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Vortex stretching is a common feature of many complex flows, including turbulence. Experiments
and simulations of isolated vortex knots demonstrate that this behavior can also be seen in relatively
simple systems, and appears to be dependent on vortex topology. Here we simulate the advection
of material lines in the frozen flow fields of vortices on the surface of a torus. We find that knotted
configurations lead to exponential stretching behavior which is qualitatively different than that
observed by collections of unknots. This stretching can be explained by the formation of bights,
sharp bends in the material lines which can be used to predict the stretching rate. This behavior is
confirmed by computing the finite time Lyapunov exponents of the flow fields, which demonstrate
the exponential stretching is mediated by bight forming regions between the vortex lines. This work
both establishes a clear connection between topology and stretching behavior, as well as providing
an intuitive mechanism for exponential growth of material lines in knotted flows.

I. INTRODUCTION:

There are many examples of flows with concentrated
vortex lines, including tornadoes [1], smoke rings [2],
flows inside the heart [3], and turbulence [4, 5]. Indeed,
any incompressible flow can be regarded as a collection
of vortex lines by the Helmoltz Theorem, and so under-
standing their behavior provides a complete description
of such flows. As a result, there has been considerable
theoretical, numerical, and experimental research focused
on understanding the behavior of concentrated vortex fil-
aments (e.g. [6–14]).

While a simple circular vortex ring is known to be quite
stable [15, 16] – even if distorted [16, 17] – knotted and
tangled vortices have been observed to be highly unstable
in simulations [18–22] and experiments [23, 24]. In partic-
ular, tangled vortex lines are observed to rapidly stretch,
leading to vortex reconnections which ultimately untie
and/or dissipate the flow [23]. This behavior is quite
reminiscent of the features of turbulent flows [4, 25–27],
and has both enstrophy production (vortex stretching)
and transport of energy to small scales, where it is dissi-
pated (vortex reconnections).

The connection between vortex stretching and recon-
nections can be understood in terms of energy conser-
vation: in order to stretch vortex lines without increas-
ing energy, it is necessary to create regions of closely
spaced counter-rotating vortices [18, 28]. As the vor-
tices continue to stretch, these counter-rotating vortices
must get closer together, ultimately resulting in recon-
nections which continue until non-stretching vortex state
is reached [18, 23]. Moreover, vortex stretching (i.e. en-
strophy production) is a key feature of turbulence; indeed
it can be regarded as the key feature which separates 2D
from 3D turbulence [29]. As a result, vortex stretching
is intimately connected to the stability of flows, motivat-
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ing research in to how and why collections of vortex lines
self-stretch.
Previous work has modeled this stretching using either

vortex filament models [30, 31] or direct numerical sim-
ulations of Newtonian or super-fluids using the Navier-
Stokes [8] or Gross-Pitaevskii equations [32]. In either
case, the non-linearity of fluid flows makes these mod-
els difficult to accurately simulate, and complicates the
interpretation of the results.
Here we take a different approach: ‘freezing’ vortex

generated flow fields, and investigating how material lines
stretch when advected in this flow. Given that vortex
lines themselves are transported by the flow [33], it fol-
lows that a flow field which stretches material lines will
also stretch vortices. In this manuscript, we investigate
if this stretching can be understood in terms of the prop-
erties of the flow field at a single instant in time, rather
than as a consequence of the non-linear evolution of the
flow. Using this approach, we find that simple unlinked
and unknotted vortices have a flow field which produces
linear stretching, while the flow field of knotted vortices
produces regions of exponential stretching. Moreover,
this stretching can be attributed to the generation of
‘bights’ in the material lines (Fig. 1), and that expo-
nential stretching is only possible if these bights are con-
tinuously produced. This result offers a potential con-
nection to existing results in two-dimensional topological
mixing [34], and appears to explain why knotted vortices
are themselves unstable. Moreover, the concept of bights
provides a simple mechanism for understanding how lines
in vortex dominated flow fields should stretch over time,
with potential applications to a variety of fluid flow prob-
lems.

