
MATH 292: Fluid dynamics Handout 1: Vector Calculus and Einstein notation

Calculus of Vectors, Dyadics, and Tensors

A: Introduction and Review

1. Scalars And Vectors

Scalar = magnitude only (eg. mass, temp, etc.)
Vector: characterized by magnitude and direction; represented geometrically as an
arrow. %
) 2 vectors are equal if they have the same magnitude and direction; ”parallel
transport vectors”

�
�
�✓A
�
�
�✓

B ) A = B
(Nevertheless, it is important to keep in mind that the effect of a given vector may
depend upon its location)

Notation : I will typically indicate a vector quantity by an underline, eg. a or b.
Another common method is to use arrows ~a~b

2. Cartesian Coordinate System

(a) We will indicate the unit or base vectors as:

We may also use e1, e2, and e3. (e1 = i, e2 = j, and e3 = k).

i = (0, 0, 1), j = (0, 1, 0), and k = (1, 0, 0)

(b) In order to describe a vector you must give both the components and the
base vectors.
e.g., a = axi+ ayj = azk
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3. Recall the definition of the SCALAR PRODUCT (also called the dot or inner prod-
uct) of two vectors:

(a) a · b = |a||b| cos ✓

�
�
�✓a

✓ - b
Where |a|, |b| are the magnitudes of a and b

Also, since i · i = 1, i · j = 0, i · k = 0 etc.,
then a · b = axbx + ayby + azbz.
NOTE: if a · b = 0 and |a| 6= 0, |b| 6= 0, then a ? b

(b) Clearly, we also have
[a · b = b · a]
and
[a · (b+ c) = a · b+ a · c]
and
[|a|2 = a · a = a2]

4. Vector Product (also called cross product)

(a) The vector product of 2 vectors a, b is define as

a ^ 1 b = |a| |b| sin ✓ e

where e is a unit vector in the direction perpendicular to the plane formed by
a and b, as given by the RIGHT-HAND RULE.

(b) From the definition: a ^ b = �b ^ a and a ^ (a ^ (b + c) = a ^ b + a ^ c. It also
follows that i ^ j = k, i ^ k = �j, j ^ k = i, i ^ i = 0, etc.

(c) You may remember writing something like

a ^ b = det

������

i j k
ax ay az
bx by bz

������
= i(aybz � azby) + j(azbx � axbz)� k(axby � aybx)

) much of the above is cumbersome and frightfully lengthy to write. We now
introduce a special notation which will simplify many manipulations.

B: Einstein Index Notation and the Summation Concentration

1. Let us reconsider the some of the above. From now on keep in mind that we are
representing vectors in a three-dimensional world. So, we will now label (x, y, z)
coordinates by (1, 2, 3).

1NOTICE: My notation for this operator is ^; many others write ⇥
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Let a have components ai, base vectors ei. Then,

a = a1e1 + a2e2 + a3e3 =
3X

i=1

aiei ⌘ aiei (= ajej)
2

This idea must be clear in your mind before you move on.

) From now on, we will not write the summation symbol. Instead we will invoke
the summation convention - if an index appears twice, we will know that we should
do a summation i = 1, 2, 3.

2. Scalar product revisited Consider two vectors a = aiei and b = bjej (use a different
index for each vector)
Then,

�! a · b = ⌃3
i=1aiei · ⌃3

j=1bjej = ⌃3
i=1ai · bi = ai · bi

(= a1b1 + a2b2 + a3b3)

base vectors are orthogonal: ei · ej = 1 when i = j, ei · ej = 0 otherwise.

Note: We dropped the sigma from our expression since we invoke the summation
convention

3. Kronecker delta �ij (i=1,2,3 j=1,2,3)

a. Definition:

�ij = 0 i 6= j (1)
�ij = 1 i = j (2)

- clearly ei · ej = �ij
- Note: You can think about �ij as the components of the identity matrix

identity matrix �!

