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In an effort to assess the relations between reasoning and memory, in 8 experiments, the authors
examined how well responses on an inductive reasoning task are predicted from responses on a
recognition memory task for the same picture stimuli. Across several experimental manipulations, such
as varying study time, presentation frequency, and the presence of stimuli from other categories, there
was a high correlation between reasoning and memory responses (average r � .87), and these manip-
ulations showed similar effects on the 2 tasks. The results point to common mechanisms underlying
inductive reasoning and recognition memory abilities. A mathematical model, GEN-EX (generalization
from examples), derived from exemplar models of categorization, is presented, which predicts both
reasoning and memory responses from pairwise similarities among the stimuli, allowing for additional
influences of subtyping and deterministic responding.
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Inductive inference involves extending knowledge from known
instances to novel instances and is a central component of human
learning and reasoning. Such reasoning leads to conclusions that
are probable rather than certain and is therefore thought to be
critical to people’s everyday encounters with an uncertain world.
For example, after learning that lions, horses, and otters use
dopamine as a neurotransmitter, one might make a reasonably
confident (but by no means certain) inference that this property is
shared by other mammals. Many believe that inductive reasoning
is the most important component of human thought because “in-
ductive inference is the only process . . . by which new knowledge
comes into the world” (Fisher, 1951, p. 7).

In 2 decades of research, a number of general principles that
people follow when making inductive inferences has been identi-
fied (see Hayes, Heit, & Swendsen, 2010; Sloman & Lagnado,
2005, for reviews). The cognitive mechanisms underlying induc-
tion and the relation between these mechanisms and those under-
lying other cognitive phenomena such as categorization and mem-
ory, however, remain matters of intense debate (cf. Hayes & Heit,
2004).

This article addresses two shortcomings in current process the-
ories of induction. First, most current models of induction (e.g.,
Kemp & Tenenbaum, 2009; Osherson et al., 1990; Sloman, 1993)
have been framed to explain how novel properties are generalized
from one or more categories of objects to other categories (as in
the neurotransmitter example above). Although this kind of rea-
soning is important, it is also essential to explain how people
generalize novel properties involving individual exemplars. Know-
ing the general characteristics of dogs does not necessarily help
you to make an inference about whether a neighbor’s dog will be
fierce or friendly. To make such an inference, people may need to
go beyond category-level information and consider the specific
features of the dog, like size and propensity to growl on approach,
and to compare these features with similar dogs encountered in the
past. Existing models do not address the role of similarity between
specific instances in inductive projection. One of the aims of this
article is to redress this imbalance by outlining a model of induc-
tion that specifies how similarity between individual exemplars
drives induction.

A second serious shortcoming of existing induction models is
that they treat inductive reasoning as disconnected from other
cognitive processes. In particular, previous models of induction
have not addressed the role of memory. Even a cursory consider-
ation of inductive reasoning, however, suggests that memory
should play a central role. Being able to remember the similarities
(and differences) between lions and otters seems central to ex-
plaining how a property shared by these categories will be gener-
alized. Being able to retrieve memories of dogs that are similar to
the one that lives next door is useful when making predictions
about that dog’s behavior. Despite the central role of memory in
induction, there have been few attempts to examine the specific
connections between the processes involved in each task. Instead
each has been most often studied with its own experimental
paradigms, addressing different questions and resulting in induc-
tion (Hayes et al., 2010; Sloman & Lagnado, 2005) and memory
phenomena (Diana, Reder, Arndt, & Park, 2006; Wixted, 2007)
being addressed by separate theories.
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In this article, we address this problem by focusing on the links
between inductive reasoning and recognition memory. Despite the
apparent differences between these tasks, we argue that they share
some key underlying processes and that in many contexts there
will be a close relation between inductive inferences and memory
for a common stimulus set. We also outline a computational model
that embodies this close relation and that can account for both
inductive and recognition judgments about the same stimuli.

The Case for Common Processes in Induction and
Recognition

At a general level, induction about specific objects and object
recognition, like many other perceptual and cognitive tasks, in-
volves the generalization of existing knowledge about familiar
stimuli and their properties to novel stimuli (Shepard, 1987). A
more specific point of overlap is the central role accorded in each
task to similarity between familiar and novel exemplars. In recog-
nition, the probability that an item is recognized as “old” is a
positive function of its similarity to previously studied items
(Jones & Heit, 1993). As noted above, the role of exemplar
similarity in induction has not been examined in detail, but it
seems safe to assume that the probability that a novel item is
judged to have a property depends, in part, on its similarity to
known instances that have that property.

The proposed overlap between recognition and induction goes
beyond the level of task description; existing models of both
recognition (Hintzman, 1988; Ratcliff, 1990) and induction (Osh-
erson et al., 1990; Sloman, 1993) view similarity computation as a
core process that determines performance. Despite this apparent
overlap in generalization processes, most models of recognition
memory have not addressed reasoning, and likewise, previous
models of inductive reasoning have not addressed memory (Heit &
Hayes, 2005).

Of course both recognition and induction may involve other
processes besides an assessment of old–new similarity. Dual-
process models of memory, for example, posit that recognition is
driven by a fast, automatic response based on stimulus familiarity
and a slower, deliberative recollection judgment that involves
episodic components like where and when the stimulus was seen
(e.g., Wixted, 2007; Yonelinas, 2002). Likewise, some models of
induction suggest that more complex principles like causal rela-
tions between an inductive base and a target can supplement or
even supplant similarity as a basis for generalization (Kemp &
Tenenbaum, 2009; Lee & Holyoak, 2008; Medin, Coley, Storms,
& Hayes, 2003; Rehder & Burnett, 2005). We do not dispute that
recognition and induction can involve more than a consideration of
similarity between familiar and novel instances (an issue to which
we return in the General Discussion). The key point is that even
such multiple-process models acknowledge that assessing the sim-
ilarity of a new item to familiar items is a core process that drives
both recognition and inductive judgments. Moreover, in our own
work, we will look for evidence of other processes beyond simi-
larity.

Our argument for close links between induction involving spe-
cific exemplars and recognition is also motivated by previous work
that has discovered strong empirical and theoretical links between
inductive reasoning and categorization (Rehder & Burnett, 2005;

Sloutsky & Fisher, 2004) as well as categorization and recognition
memory (Estes, 1994; Nosofsky, 1988a).

Rehder and Burnett (2005), for example, found a strong empir-
ical relation between induction and categorization, with correla-
tions across items of .70 to .99 between inferences about whether
an exemplar possessed a novel property and category membership
judgments for the same items. Sloutsky and Fisher (2004) also
observed a strong correlation across items between children’s
category membership and judgments about the generalization of
novel properties for both naturalistic and artificial stimuli.

With regard to the relation between categorization and recogni-
tion, exemplar models of categorization, such as the highly suc-
cessful generalized context model (GCM; Nosofsky, 1986), which
embodies Shepard’s (1987) proposed universal law of generaliza-
tion, have made the case for a systematic relation between perfor-
mance on these two tasks. In support of this argument Nosofsky
(1988a) showed that that old–new recognition judgments and
categorization judgments of the same items can be explained by
assuming that both are subserved by a common memory trace for
exemplars but that different decision rules are applied in each task.
In a similar vein, Lamberts (2002) has shown that the time course
of recognition and classification responses to the same items can
be explained by models that assume a common representation for
each judgment.

These various theoretical arguments and lines of evidence all
suggest that the specific similarity between exemplars is a com-
mon core process in recognition and induction and that it should
therefore be possible to uncover reliable empirical relations be-
tween recognition and induction judgments. In the next section, we
outline a paradigm that allows us to examine the relation between
recognition and induction and develop a number of specific pre-
dictions about how this relation will behave across a range of
encoding and test manipulations.

Comparing Recognition and Induction

To examine inductive reasoning about specific instances and to
explore the relation between recognition and induction, we devel-
oped a new experimental paradigm that makes reasoning and
memory tasks as comparable as possible. In all of the experiments
reported, people were asked to either make recognition judgments
about a set of pictures they had studied or make property infer-
ences about the same set. We examined whether the overgeneral-
ization errors that people make in visual recognition predict the
pattern of generalization that other people show in inductive rea-
soning.

When memory and reasoning tasks differ only in the nature of
judgments being made, we make two general predictions. First, we
expect that induction and recognition instructions will lead to a
systematic difference between the tasks in the breadth of general-
ization to novel test instances. Recognition instructions emphasize
that a positive response to a test item should only be made if that
item has been studied. Property induction instructions, on the other
hand, explicitly invite the participant to go beyond the information
provided in inductive premises and project a property to novel
items (e.g., Osherson et al., 1990; Sloman, 1993). These instruc-
tions should lead to a higher rate of positive responding to novel
items under induction conditions than recognition conditions.
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Second, if both induction and recognition share a common
underlying process, there should be a reasonably close correspon-
dence between them in the pattern of positive responding for
individual test items. Because exemplar similarity is expected to
influence responses on both tasks, items that are more likely to be
identified as old should generally be judged as strong candidates
for property inference.

A further aim of these experiments was to examine the robust-
ness of the relation between memory and reasoning across a
variety of task manipulations. Conventional approaches to visual
recognition and induction assume that each is driven by different
kinds of processes. Recognition, for example, is assumed to be
strongly influenced by perceptual similarity between study and test
items (Lamberts, 2002), whereas inductive reasoning also involves
more complex semantic or causal relations between premises and
conclusions (Kemp & Tenenbaum, 2009; Medin et al., 2003).
According to such approaches, a range of task factors might
selectively affect performance on one kind of task without affect-
ing the other. Manipulation of the frequency of presentation of
individual study items, for example, is known to affect recognition
responding (e.g., Flexser & Bower, 1974; Hintzman, 2001). By
contrast, this factor seems less likely to directly impact semantic
relations and therefore might be expected to have little or no effect
on induction (but see Xu & Tenenbaum, 2007). Going in the other
direction, if items from multiple basic categories were all found to
have some novel property in common, this should strengthen the
generalization of this property to novel members of one of these
categories (Osherson et al., 1990) but should have little effect on
recognition of old and new category members.

According to our approach, however, any factor that affects the
specific similarity between studied items and novel test cases will
affect both recognition and induction responses, often in similar
ways. In other words, whereas conventional approaches to recog-
nition and induction suggest a range of factors that should show
empirical dissociations across these tasks, we predict that these
factors should often have parallel effects on memory and reason-
ing. These contrasting predictions were investigated in a series of
studies in which the same manipulations were applied to compa-
rable recognition and induction tasks. These included study phase
encoding time (Experiments 1A and 1B), item frequency during
study (Experiments 2A and 2B), and the presence of items from
multiple basic categories during study (Experiment 3) or test
phases (Experiment 4). In each case, we expected that these
manipulations would have similar effects on the computation of
old–new similarity and hence should have comparable effects on
the probability of making a positive response in induction and
recognition tests.

GEN-EX (Generalization From Examples): An
Exemplar-Based Model of Inductive Reasoning and

Recognition Memory

An important goal of this work was to examine whether rea-
soning and memory performance could be accommodated within a
single computational model. The core assumption of our model of
reasoning and memory is adapted from the generalized context
(GCM) family of categorization models (e.g., Nosofsky, 1986,
1988a). We assume that the tendency to make a positive (“yes”)
response to a test stimulus in induction and recognition is a

positive function of the total similarity between that stimulus and
all studied items. Exemplar models have been successful in ac-
counting for patterns of categorization and recognition of the same
stimulus sets (e.g., Nosofsky, 1986; Shin & Nosofsky, 1992) but
have only rarely been applied to inductive reasoning data (e.g.,
Estes, 1994; Heit, 1992). An important advantage of exemplar
models is that they can account for empirical dissociations be-
tween tasks without assuming multiple cognitive systems. Nosof-
sky and Zaki (1998), for example, showed that dissociations be-
tween recognition and categorization performance in amnesic
patients and normal controls could be explained with a single,
exemplar-based model. They allowed the shape of the generaliza-
tion gradient to vary between groups and a response criterion
parameter to vary from the categorization task to the recognition
task. Note, however, that Nosofsky (1991) found that only chang-
ing the response criterion was insufficient to account for all dif-
ferences between categorization and recognition and concluded
that attention shifted between tasks, as well.

In our own work, comparing induction and recognition, we
allow for the possibility of different response criteria, but we also
investigate the possibility that the shape of the generalization
gradient will be different for induction and recognition. The key
prediction is that induction would involve broader generalization
to novel items, whereas recognition would be more sensitive to
exact matches between studied and test items. After all, the nature
of the task of induction is to generalize to unseen instances (e.g.,
Heit, 2007), whereas the goal of the recognition task is to reject
unseen instances. Relatedly, Lamberts (1994) compared two kinds
of categorization tasks, involving categorization of faces as broth-
ers or cousins, and using a model-based analysis, found a broader
generalization gradient for the cousin categorization task.

The basic version of GEN-EX (so named because it gener-
alizes from examples) is embodied by two equations. Equation
1 shows the familiarity rule. The familiarity, fam, of each test
stimulus equals its summed similarity to n studied items. Simi-
larity is assumed to be an negative exponential function of
distance, dist, between the test and the study items, calculated
according to the standard Euclidean formula. The free parameter
c reflects specificity of responding to test items; lower values of c
correspond to broader generalization, whereas higher values cor-
respond to narrower generalization gradients. Put another way, the
c parameter reflects “overall discriminability in the psychological
space” (Nosofsky, 1986, p. 41), with higher values indicating a
greater level of discrimination.

fam�test� � �
i�1

n

exp��c dist �test, stud yi�� (1)

resp�test� �
fam�test�

fam�test� � �
(2)

The response rule is shown in Equation 2. Essentially, the proba-
bility of a positive response, resp, is a monotonic function of a test
item’s familiarity. The response rule has a single scaling parame-
ter, �. A lower value of � corresponds to a greater overall tendency
to respond positively. Nosofsky and Zaki (1998) used such a
scaling parameter to help account for differences between catego-
rization and recognition.
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Note that although GEN-EX is closely related to Nosofsky’s
GCM model, the two models are not isomorphic. GCM was
developed to explain object classification in which a novel probe
is assigned to one of a number of possible category alternatives.
GCM is not a model of reasoning and was never intended to
explain the generalization of object properties between exemplars.
One critical difference between classification and property induc-
tion (and hence between GCM and GEN-EX) is that classification
responses are based on the ratio of similarities between a given
probe and a range of possible categories. In contrast, GEN-EX
assumes that property induction between instances is based only
on the similarities between instances within a given category.
Similar assumptions about the primacy of within-category simi-
larity have been made in previous quantitative models of induction
(e.g., Yamauchi & Markman, 1998). Moreover, in applying
GEN-EX to experimental data, we incorporated two kinds of
deterministic responding, based on subtyping and item recollec-
tion, which are not present in GCM.

The implementation of GEN-EX and its predictions with regard
to test responses on comparable induction and recognition tests are
laid out in more detail in the modeling section following Experi-
ment 1A. The central predictions, however, were that positive
responses under recognition and induction instructions should be
well predicted by GEN-EX with the same old–new similarity
values for test items but that the c parameter should reflect broader
levels of generalization under induction, as compared with recog-
nition conditions.

