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1.  Introduction 

 How do you make a prediction about the unpredictable?  Inductive reasoning is about 

drawing conclusions that are not certain or logically valid, but still likely.  Let’s say you are 

buying a new CD for your friend.  It’s impossible to know with certainty what she will like, and 

it doesn’t seem that the rules of logic will tell you which CD to buy.  There’s no correct answer.  

Nonetheless, you can make an informed guess, and indeed she will probably like the CD that you 

buy.  The more you know about her taste in music, and which categories of music she likes and 

does not like, the more likely it is that your prediction will be correct.  Our everyday experiences 

are filled with predictions of this nature—we use inductive reasoning to make likely but not 

certain predictions about how people will act and about things we have not seen, e.g., that when 

we open a door to a room, the room will have a floor and ceiling.  In spite of the uncertainty, we 

manage to be fairly successful in our predictions—we can buy gifts that our friends will enjoy 

and avoid walking into rooms without floors. 

 When it comes to making predictions about the unpredictable, computational models are 

in a similar position to people.  Because the judgments being modeled are themselves uncertain, 

it’s unlikely that models of inductive reasoning will be perfectly correct.  Any computational 

model of inductive reasoning could probably be improved by taking account of more knowledge 

or more principles of prediction.  Nonetheless, current models of inductive reasoning already do 

a fairly good job of capturing patterns and regularities in how people make likely predictions.   

 This chapter will first review some of the empirical work on inductive reasoning by 

people, summarizing regularities that people show.  The second part of the chapter will describe 

computational models of inductive reasoning, particularly from the psychology literature.  The 
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concluding section will address more general issues in modeling inductive reasoning and other 

cognitive activities. 

 

2.  Human inductive reasoning: The Data 

 Inductive reasoning is potentially an extremely large topic, especially since it is often 

defined as reasoning about problems that do not involve perfectly certain conclusions (Heit, in 

press).  The class of problems that have perfectly certain conclusions is much more 

circumscribed, e.g., it could be defined in terms of a set of logical rules about what conclusions 

must follow from a given set of premises.  In comparison, the set of problems for which 

inductive reasoning applies is potentially “everything else” and that is indeed a large and varied 

set.  It’s instructive to examine several textbooks on cognitive psychology.  They will each no 

doubt have a section on inductive reasoning, but you are likely to find that different textbooks 

cover different topics under this heading.  These topics will include analogical reasoning 

(Gentner, Holyoak, & Kokinov, 2001; for some connections to inductive reasoning see 

Lassaline, 1996; Wu & Gentner, 1998; Thagard, in press), categorization (Kruschke chapter), 

judgment and decision making (Busemeyer chapter), and causal reasoning (Sloman, 2005).  

Likewise, inductive reasoning has been an important issue in artificial intelligence and computer 

science (e.g., Collins & Michalski, 1989; Sun, 1995; Sun & Zhang, 2006).  Some of these topics 

will be referred to indirectly over the course of this chapter, however this chapter will necessarily 

have a focus.  This chapter will address one important aspect of inductive reasoning, namely 

psychological research on category-based induction, or how people use categories to make likely 

inferences. 
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  Categories and inductive reasoning go hand in hand.  For example, Anderson (1991) 

suggested that the most important function of categories is not that they allow us to categorize 

things, but rather that they allow us to draw inferences.  Returning to the example of buying your 

friend a CD, let’s say that you know that your friend likes some 1960s music and hates Celine 

Dion.  In predicting which CDs she will like, it seems safer to choose something from within the 

1960s category than from within the Celine Dion category.  Category-based induction has been 

studied extensively by psychologists, although usually not with musical categories but with more 

structured categories that are part of people’s basic knowledge, such as different kinds of 

animals.   

 In one of the earliest studies of category-based induction, Rips (1975) examined how 

people project properties of one category of animal to another.  Subjects were told to imagine 

that on an island, all members of a species of mammals catch a particular disease, then they were 

asked what proportion of other species will catch the disease.  For example, knowing that all 

horses have the disease, what proportion of cows will have the disease?  What proportion of 

dogs?  Mice?   

 This was a very useful task, but before reviewing results in inductive reasoning another 

important step in studying inductive reasoning will be described.  A limitation of the Rips (1975) 

task was that it was best suited for drawing inferences from one category to another, whereas 

inductive reasoning usually involves more pieces of information.  Osherson, Smith, Wilkie, 

Lopez, and Shafir (1990) made an influential contribution to the study of inductive reasoning by 

having subjects evaluate written inductive arguments in the format usually used for logic 

problems.   

 
 All horses have property X (1) 
 All cows have property X 
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 All mice have property X 
 All lions have property X 
 --------------------------- 
 All mammals have property X 
 
 
Here, in argument (1), the premise statements above the line are taken to be true, and the task is 

to judge the degree to which the conclusion statement, below the line, follows from the premises.  

Essentially this is a judgment of argument strength.  This task is very flexible in the sense that 

any number of premises can be used, and various properties could be swapped in for property X 

(or the uninformative property X could be used).  Osherson et al. reported 11 main phenomena or 

regularities regarding how people perform inductive reasoning.  A later review paper by Heit 

(2000) split things up differently, considering some newer data, and reported 8 main phenomena 

in inductive reasoning.  In the next sections of this chapter, some of these phenomena will be 

described, setting the stage for the presentation of computational models of inductive reasoning.  

Note that results from adults only will be discussed here.  There is also a rich literature on 

inductive reasoning by children that could be used to constrain modeling; for reviews, see Heit 

(2000; Heit, Hahn, & Feeney, 2005; Heit & Hayes, 2005) as well as Hayes (in press). 

 

 Similarity effects.  The idea that similarity should guide inductive reasoning has a 

distinguished history.  Mill (1874) argued “that what happens once, will, under a sufficient 

degree of similarity of circumstances, happen again.”  Going back to the example of buying a 

CD for your friend, if you know that she likes 1960s albums by the Rolling Stones and does not 

like Celine Dion, the most promising strategy is no doubt to buy her a CD by a similar 1960s 

band rather than by someone else who sings like Celine Dion.  These similarity effects are 

backed up by a lot of laboratory evidence—similarity effects are the most robust result in 

inductive reasoning.  For example, Rips (1975) found a strong correlation between strength of 
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inferences and measures based on similarity judgments.  If all horses had the disease, then most 

cows would have the disease, fewer dogs, and yet fewer mice.  Likewise Osherson et al. (2000) 

found that given a choice such as between argument (2) and argument (3), about 95% of people 

chose argument (2), due to the greater similarity of sparrows to robins and bluejays versus geese 

to robins and bluejays. 

 
 Robins use serotonin as a neurotransmitter.  (2) 
 Bluejays use serotonin as a neurotransmitter. 
 ------------------------------------------------ 
 Sparrows use serotonin as a neurotransmitter. 
 
 
 Robins use serotonin as a neurotransmitter.  (3) 
 Bluejays use serotonin as a neurotransmitter. 
 ------------------------------------------------ 
 Geese use serotonin as a neurotransmitter. 
 

