MATH 292: Fluid dynamics Handout 1: Vector Calculus and Einstein notation

Calculus of Vectors, Dyadics, and Tensors

A: Introduction and Review

1. Scalars And Vectors

Scalar = magnitude only (eg. mass, temp, etc.)

Vector: characterized by magnitude and direction; represented geometrically as an
arrow.

= 2 vectors are equal if they have the same magnitude and direction; "parallel
transport vectors”

Y e i

(Nevertheless, it is important to keep in mind that the effect of a given vector may
depend upon its location)

'Notation | Twill typically indicate a vector quantity by an underline, eg. a or b.
Another common method is to use arrows @ b

2. Cartesian Coordinate System

(a) We will indicate the unit or base vectors as:
Y

Z Unit vector

We may also use e, €5, and e;. (¢; =4, e, = j,and e; = k).

7(3
1| &
El/ \'Ql
xz.

X,
i=(0,0,1),j=(0,1,0),and £ = (1,0,0)
(b) In order to describe a vector you must give both the components and the

base vectors.
€.8., a4 = a1+ ayj = azk
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3. Recall the definition of the SCALAR PRODUCT (also called the dot or inner prod-
uct) of two vectors:

(@) a-b=allb|cosb

a
0 b
Where |a|, |b| are the magnitudes of ¢ and b
Also,sincei-i=1,i-j=0,i-k=0etc,
thena - b = a,b, + a,b, + a.b..
NOTE:ifa-b=0and |a| #0, [b| #0, thena L b
(b) Clearly, we also have

la-b=10-d]

and
la-(b+c)=a-b+a-(
and

la|* =a-a=a?

4. Vector Product (also called cross product)
(@) The vector product of 2 vectors a, b is define as
aN'b=|a| |b]sind e

where e is a unit vector in the direction perpendicular to the plane formed by
aand b, as given by the RIGHT-HAND RULE.

(b) From the definition: a Ab= —-bAaanda A (aA(b+c)=aAb+aAc Ttalso
follows thatiAj =k, iNk=—j, jAk=1i, i Ni=0,etc.

(c) You may remember writing something like

v gk
aNb=det|a, ay a.|=i(ayb.— a.b,)+ jla.b, —a.b.) — k(a.b, — a,b.)
b, b, b.

= much of the above is cumbersome and frightfully lengthy to write. We now
introduce a special notation which will simplify many manipulations.

B: Einstein Index Notation and the Summation Concentration
1. Let us reconsider the some of the above. From now on keep in mind that we are

representing vectors in a three-dimensional world. So, we will now label (z,y, 2)
coordinates by (1, 2, 3).

INOTICE: My notation for this operator is A; many others write x

2
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Let @ have components a;, base vectors e;. Then,

3

— 2
a = aye; + ase, + azey = E aie; = ae; (= aje;)
i=1

This idea must be clear in your mind before you move on.

= From now on, we will not write the summation symbol. Instead we will invoke
the summation convention - if an index appears twice, we will know that we should
do a summation i = 1, 2, 3.

2. Scalar product revisited Consider two vectors a = a;¢; and b = b;e; (use a different
index for each vector)
Then,

3

—a-b=Y ae; - ¥3_bje; =7 a;-b; = a; - b,

7=1"1=j 7
(= a1by + azbs + agbs)
base vectors are orthogonal: ¢; - ¢; = 1 when i = j, ¢, - e; = 0 otherwise.

Note: We dropped the sigma from our expression since we invoke the summation
convention

3. Kronecker delta ¢;; (i=1,2,3 j=1,2,3)
a. Definition:
b,y =0 Y 1)
by =1 i=j 2)

- clearly ¢, - e; = 0y
- Note: You can think about ¢;; as the components of the identity matrix

O = O
_ o O

1
identity matrix — | 0
0

b. With this shorthand we write

a-b=ae;- ijj = a;b; (¢ 'éj) = a;b;0;; = a;b;

2dummy index
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- in the final expression, i and j are considered summation indicies
- a;b;0;; implies the double sum ¥}, 32_,a;b;0;
- For ae; - bje;, the vector operation only acts on the base vectors, not the
components
and we again remark that a different dummy index was used for each vector
(aie;, bje;
Note: NEVER write a;e; - be;
c. Remarks:

1. 0 = 011 + 022 + 033
ii. 5”» — the REPLACEMENT OPERATOR: 5ijcj = ¢

iii. Very often, one will not write the unit vectors e;, and will write A; where
it is understood that i may be either 1, 2, or 3. In this case i would be
called a free index since it is free to take on the values 1, 2, or 3. Similarly,
the vector eqn a = b may be written

a;e; = bi€' or a; = bz
=i =i

and since i only appears once on each side of the eqn, it is free to take on
the value 1,2, or 3 so this stands for 3 separate equalities: a; = by, az = by,
az = by

Another example:
(Q : Q)Q = a;bic = az‘bicjéj or aibicj

- iappears twice in a;b; sowesum ¢ =1 — 3

- jis free on ¢; so it can take on values 1, 2, or 3

4. Permutation Symbol:

This symbol will be useful whenever vector products arise: €, ¢ =1,2,3 j =
1,2,3 k=1,2,3

(a) Definition:
+1or — 1, if 4, j, k are all different
Cijk = . 1
Ik 0 if any two indices are the same

In particular,

eijk = +1if ¢, j, k are an EVEN permutation of 1, 2, 3
— c13=1 e32=1 &3 =1

ik = —1if 7, j, k are an ODD permutation of 1, 2, 3
= o3 =—1 ez =—1 €31 =-1
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(b)

(©)

(d)

(e)

Note: By even permutation we mean that an even number of interchanges of
the indices must occur to get back to the order 123; analogous for meaning of
odd permutation.