Experiment 1A

For this experiment we developed a new experimental paradigm
that makes inductive reasoning and recognition tasks as compara-
ble as possible (see Heit & Hayes, 2008, for a preliminary report).
In brief, in the induction condition, people were asked to learn
about instances from a single category (large dogs) that shared a
novel property (e.g., “has beta cells inside”), whereas those in the
recognition condition were asked to memorize the same instances.
Both groups were then shown a common test set that contained
both old instances and a range of new instances that varied in
similarity to old instances (i.e., new large dogs that functioned as
lures as well as new medium-sized and small dogs). In the recog-
nition condition, people responded “yes” if they thought a test item
had been presented during the study phase. In the induction con-
dition, people responded “yes” if they thought a test item had the
target property.

Overall, we expected that people doing induction would gener-
alize study information more broadly than those doing recognition,
leading to higher false alarm rates and lower d� sensitivity. Nev-
ertheless, because recognition and induction both rely on exemplar
similarity, it was expected that there would be a high positive
correlation between the probabilities of responding “yes” to spe-
cific test items across the two tasks.

Method

Participants. Sixty-three students were recruited individually
in quiet, public places, such as the library, on the University of
California, Merced campus. Participants were randomly assigned
to two conditions: memory (n � 31) and reasoning (n � 32).1

Materials. The stimuli were color photographs of dogs, 280
pixels square, adapted from a compendium of dog breeds (Amer-
ican Kennel Club, 2006) and other Internet sources. Each photo-
graph showed a dog in a canonical left-facing side view. The same
stimulus set was used for both conditions. The study list consisted
of 10 pictures of large dogs. The test list consisted of 45 pictures
of dogs. There were 10 old items (the large dogs originally
studied), 15 lure items (other large dogs, not previously studied),
and 20 additional, new items (10 small dogs and 10 medium
dogs).2

Procedure. The experiment was run with a program on a
laptop computer. In the memory condition, participants were in-
structed to memorize the initial set of pictures, for a subsequent
recognition test. They were shown the 10 pictures on the study list,
in a different random order for each participant. Each 10 cm2

picture was presented for 2 s, with a 0.5 s interstimulus interval
during which the screen was blank. There was a 60 s unfilled
retention interval before the test phase. Participants were instructed
to judge whether they had seen each test picture by clicking their
mouse on either a yes or no button on the computer screen. Each
test item remained on the screen until a response was made, and
there was no time limit on responding. After each response, there
was a 0.5 s interstimulus interval during which the screen was
blank. During the test phase, the 45 test pictures were shown
sequentially, in a different random order for each participant.

The reasoning condition was like the memory condition, except
for the following. Before the study phase, participants were told
they would study a set of animals with “beta cells” in their blood,
for a subsequent test on whether various old and new items have
this property. During the test phase, participants were asked to
judge whether each animal has “beta cells.”

Results

Probability of responding “yes.” The probability of respond-
ing “yes” to test items under recognition and induction conditions is
shown in Table 1. In the memory condition, recognition performance
was good, with a relatively high hit rate on old items (large dogs) and
a false alarm rate of .15 on new items. The false alarm rate was
slightly higher on pictures of medium dogs than pictures of small
dogs. For the lure items (large dogs not studied), the average false
alarm rate was .30.

1 Experiments 1A and 1B included a second reasoning condition, with a
behavioral property, “performs behavior X,” rather than an anatomical
property. Although we had surmised that manipulating type of property
would make a difference (Heit & Rubinstein, 1994), in fact, the behavioral
and anatomical reasoning conditions did not differ significantly on any
measures. Hence, we report only the anatomical reasoning conditions here.
We suspect that finding evidence for two different patterns of reasoning
would require a stronger manipulation of property type and, as Heit and
Rubinstein used, a choice of materials that unconfounds the usual corre-
lation between anatomy and behavior.

2 We note that unlike some experimental studies of memory, in the
present studies, there was a higher proportion of new items than old items
in the test list. This may have led participants to be conservative in their
responding (i.e., tending to say “no”; Heit, Brockdorff, & Lamberts, 2003).
However this aspect of the design was crucial for a detailed examination of
changes in test responding as a function of the similarity of the novel test
items and for the rigorous testing of the quantitative models.
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Compared with the recognition condition, participants in the
induction condition were more likely to give positive responses.
On old items, they inferred beta cells .82 of the time, and on new
items, .45 of the time. As in the memory condition, there were
more positive responses to medium dogs than to small dogs. For
the lure items, the rate of positive response was high: .68. Com-
pared with recognition, in the induction condition there was a high
rate of generalization, with participants particularly likely to ex-
tend the property to the lure items.

These observations were confirmed with a series of analyses of
variance (ANOVAs) assessing hit rates, false alarm rates, and d�.
These ANOVAs compared the recognition and induction condi-
tions, as a between-subjects variable, separately for various stim-
ulus types. The probability of responding positively to old items
was higher in the induction condition than in the recognition
condition, F(1, 61) � 9.07, p 	 .01, partial 
2 � .13. Positive
responses were more common for new medium than for new small
dogs, F(1, 61) � 8.20, p 	 .01, partial 
2 � .12, but this difference
did not interact with task. Hence, in subsequent analyses, re-
sponses to small and medium dogs were collapsed into a set of new
test items. The probability of positive responding to both new and
lure items was higher for induction than for recognition, F(1,
61) � 17.09, p 	 .001, partial 
2 � .22, and F(1, 61) � 34.06, p 	
.001, partial 
2 � .36, respectively.

To further examine patterns of generalization across the mem-
ory and reasoning conditions, a d� measure of sensitivity was
calculated for each participant, with individual hit rates and false
alarm rates for new (small and medium) dogs and lure items,
respectively. Individual hit and false alarm rates of zero or one
were corrected with the procedure outlined by Macmillan and
Kaplan (1985), whereby a value of 1/(2N) was added to rates of 0
and subtracted from rates of 1, with N equal to the number of test
trials for a given type of test stimulus. This meant that a defined
value of d� could be calculated for all participants. This correction
method was used in all subsequent experiments.

The mean sensitivity values for each condition are given in
Table 1. Sensitivity in the discrimination between old and new
items tended to be higher for recognition than induction, but this
difference was not reliable, F(1, 61) � 3.00, p � .09. Sensitivity
in the discrimination between old and lure items was significantly
higher for recognition than induction, F(1, 61) � 8.26, p 	 .01,
partial 
2 � 0.12.

Relation between reasoning and memory. The proportion
of “yes” responses for each of the 45 test items was averaged
across participants within each of the two experimental conditions,
and the correlation between responses in different conditions was
computed. The correlation between the memory condition and the

reasoning condition was .83, ( p 	 .001). In other words, memory
was a very good predictor of reasoning. This relation is illustrated
in Figure 1, showing a scatter plot of memory responses versus
reasoning, for the 10 old items; 15 lure items; 10 new, medium
dogs; and 10 new, small dogs. (Some of the data points overlap so
closely that all 45 data points may not be discriminable.) Note that
there is a greater level of generalization for reasoning than for
memory.

Modeling

To model recognition and induction judgments with GEN-EX,
we first needed to collect pairwise similarity ratings between pairs
of study and test items. (Note that we previously applied an earlier
version of GEN-EX to this data set in Heit & Hayes, 2008, using
simulated similarity relations rather than real data). There were 10
study items, and 45 test items, giving a total of 450 pairs. These
pairs were presented on a computer screen in random order to a
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Figure 1. Scatter plots for Experiment 1A, showing memory and reason-
ing responses across stimuli, with trend line of GEN-EX s � d model
predictions. Note that some data points overlap so closely that all 45 data
points may not be discriminable. GEN-EX � generalization from exam-
ples.

Table 1
Experiment 1A. Results (Proportion of “Yes” Responses and d�) and Model Predictions

Result and prediction Old New small New medium All new Lure d� (Old–new) d� (Old–lure)

Empirical results
Memory .68 .13 .17 .15 .30 1.50 0.98
Reasoning .82 .41 .49 .45 .68 1.03 0.44

Model predictions
Memory .68 .09 .18 .14 .30 1.56 0.98
Reasoning .82 .40 .50 .45 .68 1.03 0.43
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group of 40 participants who did not take part in the main exper-
iment. Each pair was presented for a minimum of 3 s, after which
participants were asked to rate the similarity between the items on
a 7-point scale (1 � not similar; 7 � highly similar) while the
pictures remained on the screen. The left–right position within a
pair of pictures was determined randomly on each trial. Partici-
pants were given periodic breaks to minimize fatigue. An estimate
of the similarity between each study and test item was then
obtained by averaging the relevant ratings for each study–test pair
across participants. These estimates were normalized to the range
of 0 to 1 by subtracting 1 then dividing by 6.

It was assumed that similarity, sim, would be a negative expo-
nential function of psychological distance, dist, (e.g., Nosofsky,
1986), as illustrated in Equation 3.

sim�x, y� � exp��c dist�x, y�� (3)

There were three c parameters. One was used for converting
similarity ratings to distances, as in Equation 3. That is, Equation
3 was solved for distance as a logarithmic function of similarity, to
calculate distances as a function of an estimated c parameter. The
other two were used for converting distances back to similarity, as
in Equation 1, when calculating familiarity for recognition and for
induction. In addition, there were two � parameters, serving as
scaling parameters for recognition and induction.

We developed multiple versions of GEN-EX, to take account of
other possible response patterns not predicted by item similarity.
Loosely speaking, these patterns could be thought of as determin-
istic or rule-based responding. One pattern would be to form a
subcategory corresponding to the studied items. Here, the subcat-
egory would be large dogs. A participant responding according to
subcategories would respond positively to large dogs, whether old
or lures, and respond negatively to small and medium dogs (see
Bott & Murphy, 2007, and Hayes et al., 2002, for related ideas.)
Informally, such a participant would have induced that large dogs
have the characteristic of interest, whether that is having been
presented or possessing some property. GEN-EX s was designed to
capture this pattern of responding.

Another possible pattern would be to respond deterministically,
depending on whether the item was actually studied, as if memory
was perfect. A participant responding deterministically would re-
spond positively to old items and negatively to new items and
would not be willing to generalize. In terms of memory models,
this pattern is equivalent to recollection (Yonelinas, 2002).
GEN-EX d was developed to examine this kind of pattern.

The most complete version of the model, GEN-EX s � d, had
free parameters corresponding to both of these response patterns as
well as responding according to item similarity, as show in Equa-
tion 4.

resp�test� � s � large�test� � d � old�test�

� �1 � s � d�
fam�test�

fam�test� � �
(4)

Here, s represents the probability of responding according to
subcategories (responding positively whether the test item is a
large dog); the function large takes on a value of 1 for a large dog
and 0 otherwise. Likewise, d represents the probability of respond-
ing deterministically according to whether the item is old; the

function old takes on a value of 1 for a studied item and 0
otherwise. Distinct s and d parameters were estimated for recog-
nition and induction, to allow for different response patterns for the
two tasks. For example, it seemed possible that induction might
entail more subcategory based responding and that recognition
would entail more deterministic responding. There were also three
restricted models. In GEN-EX s, the d parameter was set to zero,
so there was no deterministic responding. In GEN-EX d, the s
parameter was set to zero, so there was no subcategory responding.
Finally, in GEN-EX null, both the s and d parameters were set to
zero; this is the original GEN-EX model.

The four GEN-EX models were used to generate predictions for
90 data points, corresponding to the 45 test items for memory and
for inductive reasoning, respectively. The free parameters were
estimated with the solver function in Microsoft Excel, minimizing
the root-mean-square error (RMSE; the square root of the mean
squared difference between model predictions and response pro-
portions across items) of prediction. The model fitting is summa-
rized in Table 2, including goodness of fit measures for the
GEN-EX s � d model, significance tests comparing the s � d
model to the s, d, and null models, and estimated parameter values
for the s � d model. Although all four versions of the GEN-EX
model fit the data reasonably well, the GEN-EX s � d model fit
significantly better than each of the three restricted models, after
taking account of number of parameters (having a correlation of
.94 with the data across 90 data points, using 9 free parameters).3

Hence, both subcategory responding and deterministic responding
components led to significant improvements in the fit of the model.

Table 2 shows the estimated parameter values for GEN-EX s �
d. Note that as predicted, the c value was considerably higher for
memory than for reasoning, reflecting sharper generalization for
memory and broader generalization for reasoning. The s and d
parameters were estimated to be nonzero but fairly low, so that the
greatest overall influence on responses was item similarity rather
than subtyping or deterministic recollection. The value of s was
estimated to be higher for induction than for recognition, suggest-
ing a greater influence of sub-categories for induction. In contrast,
d was estimated to be higher for recognition than for induction,
suggesting a greater tendency to respond deterministically for
recognition. Finally, the � parameter values are similar for mem-
ory and reasoning; there is little evidence for different response
scaling between tasks.

Table 1 shows average predictions of the GEN-EX s � d model,
for key types of stimuli. The table shows that the main trends in the
data have been captured, such as differences between memory and
reasoning conditions and differences between old, lure, new me-
dium, and new small items. Likewise, the predicted d� measures
are close to the original results. Note that the simulation had
actually made 45 predictions each for the memory and reasoning

3 The nested models were compared with the technique of Borowiak
(1989). In brief, when Model A is a nonlinear model with a free parameters
estimated with a least-squares criterion and B is a restricted version of this
model with b free parameters, the likelihood ratio statistic is � � (RSSA/
RSSB)(k/2), where RSS is the residual sum of squares of the model and k is
the number of data points to be predicted (here, 20). Borowiak showed that
�2 ln (�) has a 2 distribution with (a � b) degrees of freedom. (See Heit,
1998b, 2001, and Rotello & Heit, 1999, 2000, for other applications of this
technique.)
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conditions, across the 45 test items. Thus, it was possible to
calculate the predicted correlation between memory and reasoning,
just as the original data had shown a .83 correlation between
memory and reasoning across the 45 test items. In the simulations,
the average predicted correlation between memory and reasoning
was .92. This result was an emergent property of the model; that is,
the correlation results were not fitted directly by the model.

In Figure 1, model predictions are shown as a trend line, which
was derived by fitting a third-degree polynomial function to the
model’s predictions on individual items. The purpose of doing so
is to assess whether the model predictions fall in the region of the
data points for different types of items. Overall, the trend predicted
by the model well captures the trend in the data points, although
there is some scatter in the data points not predicted by the trend
line derived from model predictions. One key trend is that the
model predicts a higher rate of positive responding for the reason-
ing condition than for the memory condition, even for new and lure
items, a consequence of the lower c parameter for reasoning,
leading to higher familiarity values in Equation 1.

Discussion

This experiment examined the relation between recognition and
inductive judgments about the same set of visual stimuli under
comparable study and test conditions. The main empirical finding
was that when procedural differences between these tasks were
kept to a minimum, there was a close correspondence between the
two kinds of judgments. Judgments about whether a novel property
would generalize to a given test item was positively related to the
probability of responding “old” to that item in recognition. The
strength of this relation supports the view that recognition and
induction share some underlying component processes.

There were also some interesting differences between recogni-
tion and inductive reasoning. People doing induction were more
likely to make positive responses to both familiar and novel test
stimuli (and hence showed lower sensitivity) than those doing

recognition. Induction instructions promoted a broad generaliza-
tion of the novel property across the dog category, whereas rec-
ognition instructions discouraged positive responses to test pic-
tures that differed from previously studied items.

