David A. Strubbe
and the Octopus development team

MIT IAP, Jan 2016

@-%wn(r,w = V20, + Vg [0] (7, Dpn(r, 1)
P(T,t) = Z‘Pn QOn(’f')

@ Solve the equations numerically.

@-%wn(r,w = V20, + Vg [0] (7, Dpn(r, 1)
P(T,t) = Z‘Pn QOn(’f')

@ Solve the equations numerically.
@ Represent functions and other objects.

ioon(rit) = —Vpn+ Ve [o)(r, Dpn(r, 1)
P(T,t) = Z‘Pn QOn(’f')

@ Solve the equations numerically.
@ Represent functions and other objects.
@ Calculate derivatives and integrals.

@ The atomic potential is very strong
and “hard” (small spacing or high
plane-wave cutoff required).

@ The atomic potential is very strong
and “hard” (small spacing or high
plane-wave cutoff required).

@ Core electrons are almost independent
of the environment.

@ The atomic potential is very strong
and “hard” (small spacing or high
plane-wave cutoff required).

@ Core electrons are almost independent
of the environment.

@ Replace the potential and core electrons
by a pseudo-potential.

\Fpscudo

@ The atomic potential is very strong S
and “hard” (small spacing or high RNA
plane-wave cutoff required). %

@ Core electrons are almost independent

v

\\

of the environment. vz,
@ Replace the potential and core electrons ,"
by a pseudo-potential. !

V = Vioc + Z |lm> (‘/l - ‘/IOC) (lm|

Im

@ Partial differential equation with infinite degrees of freedom.

o Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.

o Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.
@ Functions are represented by values on a set of points.

o Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.

@ Functions are represented by values on a set of points.
@ Point distribution:

o Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.

@ Functions are represented by values on a set of points.
@ Point distribution:
e Uniformly spaced grid.

o Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.
@ Functions are represented by values on a set of points.

@ Point distribution:

o Uniformly spaced grid.
e Distance between points is constant: Spacing.

o Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.
@ Functions are represented by values on a set of points.

@ Point distribution:

o Uniformly spaced grid.
o Distance between points is constant: Spacing.
e Non-uniform grids also possible.

Partial differential equation with infinite degrees of freedom.
Reduce to a finite number.
Functions are represented by values on a set of points.

Point distribution:

o Uniformly spaced grid.
o Distance between points is constant: Spacing.
o Non-uniform grids also possible.

Finite region of the space: Box

@ For finite systems, functions go to zero.

@ For finite systems, functions go to zero.
@ Force functions to go to zero on the border of the box.

@ For finite systems, functions go to zero.
@ Force functions to go to zero on the border of the box.
@ The box has to be large enough to contain the functions.

@ For finite systems, functions go to zero.

@ Force functions to go to zero on the border of the box.

@ The box has to be large enough to contain the functions.
@ Other BCs are possible: periodic, zero derivative, open.

@ Optimize the shape of the box to minimize the number of points
needed.

@ Optimize the shape of the box to minimize the number of points
needed.
@ Available box shapes:

@ Optimize the shape of the box to minimize the number of points
needed.
@ Available box shapes:
o Minimum box: union of spheres around each atom.

@ Optimize the shape of the box to minimize the number of points
needed.
@ Available box shapes:

o Minimum box: union of spheres around each atom.
e Sphere.

@ Optimize the shape of the box to minimize the number of points
needed.
@ Available box shapes:

o Minimum box: union of spheres around each atom.
o Sphere.
@ Cylinder.

@ Optimize the shape of the box to minimize the number of points
needed.
@ Available box shapes:

Minimum box: union of spheres around each atom.
Sphere.

Cylinder.

Parallelepiped.

@ Optimize the shape of the box to minimize the number of points
needed.

@ Available box shapes:

Minimum box: union of spheres around each atom.

Sphere.

Cylinder.

Parallelepiped.

Arbitrary (e.g. 2D image!)

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,

sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,

sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,

sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.

@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,

sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.

@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).

@ Orthogonal “basis set”.

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).
@ Orthogonal “basis set”.

@ Unbiased, independent of atomic positions (no Pulay forces).

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:

o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).

@ Orthogonal “basis set”.
@ Unbiased, independent of atomic positions (no Pulay forces).
@ Problems:

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:

o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).

@ Orthogonal “basis set”.
@ Unbiased, independent of atomic positions (no Pulay forces).

@ Problems:
e Breaking of translational invariance: egg-box effect.

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).
@ Orthogonal “basis set”.
@ Unbiased, independent of atomic positions (no Pulay forces).
@ Problems:

o Breaking of translational invariance: egg-box effect.
e Breaking of rotational invariance.

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).
@ Orthogonal “basis set”.
@ Unbiased, independent of atomic positions (no Pulay forces).
@ Problems:

o Breaking of translational invariance: egg-box effect.
o Breaking of rotational invariance.
o (Decreasing spacing helps both.)

@ Derivative at a point: sum over neighboring points.