II. STRETCHING FROM A LINE VORTEX

Before discussing the stretching produced by the flow
fields of complex vortex geometries, it is useful to con-
sider the case of a straight line vortex. The flow field of
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FIG. 1: (a) The time evolution of a circular material
loop (radius a = 1/3, and initially centered at ρ0 = 1)
advected in the flow field of an infinite line vortex with
circulation Γ = 2π, oriented along ẑ. As the initially

circular loop evolves, it develops compact ‘bights’ at the
leading and trailing edges. (b) A bight in a physical

piece of rope, as used in knot tying. (c) The stretching
rate of the material line, dL/dt. This rate quickly

settles to a constant value, which can be predicted using
only the velocity field calculated at the locations of the

two ‘bights’ which form as the loop is stretched.

an infinite vortex along with the z-axis is given by:

u =
Γ

2πρ
ϕ̂, (1)

where Γ is the circulation, ρ and ϕ are cylindrical coor-

dinates defined in the usual way, and ϕ̂ is a unit vector
in the azimuthal direction. Here, and in the rest of this
manuscript, we will use dimensionless spatial and time
coordinates, and a dimensionless circulation of Γ = 2π

(i.e. for an infinite straight line we obtain: u = ϕ̂/ρ).
The evolution of a small circular material line in this

flow field is shown in Fig. 1. How can we understand the
stretching of this line? The time derivative of the total
length of the material line, L, is given by:

L̇ =

∮
∇T̂u︸ ︷︷ ︸
∂u[r(s)]

∂s

·T̂ ds (2)

= −
∮

u · κN̂ ds, (3)

where r(s) is the material line displacement as a func-

tion of arc length coordinate, s. T̂ , N̂ , and κ are the

Frenet-Serret tangent vector, normal vector, and curva-
ture, respectively, which obey the relationships T̂ = ∂r

∂s

and κN̂ = ∂T̂
∂s . Eqn. 3 is obtained using integration by

parts, and would have an additional term for an open
material line. (Note that integrand of eqn. 3 does not
give the local stretching rate; see Appendix A 1.)

Any section of material line advected in the flow of an
infinite line vortex will tend to align or anti-align with
u as t → 0 (e.g. Fig. 1; see also supplemental materials

for a proof). When this happens, u · N̂ → 0, and from
eqn. 3 we would expect that these regions to produce no
stretching.

A closed material line, however, must change direction
with respect to u at two or more points to form a closed
path. Over time, these regions will form compact 180◦

bends, which we will refer to as ‘bights’, by analogy with
a term using in knot tying. Formally, we will define a
bight as the point at which u · T̂ changes sign along a
material line.

Near the bight, u·N̂ ̸= 0, and so the bights are respon-
sible for stretching or shortening the material line, de-
pending on whether they are a ‘leading’ bight (N̂ ·û < 0)

or a ‘trailing’ bight (N̂ · û > 0). (Note that for open
material lines, the ends of the material line also function
similar to bights; see Supplemental Materials for details.)

If we assume that all the stretching can be attributed
to bights – each of which is assumed to be a compact
180◦ bend – we would obtain a simple expression for the
stretching rate:

L̇(t → ∞) ≈ −2
∑
bights

N̂ · u, (4)

where u and N̂ are computed at the bights and an overall
factor of 2 is obtained by integrating u · κN̂ around the
180◦ bend. As an example, consider a material line which
is a circle displaced from a single vortex line (Fig. 1). If
this circle has center displacement, ρ0, and radius, a,
it will form a leading bight near the location closest to
the vortex, at ρ = ρ0 − a, and a trailing bight near the
spot furthest from the vortex, at ρ = ρ0 + a. Under the
assumption that each bight is a 180◦ bend in the material
line, we would predict a stretching rate of:

L̇(t → ∞) =
Γ

π

[
1

ρ0 − a
− 1

ρ0 + a

]
. (5)

As can be seen in Fig. 1c, the stretching rate converges
on this result after only a fraction of a turn around the
vortex.

This behavior is not unique to circular material lines:
as shown in the supplementary materials, any material
line should tend to align with the flow field of a straight
line vortex over time. As a result, it will form some
number of compact bights, and in the long time limit
these will determine the stretching rate.
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III. STRETCHING FROM VORTEX RINGS
AND KNOTS

It is not clear that such a formulation should apply
to more complicated geometries, for which we can not
assume that material lines will always align with u. In
this section we consider the stretching of material lines in
the flow fields of more complex vortex shapes, including
rings, distorted rings, and knots.