 Despite this strong evidence, there are some exceptions to similarity effects and some 

complications, as will soon be described.  Yet clearly any computational model of induction will 

have to address similarity effects (and ideally the exceptions and complications too). 

 

 Typicality effects.  Another very robust finding in inductive reasoning is the typicality 

effect.  This phenomenon is closely tied to categorization research, in particular the idea that not 

all category members are equal, but instead some are more prototypical than others (e.g., Rosch 

& Mervis, 1975).  Returning to buying a CD for your friend, if you know that she likes albums 

by the Rolling Stones, a prototypical 1960s guitar-based rock band, there would seem to be a lot 

of a lot similar 1960s bands to choose from.  On the other hand, if you know that she likes 

albums by the Moody Blues, a much less typical 1960s band that recorded with a symphony 

orchestra, it would seem harder to choose another 1960s band that she would like—she might 

only like rock bands that use classical music.   



 7

 Like similarity effects, typicality effects have been well-documented in laboratory 

research.  For example, Rips (1975) found that when a more typical mammal such as horses had 

the disease, people generally drew stronger inferences to other mammals, compared to a situation 

where a less typical mammal, such as mice, had the disease.  There was an additional effect of 

typicality beyond what might be predicted based only on similarity.  Intuitively, if a typical 

mammal such as horses have the disease, then perhaps all mammals have it, that is the property 

applies to the superordinate category.  On the other hand, if mice have the disease, it might be 

restricted to a subcategory of mammals such as rodents.   

 Indeed, Osherson et al. (1990) addressed this intuition directly.  They compared 

arguments like (4) and (5).  Here, knowing a fact about robins seems to license a stronger 

inference about all birds in comparison to knowing a fact about penguins.  More than 90% of 

people chose argument (4). 

 

 Robins have a higher potassium concentration in their blood 
than humans. (4) 
 ------------------------------------------------ 
 All birds have a higher potassium concentration in their 
blood than humans. 
 

 Penguins have a higher potassium concentration in their 
blood than humans. (5) 
 ------------------------------------------------ 
 All birds have a higher potassium concentration in their 
blood than humans. 
 

 In sum, the typicality effect is another robust phenomenon that must be addressed by 

models of inductive reasoning. 
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 Diversity effects.  The next regularity to be discussed, the diversity effect, is somewhat 

more elusive than similarity or typicality, but it too has a distinguished history (Heit, Hahn, & 

Feeney, 2005).  Bacon (1620) argued that before drawing inferences about a category, such as 

things possessing heat, diverse instances of this category should be examined.  In making this 

point, he listed 28 different kinds of heat and hot things, including the rays of the sun, steam, 

burning hay, and the insides of animals.  The diversity effect is also well illustrated in the 

example of buying CDs.  If your friend actually likes both the Rolling Stones and Celine Dion, 

then you might infer that she has broad tastes in music and it would be safe to buy her one of 

many styles of music.  On the other hand, if you know she likes the Rolling Stones and The 

Who, another guitar-based 1960s band, you might infer that her musical tastes are fairly narrow 

after all and you should not stray too far from similar bands.   

 Studying the diversity effect in laboratory experiments requires giving people at least two 

pieces of information, and varying the diversity of these two items.  In the study by Rips (1975), 

subjects were only given one fact at a time, so diversity effects were not addressed.  It was the 

Osherson et al. (1990) study that first focused on diversity effects in inductive reasoning by 

adults, using arguments such as the following. 

 

 Hippos have a higher sodium concentration in their blood 
than humans. (6) 
 Hamsters have a higher sodium concentration in their blood 
than humans.  
 ------------------------------------------------ 
 All mammals have a higher sodium concentration in their 
blood than humans. 
 
 
 Hippos have a higher sodium concentration in their blood 
than humans. (7) 
 Rhinos have a higher sodium concentration in their blood 
than humans.  
 ------------------------------------------------ 
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 All mammals have a higher sodium concentration in their 
blood than humans. 
 
 
About 75% of people chose argument (6), with the more diverse set of category members, over 

argument (7), with the less diverse set.  In essence, diverse evidence is stronger than non-diverse 

evidence.  Osherson et al.’s own explanation for this phenomenon was in terms of coverage: 

Hippos and hamsters cover, or span, the category of mammals better than do hippos and rhinos.  

Hence a property of hippos and hamsters is more likely to generalize to other mammals.   

 Although diversity effects have been found in other laboratory experiments, there are 

more exceptions in comparison to similarity and typicality effects (see Heit, 2000, and Heit, 

Hahn, & Feeney, 2005, for reviews).  Still, due to the very nature of inductive reasoning, namely 

that it is probabilistic, there are likely to be exceptions to any regularity that is found.  Hence, 

diversity is another effect that computational models will need to address. 

 

 Other phenomena, including background knowledge effects.  Although similarity, 

typicality, and diversity are three of the most important phenomena, there are several others 

summarized by Osherson et al. (1990) and Heit (2000), and reported by other researchers.  Some 

of these are fairly straightforward, encompassing other points about the structure of inductive 

arguments.  For example, Osherson et al. reported that more evidence leads to stronger 

generalizations than less evidence (see also Nisbett, Krantz, Jepson, & Kunda, 1983).  Looking 

back at argument (1), this argument with four premises seems fairly strong, and it would be 

stronger than another argument with just a single premise, e.g., that only horses have property X.   

 There is another class of phenomena that are much messier but much more interesting, 

both in their own right and as challenges for computational models.  These phenomena involve 

the use of more background knowledge, and as such, are closely linked to the nature of inductive 
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reasoning.  That is, because inductive reasoning is uncertain by nature, there is always room for 

improvement by drawing on some other source of knowledge.  (This makes a sharp contrast with 

deductive reasoning, or logical reasoning, where the conclusion is certain and using background 

knowledge is usually considered an error.)  Returning to the example of buying a CD that your 

friend will like, the more information that you can accumulate about her musical tastes and 

listening habits, there more successful you will be in choosing a CD for her.  In fact, with enough 

knowledge about her habits, you might be able to able to make detailed and sophisticated 

predictions such as music to play in the car versus while at home studying.   

 Heit and Rubinstein (1994) reported one such phenomenon based on background 

knowledge, showing a kind of exception to the similarity effect.  Suppose there are two inductive 

arguments as follows. 

 

 Bears have property X. (8) 
 --------------------------- 
 Whales have property X. 
 
 
 Tuna have property X. (9) 
 --------------------------- 
 Whales have property X. 
 
 

Which argument is stronger, (8) or (9)?  Heit and Rubinstein showed that the answer depends on 

X.  If property X is filled in with an anatomical property, such as having a liver with two 

chambers, then (8) is considered stronger than (9), by virtue of other shared anatomical 

properties of the two mammals, bears and whales.  On the other hand, if property X is filled in 

with a behavioral property, such as traveling shorter distances in extreme heat, then (9) is 

considered stronger than (8).  Here, shared behavioral properties are considered, and the two 

swimmers, tuna and whales, have more in common on this basis.  Heit and Rubinstein concluded 
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that the basic similarity effect in inductive reasoning is not a singular phenomenon but instead is 

mediated by background knowledge. 