0

@
1 0 0
0 1 0
0 0 1

1

A

b. With this shorthand we write

a · b = aiei · bjej = aibj (ei · ej)| {z }
�ij

= aibj�ij = aibi

) a · b = aibi = ajbj
2dummy index
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- in the final expression, i and j are considered summation indicies
- aibj�ij implies the double sum ⌃3

i=1⌃
3
j=1aibj�ij

- For aiei · bjej , the vector operation only acts on the base vectors, not the
components

and we again remark that a different dummy index was used for each vector
(aiei, bjej)
Note: NEVER write aiei · biei

c. Remarks:
i. �ii = �11 + �22 + �33

ii. �ij ! the REPLACEMENT OPERATOR: �ijcj = ci

iii. Very often, one will not write the unit vectors ei, and will write Ai where
it is understood that i may be either 1, 2, or 3. In this case i would be
called a free index since it is free to take on the values 1, 2, or 3. Similarly,
the vector eqn a = b may be written

aiei = biei or ai = bi

and since i only appears once on each side of the eqn, it is free to take on
the value 1,2, or 3 so this stands for 3 separate equalities: a1 = b1, a2 = b2,
a3 = b3

Another example:
(a · b)c = aibic = aibicjej or aibicj

- i appears twice in aibi so we sum i = 1 ! 3

- j is free on cj so it can take on values 1, 2, or 3

4. Permutation Symbol:
This symbol will be useful whenever vector products arise: ✏ijk, i = 1, 2, 3 j =
1, 2, 3 k = 1, 2, 3

(a) Definition:

"ijk =

(
+1 or � 1, if i, j, k are all different
0 if any two indices are the same

In particular,

"ijk = +1 if i, j, k are an EVEN permutation of 1, 2, 3
=) "123 = 1 "312 = 1 "231 = 1

"ijk = �1 if i, j, k are an ODD permutation of 1, 2, 3
=) "213 = �1 "132 = �1 "321 = �1
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Note: By even permutation we mean that an even number of interchanges of
the indices must occur to get back to the order 123; analogous for meaning of
odd permutation.

(b) This definition has the following cyclic and interchange property.

"ijk = "kij = "jki

and if two indices are simply interchanged, the sign changes,

"ijk = �"ikj or "ijk = �"jik

Also, since i, j, k can each independently take on the values 1, 2, 3 then "ijk
represents 27 quantities.

(c) We also have ei ^ ej = "ijkek and by referring to the figure, we can verify
everything is ok: Note: The cross-product of base vectors (or any 2 vectors)

Figure 1: e1 ^ e2 = +e3 = "123e3 = +1 · e3

will always involve the permutation symbol "ijk.

(d) We now have an effective shorthand notation for representing the vector prod-
uct.

Let c = a ^ b; write a = aiei, b = bjej
=) = aiei ^ bjej = aibj(ei ^ ej)

a ^ b = aibj"ijkek NOTE CAREFULLY THE ORDER OF INDICES
or with c = ckek, we have ck = aibj"ijk (use summation convention on i, j)

EXERCISE: Verify that this is in agreement with the ”matrix” definition on pg.
57.

(e) triple scalar product: a · (b⇥ c)
Again we are careful to use different dummy indices for each vector so
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a · (b⇥ c) = aiei · (bjej ⇥ ckek)

= aiei · (bjck"jklel)
= aibjck"jkl (ei · el)| {z }

�il

= "jkiaibjck
= "ijkaibjck
= (a⇥ b) · c = (c⇥ a) · b| {z }

by using cyclic property of "ijk

Exercise: convince yourself that these last 2 identities follow from index ex-
pression.
Recall also that

a · (b⇥ c) = det

������

a1 a2 a3
b1 b2 b3
c1 c2 c3

������
= "ijkaibjck| {z }

index representation of the 3 ⇥ 3 determinant

5. Useful identities involving " and �

"ijk"klm = �il�jm � �im�jl

i, j, l,m can each independently take on value 1, 2, 3. Hence, this can corresponds to
81 quantities.
Proof :

Verify by brute force for each of the 81 equations. However, it is best to make your
life easier by noticing that both sides change sign if either i and j or l and m are
interchanged. Also, both sides vanishes if i = j or l = m. Then, consider remaining
terms like:

"12k"k12 = "121"112| {z }
0

+ "122 + "212| {z }
0

+"123"312 = 1.

and
�11�22 � �12�12 = 1

Likewise
"12k"k13 = "121"113 + "122"213 + "123"313 = 0

also
�11�23 � �13�23 = 0
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Example 1 : Show that ei = 1
2"mniem ⇥ en

Well,

"mniem ⇥ en = "mni"mnjej =

�nn�ij��nj�niz }| {
"nim"mnj ej

= (3�ij � �ij)ej = 2ei

Example 2 : Show that a⇥ (b⇥ c) = b(a · c)� c(a · b)

a⇥ (b⇥ c) = aiei ⇥ (bjej ⇥ ckek) = aiei ⇥ (bjck"jklel)