A. Methods

The flow field of more complex vortex shapes is com-
puted using the Biot-Savart law:

u(x) =
Γ

4π

∮
T̂ × (r − x)

|r − x|3
ds, (6)

where here r(s), T̂ , and s refer to the vortex path (rather
than a material line), and we set Γ = 2π as before. In
cases where there is more than one vortex, the velocities
from each are summed. In practice, the vortex path(s)
are represented as polygons with a total of 100 points,
in which case an exact expression can be obtained for
the flow field [35]. Because we are considering frozen
flow fields, we do not advect the vortex paths in time –
as would happen in flow described by the Navier-Stokes
equation – but rather treat them as fixed.

The strain rate tensor of this field (∇u) can be explic-
itly computed, allowing for the advection of infinitesimal
vectors attached to each points. This allows us to rep-
resent material lines as piece-wise Beziér curves whose
control points are computed using a tangent vector at-
tached to each end point. These end points and vectors
are integrated in time using the Dormand-Prince method
[36, 37] with an absolute velocity tolerance of 10−8. (See
Appendix B for more details on our numerical scheme.)

To predict stretching from bights, we identify the loca-
tions on the material line where T̂ · u changes sign, and
then compute the normal vector from the implicit Beziér
curve. This allows us to directly compute eqn. 4, and
compare this to the actual stretching rate found by the
derivative of the length of the material line. Note that,
in the case of the more complicated geometries discussed
below, we may also obtain bights for relatively straight
sections of the material line where the flow field changes
direction, rather than being caused by a tight bend in
the material line. These can be filtered by curvature or
other means, however, this does not significantly affect
our results and so we neglect it in the following discus-
sion. (In practice, we have observed that these ‘phantom’
bights are typically a small fraction of the total bights,
and often become ‘true’ bights as they evolve in time.)

In general, each of the simulations is run until either
the number of resolved points exceeds 5 × 107, or the
simulation fails due to lack of precision. The latter con-
dition typically happens when the bights themselves be-

come sufficiently sharp that the can not be properly re-
solved by double precision floating point numbers.

B. Role of Geometry and Topology in Stretching of
Material Lines

In order to understand how shape and topology affect
the stretching behavior of 3D vortices, we will consider
several vortex shapes: pairs of circular or distorted rings
and trefoil knots of varying aspect ratio. To allow for
better comparison between different cases, each of the
vortex lines is defined on the surface of a torus with major
radius, R = 1, and minor radius (and aspect ratio), a =
0.1 − 0.4. Four different aspect ratios are used in the
case of the knotted vortices, while a = 0.3 is used for
all unknotted vortices. The parametric equations for all
vortex lines are given in Appendix B 5.
The stretching behavior for each vortex line is com-

puted by advecting an initial material line which is a
perfect circle oriented either toroidally (threaded through
the center of the torus which defines the vortex lines),
or poloidally (wrapping around the torus with radius
r = 1.5a). The evolving length of all cases is shown
in Fig. 2.
The simplest case we consider is a pair of inset circular

vortices, which produce linear stretching analogous to the
infinite straight line. (Note that similar results can be
obtained for a single vortex ring, which is not shown here
because the pair of rings is a better comparison to the
other cases.)
More dramatic cases of the stretching behavior are pro-

vided by the trefoil knots: in each case we see rapid expo-
nential stretching of material lines, with an exponential
rate which depends primarily on the aspect ratio. To de-
termine this rate, we fit the last 1.5 time units of each
simulation to the equation:

L(t) = ea+kt, (7)

where the values of k obtained for each simulation are
shown in Table I. The choice of material line also has
a slight impact on the observed exponential stretching
rate, although far less than the aspect ratio of the knot.
In each case, it can be seen that the evolving material

line rapidly forms new bights when regions of it pass be-
tween the vortices. These bights can be used to estimate
the stretching rate (Fig. 2(c-d)); although it does not
provide a quantitatively accurate result as in the case of
the infinite line. This is likely because new bights are con-
tinuously forming, thus one always expects to find bights
that have not yet reached the long time limit of sharp
tips. Nonetheless it does indicate that the phenomenol-
ogy of the stretching behavior is still explained by the
bight picture.
The key distinction between the unknotted and knot-

ted vortices is the ability to produce new bights contin-
uously. Indeed, for trefoil knots the number of bights is
observed to grow exponentially, along with the length.
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Vortex Shape Aspect Ratio Tor. Rate Pol. ML Radius Pol. Rate
a = 0.1 kt = 31.5 rp = 0.15 kp = 27.9
a = 0.2 kt = 5.30 rp = 0.3 kp = 5.08