 There have been many other demonstrations of background knowledge effects in 

inductive reasoning (Lopez, Atran, Coley, Medin, & Smith, 1997; Medin, Coley, Storms, & 

Hayes, 2003; Proffitt, Coley, & Medin, 2000; Rehder, 2006; Ross & Murphy, 1999; Shafto & 

Coley, 2003; Sloman, 1994).  For example, Medin, Coley, Storms, and Hayes (2003) reported an 

exception to the diversity effect, known as the non-diversity by property reinforcement effect.  

The idea behind non-diversity by property reinforcement is that two diverse categories may 

nonetheless have some characteristic in common, and tend to generalize only to other categories 

with this same characteristic.  This phenomenon is illustrated by the following arguments. 

 
Polar bears have property X.  (10) 
Antelopes have property X. 
-------------------------------- 
All animals have property X. 
 
 
Polar bears have property X.   (11) 
Penguins have property X. 
-------------------------------- 
All animals have property X. 
 
 
When given a choice between polar bears and antelopes versus polar bears and penguins, people 

judged the two animals from the same biological class, polar bears and antelopes, to be more 

similar than the two animals from different biological classes, polar bears and penguins.  

However, when asked to assess the inductive strength of each argument, argument (11) was 

judged to be less convincing than argument (10).  That is, argument (10) had less diverse 

evidence, yet it was the stronger argument.  Intuitively, although polar bears and penguins are 

from different biological classes, people use their knowledge that both live in a cold climate, and 



 12

infer that property X does not apply to all animals but only to animals living in cold climates.  

(See Heit & Feeney, 2005, for further discussion.) 

 The more general point is that when people evaluate inductive arguments, they 

potentially draw upon a variety of resources.  When people use background knowledge, it is 

illuminating to think of what people are doing as causal reasoning, that is they are reasoning 

about relations between causes and effects (Rehder, 2006).  People are reasoning about what 

causes whales to move more slowly in extreme heat, what causes two cold-weather animals to 

have other properties in common, and so on.  One consideration to keep in mind as 

computational models are presented is whether they have any facility for addressing not only 

similarity, typicality, and diversity effects, but also background knowledge effects and indeed 

whether they show any capacity for causal reasoning. 

 

3.  Human inductive reasoning: The Computational Models 

 Having reviewed some of the important empirical phenomena, it is time to turn to models 

of inductive reasoning.  A representative sample will be given rather than complete details on all 

models.  First, two earlier models, by Osherson et al. (1990) and Sloman (1993), will be 

described.  To anticipate, these models do an excellent job of addressing many structural 

phenomena in inductive reasoning, but do not address background knowledge effects 

sufficiently.  Then, an alternative kind of model, based on Bayesian hypothesis testing, is 

presented in some detail (Heit, 1998).  Bayesian models have the potential to address some 

background knowledge effects, and further applications by Tenenbaum and colleagues (Kemp & 

Tenenbaum, 2003; Tenenbaum & Griffiths, 2001; Tenenbaum, Kemp, & Shafto, in press) are 

described.  Other modeling work in the psychology literature, not described here, can be found in 
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papers by Rips (1975), Smith, Shafir, and Osherson (1993), McDonald, Samuels, and Rispoli 

(1996), Sloutsky and Fisher (2004), Heit and Hayes (2005), and Blok, Osherson, and Medin (in 

press).  Likewise, some of the empirical regularities documented and modeled by psychologists 

were anticipated in a seminal paper in artificial intelligence, by Collins and Michalski (1989).   

 

 Osherson et al. (1990).  The most influential computational model of inductive reasoning 

was proposed by Osherson et al. (1990).  This model has two main components.  The first 

component assesses the similarity between the premise categories and the conclusion category.  

In the most straightforward application of the model, this information is simply taken from 

people’s similarity judgments for various pairs of categories.  The model predicts that the basic 

similarity effect that is pervasive in inductive reasoning.  The second component measures how 

well the premise categories cover the superordinate category that includes all the categories 

mentioned in an argument.  For single-premise arguments, coverage more or less reduces to 

typicality, but for multiple-premise arguments, coverage gives something closer to a measure of 

diversity.  Coverage is most easily explained with examples. 

 
Mice have property X (12) 
----------------------------- 
All mammals have property X 
 
 
Horses have property X (13) 
----------------------------- 
All mammals have property X 
 
 
Hippos have property X (14) 
Rhinos have property X 
----------------------------- 
All mammals have property X 
 
 
Hippos have property X (15) 
Hamsters have property X 
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----------------------------- 
All mammals have property X 
 
 

 For arguments (12) and (13), the lowest-level superordinate that includes all the 

categories is mammal.  Coverage is assessed in terms of the average similarity of the premise 

category to members of the superordinate.  To the extent that horses are more typical mammals 

than are mice, and therefore more similar to other kinds of mammals, argument (13) will have 

greater coverage than argument (12).  This is how the model addresses typicality effects.   

 The remaining arguments have multiple premises.  When assessing similarity between 

members of the superordinate category and the multiple premises, only the maximum similarity 

for any one premise category is considered.  So for argument (14), very large mammals tend to 

be similar to both hippos and rhinos, and smalls mammals tend not to be similar to hippos and 

rhinos. So including rhino as a premise category does not add much information beyond just 

having hippo as a premise category alone.  In contrast, for argument (15), some mammals are 

similar to hippos and other mammals are similar to hamsters.  Therefore, the hamster premise 

adds information, and the coverage for argument (15) is greater than for argument (14).  Hence, 

the Osherson et al. (1990) model addresses diversity effects, to the extent that greater coverage is 

correlated with greater diversity.   

 The Osherson et al. (1990) model can be written out more formally, as show in Equation 

I. 

( ) ]),,...[;,...(1);,...( 111 CPPPPSIMCPPSIMStrength nnn αα −+=  (I) 
 

Here, α refers to the relative influence of the similarity component (ranging from 0 to 1) and (1-

 α ) is the influence of the coverage component.  This equation applies when there are n premise 
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categories P and one conclusion category C.  When the premise and conclusion categories are all 

at the same taxonomic level, (e.g., robins, bluejays; sparrows), then SIM returns the maximum of 

the pairwise similarities between each Pi and C.  When the conclusion category is at a higher 

taxonomic level than the premise categories (e.g., robins, bluejays; birds), then SIM is applied 

recursively to known c that are members of C, and averaged over these c.  For example, 

SIM(robins, bluejays; birds) = AVERAGE(SIM(robins, bluejays; sparrows), SIM(robins, 

bluejays; penguins), SIM(robins, bluejays; chickens), SIM(robins, bluejays; pigeons),….).  

Finally, the bracket function [] returns the lowest-level superordinate covering all of the included 

categories, e.g., [robins, bluejays, sparrows]=birds; [robins, bluejays, birds]=birds; [robins, 

bluejays, dogs]=animals. 

