∇′2w′ − gαΓκ

h3

(
∇′2 − ∂2

∂z′2

)
w′ = 0.

Multiplying by h7

νκ2
, we find

κ

ν

∂

∂t′

[(
∂

∂t′
−∇′2

)
∇′2
]
w′ −

(
∂

∂t′
−∇′2

)
∇′2∇′2w′ − gαΓκh4

κν

(
∇′2 − ∂2

∂z′2

)
w′ = 0.

This equation involves two non-dimensional numbers. One is the Prandtl number, Pr =
ν
κ

and the other is the Rayleigh number we encountered earlier

Ra =
gαΓκh4

κν
.

This is a sign that we are on the right track!

We are now ready to substitute for w according to our assumed form w′ = sin(nπz)eikx+σt

into our non-dimensional equation

1

Pr

∂

∂t′

[(
∂

∂t′
−∇′2

)
∇′2
]
w′ −

(
∂

∂t′
−∇′2

)
∇′2∇′2w′ −Ra

(
∇′2 − ∂2

∂z′2

)
w′ = 0.

We note that

1. ∂
∂t′
−→ σ

2. ∂2

∂z′2
−→ −n2π2

3. ∂2

∂x′2
−→ −k2

4. ∇′2 −→ −(n2π2 + k2)

We thus obtain

eikx+σt

[
1

Pr
σ
[(
σ + n2π2 + k2

)]
−
(
σ + (n2π2 + k2)

)
(n2π2 + k2)2 +Ra

(
k2
)]

= 0.

In general, σ may be complex. However, here it is possible to show (see Kundu’s textbook,
for example) that σ is real at the onset of instability. We are therefore interested in the
critical value that will arise when σ = 0. This simplifies the equation considerably and, in
particular, makes the Prandtl number unimportant.

−
(
(n2π2 + k2)

)
(n2π2 + k2)2 +Ra

(
k2
)

= 0.

6
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and we find

Ra =
(n2π2 + k2)3

k2
.

The critical value of the Rayleigh number will be the smallest possible value for which
this equality is satisfied. We therefore need to look for the minimum of this expression as
a function of n and k. Clearly, smaller values of n decrease the value of Ra and we thus
select n to be as small as possible, namely n = 1.

Now the wavenumber k can take any real value as we have no conditions on the horizon-
tal extent of the flow. We therefore need to find the minimum of

Ra(k2) =
(π2 + k2)3

k2
.

We find the derivative to be
dRa

dk2
=

3(π2 + k2)2k2 − (k2 + π2)3

k4

This is zero if 3k2 = k2 +π2 or k2 = π2/2. The means that the most unstable wavenumber
is

km =
π√
2
.

The corresponding critical Rayleigh number is

Racr =
(π2 + k2

m)3

k2
m

=
(3π2/2)3

π2/2
=

33π4

4
≈ 657

We conclude by computing som Rayleigh numbers, to get a sense of when a system may
get unstable. Our definition of the Rayleigh number can be rewritten

Ra =
gαΓκh4

κν
=

∆ρ

ρ

gh3

κν

For water, a temperature difference of 1◦C corresponds to ∆ρ
ρ
∼ 10−4. Using κ ≈ 10−7m2/s

and ν ≈ 10−6m2/s, and g = 10m/s2 we find

Ra ≈ 10−4 10d3

10−6 10−7
m−3 = 1010d3/m3

To get a Rayleigh number greater than 103, and therefore instability,
we need d > 10−7/3m ≈ 4.6mm.

For magma, the viscosity can rise to about ν = 1m2/s, giving

Ra ≈ 10−4 10d3

1 10−7
m−3 = 104d3/m3

To get a Rayleigh number greater than 103, and therefore instability,
we need d > 10−1/3m ≈ 46cm.

7
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Lubrication Theory
Here we consider systems where the flow is nearly unidirectional because the geometry
has a very large aspect ratio. Most typically, this will apply to flow where a free surface
describes the top of a nearly flat region, such as a spreading liquid sheet, in a regime
where viscous effects will be important.

For example: Lava flow, blood flow in capillaries, thin films, bearings.

Because of the domain’s aspect ratio, where H � L, we will non-dimensionalize differ-
ently in x and in y:

x′ =
x

L
and y′ =

y

H

Suppose we have a velocity scale U for the horizontal velocity, then for the vector, ~u =
(u, v), we use

u′ =
u

U
and v′ =

v

V

where we want to determine V .

From the divergence-free condition, we then have

0 =
∂u

∂x
+
∂v

∂y
=
U

L

∂u′

∂x′
+
V

H

∂v′

∂y′

So we expect that

V ∼ U
H

L
� U

and therefore the flow is almost unidirectional, as the vertical flow is much smaller than
the horizontal one.