rp = 0.35 kp = 2.16
rp = 0.45 kp = 2.36

Trefoil Knots a = 0.3 kt = 2.48 rp = 0.55 kp = 2.37
rp = 0.65 kp = 2.25
rp = 0.75 (kp = 0.237)†

a = 0.4 kt = 1.41 rp = 0.6 kp = 1.41

TABLE I: Measured exponential stretching rates for torus knots. In each case, an exponential stretching rate, k, is
determined by a least squares fit of lnL(t) = a+ kt. To eliminate initial transients, the fit is over only the last 1.5
time units of each simulation. Fits are shown for initial material lines that are both toroidally (tor.) and poloidally
oriented (pol.). In the latter case the radius of the initial material line, rp is indicated. † indicates data sets which

do not fit well to exponential growth curves; see Fig. 2 and Fig. 3.
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FIG. 2: The stretching of material lines by vortices of varying shape and topology. For all plots the left plots show
inital toroidal material lines, and the right side shows poloidal material lines where rp = 1.5a. (a-b) The total

length as a function of time. Dotted lines show exponential fits; note that in the cases of unknotted vortices it can
be seen that the trend is not exponential, while it is for the trefoil knots. (c-d) The stretching rate as a function of
time. The solid lines are computed from the numerical derivative of the length, with a Gaussian smoothing of width
σt = 0.05 applied to remove high frequency noise. The dashed lines shows an estimate of the stretch rate, obtained
from eqn. 4. (e-f) The bight count, obtained by locating the number of points on the material line where u · T̂

changes sign.

We note that if the probability of producing a new bight
is proportional to the current length – and the stretching
rate is (roughly) proportional to the number of bights
– we should then obtain exponential growth. Interest-
ingly the twisted ring case does appear to have exponen-

tial growth (and a corresponding increase in number of
bights) for short times. Eventually, however, the mate-
rial line is transported out of the bight forming region
and the growth becomes linear.

The choice of torus knot aspect ratio affects the speed
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of stretching, but not the qualitative appearance of the
stretching material line. The increase in rate can be ex-
plained by the fact that the time it takes for a point to
be transported around the vortices will be much reduced
for smaller aspect ratio.

To explore which features of the vortex knot produce
the transition between linear and exponential stretching,
we also distort the unknotted rings in a manner analogous
to the knots. The simplest way to do this is to make each
of the rings helices, so that the vortex lines have a torsion
comparable to the knotted case. However, these helices
produces linear stretching, as with the undistorted rings.

A more interesting case is provided by twisting each
of the rings around the surface of a torus, which can
be done while still leaving them unlinked and unknot-
ted (i.e. with trivial toplogy in the sense of knot the-
ory). This produces vortices with local sections that look
nearly identical to the knot. Interestingly, for short pe-
riods of time this configuration appears to produce ex-
ponential stretching, corresponding to periods of rapid
bight production. On longer timescales the stretching
becomes linear, and the bight production slows.

Thus, we observe that the twisted rings do indeed have
a region which is capable of producing new bights and
providing stretching behavior analogous to the knotted
case. However, this behavior can not be maintained, as
the material line is eventually transported out of the re-
gion of bight formation where it remains at long time
scales.

One might expect that the stretching speed could be
modified by changing the radius of the initially poloidal
material line, rp. We conducted an additional 5 simu-
lations for a torus knot with aspect ratio, a = 0.3, and
material line radius, rp = 0.35 − 0.75. The stretching
behavior is shown in Fig. 3. We observe that the expo-
nential stretching rate for rp = 0.35 − 0.65 is nearly the
same, ranging from k = 2.17 − 2.37. For rp = 0.75 we
observe no bight production and linear growth of the ma-
terial line. Evidently if we are sufficiently far from the
vortex the bight production is suppressed; the reason for
this is discussed in the next section.

Might it be possible to produce topologically trivial
shapes with continuous bight production? This seems
unlikely for the case of the vortex lines confined to sur-
face of a torus: if they are continuously twisted in one
direction the resulting shapes with be topologically linked
or knotted. If the twist rate oscillates – as in the twisted
ring case – it will always have locally untwisted regions
which seem not to produce exponential stretching. If the
material lines are always transported into these regions,
they will ultimately only produce linear stretching. It
may be possible to produce shapes not confined to the
surface of a torus that do not have this limitation, which
we leave as an avenue for future studies.
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FIG. 3: Stretching of polodial material lines of varying
radius, rp for a trefoil knot of aspect ratio a = 0.3. For
rp = 0.75 new bights are never formed and the material
line has a limited stretching rate; in all other cases new
bights are formed and exponential stretching is reached
with approximately the same growth rate. See Fig. 4c
for an overlay of the polloidal material lines with the

FTLE values.