 Generally speaking, the Osherson et al. (1990) addressed a wide variety of structural 

phenomena in inductive reasoning, and is particularly impressive in how it puts together 

information from multiple premises, due to the powerful combination of similarity and coverage 

components.  Although the model does incorporate some information about categories and 

similarity, the model does not address background knowledge effects such as the differential use 

of similarity and properties in Heit and Rubinstein (1994), exceptions to diversity in Medin et al. 

(2003), or more generally any use of causal knowledge or causal reasoning.   

 

 Sloman (1993).  The model by Sloman (1993) is particularly interesting because it asks 

the question of whether the coverage component in the Osherson et al. (1990) model is really 

necessary.  Sloman’s model was implemented as a connectionist network and it can account for 

many of the same phenomena as the Osherson et al. model.  (For comparison, see an alternate 

connectionist model in the artificial intelligence literature, Sun, 1995.)  The way Sloman’s model 
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works is that premises of an argument are encoded by training the connectionist network to learn 

associations between input nodes representing the features of the premise categories and an 

output node for the property to be considered, using the classic delta rule (e.g., Sutton & Barto, 

1981).  For example, for the model to learn that applies have property X, it would learn to 

associate a vector of features such as {is round, is red, is edible, ...} with an output node 

representing property X.  Then the model is tested by presenting the features of the conclusion 

category and measuring the activation of the same output node.  For example, to evaluate the 

strength of the conclusion that oranges have property X, the model would use a somewhat 

different input vector of features {is round, is orange, is edible, …) and measure the degree of 

activation for the output unit corresponding to property X.   

The model accounts for similarity effects because training and testing on similar input 

vectors will lead to strong outputs during testing.  Going back to arguments (2) and (3), the 

model would first be trained to associate input representations for robins and bluejays with an 

output node representing the property in the conclusion.  Because the representation for sparrows 

would have a lot of overlap with representations of robins and bluejays, presenting sparrow to 

the network would also activate the output node strongly.  In comparison, the representation of 

geese would have much less overlap with representations for robins and bluejays.  Hence, 

presenting geese to the network would only weakly activate the output node.   

 The activation function is as follows, in Equation II. 

2||
),...,(

),...,|(
C

CPPW
PPCa ni

ni
•

=  (II) 

This function refers to the output activation given a set of n premise categories P and a 

conclusion category C.  W is a vector corresponding to the already-trained weights in the 

network after the premise categories have been learned.  C is a vector corresponding to the 
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featural representation of the conclusion category.  The dot product between W and C is 

computed. yielding a value corresponding to the similarity between the premise categories and 

the conclusion category.  For example, donkey and mule would have many features in common 

and there would be a fairly high, positive dot product between the two vectors.  On the other 

hand, donkey and ostrich would have fewer features in common and a lower dot product, 

perhaps close to zero.  Finally, the activation is scaled. in the denominator, by the squared length 

of the vector C, essentially a measure of the number of known features of C.  If C corresponds to 

a well-known category such as dogs, it will be relatively difficult to draw a new conclusion.  If C 

corresponds to a poorly-known category such as ocelots, it will be easier to draw new 

conclusions about the category. 

 The model accounts for diversity effects because training on a diverse set of categories 

will tend to strengthen a greater number of connections in W than training on a narrow range of 

categories.  In terms of arguments (6) and (7), training the network that both hippos and hamsters 

have a certain property would activate a broad range of features that apply to various mammals, 

leading to a strong conclusion that all mammals have that property.  That is, hippos and hamsters 

would activate different features and different connections.  In comparison, training the network 

that hippos and rhinos have a property would only activate a narrow range of features and 

connections.  Although this model does have a notion of breadth of features, there is no distinct 

component for assessing coverage of a superordinate category, as in the Osherson et al. (1990) 

model, and indeed Sloman’s model does not even rely on knowledge about superordinate 

categories (see also Sloman, 1998, and see Sun & Zhang, 2006, for an alternative account).  

Nonetheless, the Sloman model can account for not only diversity effects but a variety of other 

phenomena involving multiple premises. 
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 The treatment of typicality effects is slightly less straightforward.  The model would 

correctly predict that argument (4) is stronger than argument (5), namely that robins lead to 

stronger inferences about all birds than do penguins.  The Sloman model makes this prediction in 

terms of overlap in representations.  On the assumption that the featural representations for 

robins and birds are closer than the representations for penguins and birds, the model predicts 

greater activation for birds after training on robins compared to training on penguins.  Yet the 

model is essentially predicting the typicality effect in the same way as the similarity effect.  This 

seems to be at odds with a finding from Rips (1975) of an independent contribution of typicality 

beyond similarity.  Still, at a broad level, the Sloman predict predicts a kind of typicality effect 

(see Heit, 2000, for further discussion).   

 More importantly, the Sloman (1993) model, like the Osherson et al. (1990) model, can 

account for many structural phenomena in inductive reasoning, but it does not address 

background knowledge effects, and does not use knowledge about the properties being reasoned 

about to guide the use of similarity or information about causality. 

 

 Bayesian model.  The next model to be discussed is the Bayesian model, applied to 

inductive reasoning problems by Heit (1998; see also Tenenbaum & Griffiths, 2001, as well as 

the chapter by Griffiths, Kemp, & Tenenbaum, this volume).  According to the Bayesian model, 

evaluating an inductive argument is conceived of as learning about a property, in particular 

learning for which categories the property is true or false.  For example, in argument (16),  

 
 
Cows have property X  (16) 
----------------------------- 
Sheep have property X. 
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the goal is to learn which animals have property X and which do not.  The model assumes that 

for a novel property X, people would rely on prior knowledge about familiar properties, to derive 

a set of hypotheses about what property X may be like.  For example, people know some facts 

that are true of all mammals, including cows and sheep, but they also know some facts that are 

true just of cows and some facts that are true just of sheep.  The question is which kind of 

properties is property X.  Is it a cow-and-sheep property, or a cow-only property, or a sheep-only 

property?  To answer this question, the Bayesian model treats the premise or premises in an 

inductive argument as evidence, which is used to revise beliefs about the prior hypotheses 

according to Bayes’s Theorem.  Once these beliefs have been revised, then the plausibility of the 

conclusion is estimated.   

 People know quite a few properties of animals, but these known properties must fall into 

four types: properties that are true of cows and sheep, properties that are true of cows but not 

sheep, properties that are true of sheep but not cows, and properties that are not true of either 

cows or sheep.  These types of known properties can serve as four hypotheses when reasoning 

about novel properties, because any new property must also be one of these four types, as listed 

in Table 1.  As shown in the table, a person would have prior beliefs about these hypotheses.  For 

example, the value of .70 for hypothesis 1 represents the belief that there is a 70% chance that a 

new property would be true of both cows and sheep.  This high value could reflect the high 

degree of similarity between cows and sheep, and that people know many other properties that 

are true of both cows and sheep.  (The particular numbers are used only for illustration at this 

point.)  However, the person might see a 5% chance that a new property would be true of cows 

and not sheep, a 5% chance that a new property would be true of sheep and not cows, and a 20% 

chance that the property is true of neither category.   
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 The next step is to combine these prior beliefs with new evidence, using Bayes’s 

Theorem as shown in Equation III.  The given premise, “Cows have property X,” is used to 

update beliefs about the four hypotheses, so that the conclusion, “Sheep have property X,” can be 

evaluated.  In applying Bayes’s Theorem, below, the premise is treated as the data, D.  The prior 

degree of belief in each hypothesis is indicated by P(Hi).  (Note that there are four hypotheses, so 

n = 4 here.)  The task is to estimate P(Hi|D), that is the posterior degree of belief in each 

hypothesis given the data.   
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 The calculations are shown for all four hypotheses, given the data that cows have 

property X.  The calculation of P(D|Hi) is easy.  Under hypotheses 1 and 2, cows have the 

property in question, so obtaining the data (that cows have the property) has a probability of 1.  