= aibjck"jkl(ei ⇥ el) = aibjck"jkl"ilmem
= aibjck"jkl"lmiem = aibjck(�jm�ki � �ji�km)em
= aibmciem � aibicmem
= (aici)bmem � (aibi)cmem = (a · c)b� (a · b)c

6. Some additional examples of the use of index notation

(i) ei · ej = �ij =

(
0, i 6= j

1, i = j

(ii) ei ^ ej = "ijkek,

"ijk =

8
><

>:

1, i, j, k is an even permutation of 1,2,3
�1, i, j, k is an odd permutation of 1,2,3
0, any two indices are the same

(iii) Summation convention: Whenever a subscript appears twice, a summation
from 1 ! 3 is implied.

Examples:

(i) �ik�jk = �ij .

• Since �jk is only nonzero when j = k, the k in �ik may be replaced with
with j.

(ii) �ii = �11 + �22 + �33 = 1 + 1 + 1 = 3.

• Note: Since i is a dummy index, �ii = �jj = �kk, etc.

(iii) �ij"ijk = 0, since �ij = 0 if i 6= j, and "ijk = "iik = 0 if i = j.
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(iv) "ijk"njk = "ijk"knj , by first rotating the indices on the second ".
Next, use the identity "ijk"klm = �il�jm � �im�jl to get

"ijk"knj = �in �jj|{z}
3

��ij�nj

= 3�in � �in
= 2�in

(v) ambn"mnq � anbm"mnq =?
Notice that m and n appear twice, so a summation is implied. But, m and n
are simply dummy variable, so we could just use another letter. Looking at the
second term,

anbm"mnq = �anbm"nmq

= �ajbk"jkq
(letting j = n, m = k, this expression is the same as above.)

= �ambn"nmq (letting j = m, k = n)

So, we see that ambn"mnq � anbm"mnq = 2ambn"mnq.

• Note: ambn"mnq = (a ^ b)q or the qth component of a ^ b

C: Some vector calculus (taking derivatives of vector function)

1. Notation: We will use the vector x to denote the vector location of a point in a space

One can discuss scalar fields: �(x) = �(x1, x2, x3) ! (Note: the value of � de-
pends on the location in space)

And
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One can discuss vector fields a(x) = a1(x1, x2, x3)e1+a2(x1, x2, x3)e2+a3(x1, x2, x3)e3
! (Note: each component of the vector a depends on the location on space and it
could simply write aj(xi) )

2. Differentiation of vectors

Suppose a = a(t) = ai(t)ei
Then da

dt =
dai(t)
dt ei since its Cartesian base vectors i.e. constant vectors

We will now consider spatial derivatives of vectors, e.g.,
@
@xb(x) or @

@yb(x)

3. Gradient operator: Section 9.3 Greenberg

Let �(x) be a scalar function which vanishes with position x, y, z in spaces.
The rate of variation of � in the x-direction is @�

@x = @�
@x1

, in the y-direction is @�
@y = @�

@x2
,

in the z-direction is @�
@z = @�

@x3

We introduce the vector,

grad � ⌘ r� = @�
@z = e1

@�
@x1

+ e2
@�
@x2

+ e3
@�
@x3

= ei�,i ! ”comma” notation to indicate
differentiation with respect to xi

) Relation between the gradient and the directional derivative

Consider a small displacement dr, where |dr| = ds. Note: dr = dx1e1+dx2e2+dx3e3.
The unit tangent vector t in the direction of dr is t = dr

ds . Then, the rate-of-change of
� in the direction of t is

t ·r� = tiei · ej
@�

@xj
= ti

@�

@xi
= t1

@�

@x1
+ t2

@�

@x2
+ t3

@�

@x3

t ·r� =
dx1

ds

@�

@x1
+

dx2

ds

@�

@x2
+

dx3

ds

@�

@x3
=

d�

ds

) d�

ds
= t ·r� Directional derivative of � in the t direction

Now, consider a surface �(x) = c, a constant.

Clearly �� = 0 for any displacement along the surface, then since t is a tangent
vector to the surface, it follows that t ? r�, i.e., r� is a vector perpendicular to the
surface � = constant.
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)r� is a vector normal to the surface � = constant.