This definition has the following cyclic and interchange property.
€ijk = €kij = Ejki
and if two indices are simply interchanged, the sign changes,
Cijk = —E€ikj O  Eijk = —Ejik

Also, since ¢, j, k can each independently take on the values 1,2,3 then ¢;;;
represents 27 quantities.

We also have ¢; A e; = e, and by referring to the figure, we can verify
everything is ok: Note: The cross-product of base vectors (or any 2 vectors)

7(3
| &

Eu/ \'gl

X, %2

Figure 1: e) Aey = +e5 = €123e3 = +1 - ¢4

will always involve the permutation symbol €.

We now have an effective shorthand notation for representing the vector prod-
uct.

Let ¢
= = a;e; Nbje; = abj(e; Ne;)
aANb=a;bje;re, NOTE CAREFULLY THE ORDER OF INDICES
or with ¢ = ¢,e;,, we have ¢, = a;bj¢;5;, (use summation convention on i, j)

a N\b; write a = ae;, b= bje;

EXERCISE: Verify that this is in agreement with the “matrix” definition on pg.
57.

triple scalar product: a - (b X ¢)
Again we are careful to use different dummy indices for each vector so
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a-(bxc)=ae,- (ijj X crey,)
= aig; - (bjcrejmer)
= aibjcksjkl (& : g)
——
bl
= €jkiaibjcy,
= €ijka;ibjck
=(axb)-c=(cxa)-b

(. J

by using cyclic property of &,

Exercise: convince yourself that these last 2 identities follow from index ex-

pression.
Recall also that
a; a2 as
a - ([_) X Q) = det bl bg b3 = eijkaibjck
C1 C2 C3 p

index representation of the 3 x 3 determinant

5. Useful identities involving € and ¢

€ijkEkim = 5il(5jm - 5im6jl

i, j,1,m can each independently take on value 1, 2, 3. Hence, this can corresponds to
81 quantities.

Proof ;

Verify by brute force for each of the 81 equations. However, it is best to make your
life easier by noticing that both sides change sign if either i and j or [ and m are
interchanged. Also, both sides vanishes if i = j or [ = m. Then, consider remaining

terms like:
€12k€k12 = €121€112 + €122 + €212 +€123€312 = 1.
—_——  ——

0 0
and

(511(522 — 612512 =1
Likewise

€12kEK13 = €121€113 + €122€213 + €123€313 = 0

also

011023 — 013023 = 0
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Example 1} Show that e; = &,ni€m X €,
Well,

6nn6ij _5nj an
Emni€m X €n = Emni€mnji€j = EnimEmnj €j

= (303 — 0ij)e; = 2¢;

Example 2 |: Show thata x (b x ¢) =b(a-¢c) —c(a-b)

a x (bxc)=aje; x (bje; X cper) = aze; X (bjcpejmer)
= a;bjcrejri(ei X €1) = a;bjCrejrEiimem
= ;b CLEjkiEImiCm = ibjCL(8jmOki — 0ji0km)em
= a;bmciem — aibicmen

= (ai¢;))bmem — (aibi)cmem = (a- )b — (a - b)c

6. Some additional examples of the use of index notation

. 0, 1#J
()Q’L Q_] J {1’ ’[/:]

(ii) e; A €; = EijkCys

1, i, j, k is an even permutation of 1,2,3
€ijk = § —1, 1,7,k is an odd permutation of 1,2,3
0, any two indices are the same

(iii) Summation convention: Whenever a subscript appears twice, a summation
from 1 — 3 is implied.

Examples:
() 0ikdji = 04
e Since J;;, is only nonzero when j = k, the k in §;;, may be replaced with
with j.
(i) 0y =011 + 02+ 033 =1+1+1=3.
e Note: Since i is a dummy index, d;; = d;; = 6y, etc.

(111) 51’]'5@']'14 = 0, since 5@']’ =0ifs 75 j, and €ijk = Eiik = 0ifi = ]
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(iV) €ijkEnjk = EijkEknj, DY first rotating the indices on the second ¢.
Next, use the identity €;;xex1m = 6:10;m — dimdj; to get

Cijk€hknj = 5m\6j/];/_5ij5nj
3
= 30in — Oin
= 20,

(V) ambnEmng — @nbmEmng =7
Notice that m and n appear twice, so a summation is implied. But, m and n
are simply dummy variable, so we could just use another letter. Looking at the
second term,

CLnbmgm'rzq - _anbmgnmq

= —a;bkE kg
(letting j = n, m = k, this expression is the same as above.)

= —ambnEnmg (letting j = m, k = n)

So, we see that a,,b,.6 g — @nbmEmng = 20mbnEmng.

e Note: a,,b,6n, = (a A b), Or the gth component of a A b

C: Some vector calculus (taking derivatives of vector function)

1. Notation: We will use the vector z to denote the vector location of a point in a space

One can discuss scalar fields: ¢(z) = ¢(x1,29,23) —  (Note: the value of ¢ de-
pends on the location in space)

And
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One can discuss vector fields a(z) = a1 (z1, g, x3)e, +as(x1, T2, x3)ey +as(xq, T2, T3)e4
—  (Note: each component of the vector ¢ depends on the location on space and it
could simply write a;(z;) )

2. Differentiation of vectors

Suppose a(t) = a;(t)e;

Then @ =& dt( )gi since its Cartesian base vectors i.e. constant vectors

We will now consider spatial derivatives of vectors, e.g.,
gsb(z) or gb(z)
Y

3. Gradient operator: Section 9.3 Greenberg

Let ¢(z) be a scalar function which vanishes with position z, y, z in spaces.