But under hypotheses 3 and 4, cows do not have the property, so the probability of obtaining the 

data must be 0 under these hypotheses.  The final column, indicating the posterior beliefs in the 

four types of properties, is calculated using Bayes’s Theorem.  Notably, hypothesis 1, that cows 

and sheep have the property, and hypothesis 2, that just cows have the property, have been 

strengthened, and the two remaining hypotheses have been eliminated from consideration. 

 Finally, the values in Table 1 may be used to evaluate the conclusion, that sheep have 

property X.  The degree of belief in this conclusion is simply the sum of the posterior beliefs for 

hypotheses 1 and 3, or .93.  Recall that before the introduction of evidence that cows have the 
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property, the prior belief that sheep have the property was only .75.  hence, the premise that cows 

have the property led to an increase in the belief that sheep have the property. 

 The Bayesian model addresses many of the key phenomena in inductive reasoning.  For 

example, the model predicts the similarity effect because novel properties would be assumed to 

follow the same distributions as familiar properties.  Generalizing from cows to sheep seems 

plausible because many known properties are true of both categories.  In contrast, generalizing 

from cows to mice seems weaker because prior knowledge indicates that there are fewer 

properties in common for these two categories.  The Bayesian model also addresses typicality 

effects, under the assumption that according to prior beliefs, atypical categories, such as mice, 

would have a number of idiosyncratic features.  A premise asserting a novel property about mice 

would suggest that this property is likewise idiosyncratic and not to be widely generalized.  In 

comparison, prior beliefs about typical categories would indicate that they have many features in 

common with other categories, hence a novel property of a typical category should generalize 

well to other categories.   

 The Bayesian model also addresses diversity effects, with a rationale similar to that for 

typicality effects.  An argument with two similar premise categories, such as hippos and rhinos, 

could bring to mind a lot of idiosyncratic properties that are true just of large mammals. 

Therefore a novel property of hippos and rhinos might seem idiosyncratic as well.  In contrast, an 

argument with two diverse premise categories, such as hippos and hamsters, could not bring to 

mind familiar idiosyncratic properties that are true of just these two animals.  Instead, the prior 

hypotheses would be derived from known properties that are true of all mammals or all animals.  

Hence a novel property of hippos and hamsters should generalize fairly broadly.  More generally, 
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Heit (1998) showed that the Bayesian model addresses about the same range of structural 

phenomena in inductive reasoning as does the Osherson et al. (1990) and Sloman (1993) models. 

 Although it is by no means a complete model of the use of background knowledge in 

inductive reasoning, the Bayesian model does make a start at addressing background knowledge 

effects.  For example, when reasoning about the anatomical and behavioral properties in Heit and 

Rubinstein (1994), subjects could have drawn on different priors for the two kinds of properties.  

Reasoning about anatomical properties led people to rely on prior knowledge about familiar 

anatomical properties, so there was stronger generalization from bears to whales than from tunas 

to whales.  In contrast, when reasoning about a behavioral property, the prior hypotheses could 

be drawn from knowledge about familiar behavioral properties.  These priors would tend to 

promote inferences between animals such as tunas and whales that are similar behaviorally rather 

than anatomically.  Although by no means does the Bayesian model itself perform causal 

reasoning, the priors used in the model could be the end-product of causal reasoning. 

 Indeed, a fair criticism of the Bayesian model would be that its predictions are captive to 

assumptions about distributions of prior beliefs.  Heit (1998) responded to this criticism in part, 

by stating that the exact values of priors don’t usually matter, e.g., the values for prior beliefs in 

Table 1 could be somewhat different and the same general pattern would emerge.  Also, Heit 

argued that priors would be derived from psychologically plausible mechanisms.  It could be 

assumed that priors are determined by the number of known properties of each type that are 

brought to mind in the context of evaluating an inductive argument.  In this way, prior beliefs for 

new properties would be estimated using something like an availability heuristic (Tversky & 

Kahneman, 1973) based on known properties.   
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 Still, it would be a major improvement to the Bayesian model if assumptions about prior 

beliefs could be generated by a model rather than just simply assumed.  Tenenbaum and 

colleagues (Griffiths et al., this volume; Kemp & Tenenbaum, 2003; Tenenbaum et al., in press) 

have made improvements in this regard.  Their central idea is that properties of living things 

have come about due to a process, rather than being arbitrarily distributed.  That is, due to an 

evolutionary process, living things can be thought of as being on the branches of a tree.  Two 

very similar animals probably have a relatively recent common ancestor, whereas two animals 

that are very different probably only have a common ancestor from very long ago.  The starting 

point for Tenenbaum and colleagues was a large set of ratings on whether different animals 

possess various known properties.  From principles of branching evolution as well as mutation, 

they derived a tree structure, in effect inferring common ancestors for each pair of animals.  

Tenenbaum and colleagues then used the tree structure to set the priors for the Bayesian model.  

It was found that priors derived from the tree structure were much more successful at predicting 

people’s judgments than priors derived from their property ratings.  Interestingly, Tenenbaum 

and colleagues have argued that this method of setting priors is particularly successful because it 

represents people’s causal knowledge of how properties of living things come about and the 

mechanisms by which they could be shared. 

 To sum up the description of Bayesian modeling of inductive reasoning, this kind of 

modeling does address many phenomena and regularities.  The greatest weakness of Bayesian 

models, that they are subject to assumptions about priors, may also be their greatest strength, in 

the sense that many predictions are robust over different assumptions about priors, and 

furthermore the priors themselves could be derived from other reasoning processes that likewise 

could be modeled.   
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4.  Causal learning and causal reasoning 

 An interim summary of the chapter so far could be that current models of inductive 

reasoning can account for much of what people do, but they especially fall short when it comes 

to causal knowledge.  Part of the problem, from the modeling perspective, is that research on 

modeling of inductive reasoning has largely proceeded separately from research on modeling the 

use of causal knowledge.  Research on modeling the use of causal knowledge has itself largely 

taken two separate approaches.  One approach focuses on causal learning, or causal induction, 

namely how people infer a causal structure from a set of observations.  For example, a novice DJ 

at a party could observe that playing some songs makes people get up and dance, whereas 

playing other songs makes people sit quietly, and could draw inferences about what kinds of 

songs are associated with different behaviors.  The other approach focuses on causal reasoning, 

which mainly addresses how often complex knowledge structures can be used to make fresh 

inferences.  For example, an expert with years of experience in the music industry could makes 

detailed predictions about which new performers will succeed and which will not, and give an 

elaborate causal explanation in terms of market forces, demographics, current trends, etc.  Of 

course there is much overlap between causal learning and causal reasoning, but the emphasis in 

causal learning research is more on the acquisition of causal knowledge and in causal reasoning 

research on the use of causal knowledge. 