IV. FINITE TIME LYAPUNOV EXPONENTS

An alternative method to probe for exponential
stretching is to compute the finite time Lyapunov ex-
ponent (FTLE) of the flow field [38]. The FTLE charac-
terizes the exponential stretching rates of parcels of fluid
in the direction of maximum strain.
We compute the FTLE using the Cauchy strain tensor;

for an initial point, x(t = 0), this is given by:

Cij(T ) =
∑
k

∂xk(T )

∂xi(0)

∂xk(T )

∂xj(0)
, (8)

where x(T ) is the point x(0) transported forward in
time an interval T , and in practice the derivatives are
computed by attaching infinitesimal unit vectors to each
point (see Appendix B 4).
The FTLE is then given by:

ΛT (x) =
1

T
log

√
λmax(x), (9)
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FIG. 4: A map of finite time Lyapunov exponents, computed for trefoil torus knots of varying aspect ratio. The
exponents are computed for a time interval of T = 30, and values are shown for a slice in the y = 0 plane. The white
(dashed) lines show the location of the vortex lines in front of (or behind) the plotted plane. The first four panels
(a-d) show both sides of the vortex for aspect ratios from a =0.1–0.4, while (e-f) shows a zoomed in portion of two
cases. (The zoomed in regions are indicated with blue boxes in (a) and (d)) The FTLE isn’t computed for points
within a radius of r = 0.02 of the vortex cores (black circles) to prevent numerical precision issues. Poloidal material

line locations for rp = 0.65, 0.75 are indicated in (c). Note that the rp = 0.75 line lies just outside the unstable
manifold; as shown in Fig. 3 this material line has only linear stretching.

where λmax(x) is the largest eigenvalue of the deforma-
tion tensor, Cij , computed for an initial position x.

FTLE maps for knotted vortices of varying aspect ratio
are shown in Fig. 4. In each case, the regions of high-
est exponential growth appear in the regions between the
vortices. This is despite the fact that the regions of high-
est instantaneous shear are immediately adjacent to the
vortices; these regions do not produce new bights, and so
produce only linear stretching in the long time limit. (If
the FTLE is computed for larger T , the linearly stretch-
ing regions near the core will have a smaller values, but
limits of numerical precision prevent us from accurately
computing the exponent in these regions; the simulations
are stopped when the longest stretched unit vectors are

stretched by a factor of ∼ 1010.)

Most notably, the FTLE plots reveal ridges of high
stretching – unstable manifolds – which connect sections
of the vortex (e.g. in the center of Fig. 4(e-f). These
appear to be the regions responsible for producing new
bights; we note that if the material line does not cross
one of these ridges we do not observe exponential stretch-
ing. For example, for a = 0.3, rp = 0.75, we observe
only linear growth (Fig. 3). This material line lies just
outside the FTLE ridge; for a slightly smaller value of
rp = 0.65 which does cross the ridge we do observe expo-
nential growth after an initial linear period. Additionally,
we note that the quantitative rate of exponential stretch-
ing observed for both toroidal and poloidal material lines
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has roughly the same time constant as the peak value on
the ridges of high stretching observed in the FTLE plots.

V. CONCLUSION AND DISCUSSION

In this manuscript we have compared the stretching
of arbitrary material lines by vortical flow fields of vary-
ing topology and geometry. In particular we have shown
that the flow fields of knotted vortices produce exponen-
tial stretching of material lines in certain regions, which
is not seen in the stretching of flow fields of unknotted
vortices. This change in the qualitative character of these
flow fields is confirmed by computing the FTLE of the
flow fields. The FTLE results demonstrate that it is the
regions between the vortices which are responsible for ex-
ponential stretching. Intuitively, this can be explained
by the production of ‘bights’ in these regions. Conversely
when a region of flow is dominated by a single vortex the
rapid strain prevents the formation of new bights, ulti-
mately producing less stretching over the long term even
though the local strain rate may be much higher.