4. Divergence of a vector field: r · f or divf

(a) Simply compute using standard ideas.

r · f =

✓
ei

@

@xi

◆
· (fjej) = ei ·

@fj
@xi

ej + fjei ·
@ej
@xi

(using the product rule)

Note @ej
@xi

= 0 since the e0js are unit vectors which do not vary with position in
space.

r · f = �ij
@fj
@xi

=
@fj
@xj

✓
=

@f1
@x1

+
@f2
@x2

+
@f3
@x3

◆
= fj,j (comma notation sometimes used)

Note: Now that you have gone through this, make your life easier. The ej are
constant vectors with respect to differentiation so we know it is ok to simply
write

r · f = ei
@

@xi
· (fjej) = ei · ej

@fj
@xi

=
@fj
@xj

.

Also, whenever you see a term like @fk
@xk

, you now know @fk
@xk

= r · f (where the
k’s are the same index).

(b) An identity using index notation
Let �(x) be a scalar field.
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r · (�f) = ei
@

@xi
· (�fj ej) by using the product rule

= (ei · ej)
@

@xi
(�fj) ej are constant vectors

= �ij


@�

@xi
fj + �

@fj
@xi

�

=
@�

@xj
fj + �

@fj
@xj

= (r�) · f + � r · f.

The inner product (·) only operates on vectors, not the scalar components �fj .

) r · (�f) = (r�) · f + � r · f.

Notice how similar this is to the normal product rule of differentiation.

(c) Interpretation of the Divergence of a vector field
Recall the divergence theorem which relates certain volume integrals to inte-
grals over a bounding surface - similar to electric or magnetic field lines in a
medium: Z

V

r · f dV =

Z

S

f · n dS.

In the field of fluid dynamics we find a very nice physical interpretation of the
divergence of a vector field.
Consider the flow of a fluid of constant density (e.g. water). Such a flow is
called incompressible.

Let v(x) be the velocity of the fluid at a point x. Let S be some fixed boundary
drawn in the fluid, surrounding the fixed volume V . The net flow rate through
a surface with differential area dS is (v · n) dS.
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Z

V

r · f dV =

Z

S

f · n dS.

The total flow through the surface is found by integrating over S:
Z

S

(v · n) dS = 0 since for a fluid of constant density : {in-flow}� {out-flow} = 0
Z

V

r · v dV = 0 by the Divergence theorem.

You may remember this from Math 21. If not, we will discuss it shortly.
And since this must be true for any choice of the volume element V , we con-
clude :

r · v = 0 for all x.

For an incompressible fluid, the vanishing of the divergence of the velocity
field is associated with conservation of mass.

5. Curl of a vector field r^ f or curlf

(a) Again, simply compute using standard ideas

r^ f = ei
@

@xi
^ (fjej)

= (ei ^ ej)
@fj
@xi

= "ijk
@fj
@xi

ek

Note:
• As before, the ej are constant vectors and the curl (^) operation only af-

fects vectors.

• Sometimes people will write this as (r ^ f)k = "ijk
@fj
@xi

, where the sub-

script k indicates the kth component of the vector r^ f .
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(b) Alternatively, let’s just go through and show that the above agrees with what
you have seen in earlier vector calculus courses. First,

r^ f = (ei ^ ej)
@fj
@xi

and since the summation convention has been assumed and the variables i, j
appear twice, we must sum i = 1 ! 3 and j = 1 ! 3 as follows

r^ f =(e1 ^ e1)| {z }
0

@f1
@x1

+ (e1 ^ e2)| {z }
e3

@f2
@x1

+ (e1 ^ e3)| {z }
�e2

@f3
@x1

+ (e2 ^ e1)| {z }
�e3

@f1
@x2

+ (e2 ^ e2)| {z }
0

@f1
@x2

+ ...

= e1

✓
@f3
@x2

� @f3
@x3

◆
+ e2

✓
@f1
@x3

� @f3
@x1

◆
+ e3

✓
@f1
@x2

� @f2
@x1

◆

=

������

e1 e2 e3
@

@x1

@
@x2

@
@x3

f1 f2 f3

������

which is how you probably saw it represented previously.