 The question of how to infer causation from a set of observations has been considered a 

central problem of induction at least since the time of Hume (1777).  If event B tends to follow 

event A, does A cause B?  At the simplest level, this is the most important question faced by 

animals seeking food or other necessities—which cues are predictive of obtaining nourishment 
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or some other needed reward?  Indeed, one of the most important models of causal learning has 

its origins in animal conditioning research (Rescorla & Wagner, 1972).  The Rescorla-Wagner 

model can be written as shown in Equation IV. 
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This formula gives the associative strength, V, of stimulus A, on trial n+1, as a function of the 

associative strength of A on trial n, a learning rate β , and a level of reinforcement, )(nλ , on 

trial n.  In the asymptote, the associative strength of A will tend towards the expected value of 

the level of reinforcement.  The consequence is that stimuli that are followed by reinforcement 

tend to gain higher levels of associative strength than stimuli that are not reinforced.  Of course, 

the Rescorla-Wagner model can also be extended to situations where there is more than one 

stimulus on each learning trial—in these situations the stimuli compete with each other to be the 

best predictor of reinforcement.  For example, once the animal full learns that A is associated 

with reinforcement, if the compound stimulus A+X is reinforced, the animal will be blocked 

from learning an association between X and reinforcement, because A alone sufficiently predicts 

the outcome.   

 There is a lively debate about whether such associative mechanisms are good accounts of 

people’s causal learning (e.g., Buehner & Cheng, 2005; Luhmann & Ahn, 2004; Novick & 

Cheng, 2004; Shanks, in press; Waldmann, 2000; White; 2005), to which the reader is referred.  

However, there is no doubt that people do acquire causal beliefs.  Hence, the next question is 

how do people represent and reason using this causal information. 
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 The current state of the art in cognitive science is that people represent causal knowledge 

in the form of a causal network, akin to a formalization known as Bayes nets (Gopnik, Glymour, 

Sober, Schulz, Kushnir, & Danks, 2004; Pearl, 2000; Sloman, 2005; Spirtes, Glymour, & 

Scheines, 2001).  These networks allow for the representation of complex causal configurations, 

such as a causal chain (e.g., the boy threw the ball that broke the window that woke the cat), a 

common effect from multiple causes (e.g., a fire is caused by a spark in the presence of oxygen 

and some kind of fuel), and common effects from a single cause (e.g., a cold caused a runny 

nose, fever, and redness of the eyes).  Bayes nets provide a formalism for using this structured 

knowledge to draw inferences, e.g., to estimate the probability that the cat will wake.  Although 

this kind of modeling no doubt provides a valuable framework way for describing causal 

reasoning, further work needs to be done to integrate this framework with human data.  Although 

there have been some efforts to relate this kind of formalism to results from inductive reasoning 

(Rehder, 2006, in press; Rehder & Burnett, 2005), for the most part, modeling of causal 

reasoning stands apart from modeling of inductive reasoning as captured by the results in this 

chapter.  It remains a challenge for Bayes nets or some related model of causal reasoning to show 

that they can not only explain what the current models of inductive reasoning can explain but 

also do a better job by incorporating the use of causal knowledge. 

 

5.  Conclusion 

 Summary.  Although inductive reasoning is by its very nature uncertain reasoning, there 

are nonetheless regularities and patterns that people show when performing inductive reasoning.  

These regularities include similarity effects, typicality effects, diversity effects, and several 

others.  Current models of inductive reasoning, such as the influential Osherson et al. (1990) 
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model, are successful at explaining these regularities, but have problems addressing the 

exceptions to these regularities, particularly when people use other kinds of background 

knowledge outside the scope of these models, such as causal knowledge.  There are also extant 

models of causal induction and causal reasoning, but these models have generally been used to 

address other sets of results.  It remains an important task for future research to integrate 

computational modeling work on inductive reasoning, causal induction, and causal reasoning, as 

applied to a diverse set of human results. 

 This chapter will conclude by discussing two general issues that arise in modeling 

inductive reasoning, but also arise in computational modeling of other cognitive activities.  The 

first issue is that cognitive activities do not neatly fall into pigeonholes.  The second is that 

putting background knowledge into models is the necessary next step. 

  

 Everything is intertwingled.  As Nelson (1987) noted, everything is deeply intertwingled.  

Although it is convenient for books to have separate chapters about different cognitive activities, 

and likewise it is convenient for researchers to have separate models for different cognitive 

activities, the truth is that cognitive activities are not as separate as they are portrayed.  For 

example, there is a traditional split between inductive reasoning and deductive reasoning, yet it is 

still not known where the dividing line is or even if inductive reasoning and deductive reasoning 

involve distinct cognitive processes (Heit, in press; Rotello & Heit, 2005).  The well-known 

mental models theory of reasoning (Johnson-Laird & Yhang, this volume), usually applied to 

deductive reasoning problems, has also been applied to inductive reasoning problems (Johnson-

Laird, 1994; Johnson-Laird, Legrenzi, Girotto, Legrenzi, & Caverni, 1999;).  An alternative to 

mental model theory is the probabilistic account, which aims to account for a variety of 
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reasoning phenomena, particularly traditional deduction problems, in terms of probabilistic 

formulas (Chater & Oaksford, 2000).  The probabilistic account is saying that people solve 

deduction problems by means of induction processes.  Likewise, Osherson et al. (1990) applied 

their model of inductive reasoning to some problems involving deductively valid conclusion, and 

some modeling work in the artificial intelligence literature has addressed both deductive 

reasoning and inductive reasoning to some extent (Collins & Michalski, 1989; Sun; 1995).  

Although there are likely some important differences in the reasoning processes involved in 

induction versus deduction (Rips, 2001), it would be ideal if models of reasoning addressed both 

rather than focusing on one or the other.  Likewise, causal reasoning is another kind of 

probabilistic reasoning, and as noted models of inductive reasoning would no doubt be improved 

by capturing causal reasoning, particularly when addressing effects of background knowledge.  

The same point can be made about models of judgment and decision making (e.g., Busemeyer 

chapter)—these models are essentially addressing inductive phenomena.   

 Inductive reasoning is related to not only other kinds of reasoning, but also to other 

cognitive activities such as categorization and recognition memory.  For example, in a clever set 

of experiments, Sloutsky and Fisher (2004) examined relations between inductive reasoning, 

categorization, and recognition memory.  For sets of various animals, subjects either made 

inductive reasoning judgments, inferring hidden properties, or made categorization judgments, 

assigning the animals to categories.  There was a strong correlation between inductive reasoning 

and categorization (see also Rehder & Hastie, 2001).  Moreover, Sloutsky and Fisher found 

systematic relations between inductive reasoning and recognition memory.  For example, after 

seeing some pictures of cats with a particular property and inferring that all cats have this 

property, people tended to falsely recognize other pictures of cats, that is, remember them as 
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having been seen when they had not been seen.  In assessing this work, Heit and Hayes (2005) 

argued that the boundaries between induction, categorization, and recognition are fuzzy.  