These results suggest previously unknown connections
between previous results in the physics of mixing and
vortex dominated fluid flows. In 2D flows, it is well
known that the topology of a time-dependent flow fields
is connected to long term exponential stretching [34, 39].
In this case, exponential stretching is produced by a
‘stretching and folding’ action reminiscent of a taffy
puller. Our work suggests that topology in space alone
can play a similar role in 3D flows; in our case the ‘fold-
ing’ of the material lines is indicated by the production
of bights.

These results may also offer an explanation for the ap-
parent instability of knotted vortices. It has previously
been observed – in both experiments and simulations
– that linked and knotted vortices are highly unstable
to self-stretching [18–24]. Although our results do not
model the self-stretching of vortex lines (indeed, we treat
the vortices as fixed), they do demonstrate that vortex
topology has a dramatic effect on the stretching behavior
of the a flow field. As vortex lines themselves are trans-
ported by flows, it follows that we would also expect a
qualitative difference in their evolution.

Although in principle one could model the stretching
produced by vortices whose shape evolves in time, as pre-
viously noted knotted vortices will rapidly approach re-
connection events. Thus, a dynamic model would be lim-
ited in the total amount of time which the vortices remain
knotted, making it difficult or impossible to separate ex-
ponential from non-exponential stretching. Interestingly,
our results suggest that a more complex model is not re-
quired: the advection of material lines by a ‘frozen’ flow
field may be sufficient to indicate their long term stabil-
ity. This also suggests that the non-linearities present
in the full Navier-Stokes equation are not required to
explain the difference in stability between knotted and
unkontted vortices.

These results have potential relevance for a wide vari-
ety of vortex-dominated flows, such as tornadoes, flows
around aerodynamic surfaces, and turbulence. For ex-
ample, we note that enstrophy production – i.e. vortex
stretching – is one of the hallmarks of 3D turbulence,
and is one of the features which distinguishes 2D from
3D flows [29]. Although further work is required to show
that these results hold for a wider variety of flow config-
urations – e.g. multiple vortices of different circulation,
those with finite core size, etc. – it does suggest the par-
ticular shape the ‘tangled’ vortices in a turbulent flow
may offer clues as to when and why vortex stretching
occurs.
Finally, we note that our work does not rule out the

possibility that that some complex unkotted configura-
tion of vortex lines may produce exponential stretching,
or that all knotted vortex fields do. In future work it
may be possible to prove this using newly developed 3D
analogues of the techniques used in 2D topological mix-
ing [40]. Nonetheless, the current results demonstrate a
clear connection between vortex topology and stretching
behavior mediated by bight production.

Appendix A: Infinite Straight Line Vortex

1. Global vs. Local Stretching

Section II describes stretching of material lines using
a curvature based formula. This formula – which is only
valid for closed material lines – attributes the stretching
to the curved regions of the vortex. Naturally, a straight
line segment in a varying flow field can also stretch; the
equivalent formula for an open material line, which in-
cludes end terms, is:

L̇ = −
∫ L

0

u · κN̂ ds+ uf · T̂f − ui · T̂i, (A1)

where ui/f is the velocity at the initial/final point along
the curve, and Ti/f is the corresponding tangent vector.
In the case of a straight line, the stretching is simply
given by the differential velocity at the two end points,
which function in a manner similar to bights.
This formulation – for either open or closed curves –

does not indicate where along the line the stretching ac-
tually occurs. (For example, a straight line in a varying
flow field will have local stretching along its length; this is
not predicted by the curvature formulation, even though
the total length change is.) If required, local stretching
can be obtained using the strain tensor:

ℓ̇

ℓ
= ∇T̂u · T̂ , (A2)

Calculating this quantity for a material line near an infi-
nite vortex shows that the stretching also occurs in the re-
gion between the bights, despite the fact that u ·κN̂ ≈ 0
here. Nonetheless, one can treat the bights (or line
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ends) as responsible for the stretching, and analyzing
the stretching in terms of these points provides a simple,
intuitive picture of the dynamics. In other words: the
bight/curvature picture does not indicate where stretch-
ing of the material line will happen, but does indicate
when it will happen.

2. Alignment with Flow Direction

Consider a short material line embedded in the flow
of an infinite vortex along the z-axis. Assuming a cir-
culation Γ = 2π, the flow field in cylindrical coordinates
is:

u =
ϕ̂

ρ
(A3)

Where ρ is the distance from the z-axis. The transport
of a single point is given by:

ϕ(t) = ϕ(0) +
t

ρ(0)2
(A4)

With the other coordinates (ρ and z) remaining constant.

