
Chem 212 
Problem 2. (Due Tuesday, September 16, 2008) 
 
Two terms that you will often hear in quantum mechanics are “vector space” and 
“basis”.  A vector space is a collection of objects that can be scaled and added.  
The most familiar vector spaces are the 2 dimensional and 3 dimensional 
Euclidian spaces, where vectors are represented as ordered pairs or triples of 
real numbers.  A basis is a set of vectors that can be used to form every other 
vector in the vector space, without any of those elements being able to form the 
others.  For instance, the x and y unit vectors form a basis for 2-d Euclidean 
space because they can be used to form every vector in 2-d by simply scaling 
and adding them, but one cannot be used to form the other (i.e. x and y are 
linearly independent). 
 
The pioneering work of the mathematician David Hilbert extended the concept of 
a vector space to include functions, rather than discrete numbers, in what is 
known as “Hilbert space”.  For instance, we can consider the vector space 
consisting of all the real continuous functions of x.  The various powers of x (1, x, 
x2…) form a basis for this vector space, but not an orthonormal basis.  In this 
problem weʼll utilize the Gram-Schmidt process to form an orthonormal basis 
over two different intervals, and see that some well-known polynomials are 
generated. 
 
The Gram-Schmidt process is a multi-step algorithm that generates a series of 
orthonormal vectors (e0, e1, e2, …en) from a set of independent vectors (v0, v1, v2, 
…vn).  It follows the general process of: 

1) Pick your first vector, v0. 
2) Normalize your first vector, v0.  This is e0. 
3) Pick your second vector, v1. 
4) Subtract the projection of e0 on v1 from v1. 
5) Normalize v1.  This becomes e1. 
6) Pick your third vector, v2. 
7) Subtract the projection of e0 and e1 on v2 from v2. 
8) Normalize v2.  This becomes e2. 
9) Repeat ad nauseum. 

 
 
Part 1 
We will first work over the interval -1 ≤ x ≤ 1.  To utilize the Gram-Schmidt 
process, we need to define the inner product.  In Euclidean space, this is simply 
the dot product.  However, in Hilbert space itʼs a little more complicated.  Over 
the interval we are interested in, the inner product between vectors vn and vm is: 
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Once the inner product is defined, we can the projection operator.  The projection 
of vector vn onto vector vm is: 
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Now that we have all the tools to find the orthonormal vectors for this vector 
space, letʼs begin: 
 

a) What are the first four starting vectors for our vector space (v0, v1, v2, and 
v3)? 

b) Normalize v0.  This is our new vector e0.  (Remember, to normalize a 
vector, divide the vector by the square root of the inner product of the 
vector with itself, i.e. 
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c) What is the projection of e0 onto v1? 
d) Subtract the projection of e0 onto v1 from v1, and then normalize.  Call this 

e1. 
e) Find e2. 

 
Congratulations, you have just derived the first three Legendre polynomials.  The 
Legendre polynomials are found quite often in classical E&M, and are related to 
the spherical harmonics we will see while discussing the hydrogen atom in 
chapter 3. 
 
Part 2 
Now letʼs use the same vector basis (1, x, x2…), but over a different interval, this 
time the entire real line.  In this case the inner product is given by: 
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Find the first three orthonormal vectors for this space (You may need to integrate 
by parts).  Youʼll notice that they are the first three Hermite polynomials. 