(c) Another identity:

r^r� = ei
@

@xi
^
✓
ej

@�

@xi

◆
= ei ^ ej

@2�

@xi@xj
= "ijk

@2�

@xi@xj
ek

But notice that by using properties of "ijk,

"ijk
@2�

@xi@xj
= �"jik

@2�

@xi@xj
= �"ijk

@2�

@xj@xi
= 0 (by comparing with the first term)

Therefore,
r^r� = 0 (for any scalar function �) .

Note: In the second equality we interchanged i $ j and assumed twice differentiabil-
ity.

(d) Evaluate r · (a ^ b).
We have:

r · (a ^ b) = ei
@

@xi
· (ajej ^ bkek) = ei

@

@xi
· (ajbk)✏jklel

Note that here ✏jkl is constant and can therefore be taken out of the parenthesis
of the derivative operator.

(ei · el)
@(ajbk)

@xi
✏jkl = �il

@(ajbk)

@xi
✏jkl =

@(ajbk)

@xi
✏jki =

@aj
@xi

✏jkibk +
@bk
@xi

✏jkiaj =
@aj
@xi

✏ijkbk �
@bk
@xi

✏ikjaj =

(r^ a)kbk � (r^ b)jaj = (r^ a) · b� (r^ b) · a

13
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6. Interpretation of the curl of a vector field.

Again, we use the velocity field of a fluid flow, denoted as v(x), as an example. We
will now see that ! = r^ v provides a measure of the local angular velocity.

Consider 2 line segments, PR and PQ in the flow; examine planar motions for sim-
plicity.

PP

P

P

R

P

R

P

R

 x2

 x1(x1,x2)

At time t

Q

x1

x2

P

R

(x1,x2)

At time t +  t

Q

x1

x2

For small �t, the rotation of the segments will be small and we therefore have ↵ ⇠
tan↵ and � ⇠ tan �. We estimate these angles as

↵ ⇠ tan↵ = �t
v2(x1 +�x1)� v2(x1)

�x1
⇠ �t

@v2
@x1

and
� ⇠ tan � = �t

v1(x2 +�x2)� v1(x2)

�x2
⇠ �t

@v1
@x2

The average rate of counterclockwise rotation of a fluid particle about the x3 axis is
thus

1

2

✓
�t

@v2
@x1

��t
@v1
@x2

◆
=

1

2
(r^ v)3 =

1

2
!3

and, in general, the average rate of rotation of a fluid particle about the xi axis is

1

2
(r^ v)i =

1

2
!i

where ! is the vorticity vector.
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Handout 2: Integral theorems in Vector Calculus

1 Divergence Theorem (or Gauss’ Theorem)

This theorem relates integrals over volumes to integrals over their bounding surface(s).

The theorem states that given a continuous vector function ~f with continuous partial
derivatives, then Z

V

~r · ~f dV =

Z

S

~n · ~f dS

where ~n is the unit outward normal to S, the surface bounding the volume V . Note that it
is a good habit to write ~n on the left, as a replacement of ~r.

You may find a proof of this theorem in most vector calculus textbooks. It relies on com-
puting the outward flux on a small volume element and taking the limit as this elements
shrinks to a point.

Using index notation, we can write this theorem as
Z

V

rifi dV =

Z

V

@fi
@xi

dV =

Z

S

nifi dS

and written out in 3D, this becomes
Z

V

✓
@f1
@x1

+
@f2
@x2

+
@f3
@x3

◆
dV =

Z

S

n1f1 + n2f2 + n3f3 dS

2 Planar Versions of the Divergence Theorem

Consider some area A in the plane bounded by a curve C. Let ~n and ~t be the unit outward
normal and tangent vectors along the boundary, respectively. We then have, for a point ~x

1
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on the boundary and using s to denote the arclength along the boundary

~t =
d~x

ds
and so ~tds = dx1~e1 + dx2~e2.

Moreover, ds = |d~x| for d~x representing a small displacement along the boundary.

In the normal direction, taking advantage of ~n · ~t = 0 we have

~nds = dx2~e1 � dx1~e2.

The divergence theorem then becomes
Z

A

✓
@f1
@x1

+
@f2
@x2

◆
dA =

Z

C

~n · ~f ds =

Z

C

f1dx2 � f2dx1.

where dA is an area element that may also be written as dx1 dx2.

If we now denote f1 = N(x1, x2) and f2 = �M(x1, x2), we then have
Z

A

✓
@N

@x1
� @M

@x2

◆
dA =

Z

C

~n · ~f ds =

Z

C

Mdx1 +Ndx2.