If our short material line segment is described by tan-
gent vector T (where |T | is identified with the infinitesi-
mal segment length), we can derive its time evolution:

T (t) = Tρ(0)ρ̂+

[
Tϕ(0)−

2tTρ(0)

ρ(0)2

]
ϕ̂+ Tz(0)ẑ (A5)

Note that these unit vectors are specified at the location
of the moving point; if expressed in rectangular unit vec-
tors, an overall rotation would also need to be included.
From this equation, we can see that the material line
tangent vector will simply increase or decrease in the ϕ
direction, depending on the sign of Tρ. In other words,
segments pointing out from the z-axis will asymptotically

align with −ϕ̂ (or −u), and segments pointing in with

+ϕ̂ (or +u). Furthermore, we can see that this segment
stretches, and that as t → ∞ we obtain |T | ∝ t. This im-
plies that any material line which stretch at most linearly
in the long time limit.

Appendix B: Simulation Details

1. Flow Field

We define our vortex path as a series of polygons with
points rj . The flow field for a polygonal vortex can be

exactly computed as [35]:

u(x) =
∑
j

Γ

4π

2ϵj
1− ϵ2j

∆̂j ×Rj

RjRj+1
(B1)

Rj = rj − x; Rj ≡ |Rj | (B2)

∆j = rj − rj+1; ∆̂j ≡
∆j

|∆j |
(B3)

ϵj =
|rj − rj+1|
rj + rj+1

, (B4)

where the sum is over all polygon edges.

To model material lines or compute FTLE fields, we
track individual points in the field, xi, with one or more
attached infinitesimal vectors, Vi,n. These points are ad-
vected in the flow field, i.e.:

∂xi

∂t
= u [xi(t)] (B5)

∂Vi,n

∂t
= ∇Vi,nu [xi(t)] , (B6)

where an exact expression for the gradient of the flow
field is given by:

∇vu =
∑
j

Γ

4π

2ϵ

1− ϵ2
∆̂j

rirf
×

[
v − ri

(
v ·

[
r̂i
ri

+
r̂f
rf

+
r̂i + r̂f
rirf

1 + ϵ2

1− ϵ2

])]
(B7)

Numerically, both are integrated using the Dormand-
Prince method [36, 37] with an absolute velocity toler-
ance of 10−8.

2. Bézier Curves

Because some sections of the material line will stretch
far more than others, to accurately track its length we
need a method for inserting new points into the curve
as it evolves. To implement this, we approximate the
material line as a series of cubic Bézier curves. We do
this by representing the material line as a series of points
along the curve, xi, with a single attached tangent vector,
Vi. These points and vectors evolve according to eqn. B5
and eqn. B6. Each point also has a attached segment
length, si, which is constant in time excepting periodic
resampling of the curve (see below).

The implicit cubic Bézier curve for each segment is
then given by:

xi(z) = (1− z)3P⃗0 + 3(1− z)2zP⃗1+

3(1− z)z2P⃗2 + z3P⃗3 (B8)

where z = 0−1 is the position along each curved segment
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Vortex Shape Aspect Ratio Tor. Interval Pol. ML Radius Pol. Interval
a = 0.1 Tresample = 4 · 10−6 rp = 0.15 Tresample = 10−5

a = 0.2 Tresample = 1.6 · 10−5 rp = 0.3 Tresample = 5 · 10−5

Trefoil Knots a = 0.3 Tresample = 3.6 · 10−5 rp = 0.35 Tresample = 5 · 10−5

rp = 0.45− 0.75 Tresample = 10−4

a = 0.4 Tresample = 6.4 · 10−5 rp = 0.6 Tresample = 10−4

All Unkots a = 0.3 Tresample = 10−4 rp = 0.45 Tresample = 10−4

TABLE II: Resampling intervals used for various simulations. Note that the interval must be reduced for
simulations where a material line comes close to the vortex. This is needed to ensure that the it is resampled
roughly the same number of times per transit around the vortex: in practice this means the interval scales as

Tresample ∼ a−2. In each case the simulations were manually checked to ensure the sampling remained qualitatively
accurate – insufficient resampling generally produces a numerically unstable result.

and the control points are define as:

P⃗0 = xi (B9)

P⃗1 = xi +
si
3
Vi (B10)

P⃗2 = xi+1 −
si
3
Vi+1 (B11)

P⃗3 = xi+1. (B12)