Reasoning and memory judgments could be accounted for by a
model in which positive test responses were determined by the
total similarity between a test item and previously studied items.
Most of the differences between recognition and induction in the
rate of “yes” responding were captured by changes in a general-
ization parameter that increased or decreased the overall psycho-
logical distance between study and test stimuli. Although exemplar
similarity dominated responses, it was possible to predict re-
sponses even better by allowing for subcategory based responses,
particularly for induction, as well as deterministic responses, par-
ticularly for recognition.

Experiment 1B

Experiment 1A suggested that there is a strong relation between
recognition and inductive reasoning. Notably though, exposure to
study items in that experiment was relatively brief. It is possible
this exposure time was insufficient for people in the induction
condition to encode the visual features of each item and generate
a category based inference about the target property (i.e., that this
property might be shared by all dogs). If short item exposure
interfered with the inferential process then the way items were
processed in induction would differ little from the encoding process in
the recognition condition. Hence, the finding of the close relation
between induction and recognition test judgments may be an artifact
of the brief stimulus exposure at study. To address this issue, we
replicated Experiment 1A with a longer study exposure time.

Method

Eighty undergraduate students from the University of Califor-
nia, Merced campus, participated. Participants were randomly

Table 2
Summary of Model Fitting for GEN-EX s � d

Measure Expt. 1A Expt. 1B Expt. 1C Expt. 1D
Expt. 2A
Freq. 1

Expt. 2A
Freq. 3

Expt. 2B
Vers. A

Expt. 2B
Vers. B

Data points 90 90 90 45 180 180
RMSE .0859 .0993 .0887 .0426 .1127 .1260
Correlation .9409 .8825 .9533 .9865 .8749 .9022
2 over s model 7.45� 18.40��� 7.86� 108.62��� 20.94��� 20.50���

2 over d model 6.86� 4.15, ns 3.94, ns 41.29��� 0.00, ns 0.00, ns
2 over null model 12.35� 19.67��� 11.48� 108.62��� 20.94�� 20.50��

c sim 2.18 1.73 2.89 1.70 1.80 2.58
c rec 3.56 3.65 3.07 4.45 4.76 4.16 4.38
c ind 1.91 1.41 3.31 1.69 1.64 2.64 2.14 3.30
� rec 0.79 1.01 0.42 0.36 0.30 0.30 0.39
� ind 0.66 2.35 0.16 0.69 1.53 0.77 0.79 0.42
s rec .01 .00 .00 .00 .00 .00 .00
s ind .11 .10 .08 .03 .00 .00 .02 .00
d rec .17 .19 .29 .10 .21 .24 .09
d ind .09 .19 .00 .57 .17 .17 .28 .11

Note. The table shows goodness of fit (root mean squared error and correlation) for the GEN-EX s � d model, comparative tests showing improvement in
goodness of fit over the s, d, and null models, and estimated parameter values for the s � d model. GEN-EX � generalization from examples model; Expt. �
experiment; Freq. � frequency; Vers. � version; RMSE � root-mean-square error; sim � similarity; rec � recognition; ind � induction.
� p 	 .05. �� p 	 .01. ��� p 	 .001.
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assigned to one of two conditions: memory (n � 41) or inductive
reasoning (n � 39). The experimental procedure was the same as
Experiment 1A, except that pictures were presented for 5 s each
during the study phase.

Results and Discussion

The probability of responding “yes” to test items under recog-
nition and induction conditions and associated d� measures of
sensitivity are shown in Table 3. Again, we used between-subjects
ANOVAs to compare positive responses between tasks, separately
for various stimulus types. Overall, the pattern of responding was
very similar to Experiment 1A, except that hit rates (“yes” re-
sponding to old items) did not differ across task, F(1, 78) � 1.05,
p � .31. Positive responding was again higher for medium dogs
than for small dogs, F(1, 78) � 11.65, p 	 .001, partial 
2 � .13.
However, this difference did not interact with task, so small and
medium dog responses were again collapsed into a new dogs set.
The probability of responding “yes” to new items and lures was
higher for induction than recognition, F(1, 78) � 7.81, p 	 .001,
partial 
2 � .09, and F(1, 78) � 10.19, p 	 .001, partial 
2 � .11,
respectively. Sensitivity in the discrimination between old and new
items did not differ in recognition and induction, F(1, 78) � 0.9,
p � .35. However, sensitivity in old–lure discrimination was
higher for recognition than for induction, F(1, 78) � 4.39, p 	 .05,
partial 
2 � .05.

Again, there was a strong itemwise correlation between the
probability of responding positively at test in induction and rec-
ognition. The correlation between the recognition and the induc-
tive reasoning conditions was .83 (illustrated by the scatter plot in
Figure 2), p 	 .001.

These results replicate most of the key findings of Experiment
1A. Participants doing induction made more positive responses to
novel test items and showed poorer discrimination between old
and lure items than those doing recognition. Nevertheless, there
was a strong positive correlation between the probability of saying
“yes” to a test item under induction and recognition conditions.
These data confirm that the strong relation between induction and
recognition found in Experiment 1 was not just an artifact of the
relatively brief presentation of study stimuli.

Modeling

The four GEN-EX models were applied to the 90 data points (45
from each of recognition and induction conditions) in Experiment
1B with the same procedure as in Experiment 1A and the same
similarity ratings. The results are summarized in Table 2. Overall,
the estimated parameter values for GEN-EX s � d were rather

similar to those for Experiment 1A. The � parameter for induction
was slightly higher in Experiment 1B than in Experiment 1A,
reflecting a somewhat more conservative pattern of responding in
Experiment 1B. Once again, the c parameter was higher for rec-
ognition than for induction, implying sharper generalization for
memory tests. The estimated s parameters suggest a similar level
of sub-category based responses as in Experiment 1A. The d
parameter for induction was higher for the present experiment than
for Experiment 1A, suggesting the longer presentation times fa-
cilitated deterministic responding. After taking account of number
of free parameters, the GEN-EX s � d model fit significantly
better than two of the restricted models, GEN-EX s and GEN-EX
null, but the comparison between GEN-EX s � d and GEN-EX d
did not quite reach the level of statistical significance.

Key GEN-EX s � d model predictions are shown in Table 3,
showing that the model again captured the most important quali-
tative trends. Likewise, the trend line of model predictions in
Figure 2 captures the key trends in the scatter plot of data points.
The model predicts a strong correlation between memory and
reasoning, .98, even stronger than the correlation in the data, .83.

Table 3
Experiment 1B. Results (Proportion of “Yes” Responses and d�) and Model Predictions

Result and prediction Old New small New medium All new Lure d� (Old–new) d� (Old–lure)

Empirical results
Memory .67 .16 .25 .20 .33 1.33 0.84
Reasoning .73 .32 .39 .35 .52 0.98 0.55

Model predictions
Memory .67 .14 .23 .18 .34 1.33 0.84
Reasoning .72 .33 .38 .35 .52 0.97 0.55
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Figure 2. Scatter plots for Experiment 1B, showing memory and reason-
ing responses across stimuli, with trend line of GEN-EX s � d model
predictions. GEN-EX � generalization from examples.
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Experiment 1C

Experiments 1A and 1B showed a high correlation between
memory and reasoning tasks, namely that across the 45 test stim-
uli, participants’ response proportions in a memory test were
strongly correlated with another group of participants’ response
proportions in a reasoning test. Moreover, application of the
GEN-EX model showed that the relation was highly systematic.
However, it could be argued that a more impressive result would
be to show the correlation within the same set of individuals, for
then we would be closer to predicting reasoning from memory at
the individual level. In addition, we could gain new and potentially
informative data, such as what is the conditional probability of
responding positively to a reasoning question, given that a partic-
ipant has or has not responded positively on a memory question.
Such results could shed light on the extent to which memory and
reasoning performance are stochastically dependent or indepen-
dent. Brainerd and Reyna (1993) have argued that the relation
between memory and reasoning is best evaluated by examining
within-subjects dependencies in performance on both tasks. Such
an approach has revealed that reasoning in tasks like class inclu-
sion and transitive inference can operate independently of memory
for the precise details of premises in an argument.

In Experiment 1C, therefore, we asked each participant to an-
swer both a memory question and a reasoning question for each
test item. To minimize confusion and to allow for a systematic
analysis of possible carryover effects, half the participants were
asked a memory question and then a reasoning question after the
presentation of each test item, and half the participants were asked
a reasoning question and then a memory question after the pre-
sentation of each test item.

Method

The method, including the materials and the procedure for the
study phase, was the same as Experiment 1A, except for the
following. Seventy-nine University of California, Merced, students
participated: 39 in the memory-first condition and 40 in the
reasoning-first condition.

At the beginning of the study phase, participants were given
neutral instructions that did not indicate the nature of the test
questions: “In this experiment, you will see a set of pictures of
animals. Please pay close attention to these pictures. In the second
part of the experiment, you will be asked questions about the
pictures.” At the beginning of the test phase, participants were
informed that each animal they had seen was discovered to have
something called beta cells. Then they were informed that they
would be asked two questions per test item: whether they had seen

the animal and whether they thought it had beta cells. In the test
phase, participants were asked two questions in sequence, for each
of the 45 test items. In the memory-first condition, the memory
question was always asked first, and in the reasoning-first condi-
tion, the reasoning question was asked first.

Results

A preliminary analysis showed that the order of question pre-
sentation had no significant effect on “yes” responding or d�
sensitivity (Fs 	 2.2), so the data were collapsed across this
variable. The resulting probabilities of responding “yes” to test
items under recognition and induction conditions and associated d�
measures of sensitivity are given in Table 4, with “yes” responding
to small and medium dogs collapsed into a new dogs set. The table
shows that there was a much higher rate of positive responding to
all classes of test items in the induction condition than in the
recognition condition; old, F(1, 77) � 9.67, p � .003, partial 
2 �
.11; new, F(1, 77) � 29.04, p 	 .001, partial 
2 � .27; lures, F(1,
77) � 72.21, p 	 .001, partial 
2 � .48. Sensitivity to both
old–new, F(1, 77) � 61.53, p � .003, partial 
2 � .32, and
old–lure discriminations, F(1, 77) � 65.32, p � .003, partial 
2 �
.44, was higher for recognition than for induction.

Critically, the itemwise correlation between “yes” responding in
induction and recognition questions remained high and positive
r(43) � 0.84, p 	 .001. Following the approach of Brainerd and
Reyna (1993), we also calculated the conditional probability of
making a positive response to a test item in induction, given that
the item had been recognized, p(“yes” induction�“yes” recogni-
tion) � .95. This was substantially higher than the conditional
probability of a yes response in induction given a “no” response in
recognition, p(“yes” induction�“no” recognition) � .31. These
results support the assumption of stochastic dependence between
induction and recognition test judgments.

Modeling

Due to the lack of notable differences between the memory-first
and reasoning-first conditions, we pooled these together, yielding
90 data points to be modeled for Experiment 1C, 45 from memory
judgments and 45 from reasoning judgments.

The four versions of the GEN-EX model were applied to these
data. Overall, the estimated parameter values for GEN-EX s � d
were similar to those for Experiments 1A and 1B. Perhaps the key
difference was that the higher level of discrimination in the mem-
ory condition was accomplished with a high value of the deter-
ministic responding parameter, d. With the high value of d for

Table 4
Experiment 1C. Results (Proportion of “Yes” Responses and d�) and Model Predictions

Result and prediction Old New small New medium All new Lure d� (Old–new) d� (Old–lure)

Empirical results
Memory .81 .09 .19 .14 .28 1.94 1.44
Reasoning .85 .17 .36 .26 .64 1.68 0.67

Model predictions
Memory .80 .08 .17 .13 .29 1.99 1.41
Reasoning .88 .18 .34 .26 .62 1.82 0.88
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memory, it was not necessary to also have a higher value of c for
the memory condition. Note that when the GEN-EX s model was
applied to the data, without a deterministic responding component,
c was higher for memory, 3.64, than for reasoning, 3.00. There was
some evidence for subcategory-based reasoning, with an s value of
.08 for the reasoning condition. After taking account of number of
free parameters, the GEN-EX s � d model fit significantly better
than two of the restricted models, GEN-EX s and GEN-EX null,
but the comparison between GEN-EX s � d and GEN-EX d did
not quite reach the level of statistical significance.

Key GEN-EX s � d model predictions are shown in Table 4,
showing that the model again captured the most important quali-
tative trends. Likewise, the trend line of model predictions in
Figure 3 captures the key trends in the scatter plot of data points.
In this figure, it appears that the data points for old items stand
apart from the data points for lure, new–medium, and new–small
items. The model was able to capture this result with the high d
value for the memory condition. Finally, the model predicts a
strong correlation between memory and reasoning, .91, even stron-
ger than the correlation in the data, .84.

Discussion

These data replicate and extend the results of the first two
experiments. When both judgments were made by the same par-
ticipants, there was a higher rate of positive responding to induction
than to recognition questions for all types of test items. There were
also robust differences between induction and recognition in sensitiv-
ity to old–new and old–lure discriminations. If anything, the results
were stronger when induction and recognition judgments were ma-
nipulated within-subjects. Notably, the within subjects data also sup-
ported previous findings of a strong positive relation between recog-

nition and induction. The probability of judging that a test item had
beta cells increased dramatically when the item was recognized. For
comparison, note that Metcalfe and Fisher (1986) found evidence for
independence between recognition and categorization.

These results support the conclusion that a consideration of
exemplar similarity underpins both induction and recognition
judgments, although note that exemplar models may be flexible
enough to account for a variety of patterns of contingency between
tasks (Nosofsky, 1988a). This conclusion was further supported by
the modeling results that show that an exemplar model gives a
good account of both induction and recognition data. As in the
previous studies, however, model fit was improved by adding
supplementary rule-based parameters to GEN-EX (sub-typing in
induction; identity-based responding in recognition).

Experiment 1D

The previous experiments showed that when induction and
recognition tasks are made comparable, there is high degree of
correspondence between the test phase judgments in each task. We
have argued that this reflects the central role of exemplar similarity
in both tasks. There is, however, an alternative explanation. In
Experiments 1A, 1B, and 1C, both recognition and induction had
a significant memory component. In both tasks, participants had to
study a set of stimuli, retain these over 60 s, and then compare their
memory representations with test phase stimuli. By doing this, we
may have inadvertently converted the induction task into a type of
recognition memory, setting the stage for high correlations be-
tween reasoning and memory.

To address this issue, we ran an additional induction condition
that had no memory component. In this case, study phase stimuli
were available for inspection during test. The data from this new
condition were compared with those from the recognition condi-
tion in Experiment 1A. If the close relation between memory and
induction found in the previous studies was an artifact of a com-
mon memory component then this relation should be substantially
weakened when the new induction condition is correlated with
recognition performance. If, however, it is the assessment of
exemplar similarity that underlies this relation then it should be
preserved when induction does not involve memory.

Method

Forty University of California, Merced, students participated.
The procedure for the no memory induction condition was like the
inductive reasoning condition in Experiment 1A, except that the
study and test phases were conducted simultaneously. The 10
study items were presented in two rows of five tiles in the top half
of the computer screen. The positions of study items were ran-
domized for each participant, but the positions stayed the same as
the experiment was conducted on each individual. It was indicated
that all of the study items had beta cells. On each of the 45 test
trials, one test item was presented in the bottom half of the screen
as the participant was asked whether that animal has beta cells. The
pictures were the same size as in the previous experiments.