If you consider the vector field ~F = (M,N), you can now see that we have
Z

C

~F · ~t ds =
Z

A

(~r^ ~F ) · ~e3 dA

which is the planar version of the Stokes Theorem (which we will return to shortly).

3 Theorems Following from the Divergence Theorem

We begin with Z

V

@fi
@xi

dV =

Z

S

nifi dS

2
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and consider some special cases of ~f . If you read up to here email me with the second letter of
your family name as the subject.

1. Let ~f = �~b for a scalar function � and an arbitrary constant vector~b. We then have
Z

V

✓
@�

@xi
dV

◆
bi =

Z

S

(ni� dS)bi

Because~b is arbitrary, we must have that
Z

V

✓
@�

@xi
dV

◆
=

Z

S

(ni� dS)

or in vector notation Z

V

~r� dV =

Z

S

~n� dS

which is Gauss’ theorem for a scalar function. Note that this is a vector equality, so
it holds for each component.

2. We now let ~f = ~r�, meaning that ~f is a conservative field and � is its scalar poten-
tial. We then have that

~r · ~f = ~r ·r� = riri� =
@2�

@x2
1

+
@2�

@x2
2

+
@2�

@x2
3

= r2�

The quantity r2� is called the Laplacian of �.
The divergence theorem then becomes

Z

V

r2� dV =

Z

S

~n~r� dS =

Z

S

@�

@n
dS

where @�
@n is the normal derivative of �, or its directional derivative in the direction of

the normal.

4 Green’s theorem

We may also recover Green’s First identity by letting ~f =  ~r� for  and � some scalar
functions. We have: Z

S

(~n · ~r�) dS =

Z

V

~r(~r� ) dV

=

Z

V

ri(ri� ) dV

=

Z

V

 riri�+ri�ri dV

3
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So we get Green’s first identity:
Z

S

 
@�

@n
dS =

Z

V

[~r · ~r�+ r2�] dV

If we now interchange  and � in the expression above and subtract the result from what
we just obtained, we find Green’s second identity:

Z

S

✓
 
@�

@n
� �

@ 

@n

◆
dS =

Z

V

( r2�� �r2 ) dV

As an interesting aside, Green’s identities are often useful in proving very general results.
For example, if we begin with Green’s first identity and let  = �, we get

Z

S

�
@�

@n
dS =

Z

V

[~r� · ~r�+ �r2�] dV

This can be useful if we are trying to solve Laplace’s equation: r2� = 0, subject to homo-
geneous boundary conditions: � = 0 on S.

In that case, the LHS is zero because of the boundary conditions. Because of the PDE, we
then have Z

V

~r� · ~r� dV = 0

Because the integrand is always positive, we must have ~r� = 0. Therefore � = C, a
constant. But since on the boundary we have that � = 0, that constant must be 0 and we
have that � = 0 everywhere as the only solution.

5 A further generalization of the Divergence Theorem

We began by recalling a vector equality we obtained earlier
Z

V

@�

@xi
dV =

Z

V

ri� dV =

Z

S

(ni� dS) (1)

We then look for a similar result involving a cross product:
R
V
~r^ ~f dV .

Rewriting this in index notation gives
Z

V

~r^ ~f dV =

Z

V

rifj✏ijk dV = ✏ijk~ek

Z

V

rifj dV

Now for each component fj , we can use equation (1)
Z

V

@fj
@xi

dV =

Z

V

rifj dV =

Z

S

(nifj dS)

4
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We combine this result with the previous equation to find
Z

V

~r^ ~f dV =

Z

V

rifj✏ijk dV = ✏ijk~ek

Z

S

nifj dS = ~ek

Z

S

✏ijknifj dS

so finally we get Z

V

~r^ ~f dV =

Z

S

~n ^ ~f dS

So we can get the VERY general result that
Z

V

~r ⇤ � dV =

Z

S

~n ⇤ � dS (2)

for any differentiable quantity �, scalar, vector, or even tensor, and any operation ⇤ that
makes mathematical sense (product, scalar product, cross product, gradient operation)

5.1 Examples

Consider a constant vector ~a. Then
Z

S

~n · ~a dS =

Z

V

~r · ~a dV = 0.

Evaluate
R
S ~n · (~r^ ~f) dS. We use the general divergence theorem

Z

S

~n · (~r^ ~f) dS =

Z

V

~r · (~r^ ~f) dV

But this last integrand is 0 for any twice differentiable vector field.