Inductive reasoning can be thought of as a kind of categorization, categorization itself can be 

said to involve reasoning, and likewise a recognition judgment can be thought of as a kind of 

categorization.  Heit and Hayes concluded that induction, categorization, and recognition should 

not be modeled separately, but instead it would be desirable for models to capture the theoretical 

relations among these activities and likewise the empirical relations, such as how one kind of 

judgment is correlated with another or even how one kind of judgment directly affects another. 

 

 Knowledge is power.  The second, and final, general issue to be raised about modeling is 

that incorporating background knowledge into models is usually the most important next step 

and the most difficult.  Taking another point from Sir Francis Bacon, knowledge is power.  

Again, comparing inductive reasoning to categorization is useful, in terms of historical 

progression.  Following years of research in which computational models of categorization had 

been compared to each other, e.g., exemplar models versus prototype models, Murphy and 

Medin (1985) concluded that all the current models were wrong!  Exemplar models, prototype 

models, and alternatives would not be able to, say, categorize someone who jumps into a 

swimming pool with all his clothes on as a drunk, because categorization models did not take 

account of people’s background knowledge, intuitive theories, and use of causal reasoning and 

explanations.  Since that time, most research on computational modeling of categorization has 

still focused on structural issues that do not depend heavily on background knowledge and for 

which models might make different predictions only in the fine details.  Still there have been 



 30

some efforts to incorporate background knowledge into categorization models (Heit, 1997; Heit 

& Bott, 2000, Heit, Briggs, & Bott, 2004; Rehder & Murphy, 2003). 

 Computational modeling of inductive reasoning is now at a similar point in its own 

history.  The models reviewed in this chapter, by Osherson et al. (1990), Sloman (1993), and 

Heit (1998) are successful at addressing largely the same set of structural phenomena in 

inductive reasoning, without addressing important background knowledge effects.  (See also Heit 

and Hayes, 2005, for further examples of current models of induction making very similar 

predictions.)  Although it is no doubt possible to conduct experiments splitting apart the detailed 

predictions of these models, what is needed most is new efforts on modeling, incorporating 

background knowledge and causal reasoning.   

 Returning to the themes at the start of this chapter, models of inductive reasoning have a 

particularly hard job, because they are addressing a form of reasoning that is itself uncertain and 

does not have a correct answer.  In such a situation, the success of the models can only be 

improved by taking account of additional knowledge.  Doing so is especially important because 

the structural phenomena such as similarity, typicality, and diversity effects have exceptions and 

can indeed be overridden by other knowledge.  In addressing these knowledge effects, models of 

inductive reasoning will need to become closer to models of causal reasoning.  Going back to the 

example of buying a CD for your friend, it may be useful to buy CDs that are similar to what she 

already has.  But the most successful strategy for predicting the unpredictable would no doubt to 

be to discover why she likes some CDs and does not like others.   

 



 31

References 

 
Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological Review, 98, 

409-429. 

Bacon, F. (1620). Novum organum. London: George Bell and Sons. 

Buehner, M. & Cheng, P.W. (2005). Causal learning. In K.J. Holyoak & R.G. Morrison (Eds.), 

Cambridge handbook of thinking and reasoning, 143-168. New York, N.Y.: Cambridge 

University Press.  

Blok, S. V., Osherson, D. N., & Medin, D. L. (in press). From similarity to chance. In A. Feeney 

& E. Heit (Eds.), Inductive reasoning. Cambridge University Press.  

Chater, N., & Oaksford, M. (2000). The rational analysis of mind and behavior. Synthese, 122, 

93-131. 

Collins, A., & Michalski, R. S. (1989).  The logic of plausible reasoning: A core theory.  

Cognitive Science, 13, 1-49. 

Gentner, D., Holyoak, K., Kokinov, B., eds. (2001). The analogical mind: Perspectives from 

cognitivesScience. Cambridge, MA: MIT Press. 

Gopnik, A., Glymour, C., Sobel, D., Schulz, L., Kushnir, T., & Danks, D.  (2004). A theory of 

causal learning in children: Causal maps and Bayes nets. Psychological Review, 111, 1-

31.  

Hayes, B. K.  (in press).  The development of inductive reasoning.  In A. Feeney & E. Heit 

(Eds.), Inductive reasoning.  Cambridge University Press.   

Heit, E.  (1997).  Knowledge and concept learning.  In K. Lamberts & D. Shanks (Eds.), 

Knowledge, concepts, and categories, 7-41. London: Psychology Press.  



 32

Heit, E.  (1998).  A Bayesian analysis of some forms of inductive reasoning.  In M. Oaksford & 

N. Chater (Eds.), Rational models of cognition, 248-274.  Oxford: Oxford University 

Press. 

Heit, E.  (2000).  Properties of inductive reasoning.  Psychonomic Bulletin & Review, 7, 569-592. 

Heit, E.  (in press).  What is induction and why study it?  In A. Feeney & E. Heit (Eds.), 

Inductive reasoning.  Cambridge University Press.   

Heit, E., & Bott, L.  (2000).  Knowledge selection in category learning.  In D. L. Medin (Ed.), 

Psychology of Learning and Motivation (Vol. 39), 163-199.  San Diego: Academic Press.  

Heit, E., Briggs, J., & Bott, L.  (2004). Modeling the effects of prior knowledge on learning 

incongruent features of category members. Journal of Experimental Psychology: 

Learning, Memory, and Cognition, 30, 1065-1081. 

Heit, E., & Feeney, A.  (2005).  Relations between premise similarity and inductive strength.  

Psychonomic Bulletin & Review, 12, 340-344. 

Heit, E., Hahn, U., & Feeney, A. (2005). Defending diversity. In W. Ahn, R. Goldstone, B. Love, 

A. Markman, & P. Wolff (Eds.), Categorization inside and outside of the laboratory: 

Essays in honor of Douglas L. Medin, 87-99. Washington DC: APA. 

Heit, E. & Hayes, B. K. (2005). Relations among categorization, induction, recognition, and 

similarity. Journal of Experimental Psychology: General, 134, 596-605. 

Heit, E., & Rotello, C. M.  (2005).  Are there two kinds of reasoning?  In Proceedings of the 

Twenty-Seventh Annual Conference of the Cognitive Science Society.  Hillsdale, NJ: 

Erlbaum. 

Heit, E., & Rubinstein, J.  (1994).  Similarity and property effects in inductive reasoning.  

Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 411-422.  



 33

Hume, D. (1777). An enquiry concerning human understanding. Oxford: Clarendon Press. 

Johnson-Laird, P. N. (1994). Mental models and probabilistic thinking. Cognition, 50, 189-209. 

Johnson-Laird, P. N., Legrenzi, P., Girotto, V., Legrenzi, M. A., & Caverni, J. P. (1999). Naive 

probability: A mental model theory of extensional reasoning. Psychological Review, 106, 

62-88. 