Results

The probability of responding “yes” to test items in the no-
memory induction condition and associated d� measures of sensi-
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Figure 3. Scatter plots for Experiment 1C, showing memory and reason-
ing responses across stimuli, with trend line of GEN-EX s � d model
predictions. GEN-EX � generalization from examples.
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tivity are given in Table 5. These data were compared with the
induction and recognition memory conditions in Experiment 1A in
separate analyses.

Removing the memory component from induction altered the
probability of responding “yes” during the test phase. Compared
with the induction condition in Experiment 1A, those in the no
memory induction condition were more likely to respond posi-
tively to old items, F(1, 70) � 8.31, p 	 .01, partial 
2 � .11, and
less likely to respond positively to new medium dogs and lures,
F(1, 70) � 4.2, p 	 .05, partial 
2 � .06, and F(1, 70) � 16.01,
p 	 .001, partial 
2 � .19, respectively. This led to significantly
higher levels of sensitivity in discrimination between old and new
items, F(1, 70) � 8.55, p 	 .01, partial 
2 � .11, and between old
and lure items, F(1, 70) � 27.19, p 	 .001, partial 
2 � .28, in the
no memory condition, as compared with the original induction
group.

The probability of responding positively to old items in the no
memory induction condition was also significantly higher than in
the recognition condition of Experiment 1A, F(1, 70) � 44.35, p 	
.001, partial 
2 � .39. In the case of medium dogs, though, the rate
of positive responding was still reliably higher for no memory
induction than for recognition, F(1, 70) � 4.06, p 	 .05, partial

2 � .06. There were no significant differences between the
induction–no memory and recognition conditions for sensitivity in
old–new discrimination. Sensitivity in old–lure discrimination was
significantly higher for no memory induction than for recognition,
F(1, 70) � 8.06, p 	 .01, partial 
2 � .11.

Despite these changes in the probability of positive responding,
there was still a strong itemwise correlation between test phase re-
sponding in the no memory induction condition and recognition,
r(43) � .86. We plot this relation in Figure 4, with induction re-
sponses from Experiment 1D on the y axis and recognition responses
from Experiment 1A on the x axis. What is most distinctive about
this scatter plot is the separation between old items and the
remaining items, as if there was some tendency to respond deter-
ministically and positively on old items.

Modeling

The four versions of the GEN-EX model were applied to the 45
data points in Experiment 1D, as summarized in Table 2. The
GEN-EX s � d model fit significantly better than each of the three
restricted models. What is most notable about the parameter esti-
mates is the high level of d for induction, indicating a high level of
deterministic responding. Because the study items were available
at the time of test, there was a strong tendency to respond deter-
ministically based on item matches.

Key model predictions are shown in Table 5 and Figure 4,
showing that the GEN-EX s � d model captured the important

qualitative trends (note that two trend lines are plotted in Figure 4,
due to the bimodal pattern of model predictions as a consequence
of the very high level of the d parameter). The model predicted a
.94 correlation between induction responses in Experiment 1D and
recognition responses in Experiment 1A.

Discussion

When the memory component was removed from induction, the
most notable changes in test phase responding were that positive
responses to old items were close to ceiling, and positive responses
to novel items declined relative to the induction and recognition
conditions in Experiment 1A. In many respects, these findings are
unsurprising. When old test items were presented on the same
screen with identical study items that were known to have beta
cells, people generalized the property to these test items. Notably
though, there was still a tendency for those performing induction
to make more positive responses to some novel items (medium
dogs) than those doing recognition, even when they did not have
to rely on memory for study instances. Most notably, the relation
between positive responding at test in induction and recognition

Table 5
Experiment 1D. Results (Proportion of “Yes” Responses and d�) and Model Predictions

Result and prediction Old New small New medium All new Lure d� (Old–new) d� (Old–lure)

Empirical results
Reasoning .93 .27 .32 .29 .35 2.03 1.86

Model predictions
Reasoning .93 .28 .31 .29 .35 2.02 1.85
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Figure 4. Scatter plots for Experiment 1D, showing memory (from
Experiment 1A) and reasoning responses across stimuli, with trend line of
GEN-EX s � d model predictions. GEN-EX � generalization from ex-
amples.
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was as strong (if not stronger) when memory was removed from
induction. This result suggests that the close relation between
recognition and induction judgments found in the past three studies
was not an artifact of the presence of a memory component in both
tasks.

The GEN-EX s � d model was able to capture the main trends
in induction responding when there was no need to retrieve exem-
plars from memory. As in the previous experiments, the model still
predicted a broader generalization gradient for induction than
recognition. The model also successfully captured the main change
in induction when the memory component was removed, namely,
the marked increase in deterministic induction based on matches
with old items. This reinforces the value of adding the determin-
istic d parameter to the GEN-EX framework; this clearly allows
the model to capture inductive responding across a wider range of
presentation contexts.

Experiment 2A

Experiments 1A–1D showed that when comparable reasoning
and memory tasks are used, there is a close relation between how
people make recognition and induction judgments. The application
of GEN-EX suggested that data from both tasks could be accom-
modated within a single exemplar model. The aim of the remaining
experiments was to examine the generality of the recognition–
induction relation and an exemplar model of reasoning and mem-
ory. In each experiment, we varied task factors that had the
potential to differentially affect recognition or induction and ex-
amined whether the empirical relation between judgments on these
two tasks varied as a function of these manipulations. We also
examined whether the fit of GEN-EX differed across task condi-
tions.

In Experiment 2A, we examined the effect of presentation
frequency on memory and reasoning. In effect, this was a strength
manipulation that we hoped to be more effective than the presen-
tation duration manipulation in Experiment 1B. The frequency
manipulation was that each study item was presented one time (as
in Experiments 1A–1D) or three times. Manipulation of presenta-
tion frequency has known effects on memory. Increasing the
frequency of presentation of individual study items increases the
sensitivity of old–new discrimination in recognition (Flexser &
Bower, 1974; Glanzer, Kim, Hilford, & Adams, 1999; Hintzman,
2001). In terms of the GEN-EX model, such effects could be
explained by increases in study item presentation frequency lead-
ing to more elaborate processing of the distinctive features of study
stimuli with a resulting decrease in the perceived similarity of
novel test items. Increases in study item frequency are also likely
to narrow the generalization parameter around study items.

The effects of varying presentation frequency on induction are
more difficult to predict and depend on how the induction process
is conceptualized. If we are correct in assuming that induction is
affected by changes in old–new similarity in much the same way
as recognition then we should also see a sharper gradient of
inductive generalization (i.e., higher ds) as the presentation fre-
quency of study items increases. Tenenbaum and Griffiths (2001)
made a related prediction based on the size principle, namely, the
idea that more specific hypotheses are favored over more general
hypotheses. This prediction was confirmed in a word learning task
in which it was found that when a novel label was applied several

times to a given object, children and adults showed narrower
generalization in their extension of the label to similar objects than
when the label was only presented once (Xu & Tenenbaum, 2007).
One consequence of the size principle is that confidence in a
narrow range of generalization will be increased even further when
there are more observations within a narrow range.

Alternately, there is some suggestion from previous work that
increasing the presentation frequency of items that share a given
property might have the opposite effect on induction. The mono-
tonicity effect is a well documented phenomenon whereby as the
number of instances known to share a property increases, there is
an increase in the probability of the property being generalized to
other category members (e.g., Feeney, 2007; Osherson et al., 1990;
Rotello & Heit, 2009). The current study phase manipulation
differs from previous studies of monotonicity in that items with the
same property were repeated rather than new items being added.
Nevertheless, repetition could increase the opportunity for the
abstraction of common characteristics across the dog study items
and promote the generalization of the target property to test items
that share many features in common with these study items.

Method

Participants. One hundred and twenty-one University of
California, Merced, students participated, with 31 randomly allo-
cated to the Memory-Frequency 1, and 30 each to the Reasoning-
Frequency 1, Memory-Frequency 3, and Reasoning-Frequency 3
conditions.

Procedure. For the Frequency-1 conditions, the method was
exactly the same as Experiment 1A. The only change for the
Frequency 3 conditions was to present each studied stimulus three
times, randomly interspersed through the list, rather than once.

Results

The probability of responding “yes” to test items under recog-
nition and induction conditions is shown in Table 6. We used
ANOVAs to compare positive responses, with task and frequency
as between-subject variables, separately for various stimulus types.
Unlike previous studies, positive responses to old items tended to
be higher for recognition than for induction, but this difference did
not reach significance, F(1, 116) � 3.73, p � .06. As in previous
studies, there were more “yes” responses to new medium than
small dogs, F(1, 116) � 43.9, p 	 .001, partial 
2 � .2, but this
effect did not interact with task condition or study phase fre-
quency. Hence, as before, responses to small and medium test dogs
were collapsed. The probability of responding “yes” to these new
dogs and to lures was higher for induction than recognition, F(1,
116) � 18.13, p 	 .001, partial 
2 � .14; and F(1, 116) � 7.97,
p 	 .01, partial 
2 � .06, respectively). Frequency of presentation
of study phase items had no significant effect on positive responses
to old, new, or lure items and did not interact with task (Fs 	 1.5).

Individual ds were calculated (see Table 6) and analyzed as in
previous studies. Sensitivity in the discrimination between old and
new items was higher overall for recognition than induction, F(1,
116) � 18.26, p 	 .001, partial 
2 � .14. In both recognition and
induction conditions, sensitivity in the old–new discrimination
tended to be higher in Frequency 3, but this difference did not
reach significance, F(1, 116) � 2.83, p � .09, partial 
2 � .03.
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There was no interaction between task condition and study fre-
quency, F(1, 116) � 0.34. A similar pattern was found for sensi-
tivity in the old–lure discrimination, in which sensitivity was
higher for recognition than induction, F(1, 116) � 15.63, p 	 .001,
partial 
2 � .12, and higher for Frequency 3 than Frequency 1,
F(1, 116) � 4.42, p 	 .05, partial 
2 � .04, with no interaction
between task and frequency, F(1, 116) � 0.51.

The proportion of positive responses for each of the 45 test
items was again averaged across participants, and correlations
between responses in the recognition and induction conditions
were computed separately for the Frequency 1 and Frequency 3
groups. As in previous studies, test responses in recognition and
induction were strongly correlated; Frequency 1: r(43) � .82;
Frequency 3: r(43) � .84, ps 	 .001. This relation is illustrated by
the scatter plots in Figure 5.

Modeling

The four versions of the GEN-EX model were applied to the
180 data points in Experiment 2A with the same procedure as in
the previous experiments and the same similarity ratings. Dif-
ferent parameters were used for the Frequency 1 and Frequency
3 conditions, except for the c parameter for similarity ratings.
Although it would have been possible to model the Frequency
3 conditions by representing each studied item three times in
memory (e.g., Heit, 1994, 1998b; Nosofsky, 1988b), the con-
sequence would simply be to make all of the familiarity scores
derived from Equation 1 three times as large. In Equation 2, the
� parameters would then be estimated to be three times as large,
with the result that the model would make exactly the same
predictions.

The results of the modeling are summarized in Table 2. The
average estimated parameter value of c for similarity ratings
was 1.80. For the GEN-EX s � d model, the c parameters were
higher for memory than for reasoning, implying a sharper
generalization gradient. For both recognition and induction,
increasing presentation frequency led to an increase in the c
parameter, indicating that more presentations sharpened gener-
alization for both memory and reasoning. The best fitting model
actually estimated zero influence of subcategories, hence the
GEN-EX s � d and GEN-EX d predictions were equivalent.
However, the fit of GEN-EX s � d was significantly better than
that of GEN-EX s and GEN-EX null, indicating that including

a component for deterministic responding significantly im-
proved performance of the model.

Key model predictions are shown in Table 6, showing that the
model again captured the most important qualitative trends such as
a higher false alarm rate for reasoning than memory, higher sen-
sitivity for Frequency 3 than Frequency 1, and the relative posi-
tions of old, lure, new medium, and new small stimuli. Likewise,
trend lines for model predictions captured the key trends in the
scatter plots of data points (see Figure 5). The model predicts a
strong correlation between memory and reasoning, .98, across 90
data points for memory and 90 data points for reasoning, even
stronger than the correlation in the data, .83.

Discussion

This study replicated many of the key results of earlier
studies. Although sensitivity was higher for recognition than
induction, there was a robust positive relation between the
probability of saying “yes” to test items in each task. As in
many previous studies of recognition (e.g., Hintzman, 2001),
increasing the frequency of presentation of study phase items
led to an increase in sensitivity in old–new discrimination as
measured by d�. The interesting and relatively novel finding
was that presentation frequency affected inductive generaliza-
tion in the same way. When study phase dogs with a novel
anatomical property were repeated three times, people were less
likely to generalize the property to other dogs than when study
exemplars were only presented once.

The parallel effect of frequency on recognition and induction is
consistent with the view that exemplar similarity is a common core
process in both of these tasks and that the frequency manipulation
affected the way that similarity was computed, as reflected by the
changes in the c parameters. This conclusion is also supported by
the modeling results in which the main trends in induction and
recognition, under one and three presentations of study items, were
well captured by the GEN-EX model. Both the differences be-
tween induction and recognition and between different levels of
study frequency could be accounted for by changes in the c
parameter of GEN-EX.

These findings suggest that the repetition of category members
that share a property has a very different effect on induction than
increasing the number of discrete instances that share the property
(i.e., premise monotonicity). Previous studies of monotonicity

Table 6
Experiment 2A. Results (Proportion of “Yes” Responses and d�) and Model Predictions

Result and prediction Old New small New medium All new Lure d� (Old–new) d� (Old–lure)

Results
Frequency 1 memory .79 .18 .34 .26 .46 1.47 0.92
Frequency 1 reasoning .73 .39 .51 .45 .52 0.73 0.56
Frequency 3 memory .84 .18 .31 .34 .36 1.67 1.33
Frequency 3 reasoning .76 .34 .42 .38 .52 1.01 0.68

Predictions
Frequency 1 memory .79 .17 .31 .24 .47 1.51 0.88
Frequency 1 reasoning .73 .40 .48 .44 .53 0.76 0.52
Frequency 3 memory .83 .18 .31 .20 .40 1.82 1.21
Frequency 3 reasoning .76 .32 .43 .37 .52 1.04 0.65
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suggest that increasing the number of category members that share
a property facilitates extraction of the common features of those
instances and promotes property generalization to novel test items
that share those features (Sloman, 1993). Our data, however,
suggest that item repetition at study enhances the encoding of
distinctive features that distinguish study and test items (cf. Nosof-
sky, 1988b).

We note that there was no evidence for subcategory-based
responding in Experiment 2A. We did not have a strong prediction
that this pattern of response would always be present; we have

simply included this possibility in the modeling, as a means of
assessing when it is there and, potentially, whether it varies be-
tween induction and recognition tasks.

Experiment 2B

Experiment 2B was an attempt to have a somewhat stronger
manipulation of frequency than in Experiment 2A. For example, in
Experiment 2A, presenting stimuli three times rather than once led
to only a 5% increase in the hit rate for the memory condition and
a 3% increase for the reasoning condition. Here, we manipulated
frequency within list rather than between list. Previous work has
shown that within-list repetition of items results in a significant
increase in the retrieval accuracy for those items (e.g., Criss, 2009;
Ratcliff, Clark, & Shiffrin, 1990). Hence, within the study list, half
the pictures were presented once and half were presented three
times. We were interested in whether this potentially stronger
manipulation of frequency would have the same or different ef-
fects on memory and reasoning and whether the GEN-EX model
could accommodate all of the results.