We now look at the momentum equations. Beginning in the x̂ direction

ρ
Du

Dt
= −∂P

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)

1
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which non-dimensionalizes to

ρ
U2

L

Du′

Dt′
= −P0

L

∂P ′

∂x′
+ µ

(
U

L2

∂2u′

∂x′2
+

U

H2

∂2u′

∂y′2

)
which can be rewritten as(

ρUH

µ

)
H

L

Du′

Dt′
= −

(
P0H

2

µUL

)
∂P ′

∂x′
+

(
H2

L2

)
∂2u′

∂x′2
+
∂2u′

∂y′2

We now define P0 =
µUL
H2 for convenience.

So if we define Re = ρUH
µ

and assume that Re H/L � 1 because H/L � 1, we are left
with the dominant terms

0 = −∂P
′

∂x′
+
∂2u′

∂y′2

This is the same equation that we obtained in unidirectional flow. However, here it is
possible that the pressure gradient is not constant.

Turning now to the ŷ direction

ρ
Dv

Dt
= −∂P

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
.

Recalling that V ∼ U H
L

, this non-dimensionalizes to

ρ
UV

L

Dv′

Dt′
= −P0

H

∂P ′

∂y′
+ µ

(
V

L2

∂2v′

∂x′2
+

V

H2

∂2v′

∂y′2

)
that we rewrite as

ρ
U2H

L2

Dv′

Dt′
= −µUL

H3

∂P ′

∂y′
+ µ

(
UH

L3

∂2v′

∂x′2
+

U

HL

∂2v′

∂y′2

)
which we again rewrite as

Re

(
H

L

)3
Dv′

Dt′
= −∂P

′

∂y′
+

(
H

L

)4
∂2v′

∂x′2
+

(
H

L

)2
∂2v′

∂y′2

Note that all terms in the equation above are of order H2/L2 or smaller, EXCEPT the
pressure gradient. This implies that

0 =
∂P ′

∂y′

and thus we have that P ′ can be written as a function of x′ and t′ only: P ′(x′, t′). We
can therefore integrate the x̂-momentum equation twice with respect to y′. We find, in
dimensional form

u(x, y, t) =
1

2µ

∂P

∂x
y2 + C1(x, t) y.+ C2(x, t)

2
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So at any location x, the flow is parabolic in y. It will depend on the the horizontal pres-
sure derivative, and on the boundary conditions.

We can compute the volume flux (per depth unit) and use it to describe how the height of
the current changes over time. Define

Q(x, t) =

∫ h(x,t)

0

u(x, y, t) dy

We can compute its x derivative

∂Q

∂x
= u(x, h, t)

∂h

∂x
+

∫ h(x,t)

0

∂u(x, y, t)

∂x
dy

From the divergence-free equation, we know that ∂u
∂x

= −∂v)
∂y

so we have

∂Q

∂x
= u(x, h, t)

∂h

∂x
−
∫ h(x,t)

0

∂v(x, y, t)

∂y
dy

∂Q

∂x
= u(x, h, t)

∂h

∂x
− v(x, h, t)

where we used that v(x, 0, t) = 0, as even in Lubrication theory there is no-penetration at
a solid boundary.

Finally, we note that v(x, h, t) = ∂h
∂t

so we get

∂Q

∂x
= u(x, h(x, t), t)

∂h

∂x
− ∂h

∂t

If we assume slow variations, consistent with the large aspect ratio, we have ∂h
∂x

� 1.
However, recall that U � V = ∂h

∂t
, so we must take the limit carefully. So if

U
∂h

∂x
� V U

H

L
so

∂h

∂x
� H

L

we end up with
∂Q

∂x
+
∂h

∂t
= 0

This means that any flux change in space displaces the interface up or down (if you pile
up material in one place, the height changes).

3
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Viscous Gravity Current
How does a finite amount of liquid spread? How about one with a given influx?

2D Geometry

We will first use a scaling argument:

In ŷ, we have
∂P

∂y
= ρg −→ P ∼ ρgh

In x̂, we have
∂P

∂x
= ν∇2u −→ ρgH

L
∼ νU

H2

We can also estimate that U ∼ L
T

.

For the case of a finite area spreading in 2D, we have that H L = A is constant. We therefore
find

ρgA

L2
∼ νL3

A2T
which can be solved to find

L5 ∼ ρgA3T

ν
and H5 ∼ νA2

ρgT

Now let’s see if we can find a more accurate result by solving the equations of Lubrication
Theory. In ŷ, we have that when y = h(x, t), P = P0, the atmospheric pressure. Therefore,

∂P

∂y
= −ρg −→ P ∼ P0 − ρg(y − h(x, t))

We thus see that
∂P

∂x
= ρg

∂h

∂x
.