Note that P2 depends on si, not si+1, even though the
tangent vector is given by Vi+1. Initially, si corresponds
to the arc length of this segment, and the tangent vectors,
Vi, are all unit length. As the curve is advected this will
result in Vi changing length to compensate for stretching,
rather than including it directly in si. This is done to
ensure that ∂xi

∂s (z = 0) = Vi and
∂xi

∂s (z = 1) = Vi+1.
At regular intervals, the path is resampled: si are re-

placed with the estimated length of each Beziér segment,
and the tangent vectors are re-normalized. The actual
length of each curve is estimated by sampling each curve
at 100 points and computing the total distance between
these points. See Table II for the resampling interval
used for various simulations.

3. Addition and Removal of Points

An angular and length error is considered when de-
cided to insert new points into the curves which define
the material lines. A error number for each segment, Ni,
is computed using:

Ni = max

[
|V̂i × ∆̂i|+ |V̂i+1 × ∆̂i|

ϵa
,
|∆i|
ϵℓ

]
, (B13)

where ∆i = xi+1−xi is the segment displacement vector

(∆̂ is the normalized equivalent), ϵa = 0.1 is the angular
tolerance parameter, and ϵℓ = 0.1 is the length tolerance
parameter.

The addition or removal of points happens at the same
interval as the resampling described above. If Ni > 1 for
any segment, new points are inserted between the ends of
the segment using the Bezier approximation; the number
of inserted points is ceil[Ni] − 1. To remove redundant

points, we consider pairs of segments with even and odd
indices; if the sum of Ni for these neighboring segments
is < 0.9, the midpoint is removed.

4. FTLE Computation

To compute the FTLE of vortical flow fields, we model
the advection of a point, x(t), with three attached in-
finitesimal vectors, Vn(t). These vectors are initialized
so that Vn(t = 0) = ên, where ên are the Cartesian
unit vectors. In this representation the strain tensor and
Cauchy strain tensor are given by:

Fij = êi · Vj (B14)

Cij =
∑
k

(Vi · êk)(Vj · êk). (B15)

In practice, the stretching can be so rapid that nu-
merical precision can limit the maximum observed FTLE
value. To limit this, we show FTLE values computed for
a time when the relative stretching of all vectors is less
than 1010.

5. Simulation Parameters

All vortex paths used in these simulations are defined
on the surface of a torus; the conversion between torroidal
(R, a, ϕ, and α), cylindrical (ρ, ϕ, and z), and cartesian
(x, y, and z) coordinates is given by:

ρ = R+ a cosα (B16)

x = ρ cosϕ (B17)

y = ρ sinϕ (B18)

z = a sinα, (B19)

where ϕ is azimuthal angle, R/a are the major/minor
radius of the torus and α is the polloidal angle. The
aspect ratio of the torus is given by a/R; for most cases
R = 1, so the aspect ratio is given by a.
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Parametric equations for the vortex knots are given by:

Trefoil knot: ϕ = (0− 4π) (B20)

α =
3

2
ϕ (B21)

R = 1, (B22)

where a = (0.1, 0.2, 0.3, 0.4) is the aspect ratio, which
varies for different simulations.

Note that this knotted solution wraps around the torus
twice in the azimuthal direction; we desire for our un-
knotted cases to do the same for a more direct compari-
son. Since one can not define a closed single path on the
surface of a torus which wraps twice and is itself unknot-
ted, the three unknotted cases are each composed of two
separated vortices which each wrap once around a torus.
The parametric equations for these are:

Inset rings: ϕ1/2 = (0− 2π) (B23)

a1/2 = 0 (B24)

R1 = 0.7 (B25)

R2 = 1.3 (B26)

Inset Helices: ϕ1/2 = (0− 2π) (B27)

α1/2 = 3ϕ1/2 (B28)

a1/2 = 0.3 (B29)

R1 = 0.85 (B30)

R2 = 1.15 (B31)

Twisted Rings: ϕ1/2 = (0− 2π) (B32)

α1 =
3

2
sinϕ1 (B33)

α2 = π +
3

2
sinϕ2 (B34)

R1/2 = 1 (B35)

a1/2 = 0.3, (B36)

where in each case we have chosen the aspect ratios
and/or separation between vortices to match the a = 0.3
torus knot case. Additionally, the maximum twist angle
in the twisted ring case is chosen to match the (constant)
twist angle in the trefoil knot case.
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