Method

Participants. One hundred and sixty-eight students from the
University of New South Wales participated for course credit, with
equal numbers randomly allocated to the memory and reasoning
task conditions.

Procedure. The method was generally the same as Experi-
ment 1A, except that half of the study items were presented three
times, whereas the remainder were presented only once. Half the
participants were assigned to study Version A, in which five out of
the 10 study items (chosen arbitrarily) were presented three times.
In study Version B, the other 5 study items were presented three
times. The order of presentation of all study items was randomized
for each participant. The test procedure was identical to Experi-
ment 1A.

Results and Discussion

Preliminary analyses did not find any differences in hit or false
alarm rates for different item types between participants presented
with the different study sets, so data were pooled across this factor
for the next set of descriptive analyses. As in previous studies,
there were more positive responses to new medium dogs than
small dogs, F(1, 164) � 50.84, p 	 .001, partial 
2 � .24, but this
effect did not interact with task condition or study phase fre-
quency. As before, responses to small and medium test dogs were
pooled.

The probability of responding “yes” to test items under recog-
nition and induction conditions is shown in Table 7. Hit rate data
were entered into a 2 (task) � 2 (Frequency 1 vs. Frequency 3)
analysis with repeated measures on the second variable. Hit rates
were higher for old items that had been presented three times
during the study phase (M � .91) than for those presented once
(M � .81), F(1, 164) � 45.56, p 	 .001, partial 
2 � .22. This
effect was qualified by an interaction with task condition, F(1,
164) � 5.06, p � .03, partial 
2 � .03. Table 7 shows that the
effect of frequency on hit rates was larger in the recognition than
in the induction condition. A one-way ANOVA examining the
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Figure 5. Scatter plots for Experiment 2A, showing memory and reason-
ing responses across stimuli, for (A) Frequency 1 and (B) Frequency 3,
with trend lines of GEN-EX s � d model predictions. GEN-EX � gener-
alization from examples.
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effects of task on positive responses for new items found a higher
false alarm rate in the induction than in the recognition condition,
F(1, 164) � 19.85, p 	 .001, partial 
2 � .11. False alarm rate for
lures were also higher for induction than recognition, F(1, 164) �
25.0, p 	 .001, partial 
2 � .13.

Separate individual ds were calculated with hit rates for study
items presented once and for those presented three times (see
Table 7) and analyzed in a 2 (task) � 2 (Frequency 1 vs. Fre-
quency 3) analysis with repeated measures on the second factor.
Sensitivity in the discrimination between old and new items was
higher when old items were repeated three times during study
(MOLD � 1 � 1.62 vs. MOLD � 3 � 1.87), F(1, 164) � 40.93, p 	
.001, partial 
2 � .20, and higher in the recognition (M � 2.01)
than in the induction condition (M � 1.5), F(1, 164) � 14.78, p 	
.001, partial 
2 � .08. There was also a significant interaction
between these factors, F(1, 164) � 4.86, p � .03, partial 
2 � .03.
Table 7 shows that the manipulation of study frequency had a
larger effect on recognition than induction. A similar pattern was
found for sensitivity in the old–lure discrimination with sensitivity
higher for repeated study items (MOLD � 1 � 1.08 vs. MOLD � 3 �
1.33), F(1, 164) � 40.93, p 	 .001, partial 
2 � .17, and higher
for recognition (M � 1.51) than induction (M � 0.9), F(1, 164) �
21.56, p 	 .001, partial 
2 � .17. Again, these factors interacted
such that repeating study items had a greater effect on sensitivity
in recognition than in induction, F(1, 164) � 4.86, p � .03, partial

2 � .03.

As in previous studies, the itemwise correlation between test
responses in recognition and induction was high and positive, for
Version A, r(43) � 0.93, p 	 .001, and for Version B, r(43) �
0.92, p 	 .001. See Figure 6 for scatter plots of the results.

Modeling

The four versions of the GEN-EX model were applied to the 180
data points in Experiment 2B, here considering the two study lists
separately. The parameters to be estimated were the same as in
Experiment 2A, with the key difference being that studied items
were either represented one time or three times in memory for
Versions A and B. The results are summarized in Table 2. For the
GEN-EX s � d model, the estimated parameters are rather similar
to those of Experiment 2A. (Note that it was not possible to explain
the frequency manipulation just by varying the c parameters;
representing some stimuli multiple times was crucial.) The best
fitting model estimated a near-zero influence of subcategories,
hence the GEN-EX s � d and GEN-EX d predictions were almost
equivalent. However, the fit of GEN-EX s � d was significantly

better than that of GEN-EX s and GEN-EX null, indicating that
including a component for deterministic responding significantly
improved performance of the model.

Key model predictions are shown in Table 7, showing that the
model again captured the most important qualitative trends, such
as a substantially higher hit rate for old three items than for old one
items, a higher false alarm rate for reasoning than memory, and the
relative positions of old, lure, new medium, and new small stimuli.
Likewise, trend lines for model predictions captured the key trends
in the scatter plots of data points (see Figure 6). The model predicts
a strong correlation between memory and reasoning, .98, across 90
data points for memory and 90 data points for reasoning, even
stronger than the correlation in the data, .94, across these same 90
data points.

Taken together, Experiments 2A and 2B suggest that frequency
manipulations have similar effects on memory and reasoning, in
both cases increase the probability of saying “yes” to old items as
well as ability to distinguish old items from new items. The
GEN-EX model can account for the effects of this manipulation
without additional assumptions.

Experiment 3

In this experiment, we examined the effects of adding items
from outside the target category during the study phase on subse-
quent induction and recognition judgments. As noted previously, a
robust finding in the induction literature is that increasing the
number of categories (or category members) that share some
property leads to wider generalization of that property, a phenom-
enon referred to as “premise monotonicity” (Feeney, 2007; Osh-
erson et al., 1990; Sloman, 1993). Hence, adding study items from
a variety of animal categories that all share a target property should
lead participants to generalize that property more broadly. If birds
and fish as well as dogs have beta cells then this might seem
reasonable grounds to generalize the property to other animals.
This would mean a very high rate of “yes” responding to novel
dogs at test. By comparison it is not clear that adding study items
that are perceptually discriminable from the target set of dogs
should radically alter recognition responses to new dogs at test.

Again, however, the GEN-EX model suggests a different set of
predictions. According to GEN-EX, study exposure to dogs and
items from other categories should increase the relative similarity
of test dogs to study dogs (cf. diagnosticity effects in Tversky,
1977). This should lead to more “yes” responses (and poorer test
phase sensitivity) in both induction and recognition conditions.

Table 7
Experiment 2B. Results (Proportion of “Yes” Responses and d�) Based on Study Items Presented One Time, Study Items Presented
Three Times, and Model Predictions

Result and prediction
Old
(�1)

Old
(�3)

New
small

New
medium

All
new Lure

d�
(Old � 1–new)

d�
(Old � 3–new)

d�
(Old � 1–lure)

d�
(Old � 3–lure)

Empirical results
Memory .79 .93 .13 .22 .18 .32 1.84 2.18 1.34 1.68
Reasoning .82 .89 .27 .39 .34 .50 1.40 1.56 0.82 0.98

Predictions
Memory .80 .90 .08 .20 .14 .36 1.89 2.32 1.17 1.60
Reasoning .81 .88 .26 .39 .32 .53 1.33 1.66 0.80 1.13
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Method

Participants. A total of 176 undergraduates from the Uni-
versity of California, Merced, participated. Forty-four participants
were randomly allocated to the four conditions generated by the
factorial crossing of task (induction vs. recognition) and study list
(dogs only vs. dogs � nondogs).

Procedure. The study phase procedure for the recognition
and induction conditions was similar to previous experiments

except that in this case, 15 dog photographs were shown during
study. These were the 15 large dogs previously used as lure test
items. The reason for increasing the number of dog study items
was that we increased the total number of study items, adding 15
birds and 15 fish in the dogs � nondogs conditions, and we wanted
the key dog stimuli to still be a substantial part of the study list. In
the dogs � nondogs conditions, 45 pictures (15 dogs, 15 birds, 15
fish) were presented for 2 s each during the study phase in random
order. In the dogs-only conditions, only the 15 dog pictures were
presented. At test, all groups made judgments about 45 dogs (15
study, 10 new small, 10 new medium, and 10 lures). The lure items
were the 10 pictures of dogs used as old items in previous studies.
Induction and recognition instructions at study and test were
manipulated as in previous studies.

Results

The probability of responding positively at test is shown in
Table 8. As in previous studies, there were more positive responses
to new medium dogs than small dogs, F(1, 172) � 74.67, p 	
.001, partial 
2 � .30. However this difference did not interact
with either of the group variables (Fs 	 2.0), so in subsequent
analyses, responding was collapsed across these two sets. Positive
responding for old, new, and lure items was analyzed with factorial
analyses of variance with task (recognition vs. induction) and
study list (dogs vs. dogs � nondogs) as between-subjects factors.
There were no main effects of task or study list on “yes” responses
to old items, but there was a significant interaction between these
variables, F(1, 172) � 4.11, p 	 .05, partial 
2 � .02. Simple
effects tests showed that “yes” responding to old items was reli-
ably higher for recognition than induction in the dogs only con-
dition, t(86) � 2.04, p 	 .05, but there was no difference between
recognition and induction in the dogs � nondogs condition,
t(86) � �0.57, p � .57. The probability of responding “yes” to
new items and lures was higher for induction than recognition,
F(1, 172) � 8.24, p 	 .01, partial 
2 � 0.05; F(1, 172) � 18.32,
p 	 .001, partial 
2 � 0.10, respectively. There were no main
effects of study list for these items but the study list factor did
interact with task for responses to new items, F(1, 172) � 4.3, p 	
.05, partial 
2 � 0.02. Table 8 shows that the difference in “yes”
responding between the recognition and induction conditions was
larger following the dogs � nondogs study list than the dogs only
list.

Individual ds were calculated for discrimination between old
and new items and between old and lure items. These were
analyzed with factorial analyses of variance with task and study
list as between-subjects factors. Sensitivity in the discrimination
between old and new items was higher for recognition than induc-
tion, F(1, 172) � 10.99, p 	 .001, partial 
2 � .06, and higher
following exposure to the dogs only, as compared with the dogs �
nondogs set, F(1, 172) � 7.63, p 	 .05, partial 
2 � .04. Old–lure
discrimination sensitivity was higher for recognition than induc-
tion, F(1, 164) � 8.3, p 	 .01, partial 
2 � .12. No other
significant main effects or interactions were found (Fs 	 1.0).

Item-wise correlations between positive responses in induction
and recognition tests were high and positive for both the dogs only
condition, r(43) � 0.83, p 	 .001, and the dogs � nondogs
condition, r(43) � 0.91, p 	 .001, (see Figure 7 for scatter plots).
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Figure 6. Scatter plots for Experiment 2B, showing memory and reason-
ing responses across stimuli, for (A) Version A and (B) Version B, with
trend lines of GEN-EX s � d model predictions. GEN-EX � generaliza-
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Modeling

This experiment had a different and larger study set than the
previous experiments (i.e., 15 dogs rather than 10 dogs). Modeling
the responses with the same method as in the previous experiments
would require pairwise similarity ratings for 675 combinations (15
study items � 45 test items) for just the dog stimuli and 2025
combinations (45 study items � 45 test items) if the bird and fish
stimuli were included as well. Instead, we took the approach of
Heit and Hayes (2008) and simulated the overall patterns of
responses, based on randomized configurations of hypothetical
stimuli. Because the model was fitted to average response rates for
different item types rather than to individual item responses, there
were fewer independent data points and less opportunity to add
free parameters to the GEN-EX model. Hence, only the GEN-EX
null model was applied. Given that there was little obvious per-
ceptual similarity between birds and fish at study and dogs at test,
we did not directly include the bird and fish study items in the
simulations (although their impact could be observed in parameter
changes).

We made predictions for four types of stimuli, assigned by
simulations to randomized positions in hypothetical two-
dimensional stimulus space. The study list contained 15 large
dogs. Their XY positions were drawn randomly from a bivariate
normal distribution with mean of (0, 0) and a standard deviation of
1. The test list included these 15 old items as well as 10 lure items,
additional large dogs also drawn randomly from a bivariate normal
distribution with a mean of (0, 0) and a standard deviation of 1.
There were 10 new items that were medium dogs, in the simula-
tions drawn randomly from a bivariate normal distribution with an
origin of (A, A) and a standard deviation of 1. Finally, there were
10 new items that were small dogs in the simulations drawn
randomly from a bivariate normal distribution with an origin of (B,
B) and a standard deviation of 1. Note that A and B were estimated
as free parameters—these values would reflect the average posi-
tions in psychological space of the large, medium, and small dogs.
It was expected that B � A, reflecting the notion that large dogs
are more similar to medium dogs than large dogs are to small dogs.

The model was used to make predictions on 45 test items, for
memory and for reasoning. These predictions were compared with
the 16 key data points shown in Table 8, namely the average
response rates on old, lure, new medium, and new small items, for
memory and for reasoning, and for dogs only and for dogs �
nondogs. The model was applied to 25 different random stimulus

configurations. The average estimated parameter values of A and
B were 0.38 and 1.13. For the memory dogs only, memory dogs �
nondogs, reasoning dogs only, and reasoning dogs � nondogs
conditions, the respective c parameters were 4.08, 2.49, 3.38, and
1.93, and the respective � parameters were 0.45, 1.00, 0.92, and
1.26. The estimated A and B values indicated that medium dogs
were closer in psychological space to the large dogs than were the
small dogs. Notably, c was considerably lower for reasoning than
for memory, reflecting broader generalization for reasoning and
steeper generalization for memory. Likewise, as predicted, adding
birds and fish during study led to decreases in c (i.e., broader
generalization) for both reasoning and memory. We did not ob-
serve interpretable changes in � across conditions.

Overall, there was a good fit between model and data, with an
average RMSE of .0347. Table 8 shows average predictions of the
model. This table shows that the main trends in the data have been
captured, including the weaker discrimination when nondogs were
included in the test list. Likewise, the predicted d� measures are
close to the original results. The simulation made 45 predictions
for the memory and reasoning conditions, for 45 test items, so it
was again possible to calculate the predicted correlation between
memory and reasoning. In the simulations, the average predicted
correlation between memory and reasoning was .97 in the dogs-only
conditions and .94 in the dogs � nondogs conditions. Figure 7 shows
a predicted trend line based on one run of the simulation.

Discussion

This study replicated the general pattern of similarities and
differences between reasoning and memory found in previous
studies, with induction associated with broader generalization of
positive responses but a strong itemwise correlation between in-
duction and recognition judgments about the common test stimuli.
The addition of study items from other animal categories affected
responses, decreasing sensitivity in the discrimination between old
and new items. As predicted by GEN-EX, however, this effect was
found under both induction and recognition conditions.