Consider the distance function r with r2 = ~x · ~x. Compute
R
S ~n · ~rr2 dS

Z

S

~n · ~rr2 dS =

Z

V

~r · ~rr2 dV

=

Z

V

r2(x2
1 + x2

2 + x2
3) dV

=

Z

V

6 dV = 6V

where V is the volume of V .

You could also show (as an exercise?) that
Z

S

~n ^ ~rr2 dS = 0

5
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and Z

S

~n · ~r(~x ^ ~a) dS = 0

where ~x is the position vector and ~a is constant.

6 Multiple bounding surfaces

This is a bit beyond what will be needed in this class, but it is a natural extension of
the Divergence Theorem we have seen so far. Consider a volume V that is bounded by
several, disconnected, surfaces, S1, S2, etc. We denote by S the union of all the bounding
surfaces. In other words, the Divergence theorem is then

Z

V

~r · ~f dV =

Z

S

~n · ~f dS =

Z

S1+S2+S3+S4

~n · ~f dS

In this case, the unit normal associated to each bounding surface is always pointing away
from the volume V .

7 Stokes’ theorem

This theorem allows us to express the integral along a curve C as an integral over the area
of any surface S that has that curve as its (only) boundary. Let C be a closed curve with a
given orientation and S be a surface whose only boundary is C. Note that here S is NOT
a closed surface, unlike in most prior examples. You can think of S as a ”hat” and of C as
its ”rim”. Consider ~n a unit normal to S in the direction obtained by the right-hand-rule
applied to C and a vector tangent to S that starts on the curve C. Denote by ~t a unit
tangent vector to C.

6
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Stokes’ theorem then states that
I

C

~f · ~t ds =
Z

S

~n · (~r^ ~f) dS

Note that here ds is a linear element of length along C and dS is a surface element along
S.

In index notation, this becomes
I

C

fiti ds =

Z

S

nk(rifj✏ijk) dS

Importantly, S can be ANY surface whose boundary is the closed curve C. This can
sometimes be chosen to make your life easier.

We do not present a proof of this theorem here, but vector calculus textbooks nearly all
contain one.

7
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In the Figure above, we define the following quantities:

1. S is a two-dimensional surface.

2. C is the curve bounding the surface S.

3. dl is a arclength element along C.

4. n̂ is a unit vector normal to S.

5. t̂ is a unit vector tangent to C (and so to C also).

6. �̂ is a unit vector tangent to S and normal to C. It is known as the binormal vector and
defined as �̂ = t̂⇥ n̂.

We begin by recalling Stokes’ Theorem:
I

C

~F · t̂ dl =
Z

S
n̂ · (r⇥ ~F )dS

In order to develop a generalization of this theorem, we let ~F = ~f ⇥~b, for ~b an arbitrary constant
vector. We then have I

C
(~f ⇥~b) · t̂ dl =

Z

S
n̂ · (r⇥ (~f ⇥~b))dS.

We now use the vector identity

r⇥ (~f ⇥~b) = ~f(r ·~b)�~b(r · ~f) +~b ·r~f � ~f ·r~b = �~b(r · ~f) +~b ·r~f

where the last equality follows from ~b being constant.

Moreover, (~f ⇥~b) · t̂ = �~b · (~f ⇥ t̂), so that we may write

~b ·
I

C
(~f ⇥ t̂) dl = ~b ·

Z

S
n̂(r · ~f)�r~f · n̂ dS.

Since the vector ~b is arbitrary, we have
I

C
(~f ⇥ t̂) dl =

Z

S
n̂(r · ~f)�r~f · n̂ dS.

1
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In particular, if we consider ~f = �n̂ and recall that n̂⇥ t̂ = ��̂, we find

�
I

C
��̂ dl =

Z

S
n̂(r · (�n̂))�r(�n̂) · n̂ dS.

=

Z

S
n̂(r� · n̂) + �n̂(r · n̂))� (r�)n̂ · n̂� �(rn̂) · n̂ dS.

We note that ~0 = r(n̂ · n̂) = 2rn̂ · n̂, so that (rn̂) · n̂ = 0. Finally, because � is only defined on
the interface S, we have that (r� · n̂) = 0. This leaves only

I

C
��̂ dl =

Z

S
��n̂(r · n̂) + (r�) dS.
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