@ Derivative at a point: sum over neighboring points.
@ The coefficients ¢;; depend on the mesh and number of points
used: the stencil.

@ Derivative at a point: sum over neighboring points.

@ The coefficients c;; depend on the mesh and number of points
used: the stencil.

@ General form for Laplacian:

V2 f(nh, nyh) = 3" 5L flneh + b, nyh + jh)
(]

@ Derivative at a point: sum over neighboring points.

@ The coefficients c;; depend on the mesh and number of points
used: the stencil.

@ General form for Laplacian:

n n
V2 f(nah, ngh) =33 % F(ngh + ih, nyh + jh)
v g

@ Compare definition of derivative:

F(20) = lim f(xo + h) — f(z0)

h—0 Ax

@ Derivative at a point: sum over neighboring points.

@ The coefficients c;; depend on the mesh and number of points
used: the stencil.

@ General form for Laplacian:

n n
V2 f(nah, ngh) =33 % F(ngh + ih, nyh + jh)
v g

@ Compare definition of derivative:

@ More points — more precision.

@ Derivative at a point: sum over neighboring points.

@ The coefficients c;; depend on the mesh and number of points
used: the stencil.

@ General form for Laplacian:

n n
V2 f(nah, ngh) =33 % F(ngh + ih, nyh + jh)
v g

@ Compare definition of derivative:

@ More points — more precision.
@ Semi-local operation.

Symmetric third-order in 2D.

)
(ih, j
hyf

dy =

) dx

/f(w,y

ij

[@y dudy =123 fin st
ij

@ Sum over grid points.

@ What we want to solve:

@ What we want to solve:

_v290n + Veg [p] () on = €non

@ What we want to solve:

_v290n + Veg [p] () on = €non

@ We use a self-consistency scheme to treat non-linearity.

@ What we want to solve:

_v290n + Veg [p] () on = €non

@ We use a self-consistency scheme to treat non-linearity.
@ Solve for eigenstates at fixed Vg, then update p and V.

@ For the Laplacian (kinetic energy) we use finite differences.

o For the Laplacian (kinetic energy) we use finite differences.
@ The local part of the potential can be applied directly.

o For the Laplacian (kinetic energy) we use finite differences.
@ The local part of the potential can be applied directly.

@ The non-local potential is applied in a small spherical grid around
the atoms.

o For the Laplacian (kinetic energy) we use finite differences.
@ The local part of the potential can be applied directly.

@ The non-local potential is applied in a small spherical grid around
the atoms.

@ The Hamiltonian becomes a finite-size matrix.

@ Find the eigenvectors and eigenvalues of a matrix.

@ Find the eigenvectors and eigenvalues of a matrix.
@ Very large matrix with lots of zero components (Sparse).

@ Find the eigenvectors and eigenvalues of a matrix.
@ Very large matrix with lots of zero components (Sparse).

@ Use iterative solvers where only the action of the matrix is
required (various options available in the code).

@ We minimize (using conjugate gradient or other method):

@ We minimize (using conjugate gradient or other method):

@ We minimize (using conjugate gradient or other method):

(Y| H[p)

W) = o)

@ Works for the first state.

@ We minimize (using conjugate gradient or other method):

(Y| H[p)
(Y1)

e(y) =

@ Works for the first state.

@ For higher-energy states, it is necessary to orthogonalize against
the lower ones.

@ Given an initial condition, solve the:

@ Given an initial condition, solve the:

0
l% =~V + Veg [0] (7, t) ok

@ Given an initial condition, solve the:

0
Z% =~V + Veg [0] (7, t) ok

@ Various numerical schemes of doing the time-propagation.

@ Given an initial condition, solve the:

0
i = —V20, + Vit] (.)

@ Various numerical schemes of doing the time-propagation.
@ Many properties can be obtained.

@ Given an initial condition, solve the:

0
i = ~Ver+ Ve [o] (r. 1)k

@ Various numerical schemes of doing the time-propagation.
@ Many properties can be obtained.
@ Response to time-dependent fields: lasers.

@ Start from the ground state, with a ‘kick.

o Start from the ground state, with a ‘kick.

V(r,t)=kd(t) = e

o Start from the ground state, with a ‘kick.

V(r,t)=kd(t) = e

@ Time-propagate and get the dipole d(t) as a function of time.

o Start from the ground state, with a ‘kick.

V(r,t)=kd(t) = e

@ Time-propagate and get the dipole d(t) as a function of time.

o Start from the ground state, with a ‘kick.

= P et |

@ Time-propagate and get the dipole d(t) as a function of time.

) = —% dt e, (1)
Absorption cross section
o) = S a(w)

@ Fortran 95 and C (+ some Perl utilities).

"http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Fortran 95 and C (+ some Perl utilities).
@ Focused on finite systems (periodic systems possible t00).

"http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Fortran 95 and C (+ some Perl utilities).
@ Focused on finite systems (periodic systems possible t00).
@ Norm-conserving pseudopotentials.