The rate of variation of ¢ in the x-direction is a¢ = g ¢ in the y-direction is a¢ = aa;;/
in the z-direction is g¢ = 88;2

We introduce the vector,

grad ¢ =NV = (% =e15 - ax + e, a¢ + e3 =¢,0;, — “comma” notation to indicate

differentiation w1th respect to z;
= Relation between the gradient and the directional derivative

Consider a small displacement dr, where |dr| = ds. Note: dr = dxe, + dxse, + drse,.
The unit tangent vector ¢ in the direction of dr is t = %. Then, the rate-of-change of
¢ in the direction of ¢ is

9 _ 09 99 99 o

t. = t;e, - -——tz—zt t t
t-Vo € Qja ) oz, 18931 + 28x2 + 331‘3
R ds axl ds 3x2 ds (9x3 ds
d
" df t-Vo ‘Directional derivative of ¢ in the ¢ direction‘

Now, consider a surface ¢(z) = ¢, a constant.

Clearly A¢ = 0 for any displacement along the surface, then since ¢ is a tangent
vector to the surface, it follows thatt L V¢, i.e., V¢ is a vector perpendicular to the
surface ¢ = constant.
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= V¢ is a vector normal to the surface ¢ = constant.

4. Divergence of a vector field: V - f or div f

(a)

(b)

Simply compute using standard ideas.

0
V-f= (Qi) (fiej) = ¢ - 0ig i+ fie = (using the product rule)

= " Ox; 8:6- (9azi
Note g - = 0 since the ¢’s are unit vectors which do not vary with position in
space.
af;
V f - 5138
= 0f; (: Oh + 0fs + Ofs ) fj., (comma notation sometimes used)
8xj 3x1 8x2 8x3 7

Note: Now that you have gone through this, make your life easier. The ¢, are
constant vectors with respect to differentiation so we know it is ok to simply

write of  of
z‘i:_laxz (figj) =i =2~

Ei = 8@ (9xj )

Also, whenever you see a term like /& a k£, you now know gg 5 = V- [ (where the
k’s are the same index).

An identity using index notation
Let ®(z) be a scalar field.

10
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— - (Dfj¢)) by using the product rule

J

o of
= (Sl-j |:8_I,f] + (I)axi:|

5 af;,
jfj+¢a—%_(zq>)~i+q>z-i.

=(e;-e;) 8—%((13 1) ¢, are constant vectors

d;
The inner product (-) only operates on vectors, not the scalar components @ f;.

V-(@f)= (V) - f+V-f.
Notice how similar this is to the normal product rule of differentiation.

(c) Interpretation of the Divergence of a vector field

Recall the divergence theorem which relates certain volume integrals to inte-
grals over a bounding surface - similar to electric or magnetic field lines in a

medium:
/Z-idV:/i-@dS.
v s

In the field of fluid dynamics we find a very nice physical interpretation of the
divergence of a vector field.

Consider the flow of a fluid of constant density (e.g. water). Such a flow is
called incompressible.

Let v(z) be the velocity of the fluid at a point z. Let S be some fixed boundary
drawn in the fluid, surrounding the fixed volume V. The net flow rate through
a surface with differential area dS'is (v - n) dS.

11
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/Vz.idvz/si.@ds.

The total flow through the surface is found by integrating over S:

/ (v-n)dS =0 since for a fluid of constant density : {in-flow} — {out-flow} =0
S

/ V-vdV =0 by the Divergence theorem.
1%

You may remember this from Math 21. If not, we will discuss it shortly.
And since this must be true for any choice of the volume element V/, we con-
clude :

V-v=0 forallz.

For an incompressible fluid, the vanishing of the divergence of the velocity
field is associated with conservation of mass.

5. Curl of a vector field V A f or curl f

(a) Again, simply compute using standard ideas

ZAize'i/\(fjﬁj)

- a%z
df;

=j
of,

_ J
= E&ijk 5 Ek

ox;

Note:

e As before, the ¢; are constant vectors and the curl (A) operation only af-
fects vectors.

e Sometimes people will write this as (V A f)r = ey %, where the sub-

script £ indicates the kth component of the vector V A f .

12
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(b) Alternatively, let’s just go through and show that the above agrees with what
you have seen in earlier vector calculus courses. First,
of;
&Ei
and since the summation convention has been assumed and the variables 7, j
appear twice, we must sumi =1 — 3and j = 1 — 3 as follows
0 0 0 0 0
VAf=(g /\§1)£+(§1 /\62)£+ (& /\23)£ + (§2A§1)i+ (§2/\§2)i+
- H,_/a.Tl H,_/al‘l A,_/axl A,_/ﬁxg A,_/a.%g

0 €3 —&2 —€3 0

(29BN, (06 OB\, (05 _0h
=1 81’2 axg =2 3x3 81’1 =3 81;2 81’1

€1 €3 €3

VAf=(eAN¢)

|0 9 9o
— |0x1 Oz Oxs
h o fs

which is how you probably saw it represented previously.