One objection to these conclusions might be that they rely on a
comparison of conditions that differ not only in item content (i.e.,
dogs only vs. dogs � nondogs) but also study list length (15 study
items vs. 45 study items). Indeed, in Experiment 2A as well, study
list length varied between conditions (although not in Experiment
2B). In reasoning research, it is actually very common for prob-
lems to vary in length (Hayes et al., 2010; Heit, 2000; Rotello &

Table 8
Experiment 3. Results (Proportion of “Yes” Responses and d�) and Model Predictions

Result and prediction Old New small New medium All new Lure d� (Old–new) d� (Old–lure)

Results
Dogs only memory .77 .26 .38 .32 .38 1.23 1.05
Dogs only reasoning .67 .29 .40 .35 .53 0.82 0.36
Dogs � nondogs memory .65 .23 .37 .29 .30 0.94 0.92
Dogs � nondogs reasoning .69 .43 .50 .46 .50 0.60 0.50

Predictions
Dogs only memory .77 .26 .36 .31 .31 1.23 1.05
Dogs only reasoning .68 .33 .42 .38 .47 0.82 0.36
Dogs � nondogs memory .65 .23 .32 .27 .35 0.98 0.76
Dogs � nondogs reasoning .68 .41 .49 .45 .53 0.60 0.38
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Heit, 2009), and often, there is little effort to keep length constant
from one condition to another. In contrast, controlling for list
length has been of greater concern in memory research. Some
researchers have claimed that such manipulation of list-length
affects recognition performance (Cary & Reder, 2003; Clark &
Gronlund, 1996) with sensitivity in old–new discrimination lower
following the study of long lists (but see Dennis & Chapman,
2009, for the opposite result). It is important to note, however, that

the validity of this claim has been questioned on both methodolog-
ical and theoretical grounds (cf. Dennis & Humphreys, 2001;
Dennis, Lee, & Kinnell, 2008; Murdock & Kahana, 1993; Under-
wood, 1978). Notably, Dennis and Humphreys (2001) have
pointed out that the apparent effects of list length can be explained
by differences in the retention intervals for items on shorter and
longer lists, changes in attention to the later items in longer lists,
and changes in the context in which items are retrieved. When
these variables are controlled then no main effect of list length on
recognition is found (Dennis & Humphreys, 2001; Dennis et al.,
2008). Moreover, even those who argue for an independent effect
of list length (e.g., Cary & Reder, 2003) suggest that at least a
fourfold difference in length between short and long lists may be
necessary to detect this effect. Because the discrepancy between the
two study lists in this experiment was of a smaller magnitude and
because there was no change in retrieval context between study and
test phases in any condition, it seems unlikely the differences between
the dogs and no-dogs condition were solely due to list length.

However, we would concede the point that study list length varied
in Experiment 3, and to the extent that we found systematic differ-
ences between conditions (which the GEN-EX model was able to
address), these differences may be partly attributable to study list
length. Although it is not our primary goal to rule out study list length
effects, but rather to examine how the exactly the same experimental
manipulations affect memory and reasoning, in Experiment 4, this
issue was addressed by holding study list length constant and intro-
ducing items from outside of the dog category in the test list.

Experiment 4

In Experiment 4, all participants studied the same list of 15 dogs.
For half the participants, in the dogs � nondogs conditions, we
introduced pictures of birds and fish in the test list, as another way to
examine the effects of presenting extracategory items. Again, we
predicted that presenting birds and fish at test would highlight the
categorical nature of the stimuli, making discrimination among dogs
somewhat poorer in both the memory and reasoning conditions,
reflected in the c parameters of the GEN-EX model.

Method

Participants. One hundred and sixty-eight University of Cal-
ifornia, Merced, students participated. Equal numbers were ran-
domly allocated to the four conditions generated by the factorial
crossing of task (recognition vs. induction) and test list (dogs only
vs. dogs � nondogs).

Procedure. The study phase procedure for the recognition
and induction conditions was similar to Experiment 3, except that
all participants saw 15 dogs during the study and no birds or fish.
During the test phase, participants in the dogs-only condition were
presented with the 15 study dogs, 10 new small dogs, 10 new
medium dogs, and 10 large (lure) dogs in random order. Partici-
pants in the dogs � nondogs condition were presented with the
same set of 45 test dogs together with 15 photographs of birds and
15 photographs of fish, with item order randomized.

Results

The probability of responding positively to dog test items under
recognition and induction conditions is shown in Table 9. As in
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Figure 7. Scatter plots for Experiment 3, showing memory and reasoning
responses across stimuli, for (A) dogs only and (B) dogs � nondogs, with
trend lines of GEN-EX model predictions. GEN-EX � generalization from
examples.
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previous studies, there were more positive responses to medium
than small dogs, F(1, 164) � 48.9, p 	 .001, partial 
2 � .23, but
this difference did not interact with either task or test list variables
(Fs 	 0.5), and responses to these stimuli were collapsed. Positive
responding for old, new, and lure items was analyzed with factorial
ANOVA with task (memory vs. induction) and test list (dogs only
vs. dogs � nondogs) as between-subjects factors. The probability
of responding “yes” to new items and lures was higher for induc-
tion than recognition, F(1, 164) � 26.03, p 	 .001, partial 
2 �
.14; F(1, 164) � 12.76, p 	 .001, partial 
2 � .07, respectively.
The probability of responding “yes” to new and lure items was
higher when the test list included items from other categories than
when only dogs were included, F(1, 164) � 9.12, p 	 .01, partial

2 � .05; F(1, 164) � 5.03, p 	 .05, partial 
2 � .03, respectively.
For positive responses to old items, there was also a significant
interaction between task and test list, F(1, 164) � 7.56, p 	 .01,
partial 
2 � .04. Tests of simple effects confirmed that rates of
positive responding were higher for induction than recognition
when dogs and nondogs were included at test, t(82) � 2.02, p �
.047, but did not differ when only dogs were presented ( p � .22).
An interaction between task and test list was also found for
positive responses to new items, F(1, 164) � 6.93, p 	 .01, partial

2 � .04. Table 9 shows that the difference in positive responding
between induction and recognition was larger in the dogs �
nondogs than in the dogs-only condition. This was mainly due to
a large increase in false alarms to new items when those doing
reasoning were tested with the dogs � nondogs list.

This study also afforded an opportunity to examine inductive
and recognition responses to test items in different animal catego-
ries. Although we did not have sharp predictions here, we observed
that within the dogs � nondogs condition, the probability of
responding “yes” to nondog items (birds or fish) was very low in
the recognition condition (M � 0.02) and significantly higher in
induction (M � 0.24), F(1, 82) � 16.6, p 	 .01, partial 
2 � .17.
This result reflects participants’ overall tendency, also observed
for dog stimuli, to generalize to some stimuli in the induction task
that they would not falsely recognize in the recognition task. More
generally, the nontrivial level of positive responding to nondogs in
the induction condition seems consistent with previous work
showing that people often generalize biologically plausible prop-
erties (like “has beta cells”) from typical animals (such as dogs) to
other animals (Osherson et al., 1990).

As before, individual ds were calculated for discrimination
between old and new items and between old and lure items. These

were analyzed with factorial analyses of variance with task and test
list as between-subjects factors. Discrimination between old and
new items was greater for recognition than induction, F(1, 164) �
15.98, p 	 .001, partial 
2 � .09, and greater for dogs only than
dogs � nondogs, F(1, 164) � 4.88, p 	 .05, partial 
2 � .03.
Old–lure discrimination sensitivity was also higher for recognition
than induction, F(1, 164) � 8.3, p 	 .01, partial 
2 � .05, but
there was no main effect of test list, F(1, 164) � 2.75, p � .10.
Neither of these analyses found interactions between task and test
list (Fs 	 0.5).

Itemwise correlations between positive responding to dog items
in induction and recognition were high and positive for both the
dogs only condition, r(43) � 0.92, p 	 .001, and the dogs �
nondogs condition, r(43) � 0.87, p 	 .001. (See Figure 8 for
scatter plots.) In the latter condition, the itemwise correlation
between positive responding to the 30 bird and fish test items in
the induction and recognition conditions was also calculated. This
correlation was low, r(28) � 0.11, and not significant ( p � .56).
Note though that this low correlation reflects a severely restricted
range of positive responses (e.g., in recognition, each bird and fish
test item received no more than 5% positive responses).

Modeling

As in Experiment 3, we again simulated the overall patterns of
responses, based on randomized configurations of hypothetical
stimuli. As in the previous study only the GEN-EX null model was
applied, and we did not simulate the data for bird and fish items.
(Doing so would be possible, but would likely add as many free
parameters as it would distinguishable data points).

The model was used to make predictions on 45 test items, for
memory and for reasoning. These predictions were compared with the
16 key data points shown in Table 9, namely the average response
rates on old, lure, new medium, and new small items, for memory and
reasoning, and for dogs only and dogs � nondogs. The c and �
parameters were allowed to vary across the four conditions; hence,
with the addition of the A and B parameters, there were 10 free
parameters for 16 data points. The model was applied to 25
different random stimulus configurations. The average estimated
parameter values of A and B were 0.41 and 0.64. For the memory,
dogs only, memory, dogs � nondogs, reasoning, dogs only, and
reasoning, dogs � nondogs, the respective c parameters were 4.87,
3.16, 3.99, and 2.29, and the respective � parameters were 0.38,
0.66, 0.57, and 0.49. The estimated A and B values reflect the fact

Table 9
Experiment 4. Results (Proportion of “Yes” Responses and d�) and Model Predictions

Result and prediction Old New small New medium All new Lure d� (Old–new) d� (Old–lure)

Result
Dogs only memory .77 .24 .34 .29 .37 1.30 1.08
Dogs only reasoning .71 .32 .42 .37 .47 0.88 0.64
Dogs � nondogs memory .71 .24 .35 .29 .40 1.10 0.80
Dogs � nondogs reasoning .81 .55 .65 .60 .64 0.66 0.57

Predictions
Dogs only Memory .77 .24 .33 .29 .36 1.30 1.11
Dogs only reasoning .71 .34 .42 .38 .45 0.86 0.69
Dogs � nondogs memory .71 .26 .35 .31 .38 1.07 0.88
Dogs � nondogs reasoning .81 .56 .63 .65 .64 0.64 0.50
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that the medium dogs were closer in psychological space to the
large dogs than were the small dogs. Notably, c values were
considerably lower for reasoning than for memory, reflecting
broader generalization for reasoning and steeper generalization for
memory. Likewise, adding birds and fish at test led to decreases in
c for both reasoning and memory. We did not observe substantial
or interpretable changes in � across conditions.

Overall, there was a good fit between model and data, with an
average RMSE of .0306. Table 9 shows average predictions of the
model. This table shows that the main trends in the data have been
captured, including weaker discrimination when nondogs are in-
cluded in the test list. Likewise the predicted d� measures are close
to the original results. As in previous studies, it was possible to
calculate the predicted correlation between memory and reasoning.
The predicted correlations were .97 in the dogs-only conditions
and .90 in the dogs � nondogs conditions (as compared with
corresponding observed correlations of 0.92 and 0.87). Figure 8
shows a predicted trend line based on one run of the simulation;
note again that the model predictions in Table 9 were based on
averages from 25 random configurations.

Discussion

Adding test items from other basic-level categories did affect
patterns of positive responding in recognition and induction, de-
creasing sensitivity in discrimination between old and new items.
We also replicated the general pattern of differences between test
phase responding for recognition and induction found in previous
experiments. Induction was again associated with a broader pattern
of generalization to novel test items than recognition. Notably,
these effects of task and manipulation of the test list on test phase
sensitivity were independent. Although adding bird and fish items
increased positive responding in old and new items in induction
relative to recognition, this did not translate into significant task by
list interactions on the sensitivity measures. Moreover, the positive
empirical relation between induction and recognition for dog items
remained strong when items from a variety of basic animal cate-
gories were added to the test list.

Experiment 4 was complementary to Experiment 3, in that we
held study list length constant and varied test list length. We think
it is unlikely that the results of Experiment 4 are solely due to test
list length and not the presence of additional categories, but we
acknowledge that some role of test list length, in itself, cannot be
ruled out. What is important for our purposes is that the manipu-
lation had the same effect on both memory and reasoning and
could be accommodated by the GEN-EX model mainly by varying
the sensitivity parameters.

In short, adding items from other basic level categories affected
the sensitivity of test judgments in induction and recognition in
similar ways. Consistent with the predictions of GEN-EX, the
empirical relation between positive responding to dog items in
induction and recognition remained strong, even when judgments
also had to be made about the members of other categories.

General Discussion

Our main aim was to examine the relation between recognition
memory and inductive reasoning judgments about a common set of
category exemplars. The main empirical finding was that in every
experiment, when procedural differences between these tasks were
kept to a minimum, there was a close correspondence between the
two kinds of judgments. Judgments about whether a novel property
would generalize from a set of familiar instances to a given test
item were predictable from the probability of responding “old” to
that item in recognition, with an average correlation across exper-
iments of .87 and similar patterns of responses on old, lure,
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Figure 8. Scatter plots for Experiment 4, showing memory and reasoning
responses across stimuli, for (A) dogs only and (B) dogs � nondogs, with
trend lines of GEN-EX model predictions. GEN-EX � generalization from
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medium, small, and out-of-category items. The strength of this
relation supports the view that recognition and induction share
underlying component processes.

There were also some interesting differences between memory
and reasoning. In every study (except Experiment 1D), we found
that people doing induction were more likely to make positive
responses to novel test stimuli (and hence showed lower sensitiv-
ity) than those doing recognition. In other words, induction was
generally associated with a broader generalization of positive
responding to novel items than recognition. This had been pre-
dicted, due to the different natures of the two tasks, with recogni-
tion emphasizing rejection of novel stimuli and induction empha-
sizing generalization to novel stimuli.

There was also suggestive evidence of different roles for deter-
ministic responding in memory versus reasoning conditions. In
particular, in a number of studies (Experiments 1A–1D, 2A, 2B)
we found that adding a parameter reflecting deterministic respond-
ing improved the fit of the GEN-EX model, especially for recog-
nition. In contrast, adding a deterministic parameter did not gen-
erally improve the fit of GEN-EX to induction data.

Another important finding was that a range of changes to the
conditions under which people encoded study items or made
decisions about test instances had parallel effects on reasoning and
memory. Repeating study instances led to better discrimination
between old and lure items in recognition and had a very similar
effect on induction. Adding test items from outside of the study
category broadened generalization of positive test responses for
both induction and recognition. Our interpretation of these findings
is that these study and test variables principally affected the way
that similarity between old and test items was computed. Because
this is a common core process in induction and recognition, these
manipulations produced similar effects in each task.

This account is supported by the modeling results in each study.
With the possible exception of Experiment 1D, reasoning and
memory judgments in each study could be accounted for by a
single model in which positive test responses were determined by
the total similarity between a test item and previously studied
items. The most important differences between recognition and
induction in test phase “yes” responding were captured by changes
in a sensitivity parameter that increased or decreased the overall
psychological distance between study and test stimuli. Similarly,
the effects of manipulations like study phase frequency and test
item length were reflected in changes in the GEN-EX similarity
and generalization parameters. Comparative modeling suggested
some differences between conditions for subcategory-based and
deterministic responding, but in general, the similarities between
the effects of the manipulations on induction and recognition far
outweighed the differences.