"http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Fortran 95 and C (+ some Perl utilities).

@ Focused on finite systems (periodic systems possible t00).
@ Norm-conserving pseudopotentials.

@ Real-space grid representation.

"http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Fortran 95 and C (+ some Perl utilities).

@ Focused on finite systems (periodic systems possible t00).
@ Norm-conserving pseudopotentials.

@ Real-space grid representation.

@ Current version is 5.0.1

"http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

Fortran 95 and C (+ some Perl utilities).

Focused on finite systems (periodic systems possible t00).
Norm-conserving pseudopotentials.

Real-space grid representation.

Current version is 5.0.1

DFT with many functionals (from 1ibxc),
Hartree-Fock, Hartree

"http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

References

@ Xavier Andrade, David A. Strubbe, Umberto De Giovannini, Ask
Hjorth Larsen, Micael J. T. Oliveira, Joseba Alberdi-Rodriguez,
Alejandro Varas, Iris Theophilou, Nicole Helbig, Matthieu
Verstraete, Lorenzo Stella, Fernando Nogueira, Alan
Aspuru-Guzik, Alberto Castro, Miguel A. L. Marques, and Angel
Rubio, “Real-space grids and the Octopus code as tools for the
development of new simulation approaches for electronic
systems,” Phys. Chem. Chem. Phys. 17, 31371-31396 (2015).

@ A. Castro, H. Appel, Micael Oliveira, C.A. Rozzi, X. Andrade, F.
Lorenzen, M.A.L. Marques, E.K.U. Gross, and A. Rubio, “octopus:
a tool for the application of time-dependent density functional
theory,” Phys. Stat. Sol. B 243, 2465-2488 (2006).

@ M.A.L. Marques, Alberto Castro, George F. Bertsch, and Angel
Rubio, “octopus: a first-principles tool for excited electron-ion
dynamics,” Comput. Phys. Commun. 151, 60-78 (2003).

D. A. Strubbe Introduction to Octopus MIT IAP, Jan 2016 19/24

Pulpo a feira (pulpo a la gallega)

The origin of the name Octopus. (Recipe available in code.)

D. A. Strubbe Introduction to Octopus MIT IAP, Jan 2016 20/24

@ Ground-state DFT.

2http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.
@ Time-propagation.

2http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.
@ Time-propagation.
@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).

2http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).
@ Casida linear response.

2http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).
@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

2http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).
@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

@ Optimal control theory.

2http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).
@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

@ Optimal control theory.
@ Photoemission spectroscopy.

2http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).
@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

@ Optimal control theory.
@ Photoemission spectroscopy.
@ (Other experimental features.)

2http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Parallelization in domains:

o Parallelization in domains:
e Each processor handles points in a region of space.

o Parallelization in domains:
o Each processor handles points in a region of space.
e Points in the boundaries of each region must be copied to other
nodes.

o Parallelization in domains:
o Each processor handles points in a region of space.
o Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.

@ Parallelization in domains:
o Each processor handles points in a region of space.
o Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

@ Parallelization in domains:
o Each processor handles points in a region of space.
o Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

@ Parallelization in states:

@ Parallelization in domains:
o Each processor handles points in a region of space.
o Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

o Parallelization in states:
e Each processor handles a group of states.

o Parallelization in domains:
o Each processor handles points in a region of space.
o Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

o Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.

o Parallelization in domains:
o Each processor handles points in a region of space.
o Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

o Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
o Also applicable for the ground state.

o Parallelization in domains:
o Each processor handles points in a region of space.
o Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

o Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
o Also applicable for the ground state.

@ Parallelization in k-points/spin.

o Parallelization in domains:
o Each processor handles points in a region of space.
o Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

o Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
o Also applicable for the ground state.

@ Parallelization in k-points/spin.
@ Parallelization in electron-hole pairs (for Casida linear response).

o Parallelization in domains:
o Each processor handles points in a region of space.
o Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.
o Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
o Also applicable for the ground state.

@ Parallelization in k-points/spin.
@ Parallelization in electron-hole pairs (for Casida linear response).
@ Combined parallelization.

o Parallelization in domains:

o Each processor handles points in a region of space.

o Points in the boundaries of each region must be copied to other
nodes.

o Integrals are performed locally and summed over all domains.

o Efficient and scalable scheme.

o Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
o Also applicable for the ground state.

@ Parallelization in k-points/spin.

@ Parallelization in electron-hole pairs (for Casida linear response).
@ Combined parallelization.

@ Scales to thousands of processors.

@ Octopus is free open-source software (GNU Public License v2).

@ Octopus is free open-source software (GNU Public License v2).
o Freeto use it

@ Octopus is free open-source software (GNU Public License v2).

o Free to use it.
e Study the code and modify it.

@ Octopus is free open-source software (GNU Public License v2).
o Freetouse it
o Study the code and modify it.
o Contribute back your changes.

@ Octopus is free open-source software (GNU Public License v2).

o Freetouse it
o Study the code and modify it.
o Contribute back your changes.

@ New developers are welcome.