Our x̂-momentum equation then becomes

µ
∂2u

∂y2
=
∂P

∂x
= ρg

∂h

∂x
.

1
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This yields

u(x, y, t) =
ρg

2µ

∂h

∂x
y2 + C1(x, t)y + C2(x, t)

We have as boundary conditions that:

No-slip at the bottom u(x, 0, t) = 0 −→ C2(x, t) = 0

No tangential stress at the top
∂u

∂y

∣∣∣∣
y=h

= 0 −→ u(x, y, t) =
ρg

2µ

∂h

∂x
y(y − 2h)

We may now compute the horizontal volume flux

Q =

∫ h

0

u dy =
ρg

2µ

∂h

∂x

(
y3

3
− hy2

)
= −h

3ρg

3µ

∂h

∂x
.

Combining this with our previously obtained relation between the flux and the time
derivative of the height, we obtain a single equation in terms of the height

∂h

∂t
+
∂Q

∂x
= 0 −→ ∂h

∂t
− ∂

∂x

(
h3ρg

3µ

∂h

∂x

)
= 0. (1)

If we introduce the notation that the front of the current is at x = xN(t), the boundary
conditions for this PDE are

h(xN , t) = 0 and
∫ xN (t)

0

h(x, t) dx =
A

2
.

where A is the constant area of the whole current.

Note that this is a difficult system to solve. It is a second order, non-linear PDE, with
one regular BC and one global BC. Even numerically, this is tricky. So we will call on a
similarity solution, making use of our previous scaling analysis. This means that we will
not be able to satisfy a general initial condition, but we will get the long-time behavior
right.

Recall our previous scaling

L ∼
(
ρgA3t

ν

)1/5

and H ∼
(
νA2

ρgt

)1/5

.

We will define a dimensionless length η = x
L(t)

and assume that the current total length is
xN(t) = βL(t), for a constant β. We then assume that the height is of the form

h(x, t) =

(
νA2

g

)1/5

t1/5f(η) = Ct−1/5f(η).

2
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For reference, we also have that

η =
C

A

x

t1/5
.

We will now be looking for f(η) and hope that we can rewrite the entire problem in terms
of η and f only.

First, we note that

∂η

∂x
=
C

A

1

t1/5
=
η

x
and

∂η

∂t
=
−1

5t

C

A

x

t1/5
=
−η
5t

We can now compute that

∂h

∂t
=
−C
5
t−6/5f(η) + Ct−1/5f ′(η)

−η
5t

=
−C
5
t−6/5(f + ηf ′)

and

h3
∂h

∂x
=
C5

A
t−1f ′(η)f 3

so that
∂

∂x

(
h3
∂h

∂x

)
= C

C5

A2
t−6/5

d

dη

(
f ′(η) f 3

)
.

We can finally rewrite equation (1) as

−C
5
t−6/5(f + ηf ′)− g

3ν
C
C5

A2
t−6/5

d

dη

(
f ′(η) f 3

)
= 0.

Canceling a −C and t−6/5, and noting that

g

3ν

C5

A2
=

g

3ν

νA2

g

1

A2
=

1

3

we obtain the much-coveted ODE

1

5
(f + ηf ′) +

1

3

d

dη

(
f ′ f 3

)
=

1

5
(ηf)′ +

1

3

(
f ′ f 3

)′
= 0.

The converted conditions are that
f(β) = 0

and ∫ xN

0

h dx =
A

2
−→

∫ xN

0

C

A
t−1/5f(η)dx =

∫ β

0

f dη =
1

2
.

We may now integrate our ODE once

1

5
(ηf) +

1

3

(
f ′ f 3

)
= K1

3
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and find that K1 = 0 because of the nose condition f(β) = 0. Dividing the result by f

1

5
(η) +

1

3

(
f ′ f 2

)
= 0

we may integrate once more
η2

10
+
f 3

9
= K2.

This same condition implies that K2 = β2

10
so that

f(η) =

[
9

10
(β2 − η2)

]1/3
=

[
9β2

10

]1/3(
1−

(
η

β

)2
)1/3

Finally, we use the integral condition to determine β

∫ β

0

f(η) dη =

[
9β2

10

]1/3 ∫ β

0

(
1−

(
η

β

)2
)1/3

dη

=

[
9β5

10

]1/3 ∫ 1

0

(
1− z2

)1/3
dz

=

[
9β5

10

]1/3 √
πΓ(1/3)

5Γ(5/6)
=

1

2

We finally find that

β =

[
5Γ(5/6) 101/3

2
√
πΓ(1/3) 91/3

]3/5
≈ 0.7474

so that

h(x, t) =

(
νA2

gt

)1/5(
9

10
0.742

)1/3
(

1−
(

C x

0.74At1/5

)2
)1/3

which really isn’t as bad as you thought, right?
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