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@ Solve the equations numerically.
@ Represent functions and other objects.
@ Calculate derivatives and integrals.
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Partial differential equation with infinite degrees of freedom.
Reduce to a finite number.
Functions are represented by values on a set of points.

Point distribution:

o Uniformly spaced grid.
o Distance between points is constant: Spacing.
o Non-uniform grids also possible.

Finite region of the space: Box
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@ For finite systems, functions go to zero.

@ Force functions to go to zero on the border of the box.

@ The box has to be large enough to contain the functions.
@ Other BCs are possible: periodic, zero derivative, open.
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@ Optimize the shape of the box to minimize the number of points
needed.

@ Available box shapes:

Minimum box: union of spheres around each atom.

Sphere.

Cylinder.

Parallelepiped.

Arbitrary (e.g. 2D image!)
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@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).
@ Orthogonal “basis set”.
@ Unbiased, independent of atomic positions (no Pulay forces).
@ Problems:

o Breaking of translational invariance: egg-box effect.
o Breaking of rotational invariance.
o (Decreasing spacing helps both.)
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n n
V2 f(nah, ngh) =33 % F(ngh + ih, nyh + jh)
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@ Compare definition of derivative:

F(20) = lim f(xo + h) — f(z0)
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@ Derivative at a point: sum over neighboring points.

@ The coefficients c;; depend on the mesh and number of points
used: the stencil.

@ General form for Laplacian:

n n
V2 f(nah, ngh) =33 % F(ngh + ih, nyh + jh)
v g

@ Compare definition of derivative:

@ More points — more precision.
@ Semi-local operation.



Symmetric third-order in 2D.
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@ Sum over grid points.
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@ What we want to solve:

_v290n + Veg [p] () on = €non

@ We use a self-consistency scheme to treat non-linearity.
@ Solve for eigenstates at fixed Vg, then update p and V.
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@ The non-local potential is applied in a small spherical grid around
the atoms.

@ The Hamiltonian becomes a finite-size matrix.
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@ Find the eigenvectors and eigenvalues of a matrix.
@ Very large matrix with lots of zero components (Sparse).

@ Use iterative solvers where only the action of the matrix is
required (various options available in the code).
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@ We minimize (using conjugate gradient or other method):

(Y| H[p)
(Y1)

e(y) =

@ Works for the first state.

@ For higher-energy states, it is necessary to orthogonalize against
the lower ones.
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@ Given an initial condition, solve the:

0
i = ~Ver+ Ve [o] (r. 1)k

@ Various numerical schemes of doing the time-propagation.
@ Many properties can be obtained.
@ Response to time-dependent fields: lasers.
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o Start from the ground state, with a ‘kick.

= P et |

@ Time-propagate and get the dipole d(t) as a function of time.

) = —% dt e, (1)
Absorption cross section
o) = S a(w)
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Fortran 95 and C (+ some Perl utilities).

Focused on finite systems (periodic systems possible t00).
Norm-conserving pseudopotentials.

Real-space grid representation.

Current version is 5.0.1

DFT with many functionals (from 1ibxc),
Hartree-Fock, Hartree

"http://www.tddft.org/programs/octopus
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Pulpo a feira (pulpo a la gallega)

The origin of the name Octopus. (Recipe available in code.)

D. A. Strubbe Introduction to Octopus MIT IAP, Jan 2016 20/24



@ Ground-state DFT.

2http://www.tddft.org/programs/octopus


http://www.tddft.org/programs/octopus

@ Ground-state DFT.
@ Time-propagation.

2http://www.tddft.org/programs/octopus


http://www.tddft.org/programs/octopus

@ Ground-state DFT.
@ Time-propagation.
@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).

2http://www.tddft.org/programs/octopus


http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).
@ Casida linear response.

2http://www.tddft.org/programs/octopus


http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).
@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

2http://www.tddft.org/programs/octopus


http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).
@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

@ Optimal control theory.

2http://www.tddft.org/programs/octopus


http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).
@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

@ Optimal control theory.
@ Photoemission spectroscopy.

2http://www.tddft.org/programs/octopus


http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer).
@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

@ Optimal control theory.
@ Photoemission spectroscopy.
@ (Other experimental features.)
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o Parallelization in domains:

o Each processor handles points in a region of space.

o Points in the boundaries of each region must be copied to other
nodes.

o Integrals are performed locally and summed over all domains.

o Efficient and scalable scheme.

o Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
o Also applicable for the ground state.

@ Parallelization in k-points/spin.

@ Parallelization in electron-hole pairs (for Casida linear response).
@ Combined parallelization.

@ Scales to thousands of processors.
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@ Octopus is free open-source software (GNU Public License v2).

o Freetouse it
o Study the code and modify it.
o Contribute back your changes.

@ New developers are welcome.