(c) Another identity:
0 0¢ 82gz5 B 0%
VAVp=e Z@ (‘]8@) e, Ne

= Cijkm——m—€
=i axﬁx] Jk@aciaxj_k
But notice that by using properties of ¢;,

02 02 02
Efijkﬁng = —cjik W;;] Sijk g gxz 0 (by comparing with the first term)
Therefore,

V AV¢ =0 (for any scalar function ¢).

Note: In the second equality we interchanged ¢ <+ j and assumed twice differentiabil-

ity.
(d) Evaluate V - (a A D).
We have:
V-(and) = «9i (aje; Nbre,) = e‘i - (ajbr)eme
VN W /AU = 81’1 J=3 =k =4 axl J JrRt=]

Note that here €,;; is constant and can therefore be taken out of the parenthesis
of the derivative operator.

J(a;by) J(a;by) J(a;by)
(Qi 'Ez) 8]wik €jkl = (51'1#91@1 = #eﬂﬂ- =
Oa; ob oa; ob
oz, —Lejpibi + oz, kejkza] = 8_;€ijkbk - a_;eik‘jaj =

(Z/\Q)kbk_(z/\l_))ﬂl] = (Z/\CL) b_(V/\@'Q

13



MATH 292: Fluid dynamics Handout 1: Vector Calculus and Einstein notation

6. Interpretation of the curl of a vector field.

Again, we use the velocity field of a fluid flow, denoted as v(z), as an example. We
will now see that w = V A v provides a measure of the local angular velocity.

Consider 2 line segments, PR and P(Q in the flow; examine planar motions for sim-

plicity.
X, Attimet x, Attimet+ At
R
A X,
P
P Q .
(X%, Ax (X1'X2?
X1 X1

For small At, the rotation of the segments will be small and we therefore have a ~
tan o and 3 ~ tan . We estimate these angles as

A _
o~ tana = Atvz(xl + A7) — vaf21) ~ At%
Al’l 8:61
and
b ~tanf = Atvl(x2 + Azp) — vi(22) ~ At%
AiL‘Q 8332

The average rate of counterclockwise rotation of a fluid particle about the x5 axis is

thus 1 0 0 1 1
(%) (%] _ L _ =t

and, in general, the average rate of rotation of a fluid particle about the z; axis is

1 1
5(2 Av)i = S%i

where w is the vorticity vector.

14
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Handout 2: Integral theorems in Vector Calculus

1 Divergence Theorem (or Gauss’ Theorem)

This theorem relates integrals over volumes to integrals over their bounding surface(s).

S n

The theorem states that given a continuous vector function f with continuous partial

derivatives, then
/ﬁ-fdvz/ﬁ-f”ds
1% s

where 7i is the unit outward normal to S, the surface bounding the volume V. Note that it
is a good habit to write i on the left, as a replacement of V.

You may find a proof of this theorem in most vector calculus textbooks. It relies on com-
puting the outward flux on a small volume element and taking the limit as this elements
shrinks to a point.

Using index notation, we can write this theorem as

/Vif,-dV: 0f; de/nifidS
1% v 0w S

and written out in 3D, this becomes

0 0 0
/ fl + f2 + f3 dV = / n1f1 + nzfg + n3f3 dsS
v 81’1 81’2 81'3 S

2 Planar Versions of the Divergence Theorem

Consider some area A in the plane bounded by a curve C. Let 7 and ¢ be the unit outward
normal and tangent vectors along the boundary, respectively. We then have, for a point &

1
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on the boundary and using s to denote the arclength along the boundary
dz
ds

Moreover, ds = |d| for di representing a small displacement along the boundary.

f= and so tds = dz,é, + dz+6,.

In the normal direction, taking advantage of 7i - # = 0 we have
nds = dl‘251 — d$1€2.

The divergence theorem then becomes

8f1 3f2 B I B -
[ (G ) aa= [ Fas= [ s ptn

where dA is an area element that may also be written as dz; dz..

If we now denote f; = N(xy,25) and fo = —M(x1, z2), we then have

/(a_N_a_M) dA:/ﬁ-fdg:/del—i—Ndxg.
A (9371 8372 C C

If you consider the vector field F = (M,N), you can now see that we have
| Fetas= [ (FAF)
c A

which is the planar version of the Stokes Theorem (which we will return to shortly).
3 Theorems Following from the Divergence Theorem

/afi dV:/nifidS
V@:L’i S

2

We begin with
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and consider some special cases of f. If you read up to here email me with the second letter of
your family name as the subject.

1. Let f = (bg for a scalar function ¢ and an arbitrary constant vector b. We then have

[ (5 av)n= [ooas

Because b is arbitrary, we must have that

(3 m)- fioss
/V%dvz/sﬁgbds

which is Gauss’ theorem for a scalar function. Note that this is a vector equality, so
it holds for each component.

or in vector notation

2. We now let f = V¢, meaning that f is a conservative field and ¢ is its scalar poten-
tial. We then have that

Iy _ _ 0% P9 Po
V- f=V-Vo=V;Vip = 8x%+8x§+8x§ =V

The quantity V¢ is called the Laplacian of ¢.

The divergence theorem then becomes

/vwv /ngdS gi

where 22 a is the normal derivative of ¢, or its directional derivative in the direction of
the normal.