The most straightforward implication of these findings is that
inductive reasoning and memory are not as different as has often
been assumed. The current data suggest that exemplar similarity
plays a major role in both object recognition and in the general-
ization of novel properties between category exemplars. The ob-
served differences in patterns of recognition and induction were
explained in a relatively straightforward way by altering similarity
parameters in the respective decision rules. Notably, the data from
these two tasks could be explained within a single processing
framework. There was no need to require the postulation of mul-

tiple systems of representation or processing, or even different
sources of information affecting the two tasks.

Although similarity has been long been acknowledged as a key
component in models of induction (e.g., Osherson et al., 1990) and
recognition (e.g., Hintzman, 1988), ours is the first attempt to
explain recognition and induction judgments for a common stim-
ulus set with a single theoretical model. Moreover, previous mod-
els of induction (e.g., Osherson et al., 1990) have usually defined
similarity in terms of the relations between different categories
(e.g., lions, horses, mammals). The current work makes a novel
contribution by highlighting the importance of similarity between
specific exemplars in property induction.

Comparison Between GEN-EX and Other
Induction Models

The key findings in the current experiments were that (a) in-
duction usually leads to a broader generalization of positive re-
sponses to novel test items than recognition, (b) there was a strong
positive correlation between the probability of making a positive
response to test items under induction and recognition instructions,
and (c) a range of variables that affect the similarity between test
items and old items retrieved from memory had parallel effects on
induction and recognition. These data were well explained by the
GEN-EX model, which assumes that both induction and recogni-
tion responses are influenced by the total similarity of a novel item
to previously experienced old items but that induction is associated
with a broader gradient of stimulus generalization.

Although previous models of induction have not addressed
recognition, it is reasonable to ask how such models might ap-
proach the induction–recognition relation (see Heit & Hayes,
2005, for a related discussion). Perhaps the approach that most
closely resembles our own is the SINC (similarity, induction, and
categorization) model developed by Sloutsky and Fisher (2004).
This model was developed to explain how item similarity deter-
mines children’s categorization and induction judgments. Sloutsky
and Fisher (2004) examined relations between induction and rec-
ognition by presenting adults and children with animal stimuli
(cats, birds, fish), some of whom (the cats) had a novel anatomical
property, and then administering a surprise recognition test in
which old and new cats were shown together with new animal
foils. Adults often mistakenly responded positively to novel cats
during recognition. It was claimed that children were less likely to
false alarm to these stimuli, but this claim has since been shown to
be a consequence of the fact that children tended to look longer at
study pictures than adults (Hayes, McKinnon, & Sweller, 2008).
When encoding times were kept relatively short and were equal-
ized across age groups, similar false alarm rates for novel category
members were found in adults and children (Hayes et al., 2008,
also see Wilburn & Feeney, 2008).

Although SINC was never applied to the Sloutsky and Fisher
(2004) recognition data we have shown elsewhere (Heit & Hayes,
2005), the model can be recast to generate recognition predictions
by adding a component that assesses the total similarity of novel
items to familiar items. The GEN-EX model, however, extends
this idea in at least two important ways. First, the computation of
similarity has been refined to make it more consistent with well-
supported models of categorization such as GCM. Second,
GEN-EX explicitly assumes that recognition and induction judg-
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ments differ in the breadth of generalization around study items.
The latter assumption predicts Sloutsky and Fisher’s finding that
adults are more likely to false alarm in a recognition test that
follows an induction study task, as opposed to a recognition study
task. Another important difference between SINC and GEN-EX is
that the former model was proposed only to explain induction in
young children, whereas GEN-EX is proposed as a general account
of induction and recognition. We have shown that GEN-EX gives
a good account of adult responses on both tasks. Although it has
yet to be applied to children’s judgments, there are good reasons to
believe that the processes underlying induction and recognition
have considerable developmental continuity (Hayes et al., 2008)
and that therefore GEN-EX may also give a good account of the
induction–recognition relation in children.

As the name implies, Osherson et al.’s (1990) similarity-
coverage model accords a central role to the similarity between
inductive base and target items in judgments about property gen-
eralization. Although this model was not intended as an account of
recognition, it is interesting to consider this possible extension.
One problem with extrapolating this model is that it conceives of
similarity largely in terms of similarity between basic or superor-
dinate categories rather than similarity between specific exem-
plars. This leads to improbable predictions about false alarms to
specific instances. According to the coverage component of the
model, if items from a variety of categories are presented at study,
as in Sloutsky and Fisher (2004), then a superordinate that encom-
passes these items will be generated, and similarity to items within
the superordinate will drive inferences about test items. Hence,
adults who saw cats, birds, and bears at study would be predicted
to strongly false alarm in a recognition test to animal lures such as
squirrels or fish, which also belong to the animal superordinate.

Sloman (1993) proposed an alternative, connectionist model of
induction, relying on feature overlap between premise and conclu-
sion categories to make predictions about argument strength. It
would be natural to extend this approach to making recognition
judgments in terms of feature overlap. Most likely, for the model
to be used as a viable account of list recognition memory, hidden
units would need to be introduced to the model. There would be
parallels to our own, similarity-based approach, with a key differ-
ence being that GEN-EX uses an exemplar-based representation,
whereas Sloman’s model has a distributed, featural representation.

More recently, Bayesian accounts of inductive reasoning have
been proposed (Heit, 1998a; Kemp & Tenenbaum, 2009; Tenen-
baum & Griffiths, 2001). These models use probability rather than
similarity as a basis for making predictions but still can account for
similarity effects in reasoning by assuming that hypothesis spaces
are correlated with similarity structure. For example, observing a
set of large dogs with beta cells would support the hypothesis that
only large dogs have beta cells and promote generalization to other
large dogs more so than generalization to medium or small dogs.
It remains to be seen whether these models of induction could be
extended to recognition tasks. We note, however, that there are
already Bayesian models of recognition memory in existence (e.g.,
Criss & McClelland, 2006; Shiffrin & Steyvers, 1997).

Dual-Process Accounts of Memory and Reasoning

Our research and the GEN-EX model itself highlight a com-
monality between memory and inductive reasoning, namely that

they are both heavily influenced by comparisons between the
features of familiar and novel exemplars. However, we do not
dispute the notion that other processes contribute to memory and
reasoning. In memory research, there is evidence (e.g., Yonelinas,
2002) for a second, slower, more controlled, recollective process
that also contributes to recognition, and dual-process models of
recognition have been implemented successfully and applied to
data (e.g., Rotello, Macmillan, & Reeder, 2004). Likewise, in
reasoning research, there is evidence that causal reasoning (e.g.,
Rehder & Burnett, 2005) goes beyond the effects of similarity on
inductive reasoning and that more generally, analytic processing
supplements heuristic processing (e.g., Evans, 2008). Dual-process
models of reasoning that suggest different processing principles
for induction and for logical deduction have also been imple-
mented and had some success in explaining empirical data (e.g.,
Heit & Rotello, 2010; Rotello & Heit, 2009).

Just as we have found links between similarity-based processing
in memory and reasoning, an intriguing question for future re-
search is whether there are also links between controlled processes
in memory and reasoning. Indeed, the subcategory-based and
deterministic responding processes could be considered as kinds of
controlled processing. It is interesting that recollective judgments
have sometimes been described as a kind of logical reasoning. For
example, the recall-to-reject process (Rotello & Heit, 1999) could
be used to determine whether a tested item had really been studied
or whether a similar item had been studied instead. Suppose that a
participant studies the word chair and is tested on the word chairs.
The participant knows that at most one of these words was studied.
Although chairs will seem familiar, if the participant can recollect
studying the word chair then it will be possible to reject the word
chairs, using the recall-to-reject process, which here corresponds
to the modus ponendo tollens inference in classical logic, which
has the form not (A and B); A; therefore not B.

Relation to Other Work on Reasoning and Memory

To the best of our knowledge, the current studies represent the
first attempt to examine the relation between recognition and
property induction. However, there has been considerable investi-
gation of the relations between memory and other forms of rea-
soning. One line of work that has some overlap with the current
studies involves the examination of links between memory and
probabilistic judgments. One of the best known phenomena sug-
gesting such a link is the availability bias, whereby judgments of
the relative frequency or probability of events are influenced by
the ease with which instances of those events can be recalled (e.g.,
Lichtenstein, Slovic, Fischoff, Layman, & Combs, 1978; Tversky
& Kahneman, 1973). To explain such phenomena, Hastie and Park
(1986) argued that when probability judgments are based on event
attributes that have to be retrieved from memory (as opposed to
examined on-line), there will be a strong positive relation between
memory performance and judgment outcome. Hence, when people
were asked to listen to a recorded conversation and subsequently
judge the suitability of one of the speakers for a job as a computer
programmer, there was a strong positive correlation between judg-
ments and recall of conversation statements favoring or opposing
the appointment. This correlation disappeared, however, when the
task was run “online” with participants told about the required
judgment before listening to the conversation.
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Many aspects of the current studies are consistent with Hastie
and Park’s (1986) account. In most of our studies, inductive and
recognition judgments were made about previously encoded stim-
uli. Under these retrospective decision conditions, we found the
strong positive relation between performance on both tasks pre-
dicted by Hastie and Park. The results of Experiment 1D, however,
in which the memory component was removed from induction,
only partly support Hastie and Park (1986). In Experiment 1D,
inductive inferences were effectively “on-line” during test. This
did alter the relative patterns of performance in induction and
recognition (e.g., by increasing the hit rate for induction). Criti-
cally, though, the relation between positive responses at test in
induction and recognition remained strong. This suggests that
Hastie and Park (1986) underestimated the degree of overlap
between the processes underlying probabilistic reasoning and
memory. Although the presence of a common memory component
may affect the relation between these tasks, when this component
is removed from induction, the common process of computing
exemplar similarity remains, giving rise to strong correlations
between recognition and induction performance.

Another important body of evidence examining links between
memory and reasoning comes from studies of fuzzy trace theory
(FTT; Brainerd & Reyna, 1993, 2004). One of the key motivations
for FTT is to provide an account of memory-reasoning relations
and how they develop. According to FTT, novel information is
encoded in two parallel formats. Verbatim representations are
precise and complete records of studied stimuli that include their
surface perceptual details. Gist representations involve more ab-
stract summaries of the semantic or relational content of presented
information. An important assumption of FTT is that verbatim
traces are usually accessed in memory tasks, whereas gist repre-
sentations are usually used for reasoning. This leads to the predic-
tion that memory for the literal details of inputs into reasoning
(e.g., the initial premises in a reasoning task) can be statistically
independent of reasoning performance (see Brainerd & Reyna,
1993, 2004, for relevant reviews).

Clearly, our results seem inconsistent with this prediction. Ex-
periment 1C showed a high correlation between recognition and
inductive judgments for the same items and showed that the
probability of making a positive induction response increased
when that item was recognized. More generally, we have shown
that when general task factors are matched, a single process of
exemplar similarity, albeit with flexible levels of generalization
around exemplars, can explain both memory and inductive reason-
ing. In other words, we find that a single kind of representation
goes a considerable way toward explaining performance on both
memory and inductive reasoning tasks. However, we acknowledge
that we have not applied FTT to our results.

It is also important to note that much of the previous evidence
for stochastic independence between memory and reasoning in
FTT (e.g., Brainerd & Kingma, 1985) has involved tasks that focus
on deductive reasoning (e.g., transitive inference, class inclusion,
conservation). As noted earlier, there is now good evidence that
different processing principles are used in inductive and deductive
reasoning (e.g., Heit & Rotello, 2010; Rotello & Heit, 2009).
Hence, much of this previous work may not be generalizable to the
current studies. FTT may indeed be correct in suggesting that the
representations of logical relations in deductive arguments are
functionally separate from verbatim memory for the argument

premises. In contrast, a large body of evidence (e.g., Goldstone,
1994; Sloutsky & Fisher, 2004) suggests that similarity in surface
appearance is an important cue for category membership. Hence,
in category-based induction, it seems reasonable to expect a close
relation between the ability to detect and remember the similarities
between category exemplars (e.g., the study items in the current
experiments) and the way that exemplar properties are generalized
to novel instances. Similar arguments may be used to explain the
apparent discrepancy between our finding of a positive relation
between induction and recognition and previous work showing
that memory for examples can be dissociated from performance in
analogical reasoning tasks (e.g., Gentner, Rattermann, & Forbus,
1993; Holyoak & Koh, 1987; Ross, 1987).

Induction and More Complex Forms of Similarity

Central to GEN-EX is the idea that similarity between known
and novel exemplars affects the generalization of identity (in
recognition) and shared properties (in induction). However, it has
been pointed out that the psychological construct of similarity is
unconstrained such that judgments about the similarity between
two or more objects can vary substantially across different judg-
ment contexts (e.g., Murphy & Medin, 1985). This is well illus-
trated in inductive reasoning studies in which varying the nature of
the property can strengthen or weaken property generalization
between the same target and test items (e.g., Heit & Rubinstein,
1994; Ross & Murphy, 1999; Shafto & Coley, 2003). Heit and
Rubinstein (1994), for example, found that anatomical properties
were more likely to be generalized from sparrows to hawks than
from tigers to hawks but that this pattern reversed when the
property was predatory behavior. The different properties appeared
to cause people to compute similarity between target and test
instances in different ways (e.g., taxonomic similarity vs. similar-
ity between ecological roles).

One implication is that if more meaningful or familiar properties
were used during the study phase of our induction task, this could
change the way people make inductive judgments about new test
dogs (using a stronger manipulation of property type than we
attempted for Experiments 1A and 1B). For example, if during the
induction study phase people were asked to learn about which dogs
are good pets, it seems likely that people would make inductive
judgments at test based on dimensions other than perceptual and
taxonomic similarity (e.g., perceived temperament, attractiveness).
This means that patterns of induction judgments should diverge
from those made under recognition conditions.

This possible selective effect of property knowledge is an in-
teresting target for further research. However, it is important to
remember that the goal of the current studies was to examine the
relations between induction and recognition when those doing
induction had minimal knowledge about the property being gen-
eralized; that is, when they could only rely on some default notion
of similarity between study and test exemplars. The key finding
was that the same default form of exemplar similarity operated for
induction and recognition. In this respect, our general strategy was
similar to previous work on category-based induction (e.g., Osh-
erson et al., 1990) in which unfamiliar properties were used so that
the effects of taxonomic similarity on inductive judgments could
be isolated and studied in detail.
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Another way that our work goes beyond simple similarity-based
responding is the incorporation of two kinds of deterministic or
rule-based processes, in terms of subtypes as well as veridical
recollection of items. In general, our modeling found evidence for
the processes in addition to the influence of overall similarity.

Conclusion

The current work makes two novel contributions to the study of
inductive reasoning. First, it formalizes the process whereby prop-
erties are generalized between exemplars of the same category.
Second and more significantly, it shows that a similar generaliza-
tion process operates when people make inductive and recognition
judgments. This link between inductive reasoning and memory
offers a number of interesting prospects for further research. There
are a range of empirical factors known to affect recognition per-
formance, which may also have an impact on induction (see
Yonelinas, 2002, for a review). Moreover, GEN-EX’s success in
explaining both recognition and induction data represents a first
step toward the development of a general theory of how people
generalize knowledge between familiar and unfamiliar instances.

References

American Kennel Club. (2006). AKC recognized breeds. Retrieved from
http://www.akc.org/breeds/breeds_a.cfm

Borowiak, D. S. (1989). Model discrimination for nonlinear regression
models. New York, NY: Marcel Dekker.