Kemp, C. S. and Tenenbaum, J. B. (2003). Theory-based induction. In Proceedings of the 

Twenty-Fifth Annual Conference of the Cognitive Science Society. 

 Lassaline, M. E. (1996). Structural alignment in induction and similarity. Journal of 

Experimental Psychology: Learning, Memory, & Cognition, 22, 754-770. 

Lopez, A., Atran, S., Coley, J. D., Medin, D. L., & Smith, E. E. (1997).  The tree of life: 

Universal and cultural features of folkbiological taxonomies and inductions.  Cognitive 

Psychology, 32, 251-295. 

Luhmann, C. C. & Ahn, W. (2005). The meaning and computation of causal power: A critique of 

Cheng (1997) and Novick and Cheng (2004). Psychological Review, 112, 685-693.  

McDonald, J., Samuels, M., & Rispoli, J. (1996). A hypothesis-assessment model of categorical 

argument strength. Cognition, 59, 199-217. 

Medin, D. L., Coley, J. D., Storms, G., Hayes, B. K. (2003).  A relevance theory of induction.  

Psychonomic Bulletin & Review, 10, 517-532. 

Mill, J. S. (1874). A System of Logic, Ratiocinative and Inductive. New York: Harper & Row. 

Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. 

Psychological Review, 92, 289-316.  

Nelson, T. H. (1987).  Computer lib / Dream machines.  Redmond, WA: Microsoft. 



 34

Nisbett, R. E., Krantz, D. H., Jepson, C., & Kunda, Z. (1983). The use of statistical heuristics in 

everyday inductive reasoning. Psychological Review, 90, 339-363. 

Novick, L.R., & Cheng, P.W. (2004). Assessing interactive causal influence. Psychological 

Review, 111, 455-485.  

Osherson, D. N., Smith, E.  E., Wilkie, O., Lopez, A., & Shafir, E. (1990).  Category-based 

induction.  Psychological Review, 97, 185-200. 

Pearl, J. (2000). Causality. New York: Oxford University Press.  

Proffitt, J. B., Coley, J. D., Medin, D. L.  (2000). Expertise and category-based induction. 

Journal of Experimental Psychology: Learning, Memory, & Cognition, 26, 811-828. 

Rehder, B. (2006). When causality and similarity compete in category-based property induction. 

Memory & Cognition, 34, 3-16. 

Rehder, B. (in press). Property generalization as causal reasoning  In A. Feeney & E. Heit (Eds.), 

Inductive reasoning.  Cambridge University Press.   

Rehder, B. & Burnett, R. (2005). Feature inference and the causal structure of categories. 

Cognitive Psychology, 50, 264-314.  

Rehder, B. & Hastie, R. (2001). Causal knowledge and categories: The effects of causal beliefs 

on categorization, induction, and similarity. Journal of Experimental Psychology: 

General, 130, 323-360. 

Rehder, B., & Murphy, G. L. (2003). A knowledge-resonance (KRES) model of knowledge-

based category learning. Psychonomic Bulletin & Review, 10, 759-784.  

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the 

effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy 



 35

(Eds.), Classical conditioning II: Current research and theory, 64-99. New York: 

Appleton-Century-Crofts.  

Rips, L. J. (1975). Inductive judgments about natural categories. Journal of Verbal Learning and 

Verbal Behavior, 14, 665-681. 

Rips, L. J. (2001). Two kinds of reasoning.  Psychological Science, 12, 129-134. 

Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of 

categories. Cognitive Psychology, 7, 573-605. 

Ross, B. H., & Murphy, G. L. (1999). Food for thought: Cross-classification and category 

organization in a complex real-world domain. Cognitive Psychology, 38, 495-553. 

Shafto, P. & Coley, J.D. (2003). Development of categorization and reasoning in the natural 

world: Novices to experts, naıve similarity to ecological knowledge. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 29, 641-649. 

Shanks, D. R. (in press). Associationism and cognition: Human contingency learning at 25. 

Quarterly Journal of Experimental Psychology.  

Sloman, S. A. (1993). Feature-based induction. Cognitive Psychology, 25, 231-280. 

Sloman, S. A. (1994). When explanations compete: The role of explanatory coherence on 

judgments of likelihood. Cognition, 52, 1-21. 

Sloman, S. A. (1998). Categorical inference is not a tree: The myth of inheritance hierarchies. 

Cognitive Psychology, 35, 1-33. 

Sloman, S. A. (2005). Causal models: How we think about the world and its alternatives. New 

York: Oxford University Press. 

Sloutsky, V. M., & Fisher, A. V. (2004).  Induction and categorization in young children: A 

similarity-based model. Journal of Experimental Psychology: General, 133, 166-188. 



 36

Smith, E. E., Shafir, E., & Osherson, D. (1993). Similarity, plausibility, and judgments of 

probability. Cognition, 49, 67-96. 

Spirtes, P., Glymour, C., & Scheines, R. (2001). Causation, prediction, and search (2nd edition). 

Cambridge, MA: MIT Press.  

Sun, R. (1995). Robust reasoning: integrating rule-based and similarity-based reasoning. 

Artificial Intelligence, 75, 241-296. 

Sun, R., & Zhang, X.  (2006).  Accounting for a variety of reasoning data within a cognitive 

architecture.  Journal of Experimental & Theoretical Artificial Intelligence, 18, 169-191. 

Sutton, R., & Barto, A. (1981). Towards a modern theory of adaptive networks: expectation and 

prediction. Psychological Review, 88, 135-170. 

Tenenbaum, J.B., & Griffiths, T. L. (2001). Generalization, similarity, and Bayesian inference. 

Behavioral and Brain Sciences, 24,629-641. 

Tenenbaum, J.B., Kemp, C. & Shafto, P. (in press). Theory-based Bayesian models of inductive 

reasoning. In Feeney, A. & Heit, E. (Eds.), Inductive reasoning. Cambridge University 

Press.  

Thagard, P. (in press). Abductive inference: From philosophical analysis to neural mechanisms.  

In A. Feeney & E. Heit (Eds.), Inductive reasoning.  Cambridge University Press.   

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and 

probability. Cognitive Psychology, 5, 207-232.   

Waldmann, M. R. (2000). Competition among causes but not effects in predictive and diagnostic 

learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 

53-76. 



 37

White, P. A. (2005). “The power PC theory and causal powers: reply to Cheng (1997) and 

Novick and Cheng (2004)”. Psychological Review, 112, 675-682. 

Wu, M., & Gentner, D. (1998). Structure in category-based induction. Proceedings of the 

Twentieth Annual Conference of the Cognitive Science Society (pp. 1154-1158). New 

Jersey: Erlbaum. 

 
 
 
 



 38

Table 1 
Sample Application of the Heit (1998) Model 
 

 
Hypothesis 

Number 

 
Cows? 

 
Sheep? 

Degree of 
Prior Belief 

P(Hi) 

 
 

P(D|Hi) 

Posterior 
Belief  

P(Hi|D) 
      
1 True True .70 1 .93 
2 True False .05 1 .07 
3 False True .05 0 .00 
4 False False .20 0 .00 

 