4 Green’s theorem

We may also recover Green’s First identity by letting f = WV¢ for U and ¢ some scalar

functions. We have:
/(ﬁ-%)qf ds = /ﬁ(%qf) dv
s v

= /Vi(Vicﬁ\If) av
v

\%
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So we get Green'’s first identity:
(00) R 5
UV—dS = [ [VU-V¢+ UV dV
s on v

If we now interchange ¥ and ¢ in the expression above and subtract the result from what
we just obtained, we find Green’s second identity:

96 o\ . b e
/s(qj%_ %) dS—/V(\I/ng SV AV

As an interesting aside, Green’s identities are often useful in proving very general results.
For example, if we begin with Green’s first identity and let ¥ = ¢, we get

—- = . dv
/S%nds /V[WS Vo + ¢V39)

This can be useful if we are trying to solve Laplace’s equation: V*¢ = 0, subject to homo-
geneous boundary conditions: ¢ =0 on S.

In that case, the LHS is zero because of the boundary conditions. Because of the PDE, we
then have

/V%-%dvzo

Because the integrand is always positive, we must have V¢ = 0. Therefore ¢ = C, a
constant. But since on the boundary we have that ¢ = 0, that constant must be 0 and we
have that ¢ = 0 everywhere as the only solution.

5 A further generalization of the Divergence Theorem

We began by recalling a vector equality we obtained earlier

09

v Ox;

AV = /V Vip dV = /S (ni¢ dS) (1)

We then look for a similar result involving a cross product: [, VAFfdv.

Rewriting this in index notation gives
1% 1% 1%
Now for each component f;, we can use equation (1)

/Vg_ﬁdv:/vvifjdv:fg(nifjds)

4
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We combine this result with the previous equation to find
/ 6 AN de = / vifjeijk dV = eijkgk / nifj dsS = gk / eijknifj dS
v v s s
so finally we get
/6Afdvz/mfds
v s

So we can get the VERY general result that

/ﬁ*cpdvz/ﬁ*cpds )
\%4

S

for any differentiable quantity ®, scalar, vector, or even tensor, and any operation * that
makes mathematical sense (product, scalar product, cross product, gradient operation)

5.1 Examples

Consider a constant vector a. Then

/ﬁ.adsz/ﬁadvzo.
S 1%

Evaluate [ 7 - (V A f) dS. We use the general divergence theorem
/ﬁ-(ﬁAf)dS—/ﬁ(ﬁAf)dv
s v

But this last integrand is 0 for any twice differentiable vector field.

Consider the distance function r with r* = 7 - Z. Compute | g7l Vr2 dS

/ﬁﬁqﬁds — V2 dv
S

<L

V(23 4 23 + 23) dV

6 dV =6V

Il

where V is the volume of V.

You could also show (as an exercise?) that
/ i AVr?dS =0
S

5
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and
/ﬁﬁ(ma)dszo
S

where 7 is the position vector and @ is constant.

6 Multiple bounding surfaces

This is a bit beyond what will be needed in this class, but it is a natural extension of
the Divergence Theorem we have seen so far. Consider a volume V' that is bounded by
several, disconnected, surfaces, S;, S, etc. We denote by .S the union of all the bounding
surfaces. In other words, the Divergence theorem is then

=
<
~
o,
<
I
o

i fdS = / i fdS
S1+S2+S3+S54

In this case, the unit normal associated to each bounding surface is always pointing away
from the volume V.

7 Stokes’ theorem

This theorem allows us to express the integral along a curve C as an integral over the area
of any surface S that has that curve as its (only) boundary. Let C be a closed curve with a
given orientation and S be a surface whose only boundary is C'. Note that here S is NOT
a closed surface, unlike in most prior examples. You can think of S as a “hat” and of C' as
its “rim”. Consider 7 a unit normal to S in the direction obtained by the right-hand-rule
applied to C and a vector tangent to S that starts on the curve C. Denote by ¢ a unit
tangent vector to C.
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Stokes’ theorem then states that

Note that here ds is a linear element of length along C and dS is a surface element along
S.

In index notation, this becomes

% fztz dS = / nk(Vifjeijk) dS
C S

Importantly, S can be ANY surface whose boundary is the closed curve C. This can
sometimes be chosen to make your life easier.

We do not present a proof of this theorem here, but vector calculus textbooks nearly all
contain one.
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thanks to J.W.M. Bush and H.A. Stone

1.1 Lagrangian vs. Eulerian points of view

In fluid mechanics we describe the motion of liquids and gases (such as water and air) using
the approach of continuum mechanics, wherein the fluid is characterized by properties that
are aggregates over a large number of individual molecules. When we talk about a ‘Auid
particle’, we mean an infinitesimally small region of fluid when discussing mathematical
formulations (when taking limits for derivatives, for example) but we understand that the
region is nevertheless large in comparison with the mean spacing between molecules. Each
fluid particle has associated with it various physical properties, such as temperature and

density, and is assumed to have a well defined position and velocity.

There are two different mathematical representations of fluid flow: the Lagrangian
picture in which we keep track of the locations of individual fluid particles; and the Eule-

rian picture in which coordinates are fixed in space (the laboratory frame).

The Lagrangian picture is not often used for theoretical developments but can provide
a useful picture of fluid flow in experiments. For example, in oceanography, buoys and
patches of dye are deposited on the sea surface and their positions are noted as they vary

in time. The density p and velocity u are described mathematically by

Velocity u = u(xy, t),

Density p = p(Xo,1),

i.e., the field values are those of a fluid particle at some time ¢ after the particle was

1


Francois Blanchette

Francois Blanchette

Francois Blanchette

Francois Blanchette

Francois Blanchette

Francois Blanchette
UCM: Math 292, Handout #3

Francois Blanchette

Francois Blanchette
thanks to J.W.M. Bush and H.A. Stone

Francois Blanchette


‘released’ at the initial position Xp.