Bott, L., & Murphy, G. L. (2007). Subtyping as a knowledge preservation
strategy in category learning. Memory & Cognition, 35, 432–443.

Brainerd, C. J., & Kingma, J. (1985). On the independence of short-term
memory and working memory in cognitive development. Cognitive
Psychology, 17, 210–247. doi:10.1016/0010-0285(85)90008-8

Brainerd, C. J., & Reyna, V. F. (1993). Memory independence and memory
interference in cognitive development. Psychological Review, 100, 42–
67. doi:10.1037/0033-295X.100.1.42

Brainerd, C. J., & Reyna, V. F. (2004). Fuzzy-trace theory and memory
development. Developmental Review, 24, 396 – 439. doi:10.1016/
j.dr.2004.08.005

Cary, M., & Reder, L. M. (2003). A dual-process account of the list-length
and strength-based mirror effects in recognition. Journal of Memory and
Language, 49, 231–248. doi:10.1016/S0749-596X(03)00061-5

Clark, S. E., & Gronlund, S. D. (1996). Global matching models of
recognition memory: How the models match the data. Psychonomic
Bulletin & Review, 3, 37–60.

Criss, A. H. (2009). The distribution of subjective memory strength: List
strength and response bias. Cognitive Psychology, 59, 297–319. doi:
10.1016/j.cogpsych.2009.07.003

Criss, A. H., & McClelland, J. L. (2006). Differentiating the differentiation
models: A comparison of the retrieving effectively from memory model
(REM) and the subjective likelihood model (SLiM). Journal of Memory
and Language, 55, 447–460. doi:10.1016/j.jml.2006.06.003

Dennis, S., & Chapman, A. (2009). The inverse list length effect: Impli-
cations for separate storage models of recognition memory. In N. Taat-
gen & H. van Rijn (Eds.), Proceedings of the Thirty-First Conference of
the Cognitive Science Society, 2385–2390.

Dennis, S., & Humphreys, M. S. (2001). A context noise model of episodic
word recognition. Psychological Review, 108, 452–478. doi:10.1037/
0033-295X.108.2.452

Dennis, S., Lee, M. D., & Kinnell, A. (2008). Bayesian analysis of
recognition memory: The case of the list length effect. Journal of
Memory and Language, 59, 361–376. doi:10.1016/j.jml.2008.06.007

Diana, R. A., Reder, L. M., Arndt, J., & Park, H. (2006). Models of

recognition: A review of arguments in favor of a dual-process account.
Psychonomic Bulletin & Review, 13, 1–21.

Estes, W. K. (1994). Classification and cognition. Oxford, England: Ox-
ford University Press. doi:10.1093/acprof:oso/9780195073355.001.0001

Evans, J. St. B. T. (2008). Dual-processing accounts of reasoning, judg-
ment and social cognition. Annual Review of Psychology, 59, 255–278.
doi:10.1146/annurev.psych.59.103006.093629

Feeney, A. (2007). How many processes underlie category-based induc-
tion? Effects of conclusion specificity and cognitive ability. Psycho-
nomic Bulletin & Review, 14, 884–889.

Fisher, R. (1951). The design of experiments. New York, NY: Oxford
University Press.

Flexser, A. J., & Bower, G. H. (1974). How frequency affects recency
judgments: A model for recency discrimination. Journal of Experimental
Psychology, 103, 706–716. doi:10.1037/h0037194

Gentner, D., Rattermann, M., & Forbus, K. D. (1993). The roles of
similarity in transfer: Separating retrievability from inferential sound-
ness. Cognitive Psychology, 25, 524–575. doi:10.1006/cogp.1993.1013

Glanzer, M., Kim, K., Hilford, A., & Adams, J. K. (1999). Slope of the
receiver-operating characteristic in recognition memory. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition, 25, 500–
513. doi:10.1037/0278-7393.25.2.500

Goldstone, R. L. (1994). The role of similarity in categorization: Providing a
groundwork. Cognition, 52, 125–157. doi:10.1016/0010-0277(94)90065-5

Hastie, R., & Park, B. (1986). The relationship between memory and
judgment depends on whether the judgment task is memory-based or
on-line. Psychological Review, 93, 258 –268. doi:10.1037/0033-
295X.93.3.258

Hayes, B. K., Foster, K., & Gadd, N. (2003). Prior knowledge and sub-
typing effects in children’s category learning. Cognition, 88, 171–199.
doi:10.1016/S0010-0277(03)00021-0

Hayes, B. K., & Heit, E. (2004). Why learning and development can lead
to poorer recognition memory. Trends in Cognitive Sciences, 8, 337–
339. doi:10.1016/j.tics.2004.05.001

Hayes, B. K., Heit, E., & Swendsen, H. (2010). Inductive reasoning. Wiley
Interdisciplinary Reviews: Cognitive Science, 1, 278–292.

Hayes, B. K., McKinnon, R., & Sweller, N. (2008). The development of
category-based induction: Reexamining conclusions from the induction
then recognition paradigm. Developmental Psychology, 44, 1430–1441.
doi:10.1037/0012-1649.44.5.1430

Heit, E. (1992). Categorization using chains of examples. Cognitive Psy-
chology, 24, 341–380. doi:10.1016/0010-0285(92)90011-P

Heit, E. (1994). Models of the effects of prior knowledge on category
learning. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 20, 1264–1282. doi:10.1037/0278-7393.20.6.1264

Heit, E. (1998a). A Bayesian analysis of some forms of inductive reason-
ing. In M. Oaksford & N. Chater (Eds.), Rational Models of Cognition
(pp. 248–274). Oxford, England: Oxford University Press.

Heit, E. (1998b). Influences of prior knowledge on selective weighting of
category members. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 24, 712–731. doi:10.1037/0278-7393.24.3.712

Heit, E. (2000). Properties of inductive reasoning. Psychonomic Bulletin &
Review, 7, 569–592.

Heit, E. (2001). Putting together prior knowledge, verbal arguments, and
observations in category learning. Memory & Cognition, 29, 828–837.

Heit, E. (2007). What is induction and why study it? In A. Feeney & E.
Heit (Eds.), Inductive reasoning (pp. 1–24). Cambridge, England: Cam-
bridge University Press.

Heit, E., Brockdorff, N., & Lamberts, K. (2003). Adaptive changes of
response criterion in recognition memory. Psychonomic Bulletin &
Review, 10, 718–723.

Heit, E., & Hayes, B. K. (2005). Relations between categorization, induc-
tion, recognition and similarity. Journal of Experimental Psychology:
General, 134, 596–605. doi:10.1037/0096-3445.134.4.596

99PREDICTING REASONING FROM MEMORY



Heit, E., & Hayes, B. K. (2008). Predicting reasoning from visual memory.
In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the
30th Annual Conference of the Cognitive Science Society (pp. 1831–
1836). Austin, TX: Cognitive Science Society.

Heit, E., & Rotello, C. M. (2010). Relations between inductive reasoning
and deductive reasoning. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 36, 805–812. doi:10.1037/a0018784

Heit, E., & Rubinstein, J. (1994). Similarity and property effects in induc-
tive reasoning. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 20, 411–422. doi:10.1037/0278-7393.20.2.411

Hintzman, D. L. (1988). Judgments of frequency and recognition memory
in a multiple-trace memory model. Psychological Review, 95, 528–551.
doi:10.1037/0033-295X.95.4.528

Hintzman, D. L. (2001). Judgments of frequency and recency: How they
relate to reports of subjective awareness. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 27, 1347–1358. doi:
10.1037/0278-7393.27.6.1347

Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in
analogical transfer. Memory & Cognition, 15, 332–340.

Jones, C. M., & Heit, E. (1993). An evaluation of the total similarity
principle: Effects of similarity on frequency judgments. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 19, 799–
812. doi:10.1037/0278-7393.19.4.799

Kemp, C., & Tenenbaum, J. B. (2009). Structured statistical models of
inductive reasoning. Psychological Review, 116, 20–58. doi:10.1037/
a0014282

Lamberts, K. (1994). Flexible tuning of similarity in exemplar-based
categorization. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 20, 1003–1021. doi:10.1037/0278-7393.20.5.1003

Lamberts, K. (2002). Feature sampling in categorization and recognition of
objects. Quarterly Journal of Experimental Psychology: Section A.
Human Experimental Psychology, 55, 141–154. doi:10.1080/
02724980143000208

Lee, H. S., & Holyoak, K. J. (2008). Causal models in analogical inference.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 34, 1111–1122. doi:10.1037/a0012581

Lichtenstein, S., Slovic, P., Fischoff, B., Layman, M., & Combs, B. (1978).
Judged frequency of lethal events. Journal of Experimental Psychology:
Human Learning and Memory, 4, 551–578. doi:10.1037/0278-
7393.4.6.551

Macmillan, N. A., & Kaplan, H. L. (1985). Detection theory analysis of
group data: Estimating sensitivity from average hit and false alarm rates.
Psychological Bulletin, 98, 185–199. doi:10.1037/0033-2909.98.1.185

Medin, D. L., Coley, J. D., Storms, G., & Hayes, B. K. (2003). A relevance
theory of induction. Psychonomic Bulletin & Review, 10, 517–532.

Metcalfe, J., & Fisher, R. M. (1986). The relation between recognition
memory and classification learning. Memory & Cognition, 14, 164–173.

Murdock, B. B., & Kahana, M. J. (1993). Analysis of the list-strength
effect. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 19, 689–697. doi:10.1037/0278-7393.19.3.689

Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual
coherence. Psychological Review, 92, 289 –316. doi:10.1037/0033-
295X.92.3.289

Nosofsky, R. M. (1986). Attention, similarity, and the identification-
categorization relationship. Journal of Experimental Psychology: Gen-
eral, 115, 39–57. doi:10.1037/0096-3445.115.1.39

Nosofsky, R. M. (1988a). Exemplar-based accounts of relations between
classification recognition, and typicality. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 14, 700–708. doi:10.1037/
0278-7393.14.4.700

Nosofsky, R. M. (1988b). Similarity, frequency, and category representa-
tions. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 14, 54–65. doi:10.1037/0278-7393.14.1.54

Nosofsky, R. M. (1991). Tests of an exemplar model for relating perceptual

classification and recognition memory. Journal of Experimental Psy-
chology: Human Perception and Performance, 17, 3–27. doi:10.1037/
0096-1523.17.1.3

Nosofsky, R. M., & Zaki, S. R. (1998). Dissociations between categoriza-
tion and recognition in amnesic and normal individuals: An exemplar-
based interpretation. Psychological Science, 9, 247–255. doi:10.1111/
1467-9280.00051

Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., & Shafir, E. (1990).
Category-based induction. Psychological Review, 97, 185–200. doi:
10.1037/0033-295X.97.2.185

Ratcliff, R. (1990). Connectionist models of recognition memory: Con-
straints imposed by learning and forgetting functions. Psychological
Review, 97, 285–308. doi:10.1037/0033-295X.97.2.285

Ratcliff, R., Clark, S. E., & Shiffrin, R. M. (1990). The list-strength effect:
I. Data and discussion. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 16, 163–178. doi:10.1037/0278-7393.16.2.163

Rehder, B., & Burnett, R. (2005). Feature inference and the causal structure
of categories, Cognitive Psychology, 50, 264 –314. doi:10.1016/
j.cogpsych.2004.09.002

Ross, B. H. (1987). This is like that: The use of earlier problems and the
separation of similarity effects. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 13, 629–639. doi:10.1037/0278-
7393.13.4.629

Ross, B. H., & Murphy, G. L. (1999). Food for thought: Cross-
classification and category organization in a complex real-world domain.
Cognitive Psychology, 38, 495–553. doi:10.1006/cogp.1998.0712

Rotello, C. M., & Heit, E. (1999). Two-process models of recognition
memory: Evidence for Recall-to-reject? Journal of Memory and Lan-
guage, 40, 432–453. doi:10.1006/jmla.1998.2623

Rotello, C. M., & Heit, E. (2000). Associative recognition: A case of
recall-to-reject processing. Memory & Cognition, 28, 907–922.

Rotello, C. M., & Heit, E. (2009). Modeling the effects of argument length
and validity on inductive and deductive reasoning. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 35, 1317–1330.
doi:10.1037/a0016648

Rotello, C. M., Macmillan, N. A., & Reeder, J. A. (2004). Sum-difference
theory of remembering and knowing: A two-dimensional signal detec-
tion model. Psychological Review, 111, 588–616. doi:10.1037/0033-
295X.111.3.588

Shafto, P., & Coley, J. D. (2003). Development of categorization and
reasoning in the natural world: Novices to experts, naive similarity to
ecological knowledge. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 29, 641–649. doi:10.1037/0278-7393.29.4.641

Shepard, R. N. (1987). Toward a universal law of generalization for
psychological science. Science, 237, 1317–1323. doi:10.1126/
science.3629243

Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory:
REM: Retrieving effectively from memory. Psychonomic Bulletin &
Review, 4, 145–166.

Shin, H. J., & Nosofsky, R. M. (1992). Similarity-scaling studies of
dot-pattern classification and recognition. Journal of Experimental Psy-
chology: General, 121, 278–304. doi:10.1037/0096-3445.121.3.278

Sloman, S. A. (1993). Feature-based induction. Cognitive Psychology, 25,
231–280. doi:10.1006/cogp.1993.1006

Sloman, S. A., & Lagnado, D. A. (2005). The problem of induction. In K. J.
Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking
and reasoning (pp. 95–116). New York, NY: Cambridge University
Press.

Sloutsky, V. M., & Fisher, A. V. (2004). Induction and categorization in
young children: A similarity-based model. Journal of Experimental
Psychology: General, 133, 166–188. doi:10.1037/0096-3445.133.2.166

Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, similarity, and
Bayesian inference. Behavioral and Brain Sciences, 24, 629–640. doi:
10.1017/S0140525X01000061

100 HEIT AND HAYES



Tversky, A. (1977). Features of similarity. Psychological Review, 84,
327–352. doi:10.1037/0033-295X.84.4.327

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging
frequency and probability. Cognitive Psychology, 5, 207–232. doi:
10.1016/0010-0285(73)90033-9

Underwood, B. J. (1978). Recognition memory as a function of the length
of study list. Bulletin of the Psychonomic Society, 12, 89–91.

Wilburn, C., & Feeney, A. (2008). Do development and learning really
decrease memory? On similarity and category-based induction in adults and
children. Cognition, 106, 1451–1464. doi:10.1016/j.cognition.2007.04.018

Wixted, J. T. (2007). Dual-process theory and signal-detection theory of
recognition memory. Psychological Review, 114, 152–176. doi:10.1037/
0033-295X.114.1.152

Xu, F., & Tenenbaum, J. B. (2007). Word learning as Bayesian inference.
Psychological Review, 114, 245–272. doi:10.1037/0033-295X.114.2.245

Yamauchi, T., & Markman, A. B. (1998). Category learning by inference
and classification. Journal of Memory and Language, 39, 124–148.
doi:10.1006/jmla.1998.2566

Yonelinas, A. P. (2002). The nature of recollection and familiarity: A
review of 30 years of research. Journal of Memory and Language, 46,
441–517. doi:10.1006/jmla.2002.2864

Received December 2, 2009
Revision received August 19, 2010

Accepted August 20, 2010 �

101PREDICTING REASONING FROM MEMORY


