Chem 115

Instrumental Analysis and Bioanalytical Chemistry

Lecture 3: Analysis and Solution Chemistry

What's in this lecture?

- Noise
- Calibration curves
- Solution chemistry

Example Time...

	\% Analyte			
	Analyst 1	Analyst 2	Analyst 3	Analyst 4
Sample 1	10.0	8.1	13.0	13.0
Sample 2	10.2	8.0	10.2	8.0
Sample 3	10.0	8.3	10.3	7.9
Sample 4	10.2	8.2	11.1	12.4
Sample 5	10.1	8.0	13.1	10.3
Sample 6	10.1	8.0	9.3	9.0
Mean	10.1	8.1	11.2	10.1
Std. Dev.	0.089	0.13	1.57	2.2

Signals vs. noise

- Noise determines minimum signal that can be detected, i.e. limit of detection (LOD).
- Also determines limit of quantitation (LOQ)

Noise types

- White noise (frequency independent)
- Thermal noise
- Shot noise
- Flicker noise (frequency dependent)
- Drift
- Pink noise
- Red noise
- Environmental noise

Noise solutions

- Hardware devices for isolation and filtering.
- Signal averaging.
- Fourier transform.

$$
\frac{S}{N}=\frac{\bar{x}}{s}=\frac{1}{R S D}
$$

Calibration curves...

- Regression analysis is used to find the curve that fits the data points the best
- The simplest regression analysis is linear least-squares analysis, which gives the equation for the best straight line for a set of (x, y) points.
- This assumes a line is the best fit, and only works for 2-D plots.
- Higher order regression analysis can be done by software.

Least squares fit...

$$
\begin{aligned}
& S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{\sum_{N}} \\
& S_{y y}=\sum\left(y_{i}-\bar{y}\right)^{2}=\sum y_{i}^{2}-\frac{\left(y_{i}\right)^{2}}{N} \\
& y_{x y}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum x_{i} y_{i}-\frac{\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{N}
\end{aligned}
$$

For a line with equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{aligned}
& m=\frac{S_{x x}}{S_{y y}} \quad s_{b}=s_{r} \sqrt{\frac{\sum x_{i}^{2}}{N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}}=s_{r} \sqrt{\frac{1}{N-\frac{\left(\sum_{i}\right)^{2}}{\sum x_{i}^{2}}}} \\
& b=\bar{y}-m \bar{x} \\
& s_{r}=\sqrt{\frac{S_{x x}-m^{2} S_{y y}}{N-2}} \\
& s_{m}=\sqrt{\frac{s_{r}^{2}}{S_{x x}}} \\
& s_{c}=\frac{s_{r}}{m} \sqrt{\frac{1}{M}+\frac{1}{N}+\frac{\left(\bar{y}_{c}-\bar{y}\right)^{2}}{m^{2} S_{x x}}}
\end{aligned}
$$

Solution Chemistry...

Brønsted-Lowry acids and bases

- Brønsted-Lowry acids are proton donors.
- Brønsted-Lowry bases are proton acceptors.
- To behave as an acid, a base must be present, and vice versa.
- When an acid donates a proton, it forms a conjugate base.
- When a base accepts a proton, it forms a conjugate acid.
- Some substances are amphiprotic, they can behave as an acid or a base.

Strengths of acids and bases

\author{

Strongest acid +	$\begin{aligned} \mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}_{4}^{-} \\ \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-} \\ \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} & \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \\ \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} & \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \\ \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} & \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}^{2-} \\ \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} & \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3} \end{aligned}$	Weakest acid
Weakest base		Strongest base

The equilibrium state

$$
\mathrm{H}_{3} \mathrm{AsO}_{4}+3 \mathrm{I}^{-}+2 \mathrm{H}^{+} \leftrightarrow \mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{I}^{3-}+\mathrm{H}_{2} \mathrm{O}
$$

After reaching equilibrium, what happens if we add more $\mathrm{H}_{3} \mathrm{AsO}_{4}$?

The equilibrium state

If:

$$
w W+x X \leftrightarrow y Y+z Z
$$

Then:

$$
K=\frac{[Y]^{y}[Z]^{z}}{[W]^{w}[X]^{x}}
$$

Important equilibria in analytical chemistry

Type of equilibrium	Name and Symbol	Example	Expression
Water dissociation	Ion-product constant, K_{w}	$2 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$	$\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
Dissociation of slightly soluble species	Solubility product, K_{sp}	$\begin{gathered} \mathrm{BaSO}_{4}(\mathrm{~s}) \leftrightarrow \mathrm{Ba}^{2+}+ \\ \mathrm{SO}_{4}{ }^{2-} \end{gathered}$	$\mathrm{K}_{\text {sp }}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]$
Weak acid or base dissociation	Dissociation constant, K_{a} or K_{b}	$\begin{gathered} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \\ \mathrm{CH}_{3} \mathrm{COO}+\mathrm{H}_{3} \mathrm{O}^{+} \end{gathered}$	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$
Formation of complex ion	Formation constant, K_{F} or β_{n}	$\begin{gathered} \mathrm{Ni}^{2+}+4 \mathrm{CN}^{-} \leftrightarrow \\ \mathrm{Ni}(\mathrm{CN}) 4_{4^{2-}} \end{gathered}$	$\beta_{4}=\frac{\left[\mathrm{Ni}(\mathrm{CN}) 4^{2-}\right]}{\left[\mathrm{Ni}^{2+}\right][\mathrm{CN}-]^{4}}$

p-Functions

$$
\mathrm{px}=-\log (\mathrm{x})
$$

For instance:

$$
\begin{aligned}
& \mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right) \\
& \mathrm{or} \\
& \mathrm{pAg}=-\log \left(\left[\mathrm{Ag}^{+}\right]\right)
\end{aligned}
$$

Where's the water?

$2 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$

Why:

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

Not:

$$
\mathrm{K}_{\mathrm{w}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}
$$