X — Patmm\’/u&:, )

:}Q,

The loci of fluid particles are called ‘pathlines’ and it is clear that these lines may

cross, since two different fluid particles may occupy the same position in space at different

times.

Since these coordinates describe the motion of individual particles, the acceleration of
a particle is given simply by
0

Acceleration a=—.
" ot

If the fluid is incompressible then the density of each fluid particle remains constant in

time, which is expressed mathematically as

Incompressibility -gt—p = 0:

In the Eulerian picture, the velocity and density are given by

Velocity u = u(x,t),

Density p= p(x,t);

where x is a fixed location in the laboratory frame, and thus u and p are the velocity and

2



density of the fluid particle that is instantaneously at position x at time ¢.

Stream|ing =———————""

M,ﬂ
T~ —

The velocity vectors form a vector field that is assumed to be differentiable and hence
there are ‘streamlines’ that are everywhere parallel to the local velocity vector. Streamlines

can never cross except at point sources or sinks of fluid.

In order to compute the acceleration of a fluid particle with these coordinates, we

must realise that after a small time 6t the particle is at the new position x + éx with

velocity
Ou

5 + 0(6x%, 68%).

u(x + 6x,t + 6t) = u(x,t) + (éx - V)u + 6t
Thus the acceleration of the fluid particle is

_ . u(x+6x,t+6) —u(x,t) Ou __ Du
Acceleration 61:_1{10 5 =3 +u-Vu= D

0

The operator i =5 +u - V is called the ‘material derivative’ or ‘substantial derivati-

vative’. It is the rate of change with time following a fluid particle.
In the Eulerian picture, incompressibility is expressed by

- D
Incompressibility Ff =0,

since it is the density of a fluid particle that remains constant, not the density of the fluid

at a fixed position in space.



1.2 Conservation of mass

Consider an arbitrary fixed control volume V' in the laboratory frame

The rate of change of the mass of fluid contained within V is equal to the mass inflow

through the boundary 0V of V. Thus

d
< dV=—/ —
dt vp avp

where n is the outward normal to V. Applying the divergence theorem to this equation,

op ..,
/Vét—dV—-—/;/V-(pu)dV.

Since these integrals are equal for arbitrary control volumes, it can be deduced that the

we obtain

integrands must also be equal. Thus the differential equation expressing conservation of

mass 1s

Mass conservaton %te + V-(pu) = 0.

This equation is readily rearranged into the form

Dp

Di + pV-u=0,

from which we see that if the fluid is incompressible

Incompressibility Va=0



1.3 The Stress Tensor

Consider a small tetrahedron of fluid aligned with local, rectangular coordinate axes e(1),
e(?), e®), The forces exerted by the fluid exterior to the tetrahedron on the surfaces of the
tetrahedron are F(=") on the three surfaces having outward normals in the three negative

coordinate directions —e; and F on the sloping face of the tetrahedron, which has outward

normal n.

(3)4
e

The magnitude of the surface forces, which are due to molecular jostling and to short-
range van der Waals forces, are proportional to the surface area of the tetrahedron, which .
is of order V2/3 where V is the volume of the tetrahedron, whereas the inertial forces
(mass x acceleration) and long-range body forces, such as gravity, are proportional to V.

Thus the surface forces must balance by themselves in the limit as V' — 0 and we obtain

F=-Y F9

k
&= Z F® (by Newton’s 3rd law)
k

= dr=Yy AHE
k

where T is the stress, which is the force per unit area acting on a surface, and A is

the area of the k** surface of the tetrahedron. From projective geometry, we have that

5



AR = An - e(®), Thus the stress can be written as

. (Z T<’=)e(k)) n
k

=0o-n

where o = Z’r(k)e(k) is the stress tensor, which is independent of the direction n. The

k
components of the stress tensor are given by
k) (k
gij = ET,-( )eg- ),
k

But egk) = 0jk, SO

oij = 7.’_(.7)’
which is the ith component of the force per unit area exerted by the fluid on a surface
with normal in the j th coordinate direction.

The most important statement relating to the stress tensor is that the force per unit

area (stress) exerted by the fluid on a surface with unit normal n pointing into the fluid is

given by

Stress rT=o0-n



1.4 The momentum equation

Consider the arbitrary fixed control volume of section 1.2. The rate of change of the total
momentum within the control volume is effected by the inflow of momentum through the
boundary, and the forces acting on the fluid, which comprise both body forces (total per

unit volume) and surface forces. Thus

4 pudV = — / (pu)u-ndS momentum flux
dt Jy av
+ | £dV body forces
%
+ / c-ndS surface forces
v

Use of the divergence theorem gives

0 / 0 /‘ / 0
—(pu)dV = — | —(puu;)dV + LAV | ) dV
/Vat(pu) V6$J(pu uJ) Vf Vaxj(aJ)

Again, since this expression holds for arbitrary control volumes, the integrands must equate

to give
Du Op
PE +u ('67 + V'(pu)> =f+ V..

The second term is zero by conservation of mass, so

. D
The momentum equation —D_:fl =f4+ V.o



1.5 Stress tensor for a Newtonian fluid

In this course, we shall be concerned solely with Newtonian fluids, which are those that
are assumed to have two fundamental properties: the fluid should be isotropic; and there
should be a linear relationship between stress and the rate of strain of the fluid. In addition,
we require that the long-range forces exert no couple on individual molecules (a counter
example to this last requirement is provided by magnetic fluids — see homework). With
this latter condition, we can show that the stress tensor is symmetric as follows.

The rate of change of the angular momentum of a fluid particle is equal to the moment

of the forces acting on the particle. Thus

4 x/\(pu)dV:/x/\de+/ xA(o-n)dS
dt Jy % av

The term on the left-hand side and the first term on the right-hand side are each of order
V4/3 as V — 0, while the last term, representing the couple exerted by the surface forces
is of order V. Thus the surface moments dominate the equation and must tend to zero as

V — 0. We can apply the divergence theorem to this equation to give
Oz/ x A (¢ -n)dS
v
— / _a—(e .. x .a' ) dV
= b me 17kl jCkm
0
= [ €ijkbjmorkmdV + | €ijrzijm—0kmdV
14 v Oz
0
= / €ijkOkj av +/ e,-jk:z:ja—akm dv
1% 1% Tm

Now, provided that the stress tensor is differentiable so that Vo is finite, the second term

in this last equation is of order V4/3 while the first term is of order V as V — 0. So the

first term dominates the equation and shows that
€ijk0k; =0
i.e., that the stress tensor is symmetric (05 = 0;1)
Next, we note that we can always write
oij = —pbij + di; with di; = 0

8



thus splitting o into an isotropic part and a non-isotropic part called the deviatoric stress

tensor.

Deviatoric

p
* dﬁ
A'
P 2
p dy
! i

The isotropic part of the stress tensor gives a force that pushes equally in all directions

Isotropic

and so we interpret the constant p as a pressure. The deviatoric stress arises from deviations
of the flow local to a fluid particle and we assume therefore that d is a function of the

velocity gradient Vu with d = 0 when Vu =0.

Here is where we assume that Newtonian fluids are linear, by which we mean that d

is a linear function of Vu, so that

6uk

i Arphiae
1) 1] 6$1

Finally, we assume that the fluid is isotropic so that A is isotropic and hence is given

by
Aijki = N6ijbri + pbikbj1 + vbirbi;j,

where ), y, v are constants, this being the most general isotropic fourth-rank tensor.
From symmetry, we deduce that
dij =dji = Aiju = Ajin=> p=1v,
while the fact that d is traceless gives

dii=0=> A;;p=0=3+p+v=0,

whence A = —%y. Hence

. Ou; = Ou; g Oug o
% =P (a:z:j 4 6:1:,') B 3#3:1:1:5']

9



or
d =2pe — 2u(V-u)l,

where e is the symmetric part of the velocity gradient ei; = % <% + -g—zi) . If the fluid
J H

is incompressible, so that V-u = 0 then

o = —pl +2pe.

The constant y is called the dynamic viscosity of the fluid.

Putting this stress tensor in the general momentum equation yield the Navier-Stokes

equations
Du
' —— = -Vp+uV?u
Navier Stokes Dt e
Va=0.

10
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We interpret dx/dt as the time rate of change of the x-coordinate position of our observer, i.e., dx/dt is the
x-component of the velocity, w, of our observer. Thus

Ty Y TR T S YT N 4 T e pey e = e

e
“=ar .
dy :
w, ===,
Y dt : %
t and !
o= 2
1 fodr’
and Eq. 4.1-4 becomes
3 ds_(a 3 3 9
L e (af)+w,(af)+w,. (ays)+w, (azs) 4.1-5)

£ In vector notation this becomes,
ds _ (aS X
> (af)+w Vs, . (4.1-6) :

and in index notation we express this result as

dS _aS (aS).

L2022,y (= 4.1-7)

dt ot axi

Here the repeated indices are summed from 1to 3 in accordance with the summation convention[2]. If our
observer moves with the fluid, i.e., w = v the time derivative is called the material derivative and is denoted

by [
DS _aS
Y VS. (4.1-8)
3 If our observer fixes himself in space, w = 0, and the total time derivative is simply equal to the partial time
, derivative
dS _aS
— S — f = =
Thar orw=0 4.1-9)
Now we wish to consider the total time derivative of the volume integral of S over the region ¥.(t). ]
; Here 7.(t) represents an arbitrary (hence the subscript a) volume moving through space in some specified
manner. The time derivative we seek is given by ’ '
£ : ‘ DER\VATON
& d f” . S(t+At)dV—f S(t)dv oF
— = |i alt+at) Yalt) -
2] at Jv.o Sdv ll,To AT ; (4.1-10)  REYNOLDS
To visualize the process under consideration, we must think of a volume, such as a sphere, moving through ‘\:TE:;;:;?

space so that the velocity of each point on the surface of the volume is given by w. The velocity w may be a
function of the spatial coordinates (if the volume is deforming) and time (if the volume is accelerating or
decelerating). At every instant of time some quantity, denoted by S, is measured throughout the region
occupied by the volume ¥, (t). The volume integral can then be evaluated at each point in time and the time
derivative obtained by Eq. 4.1-10.

In Fig. 4.1.1 we have shown a volume at the times t and ¢ + At as it moves and deforms in space. During
the time interval At the volume sweeps out a “new” region designated by Vu(At) and leaves behind an
“old” region designated by Vi(At). Clearly we can express the volume ¥.(t + At) as

Va(t +At) = Va(t) + Vu(At) — Vi(At), (4.1-11)

reference + 5. Whitaker, Elementary Heaf Teansfer "(m‘}”!)'s'.S ) Perﬂamtm press  /976.
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92 The Basic Equations of Momentum and Energy Transfer

dV,=+w-nAtdA

dV,
—wW-nAtdA

V.(t +At)

Yalt)

Fig. 4.1.1 A moving volume 77(1).

so that the integral of S(t + At) in Eq. 4.1-10 can be put in the form

f . S(t+Ar)dv=f S(t+At)dV.+f S(t+At)dV,.-f S(t +At) dV..
Tt rAL) 1,400

Vitar) vian)

S ; (4.1-12
Substitution of Eq. 4.1-12 into Eq. 4.1-10 leads to :

{f St+andv-[  su dv}
"n(l, f.u(‘)
At

d L
£ fm” SdV = lim

Ar—0

(4.1-13)

f S(t +At)dV..—f S(t +At) dV,
4 ]im Vitar) Viytar)
Ar—0 At

In treating the first term on the right-hand-side of Eq. 4.1-13 we note that limits of integration are the same
so that the two terms can be combined to give

{f S(t+At)dV — S(t)dV}

(1
=i {wa [S(t +At)— S(1)] dV}. (4.1-14)

i Valt)
At—0 At At=0

Since the limits of integration are independent of At the limit can be taken inside the integral sign so that

Eq. 4.1-14 takes the form

S(t+At)dv - S(t)dv _
{J:'.m Vo) }:_f lim [&%}] . 4.1-15)

lim
Ar—0

At

alt) A1—0
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Here we must recognize that S(t +At) and S(t) are evaluated at the same point in space so that the
integrand on the right-hand-side of Eq. 4.1-15 is the partial derivative and Eq. 4.1-15 takes the form

[f S(t+At)dV-f S(t)dV} =
3alt) Falt) - oo 3
= —Lm % av. (4.1-16)

We can now return to-Eq. 4.1-13 and express the time rate of change of the volume integral as

lim
A—0

S(t +At) dv,,—f
VitAr)
At

S(t+At)dVv,
(4.1-17)

i _ aS v {fv,.(.ﬂ)
dt Js,m ¥ = Ya(n) (at)dv+1}To

From Fig. 4.1.1 we note that the differential volume elements of the “new” and ‘‘old” regions can be
expressed ast

an= +W'l'lAtdAn, (4.1-18)
and

dVi=-w-nAtdA, 4.1-19)

Use of Egs. 4.1-18 and 4.1-19 allows us to express the volume integrals as area integrals, thus leading to

S(t+At)w-nAtdAn+ [ S¢t+At)w- nAtdA,}
1] Ay

p 0 sy AL
dt Vo) s fw‘,m ( il hm{ At

dt ot A1—0
(4.1-20)

On the right-hand-side of Eq. 4.1-20 we can cancel At in the numerator and denominator and note that
An+ A »>s.(t) as At -0,
_so that Eq. 4.1-20 takes the form

£, sov[, evs, on |
it o SV = G)av+ oy, SWondA. 4.1-21)

This is known as the general transport theorem. A more rigorous derivation is given by Slattery [3]. If we let
our arbitrary volume ¥.(t) move with the fluid, the velocity w is equal to the fluid velocity v, the volume
V. (t) becomes a material volume designated by ¥,.(t), and the total derivative becomes the material
derivative. Under these circumstances Eq. 4.1-21 takes the form

D _ 3
Dt )y, .« ad _J;'..u) (af) v +J;,..(n S veantd; (4.1-22)

and is called the Reynolds transport theorem.

Conservation of mass
The principle of conservation of mass can be stated as,

{themassofabody} = constant, . (4.1-23)
or in the rate form

{time rate of change of the mass of a body} = 0. (4.1-24)

Using the language of calculus we express Eq. 4.1-24 as

D

Pk =0. (4.1-25)
Dt Js.i) pdV

*See Reference 2, Sec. 3.4 for a detailed discussion of this point.
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In the Figure above, we define the following quantities:

1. § is a two-dimensional surface.
2. C is the curve bounding the surface S.

3. dl is a arclength element along C.

o

7, is a unit vector normal to S.
5. 1 is a unit vector tangent to C' (and so to C' also).
6. ) is a unit vector tangent to S and normal to C. It is known as the binormal vector and

defined as \ = £ x 7.

We begin by recalling Stokes’” Theorem:
?{ﬁ-fdz:/ﬁ-(vXﬁ)ds
C S

In order to develop a generalization of this theorem, we let F = f x b, for b an arbitrary constant
vector. We then have

-,

f(fxg)-fdl:/ﬁ-(Vx(fxb))dS.
C S
We now use the vector identity

Vx(fxb)=f(Vb)—bV-f)+b-Vf—f-Vb=—bV-f)+b-Vf

where the last equality follows from b being constant.

-,

Moreover, (f x b) -t = —b - (f x {), so that we may write

b-jli(fxt)dl: ./Sﬁ(v. ) — Vf @ dS.

Since the vector b is arbitrary, we have

}I{C(fxf)dlz/ﬁ(v. F) — Vi # dS.

S
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In particular, if we consider ]? = on and recall that 7 x £ = —\, we find

_ﬁax dl = /Sﬁ(v-(aﬁ)) —V(od) - f dS.

= /Sﬁ(Va A) 4 oR(V - 1)) — (Vo) - h — o(VA) - A dS.

We note that 0 = V(7 - 7)) = 2V - 7, so that (VA) - 7 = 0. Finally, because o is only defined on
the interface S, we have that (Vo - n) = 0. This leaves only

7§ oA dl = / —on(V - 1) + (Vo) dS.
C S
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